
UC Santa Barbara

Computer Science 160
Translation of Programming Languages

Instructor: Christopher Kruegel

UC Santa Barbara

Syntactic Analysis (Parsing)

UC Santa Barbara

The Front End: Parser

Parser
• Input: A sequence of tokens representing the source program
• Output: A parse tree (in practice, an abstract syntax tree)
• While generating the parse tree, parser checks the stream of

tokens for grammatical correctness
– Checks the context-free syntax

• Parser builds an IR representation of the code
– Generates an abstract syntax tree

• Guides checking at deeper levels than syntax

Source
code

Scanner IRParser IR Type
Checker

Errors

token

get next
token

UC Santa Barbara

Specifying Syntax with a Grammar

• Need a mathematical model of syntax — a grammar G
– Context-free grammars

• Need an algorithm for testing membership in L(G)
– Parsing algorithms

• Parsing is the process of discovering a derivation for some
sentence from the rules of the grammar
– Equivalently, it is the process of discovering a parse tree

• Natural language analogy
– Lexical rules correspond to rules that define the valid words
– Grammar rules correspond to rules that define valid sentences

UC Santa Barbara

Specifying Syntax with a Grammar

Context-free syntax is specified with a context-free grammar

Formally, a grammar is a four-tuple, G = (S,N,T,P)

• T is a set of terminal symbols
– These correspond to tokens returned by the scanner
– For the parser tokens are indivisible units of syntax

• N is a set of non-terminal symbols
– These are syntactic variables that can be substituted during a

derivation
– Variables that denote sets of substrings occurring in the language

• S is the start symbol : S Î N
– All the strings in L(G) are derived from the start symbol

• P is a set of productions or rewrite rules : P : N ® (N È T)*

UC Santa Barbara

An Example Grammar

1 Start ® Expr
2 Expr ® Expr Op Expr
3 | num
4 | id
5 Op ® +
6 | -
7 | *
8 | /

Start symbol: S = Start
Non-terminal symbols: N = { Start, Expr, Op }
Terminal symbols: T = { num, id, +, -, *, / }
Productions: P = { 1, 2, 3, 4, 5, 6, 7, 8 } (shown above)

UC Santa Barbara

Context Free Grammar

• Programming languages have a set of rules that describe the
syntactic structure of well-formed programs

• A context free grammar is precise and understandable, yet
powerful enough to express these rules

• It is so effective because it embraces the recursive nature of most
programming languages
– Example sentence: if(x){ if(y){ if(z) { } } }
– Example grammar: I ® if(id) { I }
– This requires a variable number of states and is thus beyond the ability

of regular expressions

UC Santa Barbara

Vocabulary

• Sentence of G: String of terminals in L(G)

• Sentential Form of G: String of non-terminals and terminals from
which a sentence of G can be derived.

• Derivation: A sequence of rewrites according to productions

• Production: A rule which takes a non-terminal and maps it to a
string of non-Terminals and terminals

• The process or discovering a derivation is called parsing

UC Santa Barbara

Derivations

• At each step, we make two choices
1. Choose a non-terminal to replace
2. Choose a production to apply

• Different choices lead to different derivations

Two types of derivation are of interest
• Leftmost derivation — replace leftmost non-terminal at each step
• Rightmost derivation — replace rightmost non-terminal at each step

These are the two systematic derivations (the first choice is fixed)

UC Santa Barbara

Two Derivations for x - 2 * y

In both cases, S Þ* id - num * id
• Note that these two derivations produce different parse trees
• The parse trees imply different evaluation orders!

Leftmost derivation Rightmost derivation

Rule Sentential Form
— S
1 Expr
2 Expr Op Expr
4 Expr Op <id,y>
7 Expr * <id,y>
2 Expr Op Expr * <id,y>
3 Expr Op <num,2> * <id,y>
6 Expr - <num,2> * <id,y>
4 <id,x> - <num,2> * <id,y>

Rule Sentential Form
— S
1 Expr
2 Expr Op Expr
4 <id,x> Op Expr
6 <id,x> - Expr
2 <id,x> - Expr Op Expr
3 <id,x> - <num,2> Op Expr
7 <id,x> - <num,2> * Expr
4 <id,x> - <num,2> * <id,y>

UC Santa Barbara

Derivations and Parse Trees

Leftmost derivation
S

<id,x>

Expr

Expr Op

-

<num,2>

Expr

Expr

Expr

<id,y>

Op

*

This evaluates as x - (2 * y)

Rule Sentential Form
— S
1 Expr
2 Expr Op Expr
4 <id,x> Op Expr
6 <id,x> - Expr
2 <id,x> - Expr Op Expr
3 <id,x> - <num,2> Op Expr
7 <id,x> - <num,2> * Expr
4 <id,x> - <num,2> * <id,y>

UC Santa Barbara

Derivations and Parse Trees

Rightmost derivation

<id,x> <num,2>

S

E

Op EE

E Op E <id,y>

-

*

This evaluates as (x - 2) * y

Rule Sentential Form
— S
1 Expr
2 Expr Op Expr
4 Expr Op <id,y>
7 Expr * <id,y>
2 Expr Op Expr * <id,y>
3 Expr Op <num,2> * <id,y>
6 Expr - <num,2> * <id,y>
4 <id,x> - <num,2> * <id,y>

UC Santa Barbara

Another Rightmost Derivation

Another rightmost derivation
S

<id,x>

Expr

Expr Op

-

<num,2>

Expr

Expr

Expr

<id,y>

Op

*

This evaluates as x - (2 * y)

Rule Sentential Form
— S
1 Expr
2 Expr Op Expr
2 Expr Op Expr Op Expr
4 Expr Op Expr Op <id,y>
7 Expr Op Expr * <id,y>
3 Expr Op <num,2> * <id,y>
6 Expr - <num,2> * Expr
4 <id,x> - <num,2> * <id,y>

This parse tree is different than the parse
tree for the previous rightmost derivation,
but it is the same as the parse tree for the
previous leftmost derivation

UC Santa Barbara

Ambiguity

• One grammar can produce two different parse trees for the same
sentence.
– From a theoretical standpoint, it is fine. The sentence can be derived

from the grammar and everyone is happy
– The problem is that the way the program is interpreted stems from the

parse tree

• We need to ensure that for each sentence in G, there is only one
parse tree for that sentence
– If there is more than one parse tree for a given sentence, our grammar

is ambiguous
– To show a grammar G is ambiguous, find a sentence in G with two

parse trees

UC Santa Barbara

Ambiguous Grammars

• If a grammar has more than one leftmost derivation for some
sentence, then the grammar is ambiguous

• If a grammar has more than one rightmost derivation for some
sentence, then the grammar is ambiguous

• If a grammar produces more than one parse tree for some
sentence than it is ambiguous

Classic example — the dangling-else problem

1 Stmt ® if Expr then Stmt
2 | if Expr then Stmt else Stmt

| more

UC Santa Barbara

Ambiguity

This sentential form has two parse trees
if Expr1 then if Expr2 then more else more

Stmt

Expr1

Expr2

production 2, then
production 1

production 1, then
production 2

if then else moreStmt

if then more

Stmt

Expr1

Expr2

if then

else more

Stmt

if then more

UC Santa Barbara

Ambiguity

Removing the ambiguity
• Must rewrite the grammar to avoid generating the problem
• Match each else to innermost unmatched if (common sense rule)

• New rules enforce that only a matched statement can come
before an else

With this grammar, the example has only one parse tree

Stmt ® If Expr then Stmt
| If Expr then WithElse else Stmt
| Assignment

Withelse ® If Expr then WithElse else WithElse
| Assignment

UC Santa Barbara

Ambiguity

Try the dangling-else derivations:

W

Expr1

Expr2

if then elseW

if then
NO ELSE

Can’t make a parse tree where the “else”
associates with the first “if”

assignment

S

UC Santa Barbara

Parse Trees and Precedence

Two parse trees for our expressions grammar point out a problem:
It has no notion of precedence (implied order of evaluation between
different operators)

To add precedence
• Create a non-terminal for each level of precedence
• Isolate the corresponding part of the grammar
• Force parser to recognize high precedence sub-expressions first

For algebraic expressions
• Multiplication and division, first
• Subtraction and addition, next

UC Santa Barbara

Parse Trees and Associativity

S

<num,5>

E

E Op

-

<num,2>

E

E

E

<num,2>

Op

-<num,5> <num,2>

S

E

Op EE

E Op E <num,2>

-

-

Result is 1 Result is 5

UC Santa Barbara

Precedence and Associativity

Adding the standard algebraic precedence and using
left recursion produces:

This grammar is slightly larger

• Takes more rewriting to reach
some of the terminal symbols

• Encodes expected precedence

• Enforces left-associativity

• Produces same parse tree
under leftmost & rightmost
derivations

Let’s see how it parses our example

1 S ® Expr

2 Expr ® Expr + Term

3 | Expr - Term

4 | Term

5 Term ® Term * Factor

6 | Term / Factor

7 | Factor

8 Factor ® num

9 | id

UC Santa Barbara

Precedence

The leftmost derivation

This produces x - (2 * y) , along with an appropriate parse tree.

Both the leftmost and rightmost derivations give the same parse tree and
the same evaluation order, because the grammar directly encodes the
desired precedence.

S

E

-E

T

F

<id,x>

T

T

F

F*

<num,2>

<id,y>

Its parse tree

Rule Sentential Form
S

1 Expr
3 Epr - Term
7 Term - Term
8 Factor - Term
3 <id,x> - Term
7 <id,x> - Term * Factor
8 <id,x> - Factor * Factor
4 <id,x> - <num,2> * Factor
7 <id,x> - <num,2> * <id,y>

UC Santa Barbara

Associativity

The rightmost derivation

This produces (5 - 2) - 2 , along with an appropriate parse tree.

Both the leftmost and rightmost derivations give the same parse tree and
the same evaluation order

S

E

-E

T

F

<num,5>

T

Its parse tree

F

<num,2>

E

- T

F

<num,2>

Rule Sentential Form
S

1 Expr
3 Epr - Term
7 Expr - Factor
8 Expr - <num,2>
3 Expr - Term - <num,2>
7 Expr - Factor - <num,2>
8 Expr - <num,2> - <num,2>
4 Term - <num,2> - <num,2>
7 Factor - <num,2> - <num,2>
8 <num,5> - <num,2> - <num,2>

UC Santa Barbara

Parsing Techniques

Top-down parsers (LL(1), recursive descent parsers)

• Start at the root of the parse tree from the start symbol and grow toward
leaves (similar to a derivation)

• Pick a production and try to match the input
• Bad “pick”Þ may need to backtrack
• Some grammars are backtrack-free (predictive parsing)

Bottom-up parsers (LR(1), shift-reduce parsers)

• Start at the leaves and grow toward root
• We can think of the process as reducing the input string to the start symbol
• At each reduction step, a particular substring matching the right-side of a

production is replaced by the symbol on the left-side of the production
• Bottom-up parsers handle a large class of grammars

