
UC Santa Barbara

Computer Science 160
Translation of Programming Languages

Instructor: Christopher Kruegel

UC Santa Barbara

Lexical Analysis (Scanning)

2

UC Santa Barbara

First Phase: Lexical Analysis (Scanning)

Scanner
• Maps stream of characters into words

– Basic unit of syntax

• Characters that form a word are its lexeme
• Its syntactic category is called its token
• Scanner discards white space and comments

Source
code Scanner

IR
Parser

Errors

token

get next
token

3

UC Santa Barbara

Why Lexical Analysis?

• By separating context free syntax from lexical analysis
– We can develop efficient scanners
– We can automate efficient scanner construction
– We can write simple specifications for tokens

Scanner

Scanner
Generator

specifications
(regular expressions)

source code tokens

tables
or code

4

UC Santa Barbara

What are Tokens?

• Token: Basic unit of syntax … they are the atoms

– Keywords
if, while, ...

– Operators
+, *, <=, ||, ...

– Identifiers (names of variables, arrays, procedures, classes)
i, i1, j1, count, sum, ...

– Numbers
12, 3.14, 7.2E-2, ...

5

UC Santa Barbara

What are Tokens?

• Tokens are terminal symbols for the parser

– Tokens are treated as indivisible units in the grammar defining the
source language

1. S ® expr

2. expr ® expr op term
3. | term
4. term ® number

5. | id

6. op ® +

7. | -

number, id, +, -
are tokens passed from
scanner to parser.
They form the terminal
symbols of this simple
grammar.

6

UC Santa Barbara

Lexical Concepts

• Token: Basic unit of syntax, syntactic output of the scanner
• Pattern: The rule that describes the set of strings that correspond

to a token, i.e., specification of the token
• Lexeme: A sequence of input characters which match to a pattern

and generate the token

WHILE while while

IF if if

ID i1, length, letter followed by
count, sqrt letters and digits

Token Lexeme Pattern

7

UC Santa Barbara

Tokens can have Attributes

• A problem

• If we send this output to the parser, is it enough? Where are the variable
names, procedure, names, etc.? All identifiers look the same.

• Tokens can have attributes that they can pass to the parser (using the
symbol table)

if (i == j)
z = 0;

else
z = 1;

becomes

IF, LPAREN,ID,EQEQ,ID,RPAREN,
ID,EQ,NUM,SEMICOLON,ELSE,
ID,EQ,NUM,SEMICOLON

IF, LPAREN,<ID, i>,EQEQ,<ID, j>,RPAREN,

<ID, z>,EQ,<NUM,0>,SEMICOLON,ELSE,

<ID,z>,EQ,<NUM,1>,SEMICOLON

8

UC Santa Barbara

How do we specify lexical patterns?

Some patterns are easy

• Keywords and operators
– Specified as literal patterns: if, then, else, while, =, +, …

9

UC Santa Barbara

Some patterns are more complex
• Identifiers

– letter followed by letters and digits

• Numbers
– Integer: 0 or a digit between 1 and 9 followed by digits between 0 and 9
– Decimal: An optional sign (which can be “+” or “-”) followed by digit “0” or a

nonzero digit followed by an arbitrary number of digits followed by a decimal
point followed by an arbitrary number of digits

GOAL: We want to have concise descriptions of patterns, and we want to
automatically construct the scanner from these descriptions

Specifying Lexical Patterns

10

UC Santa Barbara

Regular Expressions

Regular expressions (REs) describe regular languages

Regular Expression (over alphabet S)

• e (empty string) is a RE denoting the set {e}

• If a is in S, then a is a RE denoting {a}
• If x and y are REs denoting languages L(x) and L(y) then

– x is an RE denoting L(x)

– x | y is an RE denoting L(x) È L(y)

– xy is an RE denoting L(x)L(y)

– x* is an RE denoting L(x)*

Precedence is
closure, then
concatenation, then
alternation

All left-associative

x | y* z is equivalent to
x | ((y*) z)

11

UC Santa Barbara

Operations on Languages

Operation Definition

Union of L and M
Written L È M L È M = {s | s Î L or s Î M }

Concatenation of L and M
Written LM LM = {st | s Î L and t Î M }

Kleene closure of L
Written L* L* = È0£i£¥ Li

L+ = È1£i£¥ Li

Exponentiation of L
Written Li Li =

{e} if i = 0
Li-1L if i > 0

Positive closure of L
Written L+

12

UC Santa Barbara

Examples of Regular Expressions

• All strings of 1s and 0s

• All strings of 1s and 0s beginning with a 1

• All strings of 0s and 1s containing at least two consecutive 1s

• All strings of alternating 0s and 1s

13

UC Santa Barbara

Examples of Regular Expressions

• All strings of 1s and 0s
(0 | 1)*

• All strings of 1s and 0s beginning with a 1
1 (0 | 1)*

• All strings of 0s and 1s containing at least two consecutive 1s
(0 | 1)* 1 1(0 | 1)*

• All strings of alternating 0s and 1s

(e | 1) (0 1)* (e | 0)

14

UC Santa Barbara

Extensions to Regular Expressions

• x+= x x* denotes L(x)+

• x? = x | e denotes L(x) È {e}

• [abc] = a | b | c matches one character in the square bracket
• a-z = a | b | c | ... | z range
• [0-9a-z] = 0 | 1 | 2 | ... | 9 | a | b | c | ... | z
• [^abc] ^ means negation

matches any character except a, b or c
• . (dot) matches any character except the

newline
• . = [^\n] \n means newline, dot is equivalent to [^\n]
• “[“ matches left square bracket, meta-characters in

double quotes become plain characters
• \[matches left square bracket, meta-character after

backslash becomes plain character

15

UC Santa Barbara

Regular Definitions

• We can define macros using regular expressions and use them in
other regular expressions

Letter ® (a|b|c| … |z|A|B|C| … |Z)
Digit ® (0|1|2| … |9)
Identifier ® Letter (Letter | Digit)*

• Important: We should be able to order these definitions so that
every definition uses only the definitions defined before it (i.e., no
recursion)

• Regular definitions can be converted to basic regular expressions
with macro expansion

16

UC Santa Barbara

Examples of Regular Expressions

Digit ® (0|1|2| … |9)

Integer ® (+|-)? (0| (1|2|3| … |9)(Digit *))

Decimal ® Integer “.” Digit *

Real ® (Integer | Decimal) E (+|-)?Digit *

Complex ® “(“ Real , Real “)”

17

UC Santa Barbara

From Regular Expressions to Scanners

• Regular expressions are useful for specifying patterns that correspond to
our tokens

• We need to construct a program, our compiler for example, that recognizes
these patterns and converts them into tokens

• When have a reasonably small number of tokens (on the order of 100?)
and we are going to search through every piece of code every time we
compile anything, then we have a huge amount of input to search

• We need it to read through the input really fast

• To solve this problem, let’s convert our regular expressions into state
machines! – state machines are really fast, it just requires a table lookup
to process each character

18

UC Santa Barbara

Consider the problem of recognizing register names in an assembler

Register ® R (0|1|2| … |9) (0|1|2| … |9)*

• Allows registers of arbitrary number
• Requires at least one digit

RE corresponds to a recognizer (or DFA)

Example

S0 S2 S1

R

(0|1|2| … |9)

accepting state

(0|1|2| …|9)

Recognizer for Register

initial state

Se

R
R

(R|0|1|2| …|9)
error state

(0|1|2| …|9)

19

UC Santa Barbara

Deterministic Finite Automata (DFA)

• A set of states S
– S = { s0 , s1 , s2 , se}

• A set of input symbols (an alphabet) S
– S = { R , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 }

• A transition function d : S ´ S ® S
– Maps (state, symbol) pairs to states
– d = { (s0 , R) ® s1, (s0 , 0-9) ® se ,(s1 , 0-9) ® s2 ,(s1 , R) ® se ,

(s2 , 0-9) ® s2 , (s2 , R) ® se , (se , R | 0-9) ® se }
• A start state

– s0

• A set of final (or accepting) states
– Final = { s2 }

A DFA accepts a word x iff there exists a path in the transition graph from start state to a
final state such that the edge labels along the path spell out x

20

UC Santa Barbara

DFA simulation
• Start in state s0 and follow transitions on each input character
• DFA accepts a word x iff x leaves it in a final state (s2)

• “R17” takes it through s0 , s1 , s2 and accepts
• “R” takes it through s0 , s1 and fails
• “A” takes it straight to se

• “R17R” takes it through s0 , s1 , s2 , se and rejects

Example

S0 S2 S1

R

(0|1|2| …|9)

accepting state

(0|1|2| …|9)

Recognizer for Registerinitial
state

21

UC Santa Barbara

Simulating a DFA

state = s0 ;
char = get_next_char();
while (char != EOF) {

state = d(state,char);
char =get_next_char();

}
if (state Î Final)

report acceptance;
else

report failure;

d R

0,1,2,3,
4,5,6,
7,8,9

other

S0 S1 Se Se

S1 Se S2 Se

S2 Se S2 Se

Se Se Se Se

•The recognizer translates directly into
code
•To change DFAs, just change the arrays
•Takes O(|x|) time for input string x

Final = { s2 }
We can also store the final states in an array

We can store the transition table in a
two-dimensional array:

22

UC Santa Barbara

Recognizing Longest Accepted Prefix
accepted = false;
current_string = e; // empty string
state = s0 ; // initial state
if (state Î Final) {

accepted_string = current_string;
accepted = true;

}
char =get_next_char();
while (char != EOF) {

state = d(state,char);
current_string = current_string + char;
if (state Î Final) {

accepted_string = current_string;
accepted = true;

}
char =get_next_char();

}
if accepted

return accepted_string;
else

report error;

d R

0,1,2,3,
4,5,6,
7,8,9

other

S0 S1 Se Se

S1 Se S2 Se

S2 Se S2 Se

Se Se Se Se

Given an input string, this simulation
algorithm returns the longest accepted
prefix

Given the input “R17R” , this simulation
algorithm returns “R17”

Final = { s2 }

23

UC Santa Barbara

Lexical Analysis

• Specify tokens using Regular Expressions
• Translate Regular Expressions to Finite Automata
• Use Finite Automata to generate tables or code for the scanner

Scanner

Scanner
Generator

specifications

(regular expressions)

source code tokens

tables
or code

24

UC Santa Barbara

Consider the problem of recognizing register names in an assembler

Register ® R (0|1|2| … |9) (0|1|2| … |9)*

• Allows registers of arbitrary number
• Requires at least one digit

RE corresponds to a recognizer (or DFA)

Example

S0 S2 S1

R (0|1|2| … 9)

accepting state

(0|1|2| … 9)

Recognizer for Register
initial state

25

UC Santa Barbara

RDigit Digit* allows arbitrary numbers
• Accepts R00000
• Accepts R99999
• What if we want to limit it to R0 through R31 ?

Write a tighter regular expression
– Register ® R (

(4|5|6|7|8|9)
| (0|1|2) (0|1|2| … | 9 | e)
| (3 (0|1|e))
)

– Register ® R0|R1|R2| … |R31|R00|R01|R02| … |R09

Produces a more complex DFA
• Has more states
• Same cost per transition
• Same basic implementation

Tighter Register Specification

26

UC Santa Barbara

Tighter Register Specification

The DFA for
Register ® R ((0|1|2) (0|1|2| … | 9 | e) | (4|5|6|7|8|9) | (3 (0|1|e)))

• Accepts a more constrained set of registers
• Same set of actions, more states

S0 S5 S1
R

S4

S3

S6

S2

0,1,2

3 0,1

4,5,6,7,8,9

(0|1|2| … 9)

27

UC Santa Barbara

Tighter Register Specification

To implement the recognizer
• Use the same code skeleton
• Use transition table and final states for the new RE

• Bigger tables, more space, same asymptotic costs
• Better syntax checking at the same cost

d R 0,1 2 3 4,5,6
7,8,9

other

S0 S1 Se Se Se Se Se

S1 Se S2 S2 S5 S4 Se

S2 Se S3 S3 S3 S3 Se

S3 Se Se Se Se Se Se

S4 Se Se Se Se Se Se

S5 Se S6 Se Se Se Se

S6 Se Se Se Se Se Se

Se Se Se Se Se Se Se

Final = { s2 , s3 , s4 , s5 , s6 }

28

UC Santa Barbara

Non-deterministic Finite Automata

Non-deterministic Finite Automata (NFA) for the RE (a | b)* abb

This is a little different

• S0 has a transition on e (empty string)
– e-transitions are allowed

• S1 has two transitions on “a”
– Transition function d : S ´ S ® 2S maps (state, symbol) pairs to sets of

states

This is a non-deterministic finite automaton (NFA)

a | b

S0 S1 S4 S2 S3

e a bb

29

UC Santa Barbara

Non-deterministic Finite Automata

• An NFA accepts a string x iff there exists a path though the transition graph from s0
to a final state and the edge labels spell x

• Transitions on e consume no input
• To “run” (simulate) the NFA,

– Start in s0 and take all the transitions for each character
– At each iteration add the states reachable by e-transitions

Why study NFAs?
• They are the key to automating the RE®DFA construction
• We can paste together NFAs with e-transitions

• They will be very important later in the class (when looking at the way that bottom-up
parsing works)

NFA NFA becomes an NFA
e

30

UC Santa Barbara

Review: NFA Simulation

Two key functions
• move(q , a) is set of states reachable by “a” from states in q

• e-closure(q) is set of states reachable by e from states in q

states = e-closure({s0 });
char = get_next_char();
while (char != EOF) {

states = e-closure(move(states,char));
char = get_next_char();

}
if (states Ç Final is not empty)

report acceptance;
else

report failure;

31

UC Santa Barbara

Relationship between NFAs and DFAs

DFA is a special case of an NFA
• DFA has no e-transitions
• DFA’s transition function is single-valued
• Same rules will work

DFA can be simulated with an NFA
– Obvious

NFA can be simulated with a DFA
– Less obvious

Simulate sets of possible states that NFA can reach with states of the DFA
• Possible exponential blowup in the state space
• Still, one state per character in the input stream

32

UC Santa Barbara

Automating Scanner Construction

To build a scanner:
1 Write down the RE that specifies the tokens
2 Translate the RE to an NFA
3 Build the DFA that simulates the NFA
4 Systematically shrink the DFA
5 Turn it into code or table

Scanner generators
• Lex , Flex, Jlex, and Jflex work along these lines
• Algorithms are well-known and well-understood
• Interface to parser is important

33

UC Santa Barbara

Relationship between RE/NFA/DFA

RE®NFA (Thompson’s construction)
• Build an NFA for each term
• Combine them with e-moves

NFA ®DFA (subset construction)
• Build the simulation

DFA ® Minimal DFA

• Hopcroft’s algorithm

DFA ®RE

• All pairs, all paths problem
• Union together paths from s0 to a final state

minimal
DFA

RE NFA DFA

The Cycle of Constructions

34

UC Santa Barbara

RE ®NFA using Thompson’s Construction

Key idea
• NFA pattern for each symbol & each operator
• Join them with e moves in precedence order

S0 S1
a

NFA for
a

S0 S1
a

S3 S4
b

NFA for ab

e

NFA for a | b

S0

S1 S2
a

S3 S4
b

S5

e

e e

e
S0 S1

e S3 S4
e

NFA for a*

a

e

e

Ken Thompson, CACM, 1968

35

UC Santa Barbara

Thompson’s Construction Example

Let’s try a (b | c)*

1. a, b, c

2. b | c

3. (b | c)*

S0 S1
a

S0 S1
b

S0 S1
c

S1 S2
b

S3 S4
c

S0 S5

e

e e

e

S2 S3
b

S4 S5
c

S1 S6 S0 S7

e

e

e e

e e

e e

36

UC Santa Barbara

Thompson’s Construction Example

4. a (b | c)*

S0 S1
a e

S4 S5
b

S6 S7
c

S3 S8 S2 S9

e

e

e e

e e

S0 S1
a

b | c

But, we can automate production
of the more complex one ...

Given a regular expressions r the generated NFA is of size |N| = O(|r|)
• At most two new states are created at each step
• Each state has at most two incoming and two outgoing transitions
• Simulating an NFA constructed with Thompson’s construction

on a string x takes O(|N| x |x|)

Of course, a human would design something simpler ...

e e

37

UC Santa Barbara

Summary of Key Points

The main ideas here are that:

a) When we are done with scanning, we will have a stream of tokens

b) These tokens are found by searching for a match to some regular
expression in the input program. The matches can be prioritized (for
example, to handle keywords)

c) To implement this efficiently, we can convert the regular expressions
into state machines (which are implemented as a table lookup)

d) Luckily for us, other people have done this for us and built this
functionality into a set of tools

38

UC Santa Barbara

What is hard about lexical analysis?

Poor language design can complicate scanning

• Reserved words are important
– In PL/I there are no reserved keywords, so you can right a valid

statement like:
if then then then = else; else else = then

• Significant blanks

– In Fortran blanks are not significant

do 10 i = 1,25 do loop
do 10 i = 1.25 assignment to variable do10i

• Closures
– Limited identifier length adds states to the automata to count length

39

UC Santa Barbara

INT EGERFUNC TIONA

PARA ME TER(A =6,B=2)

IMPLICIT CHARA CTER*(A-B) (A-B)

INT EGER FORMA T(10), IF(10), DO9E1

100 FOR MAT (4H) =(3)

200 FOR MAT (4)=(3)

DO9E1=1

DO9E1=1,2

9 IF(X)=1

IF(X)H=1

IF(X)300,200

300 CONT INU E

END

C TH IS IS A “COMME NT CARD ”

$ FILE(1)

END

Example: Fortran 66/77

Macro definitions

First A and B are converted to (6-2)
This statement declares that variables that
begin with A and B are of data-type four
character string

)=(3 is a literal constant

assigns value to variable DO9E1

assigns value to array element

one statement split into two lines

integer
function A

statement for formatting input, output

40

UC Santa Barbara

Example: C++

• The above code results in an error because the ‘>>’ scans as the shift operator.
Clearly, it was intended to be a close bracket, but the scanner does not know about the
structure of the program. The program below compiles without error.

#include <vector>
using namespace std;
vector<vector<int>> v;
int main() {
}

error message:
coltrane% g++ a.cpp
a.cpp:3: error: '>>' should be '> >' within

a nested template argument list

#include <vector>
using namespace std;
vector<vector<int> > v;
int main() {
}

41

