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Syntactic Analysis (Parsing)
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The Front End: Parser

Parser
• Input: A sequence of tokens representing the source program
• Output: A parse tree (in practice, an abstract syntax tree)
• While generating the parse tree, parser checks the stream of 

tokens for grammatical correctness
– Checks the context-free syntax

• Parser builds an IR representation of the code
– Generates an abstract syntax tree

• Guides checking at deeper levels than syntax

Source
code

Scanner IRParser IR Type
Checker

Errors

token

get next
token
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Specifying Syntax with a Grammar

• Need a mathematical model of syntax — a grammar G
– Context-free grammars

• Need an algorithm for testing membership in L(G)
– Parsing algorithms

• Parsing is the process of discovering a derivation for some 
sentence from the rules of the grammar 
– Equivalently, it is the process of discovering a parse tree 

• Natural language analogy
– Lexical rules correspond to rules that define the valid words
– Grammar rules correspond to rules that define valid sentences
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Specifying Syntax with a Grammar

Context-free syntax is specified with a context-free grammar

Formally, a grammar is a four-tuple, G = (S,N,T,P)

• T is a set of terminal symbols
– These correspond to tokens returned by the scanner
– For the parser tokens are indivisible units of syntax

• N is a set of non-terminal symbols                    
– These are syntactic variables that can be substituted during a 

derivation
– Variables that denote sets of substrings occurring in the language

• S is the start symbol : S Î N                                      
– All the strings in L(G) are derived from the start symbol

• P is a set of productions or rewrite rules : P : N ® (N È T)*
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An Example Grammar

1 Start ® Expr
2 Expr ® Expr Op Expr
3 | num
4     | id
5 Op    ® +
6 | -
7 | *
8      | /

Start symbol: S = Start
Non-terminal symbols: N = { Start, Expr, Op } 
Terminal symbols: T = { num, id, +, -, *, / }
Productions: P = { 1, 2, 3, 4, 5, 6, 7, 8 } (shown above)
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Context Free Grammar

• Programming languages have a set of rules that describe the 
syntactic structure of well-formed programs

• A context free grammar is precise and understandable, yet
powerful enough to express these rules

• It is so effective because it embraces the recursive nature of most 
programming languages 
– Example sentence: if(x){  if(y){  if(z) { } } }
– Example grammar: I ® if(id) { I }
– This requires a variable number of states and is thus beyond the ability 

of regular expressions



UC Santa Barbara

Vocabulary

• Sentence of G: String of terminals in L(G)

• Sentential Form of G: String of non-terminals and terminals from 
which a sentence of G can be derived.

• Derivation: A sequence of rewrites according to productions

• Production: A rule which takes a non-terminal and maps it to a 
string of non-Terminals and terminals

• The process or discovering a derivation is called parsing
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Derivations

• At each step, we make two choices 
1. Choose a non-terminal to replace
2. Choose a production to apply

• Different choices lead to different derivations

Two types of derivation are of interest
• Leftmost derivation — replace leftmost non-terminal at each step
• Rightmost derivation — replace rightmost non-terminal at each step

These are the two systematic derivations (the first choice is fixed)
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Two Derivations for  x - 2 * y

In both cases,  S  Þ*   id - num * id
• Note that these two derivations produce different parse trees
• The parse trees imply different evaluation orders! 

Leftmost derivation Rightmost derivation

Rule Sentential Form
— S
1 Expr
2 Expr Op Expr
4 Expr Op <id,y>
7 Expr * <id,y>
2 Expr Op Expr * <id,y>
3 Expr Op <num,2> * <id,y>
6 Expr - <num,2> * <id,y>
4 <id,x> - <num,2> * <id,y>

Rule Sentential Form
— S
1 Expr
2 Expr Op Expr
4 <id,x> Op Expr
6 <id,x> - Expr
2 <id,x> - Expr Op Expr
3 <id,x> - <num,2> Op Expr
7 <id,x> - <num,2> * Expr
4 <id,x> - <num,2> * <id,y>



UC Santa Barbara

Derivations and Parse Trees

Leftmost derivation
S

<id,x> 

Expr

Expr Op

-

<num,2> 

Expr

Expr

Expr

<id,y>

Op

*

This evaluates as   x - ( 2 * y )

Rule Sentential Form
— S
1 Expr
2 Expr Op Expr
4 <id,x> Op Expr
6 <id,x> - Expr
2 <id,x> - Expr Op Expr
3 <id,x> - <num,2> Op Expr
7 <id,x> - <num,2> * Expr
4 <id,x> - <num,2> * <id,y>
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Derivations and Parse Trees

Rightmost derivation

<id,x> <num,2> 

S

E

Op EE

E Op E <id,y>

-

*

This evaluates as   ( x - 2 ) * y

Rule Sentential Form
— S
1 Expr
2 Expr Op Expr
4 Expr Op <id,y>
7 Expr * <id,y>
2 Expr Op Expr * <id,y>
3 Expr Op <num,2> * <id,y>
6 Expr - <num,2> * <id,y>
4 <id,x> - <num,2> * <id,y>
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Another Rightmost Derivation

Another rightmost derivation
S

<id,x> 

Expr

Expr Op

-

<num,2> 

Expr

Expr

Expr

<id,y>

Op

*

This evaluates as   x - ( 2 * y )

Rule Sentential Form
— S
1 Expr
2 Expr Op Expr
2 Expr Op Expr Op Expr
4 Expr Op Expr Op <id,y>
7 Expr Op Expr * <id,y>
3 Expr Op <num,2> * <id,y>
6 Expr - <num,2> * Expr
4 <id,x> - <num,2> * <id,y>

This parse tree is different than the parse
tree for the previous rightmost derivation, 
but it is the same as the parse tree for the
previous leftmost derivation
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Ambiguity

• One grammar can produce two different parse trees for the same 
sentence.
– From a theoretical standpoint, it is fine. The sentence can be derived

from the grammar and everyone is happy
– The problem is that the way the program is interpreted stems from the 

parse tree

• We need to ensure that for each sentence in G, there is only one 
parse tree for that sentence
– If there is more than one parse tree for a given sentence, our grammar

is ambiguous
– To show a grammar G is ambiguous, find a sentence in G with two 

parse trees
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Ambiguous Grammars

• If a grammar has more than one leftmost derivation for some 
sentence, then the grammar is ambiguous

• If a grammar has more than one rightmost derivation for some 
sentence, then the grammar is ambiguous

• If a grammar produces more than one parse tree for some 
sentence than it is ambiguous

Classic example — the dangling-else problem

1 Stmt   ® if  Expr then Stmt
2                 |    if  Expr then Stmt  else  Stmt

|    more
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Ambiguity

This sentential form has two parse trees
if Expr1 then if Expr2 then more else more

Stmt

Expr1

Expr2

production 2, then 
production 1

production 1, then 
production 2

if then else moreStmt

if then more

Stmt

Expr1

Expr2

if then

else more

Stmt

if then more
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Ambiguity

Removing the ambiguity
• Must rewrite the grammar to avoid generating the problem
• Match each else to innermost unmatched if (common sense rule)

• New rules enforce that only a matched statement can come 
before an else   

With this grammar, the example has only one parse tree

Stmt ® If Expr then Stmt
| If Expr then WithElse else Stmt
| Assignment

Withelse ® If Expr then WithElse else WithElse
| Assignment
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Ambiguity

Try the dangling-else derivations:

W

Expr1

Expr2

if then elseW

if then
NO ELSE

Can’t make a parse tree where the “else”
associates with the first “if”

assignment

S
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Parse Trees and Precedence

Two parse trees for our expressions grammar point out a problem:
It has no notion of precedence (implied order of evaluation between 
different operators)

To add precedence
• Create a non-terminal for each level of precedence
• Isolate the corresponding part of the grammar
• Force parser to recognize high precedence sub-expressions first

For algebraic expressions 
• Multiplication and division, first
• Subtraction and addition, next
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Parse Trees and Associativity

S

<num,5> 

E

E Op

-

<num,2> 

E

E

E

<num,2> 

Op

-<num,5> <num,2> 

S

E

Op EE

E Op E <num,2> 

-

-

Result is 1 Result is 5
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Precedence and Associativity

Adding the standard algebraic precedence and using
left recursion produces:

This grammar is slightly larger

• Takes more rewriting to reach 
some of  the terminal symbols

• Encodes expected precedence

• Enforces left-associativity

• Produces same parse tree
under leftmost & rightmost 
derivations

Let’s see how it parses our example

1 S        ® Expr

2 Expr ® Expr  +  Term

3 |    Expr - Term

4 |    Term

5 Term  ® Term  *  Factor

6 |    Term   / Factor

7 |    Factor

8 Factor ® num

9 | id
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Precedence

The leftmost derivation

This produces  x - ( 2 * y ) , along with an appropriate parse tree.

Both the leftmost and rightmost derivations give the same parse tree and 
the same evaluation order, because the grammar directly encodes the 
desired precedence.

S

E

-E

T

F

<id,x>

T

T

F

F*

<num,2>

<id,y>

Its parse tree

Rule Sentential Form
S

1 Expr
3 Epr - Term
7 Term - Term
8 Factor - Term
3 <id,x> - Term
7 <id,x> - Term * Factor
8 <id,x> - Factor * Factor
4 <id,x> - <num,2> * Factor
7 <id,x> - <num,2> * <id,y>
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Associativity

The rightmost derivation

This produces ( 5 - 2  ) - 2 , along with an appropriate parse tree.

Both the leftmost and rightmost derivations give the same parse tree and 
the same evaluation order

S

E

-E

T

F

<num,5>

T

Its parse tree

F

<num,2>

E

- T

F

<num,2>

Rule Sentential Form
S

1 Expr
3 Epr - Term
7 Expr - Factor
8 Expr - <num,2>
3 Expr - Term - <num,2>
7 Expr - Factor - <num,2>
8 Expr - <num,2> - <num,2>
4 Term - <num,2> - <num,2>
7 Factor - <num,2> - <num,2>
8 <num,5> - <num,2> - <num,2>
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Parsing Techniques

Top-down parsers     (LL(1), recursive descent parsers)

• Start at the root of the parse tree from the start symbol and grow toward 
leaves (similar to a derivation)

• Pick a production and try to match the input
• Bad “pick”Þ may need to backtrack
• Some grammars are backtrack-free  (predictive parsing)

Bottom-up parsers     (LR(1), shift-reduce parsers)

• Start at the leaves and grow toward root
• We can think of the process as reducing the input string to the start symbol
• At each reduction step, a particular substring matching the right-side of a 

production is replaced by the symbol on the left-side of the production
• Bottom-up parsers handle a large class of grammars


