Computer Science 160
Translation of Programming Languages

Instructor: Christopher Kruegel
Code Generation
Overview

• Intermediate Representations
 – There is more than one way to represent code as it is being generated, analyzed, and optimized (we use ASTs)

• How code runs
 – The way code runs on a machine depends on if the code is compiled or interpreted, and if it is statically or dynamically linked

• Code Generation
 – Three-address code and stack code
 – Dealing with Boolean values and control (such as loops)
 – Arrays
To generate actual code that can run on a processor (such as gcc) or on a virtual machine (such as javac) we need to understand what code for each of these machines looks like.

Rather than worry about the exact syntax of a given assembly language, we instead use a type of pseudo-assembly that is close to the underlying machine.

In this class, we need to worry about 2 different types of code

- Stack-based code: Similar to the Java Virtual Machine
- Three-address code (Register-based code): Similar to most processors (x86, Sparc, ARM, …)
Register-based vs. Stack-based Machines

A **register**-based machine has a number of registers used for calculations. 2 + 3 would work something like this:

- LOADI R4,#2; : Load immediate 2 into register 4
- LOADI R5,#3; : Load immediate 3 into register 5
- ADD R4,R5; : Add R4 and R5, storing result in R4

On a **stack**-based machine, computation would work like this

- PUSHI #2; : Push immediate 2 onto stack
- PUSHI #3; : Push immediate 3 onto stack
- ADD; : Pop top two numbers, add them, and push results to the top of the stack.
Three-Address Code (Register-based Code)

• Each instruction can have at most three operands
• We have to break large statements into little operations that use temporary variables
 – \(X = (2+3)+4 \) turns into to \(T1=2+3; \ X=T1+4; \)
• Temporary variables store the results at the internal nodes in the AST
• Assignments
 – \(x := y \)
 – \(x := y \ op \ z \) \quad \text{op: binary arithmetic or logical operators}
 – \(x := op \ y \) \quad \text{op: unary operators (minus, negation, integer to float)}
• Branch
 – goto \(L \) \quad \text{execute the statement with labeled \(L \) next}
• Conditional Branch
 – if \(x \ relop \ y \) goto \(L \) \quad \text{relop: <, =, <=, >=, ==, !=}
 • if the condition holds, we execute statement labeled \(L \) next
 • if the condition does not hold, we execute the statement following this statement next
if (x < y)
 x = 5*y + 5*y/3;
else
 y = 5;
 x = x + y;

Variables can be represented with their locations in the symbol table

if x < y goto L1
goto L2
L1: t1 := 5 * y
t2 := 5 * y
t3 := t2 / 3
x := t1 + t3
goto L3
L2: y := 5
L3: x := x + y

Temporaries: temporaries correspond to the internal nodes of the syntax tree

• Three-address code instructions can be represented as an array of
 quadruples: operation, argument1, argument2, result
 triples: operation, argument1, argument2
 (each triple implicitly corresponds to a temporary)
Stack Machine Code

- Stack based code uses the stack to store temporary variables.

- When we evaluate an expression \((E+E)\), it will take its arguments off the stack, add them together and put the result back on the stack.

- \((2+3)+4\) will push 2; push 3; add; push 4; add

- The machine code for this is a bit uglier, but the code is actually easier to generate because we do not need to handle temporary variables.
Why is Code Easier to Generate?

• Each operation takes operands from the same place and puts results in the same place
 – Location of the operands is implicit
 – Always on the top of the stack
 – No need to specify operands explicitly
 – No need to specify the location of the result
 – Instruction “add” as opposed to “add r1, r2” ⇒ Smaller encoding of instructions ⇒ More compact programs
if \ (x < y) \\
\quad x = 5*y + 5*y/3; \\
else \\
\quad y = 5; \\
\quad x = x+y;

JVM: A stack machine

- JVM interpreter executes the bytecode on different machines
- JVM has an operand stack which we use to evaluate expressions
- JVM provides 65,535 local variables for each method
The local variables are like registers so we do not have to worry about register allocation
- Each local variable in JVM is denoted by a number between 0 and 65535 (x and y in the example will be assigned unique numbers)

load x
load y
iflt L1
goto L2
L1: push 5
load y
multiply
push 5
load y
multiply
push 3
divide
add
store x
goto L3
L2: push 5
store y
L3: load x
load y
add
store x
• Three-Address Code:
 – Good - Compact representation
 – Good - Statement is “self contained” in that it has the inputs, outputs, and operation all in one “instruction”
 – Bad - Requires lots of temporary variables
 – Bad - Temporary variables have to be handled explicitly

• Stack Based Code:
 – Good – No temporaries, everything is kept on the stack
 – Good – It is easy to generate code for this
 – Bad – Requires more instructions to do the same thing
Stack-Based Code Generation

Attributes:

- $E.code$: sequence of instructions that are generated for E

 (no place for an expression is needed since the result of an expression is stored in the operand stack)

Procedures:

- `newtemp()`: Returns a new temporary each time it is called
- `gen()`: Generates instruction *(have to call it with appropriate arguments)*
- `lookup(id.name)`: Returns the location of id from the symbol table

Productions

<table>
<thead>
<tr>
<th>Term</th>
<th>Replacement</th>
<th>Semantic Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S \rightarrow \text{id := } E$</td>
<td>$\text{id.place } \leftarrow \text{lookup(id.name)}$; $S.code \leftarrow E.code | \text{gen(‘store’ id.place)}$;</td>
<td></td>
</tr>
<tr>
<td>$E \rightarrow E_1 + E_2$</td>
<td>$E.code \leftarrow E_1.code | E_2.code | \text{gen(‘add’)}$; (arguments for the add instruction are in the top of the stack)</td>
<td></td>
</tr>
<tr>
<td>$E \rightarrow E_1 \ast E_2$</td>
<td>$E.code \leftarrow E_1.code | E_2.code | \text{gen(‘multiply’)}$;</td>
<td></td>
</tr>
<tr>
<td>$E \rightarrow (E_1)$</td>
<td>$E.code \leftarrow E_1.code$;</td>
<td></td>
</tr>
<tr>
<td>$E \rightarrow - E_1$</td>
<td>$E.code \leftarrow E_1.code | \text{gen(‘negate’)}$;</td>
<td></td>
</tr>
<tr>
<td>$E \rightarrow \text{id}$</td>
<td>$E.code \leftarrow \text{gen(‘load’ id.place)}$;</td>
<td></td>
</tr>
</tbody>
</table>
Example

\[X := (Y + Z) * A \]

Diagram:

- \(S \) node with code: "load Y
 load Z
 add
 load A
 multiply
 store X"

- \(E \) node with code: "load Y
 load Z
 add"

- \(E \) node with code: "load Y
 load Z
 add"

- \(E \) node with code: "load Y"

- \(E \) node with code: "load Z"

- \(E \) node with code: "load A"

- \(E \) node with code: "load Y
 load Z
 add"
Attributes:
- $E.place$: location that holds the value of expression E
- $E.code$: sequence of instructions that are generated for E

Procedures:
- `newtemp()`: Returns a new temporary each time it is called
- `gen()`: Generates instruction *(have to call it with appropriate arguments)*
- `lookup(id.name)`: Returns the location of id from the symbol table

Productions

<table>
<thead>
<tr>
<th>Productions</th>
<th>Semantic Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S \to \text{id := } E$</td>
<td>$\text{id.place} \leftarrow \text{lookup(id.name)}$; $\text{S.code} \leftarrow E.code \parallel \text{gen(} \text{id.place} \leftarrow \text{'} E.place \text{')}$;</td>
</tr>
<tr>
<td>$E \to E_1 + E_2$</td>
<td>$\text{E.place} \leftarrow \text{newtemp()}$; $\text{E.code} \leftarrow E_1.code \parallel E_2.code \parallel \text{gen(} \text{E.place} \leftarrow \text{'} E_1.place \leftarrow + \text{'} E_2.place \text{')}$;</td>
</tr>
<tr>
<td>$E \to E_1 * E_2$</td>
<td>$\text{E.place} \leftarrow \text{newtemp()}$; $\text{E.code} \leftarrow E_1.code \parallel E_2.code \parallel \text{gen(} \text{E.place} \leftarrow \text{'} E_1.place \leftarrow * \text{'} E_2.place \text{')}$;</td>
</tr>
<tr>
<td>$E \to \text{(} E_1 \text{)}$</td>
<td>$\text{E.code} \leftarrow E_1.code$; $\text{E.place} \leftarrow E_1.place$;</td>
</tr>
<tr>
<td>$E \to -E_1$</td>
<td>$\text{E.place} \leftarrow \text{newtemp()}$; $\text{E.code} \leftarrow E_1.code \parallel \text{gen(} \text{E.place} \leftarrow \text{'} uminus \text{'} E_1.place \text{')}$;</td>
</tr>
<tr>
<td>$E \to \text{id}$</td>
<td>$\text{E.place} \leftarrow \text{lookup(id.name)}$; $\text{E.code} \leftarrow \text{'}\text{'} \text{'} \text{'}$ (empty string)</td>
</tr>
</tbody>
</table>
Example

\[X := (Y + Z) \times A \]

```
S
  S.id := E
    E.id := E
      E.\text{place} = t1
      E.\text{code} = "t1 := y + z"
      E.\text{place} = t1
      E.\text{code} = "t1 := y + z"
      E.\text{place} = z
      E.\text{code} = ""
    E.\text{place} = t2
    E.\text{code} = "t1 := y + z"
    E.\text{place} = t2
    E.\text{code} = "t1 := y + z"
      E.\text{place} = t2
      E.\text{code} = "t1 := y + z"
      E.\text{place} = a
      E.\text{code} = ""
      E.\text{place} = t2
      E.\text{code} = ""
    E.\text{place} = t2
    E.\text{code} = "t1 := y + z"
    E.\text{place} = t2
    E.\text{code} = "t1 := y + z"
  E.\text{place} = t1
  E.\text{code} = "t1 := y + z"
E.\text{place} = y
E.\text{code} = ""
E.\text{place} = z
E.\text{code} = ""
```

```
S.code =
  "t1 := y + z"
  t2 := t1 \times a
  x := t2"
```

```
E.code = ""
```

```
t1 := y + z
t2 := t1 \times a
x := t2
```
x86 Architecture

- Complex Instruction Set Computer (CISC)

- Significantly larger opcode set: 400-odd compared to 40-odd in RISC

- Opcodes often can operate on both registers and/or memory
 - Do not necessarily need separate load/store instructions

- 8 general purpose registers (32 bits each)
 - We will use %esp, %eax, and %ecx
 - Intel engineers felt that it is better to provide more opcodes and less registers. Use on-chip real-estate for more functional units and logic (by saving space through a shorter register file and its connections).
(A few) x86 Opcodes

- **movl %reg1/(memaddr1)/$imm, %reg2/(memaddr2)**
 - Move 32-bit word from register reg1 (or address memaddr1 or the immediate value itself) into reg2 or to memory address memaddr2
 - Captures several opcodes in one mnemonic (load, store, li, move-register, etc.). More powerful than RISC, e.g., MIPS cannot move immediate value directly to memory

- **add %reg1/(memaddr1)/$imm, %reg2/(memaddr2)**
 - %reg2/(memaddr2) <-- reg1/(memaddr1)/imm + %reg2/(memaddr2)
 - Overflow is always computed for both signed/unsigned arithmetic. Happens in parallel so not in critical performance path, but switches more transistors (more power)

- **push %reg/(memaddr)/$imm**
 - (%esp-4) <-- reg/(memaddr)/imm; %esp <-- %esp-4

- **pop %reg/(memaddr)/$imm**
 - reg/(memaddr)/imm <-- (%esp); %esp <-- %esp+4
Expression Code for x86

The stack-machine code for 7+5 in x86

```
pushl  $0x7       ; push first expression (argument) on the stack
pushl  $0x5       ; push second expression (argument) on the stack
        ; do the add operation
        ; load first argument into temporary register
popl   %ebx        ; load second arg. into accumulator
        ; add result together and store in accumulator
addl   %ebx, %eax
pushl  %eax       ; push result back on the stack
```
Expression Code for x86

- The stack-machine code for 3+ (7+5) in x86

```
pushl  $0x3
pushl  $0x7
pushl  $0x5
popl   %ebx
popl   %eax
addl   %ebx, %eax
pushl  %eax
popl   %ebx
popl   %eax
addl   %ebx, %eax
pushl  %eax
```
Code Generation for Boolean Expressions

- Two approaches
 - Numerical representation
 - Implicit representation

- Numerical representation
 - Use 1 to represent true, use 0 to represent false
 - For three-address code, store this result in a temporary
 - For stack machine code, store this result on the stack

- Implicit representation
 - For the Boolean expressions that are used in flow-of-control statements (such as if-statements, while-statements etc.) Boolean expressions do not have to explicitly compute a value, they just need to branch to the right instruction
 - Generate code for Boolean expressions that branch to the appropriate instruction based on the result of the Boolean expression
Boolean Expressions: Numerical Representation

Attributes:

- $E.place$: location that holds the value of expression E
- $E.code$: sequence of instructions that are generated for E
- $id.place$: location for id
- $relop.func$: the type of relational function

If there are instructions in the architecture that support operations on Boolean data (like “logical and” or “logical or”), then the easiest way to implement Boolean data is to just treat it like normal data.

Productions

$E \rightarrow id_1 \ relop \ id_2$

$$E.place \leftarrow newtemp();$$
$$E.code \leftarrow gen(E.place '\:=\:' id_1.place \ relop.func \ id_1.place)$$

$E \rightarrow E_1 \ and \ E_2$

$$E.place \leftarrow newtemp();$$
$$E.code \leftarrow E_1.code$$
$$|| E_2.code$$
$$|| gen(E.place '\:=\:' E_1.place '\ and\:' E_2.place);$$

Semantic Rules
Boolean Expressions: Implicit Representation

Attributes:
- \(E.code \): sequence of instructions that are generated for \(E \)
- \(E.false \): instruction to branch to if \(E \) evaluates to false
- \(E.true \): instruction to branch to if \(E \) evaluates to true
 (\(E.code \) is synthesized whereas \(E.true \) and \(E.false \) are inherited)
- \(id.place \): location for \(id \)

Productions

\[
E \rightarrow id_1 \ relop \ id_2
\]

Semantic Rules

\[
E.code \leftarrow \text{gen(‘if‘ } id_1.place \text{ relop.op } id_2.place \text{ ‘goto‘ } E.true) \\
\| \text{gen(‘goto‘ } E.false);
\]

\[
E_0 \rightarrow E_1 \text{ and } E_2
\]

\[
E_1.false \leftarrow E_0.\ false; \text{ (short-circuiting)} \\
E_2.false \leftarrow E_0.\ false; \\
E_1.true \leftarrow \text{newlabel();} \\
E_2.true \leftarrow E_0.\ true; \\
E.code \leftarrow E_1.code \| \text{gen}(E_1.true ‘:') \| E_2.code ;
\]

This generated label will be inserted to the place for \(E_1.true \) in the code generated for \(E_1 \)

These places will be filled with labels later on when they become available

(can be any relational operator: \(==, <=, >=, != \))
Example

Input Boolean expression: $x < y$ and $a == b$

Numerical representation:

100 $t_1 := x < y$
101 $t_2 := a == b$
102 $t_3 := t_1$ and t_2

Implicit representation:

if $x < y$ goto L1
goto LFalse
L1:
if $a == b$ goto LTrue
goto LFalse
LTrue:
LFalse:
Flow-of-Control Statements

If-then-else
- Branch based on the result of Boolean expression

Loops
- Evaluate condition before loop (if needed)
- Evaluate condition after loop
- Branch back to the top if condition holds
 Merges test with last block of loop body

While, for, do, and until all fit this basic model
Flow-of-Control Statements: Code Structure

$S \rightarrow \text{if } E \text{ then } S_1 \text{ else } S_2$

$E.true:$

- $E.code$
 - to $E.true$ if E evaluates to true
 - to $E.false$ if E evaluates to false

- $S_1.code$
 - goto $S.next$

$E.false:$

- $S_2.code$

$S.next:$

- ...
- ...

$S \rightarrow \text{while } E \text{ do } S_1$

$S.begin:$

- $E.code$
 - to $E.true$
 - to $E.false$

$E.true:$

- $S_1.code$
 - goto $S.begin$

$E.false:$

- ...
- ...

Another approach is to place $E.code$ after $S_1.code$
Attributes:

- \(S.code \): sequence of instructions that are generated for \(S \)
- \(S.next \): label of the instruction that will be executed immediately after \(S \)

 \(S.next \) is an inherited attribute.

Productions

\[
S \rightarrow \text{if } E \text{ then } S_1 \text{ else } S_2
\]

\[
\begin{align*}
E.true & \leftarrow \text{newlabel}(); \\
E.false & \leftarrow \text{newlabel}(); \\
S_1.next & \leftarrow S.next; \\
S_2.next & \leftarrow S.next; \\
S.code & \leftarrow E.code \mid \text{gen}(E.true \ ':') \mid S_1.code \\
& \mid \text{gen}(\text{goto } S.next) \mid \text{gen}(E.false \ ':') \mid S_2.code;
\end{align*}
\]

\[
S \rightarrow \text{while } E \text{ do } S_1
\]

\[
\begin{align*}
S.begin & \leftarrow \text{newlabel}(); \\
E.true & \leftarrow \text{newlabel}(); \\
E.false & \leftarrow S.next; \\
S_1.next & \leftarrow S.begin; \\
S.code & \leftarrow \text{gen}(S.begin \ ':') \mid E.code \mid \text{gen}(E.true \ ':') \mid S_1.code \\
& \mid \text{gen}(\text{goto } S.begin);
\end{align*}
\]

\[
S \rightarrow S_1 ; S_2
\]

\[
\begin{align*}
S_1.next & \leftarrow \text{newlabel}(); \\
S_2.next & \leftarrow S.next; \\
S.code & \leftarrow S_1.code \mid \text{gen}(S_1.next \ ':') \mid S_2.code
\end{align*}
\]
Input code fragment:

```c
while (a < b) {
    if (c < d) {
        x = y + z;
    } else {
        x = y - z;
    }
}
```

```
L1:      if a < b goto L2
         goto LNext
L2:      if c < d goto L3
         goto L4
L3:      t1 := y + z
         x := t1
         goto L1
L4:      t2 := y - z
         x := t2
         goto L1
LNext:   ...
```
x86 Example

Input code fragment:

```c
if (x != 2) {
    y = true;
} else {
    y = false;
}
```

```assembly
movl 0xfffffffc(%ebp), %eax
pushl %eax
pushl $0x2
popl %ebx
popl %eax
cmpl %ebx, %eax
jne c_t_label_1
pushl $0x0
jmp c_f_label_1

c_t_label_1:
pushl $0x1

c_f_label_1:
    popl %eax
cmpl $0x01, %eax
jne if_else_label_0
pushl $0x1
popl %eax
movl %eax, 0xffffffff8(%ebp)
jmp if_end_label_0

if_else_label_0:
pushl $0x0
popl %eax
movl %eax, 0xffffffff8(%ebp)

if_end_label_0:
```
Array Accesses

First, must agree on a storage scheme:

Row-major order
- Lay out as a sequence of consecutive rows
- Rightmost subscript varies fastest
- A[1,1], A[1,2], A[1,3], A[2,1], A[2,2], A[2,3]

Column-major order
- Lay out as a sequence of columns
- Leftmost subscript varies fastest
- A[1,1], A[2,1], A[1,2], A[2,2], A[1,3], A[2,3]

Indirection vectors
- Vector of pointers to pointers to … to values
- Takes more space
- Locality may not be good
Laying Out Arrays

The Concept

Row-major order

Column-major order

Indirection vectors

These have distinct & different cache behavior

The order of traversal of an array can effect the performance
How do we insert the calculation for arrays

- If I access element A[2,3], what address is storing my variable?

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1,1</td>
<td>1,2</td>
<td>1,3</td>
<td>1,4</td>
<td>2,1</td>
<td>2,2</td>
<td>2,3</td>
<td>2,4</td>
</tr>
</tbody>
</table>

Need to map i = 2, j = 3 to array element 6

- If i = 2, and we start at 1, we need to skip over one row (Row 1) worth of stuff. In general, we would skip over \((i - low)\) rows (\(low\) is the number you start counting at for your arrays - in the example, it is 1)

- Each row is some number of elements in length \((high - low + 1)\)
 \[= (4 - 1) + 1 = 4\]

- Once you get to the correct row, we just add \(j - low\) to get the right index
 \[= (3 - 1) = 2\]
Computing an Array Address

1-D array: A[i]
- \(@A + (i - \text{low}) \times \text{sizeof}(A[1]) \)

Two-D array: A[i_1,i_2]

Row-major order, two dimensions
- \(@A + ((i_1 - \text{low}_1) \times (\text{high}_2 - \text{low}_2 + 1) + i_2 - \text{low}_2) \times \text{sizeof}(A[1]) \)

Column-major order, two dimensions
- \(@A + ((i_2 - \text{low}_2) \times (\text{high}_1 - \text{low}_1 + 1) + i_1 - \text{low}_1) \times \text{sizeof}(A[1]) \)

Indirection vectors, two dimensions
- \(*(A[i_1])[i_2] \) — where A[i_1] is, itself, a 1-d array reference
Optimizing the Stack Machine

- The “add” instruction does 3 memory operations
 - Two reads and one write to the stack
 - The top of the stack is frequently accessed
 - Idea: keep the top of the stack in a register (called accumulator)
 Register accesses are faster
 - The “add” instruction is now acc ← acc + top_of_stack
 - Only one memory operation!

- Key: Now we have arithmetic instructions to support operands both in register and on stack. Previously, the operands must be on the stack.
Example

• Consider the expression: \(e_1 + e_2\)

• At a high level, the stack machine code will be:
 <code to evaluate \(e_1\)>
 push acc on the stack
 <code to evaluate \(e_2\)>
 push acc on the stack
 add top two stack elements, store in acc
 pop two elements off the stack

• Observation: There is no need to push the result of \(e_2\) on the stack.
 <code to evaluate \(e_1\)>
 push acc on the stack
 <code to evaluate \(e_2\)>
 add top stack element and acc, store in acc
 pop one elements off the stack
Stack Machine with Accumulator

• Compute $7 + 5$ using an accumulator

```
acc
+-- 7 + 5 --> 12 (+)

stack
   ... 7 7 ...
```

- acc ← 7
- push acc
- acc ← 5
- acc ← acc + top_of_stack
- pop
A (Slightly) Bigger Example: $3 + (7 + 5)$

<table>
<thead>
<tr>
<th>Code</th>
<th>Acc</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>acc ← 3</td>
<td>3</td>
<td><init></td>
</tr>
<tr>
<td>push acc</td>
<td>3</td>
<td>3, <init></td>
</tr>
<tr>
<td>acc ← 7</td>
<td>7</td>
<td>3, <init></td>
</tr>
<tr>
<td>push acc</td>
<td>7</td>
<td>7, 3, <init></td>
</tr>
<tr>
<td>acc ← 5</td>
<td>5</td>
<td>7, 3, <init></td>
</tr>
<tr>
<td>acc ← acc + top_of_stack</td>
<td>12</td>
<td>7, 3, <init></td>
</tr>
<tr>
<td>pop</td>
<td>12</td>
<td>3, <init></td>
</tr>
<tr>
<td>acc ← acc + top_of_stack</td>
<td>15</td>
<td>3, <init></td>
</tr>
<tr>
<td>pop</td>
<td>15</td>
<td><init></td>
</tr>
</tbody>
</table>
At compile time, all of the code is transformed into x86 object files and then the object files are linked together with the libraries to create a “statically linked” executable. This executable then runs directly on the x86 hardware.

One drawback, is if you wanted to run the same code on a Power-PC (even with the same OS) you have to re-compile everything.
The linker just links together the .o files, and does not link calls to dynamically loaded libraries (DLLs in Windows or Shared Libraries in Unix).

This is similar to before, but now the final linking occurs when the program is loaded (or even during program execution).

Here, libraries can be shared and they can be updated across the whole system without re-linking every single executable.
Here the compiler targets java bytecode (which is what we do in this class) and the bytecode is then run on top of the Java Virtual Machine (JVM). The JVM really just interprets (simulates) the bytecode like any scripting language. Because of this, any java program compiled to bytecode is portable to any machine that someone has already ported the JVM too. No need to recompile.