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Parsing Techniques 

Top-down parsers     (LL(1), recursive descent parsers) 
•  Start at the root of the parse tree from the start symbol and grow toward  

 leaves (similar to a derivation) 
•  Pick a production and try to match the input 
•  Bad “pick” ⇒ may need to backtrack 
•  Some grammars are backtrack-free  (predictive parsing) 

Bottom-up parsers     (LR(1), shift-reduce parsers) 
•  Start at the leaves and grow toward root 
•  We can think of the process as reducing the input string to the start symbol 
•  At each reduction step, a particular substring matching the right-side of a  

 production is replaced by the symbol on the left-side of the production 
•  Bottom-up parsers handle a large class of grammars 
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Construct the root node of the parse tree, label it with the start symbol, and set the 
current-node to root node  

Repeat until all the input is consumed (i.e., until the frontier of the parse tree 
matches the input string) 

1  If the label of the current node is a non-terminal node A, select a production 
with A on its lhs and, for each symbol on its rhs, construct the appropriate child 

2  If the current node is a terminal symbol: 
If it matches the input string, consume it (advance the input pointer) 
If it does not match the input string, backtrack 

3  Set the current node to the next node in the frontier of the parse tree 
If there is no node left in the frontier of the parse tree and input is  
not consumed, then backtrack                             
 
 

 The key is picking the right production in step 1 
–  That choice should be guided by the input string 

Top-down Parsing Algorithm 



UC Santa Barbara 

Example 

And the input:  x – 2 * y  

Using version with correct precedence and associativity 

1  S        →  Expr 

2  Expr  →  Expr  +  Term 
3   |    Expr  -  Term 

4   |    Term 

5  Term  → Term  *  Factor 
6   |    Term   /  Factor 

7   |    Factor 

8     Factor → num 

9   |    id 
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Let’s try  x – 2 * y : 

Example 

S 

Expr 

Term + Expr 

Term 

Fact. 

<id,x> 

Rule  Sentential Form  Input 
-  S   ↑ x – 2 * y 
1  Expr   ↑ x – 2 * y 
2  Expr + Term  ↑ x – 2 * y 
4  Term + Term  ↑ x – 2 * y 
7  Factor + Term  ↑ x – 2 * y 
9  <id,x> + Term  ↑ x – 2 * y 

 <id,x> + Term  x ↑ – 2 * y 
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Example 

Let’s try  x – 2 * y : 

 

 

                               Note that “–” doesn’t match “+” 
 
The parser must backtrack to here 
 

S 

Expr 

Term + Expr 

Term 

Fact. 

<id,x> 

Rule  Sentential Form  Input 
-  S   ↑x – 2 * y 
1  Expr   ↑x – 2 * y 
2  Expr + Term  ↑x – 2 * y 
4  Term + Term  ↑x – 2 * y 
7  Factor + Term  ↑x – 2 * y 
9  <id,x> + Term  ↑x – 2 * y 

 <id,x> + Term  x ↑– 2 * y 
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Example 

Continuing with x – 2 * y : S 

Expr 

Term – Expr 

Term 

Fact. 

<id,x> 

Rule  Sentential Form  Input 
-  S   ↑x – 2 * y 
1  Expr   ↑x – 2 * y 
3  Expr – Term  ↑x – 2 * y 
4  Term – Term  ↑x – 2 * y 
7  Factor – Term  ↑x – 2 * y 
9  <id,x> – Term  ↑x – 2 * y 
-  <id,x> – Term  x ↑– 2 * y 
-  <id,x> – Term  x – ↑2 * y 
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Example 

Continuing with x – 2 * y : S 

Expr 

Term – Expr 

Term 

Fact. 

<id,x> 

Rule  Sentential Form  Input 
-  S   ↑x – 2 * y 
1  Expr   ↑x – 2 * y 
3  Expr – Term  ↑x – 2 * y 
4  Term – Term  ↑x – 2 * y 
7  Factor – Term  ↑x – 2 * y 
9  <id,x> – Term  ↑x – 2 * y 
-  <id,x> – Term  x ↑– 2 * y 
-  <id,x> – Term  x – ↑2 * y 

This time “–” and “–” matched 

We can advance past “–” to look at “2” 
Now we need to extend Term, the 
last NT in the fringe of the parse tree 
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Example 

Trying to match the “2” in  x – 2 * y : 
 
 
 
 
 
 
Where are we? 
•  num matches “2” 
•  We have more input, but no NTs left to expand 
•  The expansion terminated too soon 
⇒  Need to backtrack 

S 

Expr 

Term – Expr 

Term 

Fact. 

<id,x> 

Fact. 

<num,2> 

Rule  Sentential Form  Input 
–  <id,x> – Term  x – ↑2 * y 
7  <id,x> – Factor  x – ↑2 * y 
9  <id,x> – <num,2>  x – ↑2 * y 
–  <id,x> – <num,2>  x – 2 ↑* y 
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Example 

Trying again with “2” in x – 2 * y : 

 

This time, we matched and  consumed all the input 
⇒  Success! 

S 

Expr 

Term – Expr 

Term 

Fact. 

<id,x> 

Fact. 

<id,y> 

Term 

Fact. 

<num,2> 

* 

Rule  Sentential Form   Input 
-  <id,x> – Term   x – ↑2 * y 
5  <id,x> – Term * Factor  x – ↑2 * y 
7  <id,x> – Factor * Factor  x – ↑2 * y 
8  <id,x> – <num,2> * Factor  x – ↑2 * y 
-  <id,x> – <num,2> * Factor  x – 2 ↑* y 
-  <id,x> – <num,2> * Factor  x – 2 * ↑y  
9  <id,x> – <num,2> *  <id,y>  x – 2 * ↑y  
-  <id,x> – <num,2> *  <id,y>  x – 2 * y ↑ 
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Other choices for expansion are possible 

 

This does not terminate                                                                     
•  Wrong choice of expansion leads to non-termination, the parser will not  

 backtrack since it does not get to a point where it can backtrack 
•  Non-termination is a bad property for a parser to have 
•  Parser must make the right choice 

Another possible parse 

Rule Sentential Form Input 

— S ↑x - 2 * y 

1 Expr ↑x - 2 * y 

2 Expr  + Term  ↑x - 2 * y 

2 Expr  + Term +Term ↑x - 2 * y 

2 Expr + Term + Term +Term ↑x - 2 * y 

2 Expr +Term + Term + …+Term ↑x - 2 * y 
 

 

consuming no input ! 
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Left Recursion 

Top-down parsers cannot handle left-recursive grammars 
 

Formally, 

A grammar is left recursive if there exists a non-terminal A such that   
there exists a derivation A ⇒+ Aα, for some string α ∈ (NT ∪ T )+ 

Our expression grammar is left-recursive 

•  This can lead to non-termination in a top-down parser 
•  For a top-down parser, any recursion must be right recursion 
•  We would like to convert the left recursion to right recursion 

(without changing the language that is defined by the grammar) 
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Eliminating Immediate Left Recursion 

To remove left recursion, we can transform the grammar 

Consider a grammar fragment of the form 
A → A α  
     |   β 
 

where α or β are strings of terminal and non-terminal symbols 
and neither α nor β start with A 
We can rewrite this as  

A → β R 
R → α R 
    |  ε 

where R is a new non-terminal 

This accepts the same language, but uses only right recursion 

A 

A α 

α A 

β 

A 

α 

β R 

R 

α R 

ε 



UC Santa Barbara 

Eliminating Immediate Left Recursion 

The expression grammar contains two cases of left recursion 

Applying the transformation yields 

These fragments use only right recursion  

Expr  →  Term  Exprʹ′ 
Exprʹ′  →  +  Term  Exprʹ′  

 |   -  Term  Exprʹ′  
 |   ε 

Expr  →  Expr  + Term  
 |   Expr  – Term  
 |   Term 

 

Term  →  Term  * Factor  
 |   Term  / Factor  
 |   Factor 

 

Term  →  Factor Termʹ′ 
Termʹ′  →  * Factor Termʹ′  

 |   / Factor Termʹ′  
 |   ε 
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Eliminating Immediate Left Recursion 

Substituting back into the grammar yields 

•  This grammar is correct,   
   if  somewhat non-intuitive. 

•  A top-down parser will  
   terminate using it. 

1  S  →  Expr 
2  Expr  →  Term Exprʹ′ 
3  Exprʹ′  →  + Term Exprʹ′ 
4   |  - Term Exprʹ′ 
5   |  ε 
6  Term  →  Factor Termʹ′ 
7  Termʹ′  →  * Factor Termʹ′ 
8   |  / Factor Termʹ′ 
9    |  ε 
10  Factor  →  num 
11   |  id 
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Left-Recursive and Right-Recursive Grammar 

1  S  →  Expr 
2  Expr  →  Expr  + Term 
3   |  Expr  – Term 
4   |  Term 
5  Term  →  Term  * Factor 
6   |  Term  / Factor 
7   |  Factor 
8  Factor  →  num 
9   |  id 

1  S  →  Expr 
2  Expr  →  Term Exprʹ′ 
3  Exprʹ′  →  + Term Exprʹ′ 
4   |  – Term Exprʹ′ 
5   |  ε 
6  Term  →  Factor Termʹ′ 
7  Termʹ′  →  * Factor Termʹ′ 
8   |  / Factor Termʹ′ 
9    |  ε 
10  Factor  →  num 
11   |  id 
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Preserves Precedence 

S 

E 

T – E 

T 

F 

<id,x> 

F 

<id,y> 

T 

F 

<num,2> 

* 

S 

E 

E’ 

– 

T 

T’ F 

<id,x> 

F 

<id,y> 

T 

<num,2> 

* 

ε 

E’ 

ε 
T’ 

F 

T’ 

ε 
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Eliminating Left Recursion 

The previous transformation eliminates immediate left recursion 
What about more general, indirect left recursion? 

The general algorithm (Algorithm 4.1 in the Textbook): 

Arrange the NTs into some order A1, A2, …, An 

for i ← 1 to n 

     for j ← 1 to i-1 
replace each production Ai → Aj  γ  with  

Ai → δ1 γ ⏐δ2 γ⏐…⏐δk γ,  where Aj  → δ1  ⏐δ2⏐…⏐δk  

                             are all the current productions for Aj 

eliminate any immediate left recursion on Ai using the direct transformation 
 

This assumes that the initial grammar has no cycles (Ai ⇒+ Ai),   
and no epsilon productions (Ai → ε ) 
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Eliminating Left Recursion 

How does this algorithm work? 
 

1.   Impose arbitrary order on the non-terminals 
2.   Outer loop cycles through NT in order 
3.  Inner loop ensures that a production expanding Ai has no  

 non-terminal Aj in its rhs, for j < i 
4.  Last step in outer loop converts any direct recursion on Ai   

 to right recursion using the transformation showed earlier 
5.  New non-terminals are added at the end of the order and have 

 no left recursion 

 At the start of the ith  outer loop iteration 
For all k < i, no production that expands Ak contains a non-terminal 	

As in its rhs, for s < k	
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Picking the “Right” Production 
 
If it picks the wrong production, a top-down parser may backtrack  
Alternative is to look ahead in input & use context to pick correctly 

How much look-ahead is needed? 
•  In general, an arbitrarily large amount 
•  Use the Cocke-Younger, Kasami, or Earley’s algorithm 

–  Complexity is O(|x|3) where x is the input string 

Fortunately, 
•  Large subclasses of context free grammars can be parsed efficiently with 

limited look-ahead 
–  Linear complexity, O(|x|) where x is the input string 

•  Most programming language constructs fall in those subclasses 

Among the interesting subclasses are LL(1)  and LR(1)  grammars 
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Left-Recursive and Right-Recursive Grammar 

1  S  →  Expr 
2  Expr  →  Expr  + Term 
3   |  Expr  – Term 
4   |  Term 
5  Term  →  Term  * Factor 
6   |  Term  / Factor 
7   |  Factor 
8  Factor  →  num 
9   |  id 

1  S  →  Expr 
2  Expr  →  Term Exprʹ′ 
3  Exprʹ′  →  + Term Exprʹ′ 
4   |  – Term Exprʹ′ 
5   |  ε 
6  Term  →  Factor Termʹ′ 
7  Termʹ′  →  * Factor Termʹ′ 
8   |  / Factor Termʹ′ 
9    |  ε 
10  Factor  →  num 
11   |  id 

Why is this better?  It is no longer left recursive so we eventually need to 
eat a token before we can continue expanding our parse tree…. We can 
use this token to help us figure out which rule to apply.   
 

Enter Predictive Parsing 
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Predictive Parsing 

Basic idea 
 Given A → α | β, the parser should be able to choose between 
 α & β based on peeking at the next token in the stream 

FIRST sets 
For a string of grammar symbols α, define FIRST(α) as the set of tokens  
that appear as the first symbol in some string that derives from α  
That is, x ∈ FIRST(α) iff  α ⇒* x γ,  for some γ 
(⇒*  means a bunch of (0 or more) productions applied in series) 

The LL(1)  Property 
If A → α and A → β both appear in the grammar, we would like  

FIRST(α) ∩ FIRST(β) = ∅ 
This would allow the parser to make a correct choice with a look-ahead of  
exactly one symbol ! 

(Pursuing this idea leads to LL(1) parser generators...) 



UC Santa Barbara 

Recursive Descent Parsing 

Recursive-descent parsing 
•  A top-down parsing method  

•  The term descent refers to the direction in which the parse tree is 
traversed (or built). 

•  Use a set of mutually recursive procedures (one procedure for each 
non-terminal symbol) 
–  Start the parsing process by calling the procedure that corresponds to 

the start symbol 
–  Each production becomes one clause in procedure 

•  We consider a special type of recursive-descent parsing called 
predictive parsing 
–  Use a look-ahead symbol to decide which production to use 
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Recursive Descent Parsing 

1  S  →  if E then S else S 
2   |  begin S L 
3   |  print E 
4  L  →  end 
5   |  ; S L 
6  E  →  num = num 

void S() {  
  switch(lookahead) { 
    case IF: match(IF); E(); match(THEN); S(); 
             match(ELSE); S(); break; 
    case BEGIN: match(BEGIN); S(); L(); break; 
    case PRINT: match(PRINT); E(); break; 
    default: error(); 
  } 
} 
 
void E() { match(NUM); match(EQ); match(NUM); } 

void L() { 
  switch(lookahead) { 
    case END: match(END); break; 
    case SEMI: match(SEMI); S(); 
               L(); break; 
    default: error(); 
  } 
} 

void main() { 
  lookahead=getNextToken();  
  S(); 
  match(EOF);  
} 

 

void match(int token) {  
 if (lookahead==token) 
  lookahead=getNextToken(); 
 else  
  error();  

} 
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Execution For Input:  if 2=2 then print 5=5 else print 1=1 

main: call S(); 
 S1: find the production for (S, IF) : S → if E then S else S  
 S1: match(IF); 
 S1: call E(); 
  E1: find the production for (E, NUM): E → num = num  
  E1: match(NUM); match(EQ); match(NUM); 
  E1: return from E1 to S1 
 S1: match(THEN); 
 S1:call S(); 
  S2: find the production for (S, PRINT): S → print E  
  S2: match(PRINT); 
  S2: call E(); 
   E2: find the production for (E, NUM): E → num = num  
   E2: match(NUM); match(EQ); match(NUM); 
   E2: return from E2 to S2 
  S2: return from S2 to S1 
 S1: match(ELSE); 
 S1: call S(); 
  S3: find the production for (S, PRINT): S → print E  
  S3: match(PRINT); 
  S3: call E(); 
   E3: find the production for (E, NUM): E → num = num  
   E3: match(NUM); match(EQ); match(NUM); 
   E3: return from E2 to S3 
  S3: return from S3 to S1 

  S1: return from S1 to main 
main: match(EOF); return success; 
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Left Factoring 

What if the grammar does not have the LL(1) property? 
•  We already learned one transformation: Removing left-recursion 
•  There is another transformation called left-factoring 
 
Left-Factoring Algorithm: ∀ A  ∈ NT, 

    find the longest prefix α that occurs in two  
            or more right-hand sides of  A 

     if α ≠ ε then replace all of  the A productions, 
            A → αβ1 | αβ2 | … | αβn | γ1 | γ2 | … | γk ,  
     with  
            A → α Z  |  γ1 | γ2 | … | γk  
            Z → β1 | β2 | … | βn  
      where Z is a new element of  NT 
 
Repeat until no common prefixes remain  
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A graphical explanation for the left-factoring 

becomes … 

Left Factoring  

A → αβ1  
     | αβ2  
     | αβn   

A → α Z 
Z → β1  
     |  β2  
     |  βn  

A 

αβ1 

αβ3 

αβ2 

αZ 

β1 

β3 

β2 A 
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Left Factoring - Example 

Consider the following fragment of the expression grammar 

After left factoring, it becomes 

 

FIRST(rhs1) = { Id } 
FIRST(rhs2) = { Id } 
FIRST(rhs3) = { Id } 

FIRST(rhs1) = { Id } 
FIRST(rhs2) = { [ } 
FIRST(rhs3) = { ( } 

FIRST(rhs4) = ? 
(Intuitively, we can think of  the FOLLOW of  
Arguments as the first of  rhs4) 
FOLLOW(Arguments)=FOLLOW(Factor) = { $ } 
They are all distinct 

⇒ Grammar has the LL(1) property 

1   Factor →  Id 
2   |   Id  [ ExprList  ] 
3    |   Id  ( ExprList  ) 

1   Factor  →  Id Arguments 
2   Arguments  →  [ ExprList  ] 
3    |  ( ExprList  ) 
4   |  ε 

This grammar accepts the same language, 
and it has the the LL(1) property 


