
UC Santa Barbara

Computer Science 160
Translation of Programming Languages

Instructor: Christopher Kruegel

UC Santa Barbara

Top-Down Parsing

UC Santa Barbara

Parsing Techniques

Top-down parsers (LL(1), recursive descent parsers)
•  Start at the root of the parse tree from the start symbol and grow toward

 leaves (similar to a derivation)
•  Pick a production and try to match the input
•  Bad “pick” ⇒ may need to backtrack
•  Some grammars are backtrack-free (predictive parsing)

Bottom-up parsers (LR(1), shift-reduce parsers)
•  Start at the leaves and grow toward root
•  We can think of the process as reducing the input string to the start symbol
•  At each reduction step, a particular substring matching the right-side of a

 production is replaced by the symbol on the left-side of the production
•  Bottom-up parsers handle a large class of grammars

UC Santa Barbara

Construct the root node of the parse tree, label it with the start symbol, and set the
current-node to root node

Repeat until all the input is consumed (i.e., until the frontier of the parse tree
matches the input string)

1  If the label of the current node is a non-terminal node A, select a production
with A on its lhs and, for each symbol on its rhs, construct the appropriate child

2  If the current node is a terminal symbol:
If it matches the input string, consume it (advance the input pointer)
If it does not match the input string, backtrack

3  Set the current node to the next node in the frontier of the parse tree
If there is no node left in the frontier of the parse tree and input is
not consumed, then backtrack

 The key is picking the right production in step 1
–  That choice should be guided by the input string

Top-down Parsing Algorithm

UC Santa Barbara

Example

And the input: x – 2 * y

Using version with correct precedence and associativity

1 S → Expr

2 Expr → Expr + Term
3 | Expr - Term

4 | Term

5 Term → Term * Factor
6 | Term / Factor

7 | Factor

8 Factor → num

9 | id

UC Santa Barbara

Let’s try x – 2 * y :

Example

S

Expr

Term + Expr

Term

Fact.

<id,x>

Rule Sentential Form Input
- S ↑ x – 2 * y
1 Expr ↑ x – 2 * y
2 Expr + Term ↑ x – 2 * y
4 Term + Term ↑ x – 2 * y
7 Factor + Term ↑ x – 2 * y
9 <id,x> + Term ↑ x – 2 * y

 <id,x> + Term x ↑ – 2 * y

UC Santa Barbara

Example

Let’s try x – 2 * y :

 Note that “–” doesn’t match “+”

The parser must backtrack to here

S

Expr

Term + Expr

Term

Fact.

<id,x>

Rule Sentential Form Input
- S ↑x – 2 * y
1 Expr ↑x – 2 * y
2 Expr + Term ↑x – 2 * y
4 Term + Term ↑x – 2 * y
7 Factor + Term ↑x – 2 * y
9 <id,x> + Term ↑x – 2 * y

 <id,x> + Term x ↑– 2 * y

UC Santa Barbara

Example

Continuing with x – 2 * y : S

Expr

Term – Expr

Term

Fact.

<id,x>

Rule Sentential Form Input
- S ↑x – 2 * y
1 Expr ↑x – 2 * y
3 Expr – Term ↑x – 2 * y
4 Term – Term ↑x – 2 * y
7 Factor – Term ↑x – 2 * y
9 <id,x> – Term ↑x – 2 * y
- <id,x> – Term x ↑– 2 * y
- <id,x> – Term x – ↑2 * y

UC Santa Barbara

Example

Continuing with x – 2 * y : S

Expr

Term – Expr

Term

Fact.

<id,x>

Rule Sentential Form Input
- S ↑x – 2 * y
1 Expr ↑x – 2 * y
3 Expr – Term ↑x – 2 * y
4 Term – Term ↑x – 2 * y
7 Factor – Term ↑x – 2 * y
9 <id,x> – Term ↑x – 2 * y
- <id,x> – Term x ↑– 2 * y
- <id,x> – Term x – ↑2 * y

This time “–” and “–” matched

We can advance past “–” to look at “2”
Now we need to extend Term, the
last NT in the fringe of the parse tree

UC Santa Barbara

Example

Trying to match the “2” in x – 2 * y :

Where are we?
•  num matches “2”
•  We have more input, but no NTs left to expand
•  The expansion terminated too soon
⇒  Need to backtrack

S

Expr

Term – Expr

Term

Fact.

<id,x>

Fact.

<num,2>

Rule Sentential Form Input
– <id,x> – Term x – ↑2 * y
7 <id,x> – Factor x – ↑2 * y
9 <id,x> – <num,2> x – ↑2 * y
– <id,x> – <num,2> x – 2 ↑* y

UC Santa Barbara

Example

Trying again with “2” in x – 2 * y :

This time, we matched and consumed all the input
⇒  Success!

S

Expr

Term – Expr

Term

Fact.

<id,x>

Fact.

<id,y>

Term

Fact.

<num,2>

*

Rule Sentential Form Input
- <id,x> – Term x – ↑2 * y
5 <id,x> – Term * Factor x – ↑2 * y
7 <id,x> – Factor * Factor x – ↑2 * y
8 <id,x> – <num,2> * Factor x – ↑2 * y
- <id,x> – <num,2> * Factor x – 2 ↑* y
- <id,x> – <num,2> * Factor x – 2 * ↑y
9 <id,x> – <num,2> * <id,y> x – 2 * ↑y
- <id,x> – <num,2> * <id,y> x – 2 * y ↑

UC Santa Barbara

Other choices for expansion are possible

This does not terminate
•  Wrong choice of expansion leads to non-termination, the parser will not

 backtrack since it does not get to a point where it can backtrack
•  Non-termination is a bad property for a parser to have
•  Parser must make the right choice

Another possible parse

Rule Sentential Form Input

— S ↑x - 2 * y

1 Expr ↑x - 2 * y

2 Expr + Term ↑x - 2 * y

2 Expr + Term +Term ↑x - 2 * y

2 Expr + Term + Term +Term ↑x - 2 * y

2 Expr +Term + Term + …+Term ↑x - 2 * y

consuming no input !

UC Santa Barbara

Left Recursion

Top-down parsers cannot handle left-recursive grammars

Formally,

A grammar is left recursive if there exists a non-terminal A such that
there exists a derivation A ⇒+ Aα, for some string α ∈ (NT ∪ T)+

Our expression grammar is left-recursive

•  This can lead to non-termination in a top-down parser
•  For a top-down parser, any recursion must be right recursion
•  We would like to convert the left recursion to right recursion

(without changing the language that is defined by the grammar)

UC Santa Barbara

Eliminating Immediate Left Recursion

To remove left recursion, we can transform the grammar

Consider a grammar fragment of the form
A → A α
 | β

where α or β are strings of terminal and non-terminal symbols
and neither α nor β start with A
We can rewrite this as

A → β R
R → α R
 | ε

where R is a new non-terminal

This accepts the same language, but uses only right recursion

A

A α

α A

β

A

α

β R

R

α R

ε

UC Santa Barbara

Eliminating Immediate Left Recursion

The expression grammar contains two cases of left recursion

Applying the transformation yields

These fragments use only right recursion

Expr → Term Exprʹ′
Exprʹ′ → + Term Exprʹ′

 | - Term Exprʹ′
 | ε

Expr → Expr + Term
 | Expr – Term
 | Term

Term → Term * Factor
 | Term / Factor
 | Factor

Term → Factor Termʹ′
Termʹ′ → * Factor Termʹ′

 | / Factor Termʹ′
 | ε

UC Santa Barbara

Eliminating Immediate Left Recursion

Substituting back into the grammar yields

•  This grammar is correct,
 if somewhat non-intuitive.

•  A top-down parser will
 terminate using it.

1 S → Expr
2 Expr → Term Exprʹ′
3 Exprʹ′ → + Term Exprʹ′
4 | - Term Exprʹ′
5 | ε
6 Term → Factor Termʹ′
7 Termʹ′ → * Factor Termʹ′
8 | / Factor Termʹ′
9 | ε
10 Factor → num
11 | id

UC Santa Barbara

Left-Recursive and Right-Recursive Grammar

1 S → Expr
2 Expr → Expr + Term
3 | Expr – Term
4 | Term
5 Term → Term * Factor
6 | Term / Factor
7 | Factor
8 Factor → num
9 | id

1 S → Expr
2 Expr → Term Exprʹ′
3 Exprʹ′ → + Term Exprʹ′
4 | – Term Exprʹ′
5 | ε
6 Term → Factor Termʹ′
7 Termʹ′ → * Factor Termʹ′
8 | / Factor Termʹ′
9 | ε
10 Factor → num
11 | id

UC Santa Barbara

Preserves Precedence

S

E

T – E

T

F

<id,x>

F

<id,y>

T

F

<num,2>

*

S

E

E’

–

T

T’ F

<id,x>

F

<id,y>

T

<num,2>

*

ε

E’

ε
T’

F

T’

ε

UC Santa Barbara

Eliminating Left Recursion

The previous transformation eliminates immediate left recursion
What about more general, indirect left recursion?

The general algorithm (Algorithm 4.1 in the Textbook):

Arrange the NTs into some order A1, A2, …, An

for i ← 1 to n

 for j ← 1 to i-1
replace each production Ai → Aj γ with

Ai → δ1 γ ⏐δ2 γ⏐…⏐δk γ, where Aj → δ1 ⏐δ2⏐…⏐δk

 are all the current productions for Aj

eliminate any immediate left recursion on Ai using the direct transformation

This assumes that the initial grammar has no cycles (Ai ⇒+ Ai),
and no epsilon productions (Ai → ε)

UC Santa Barbara

Eliminating Left Recursion

How does this algorithm work?

1. Impose arbitrary order on the non-terminals
2. Outer loop cycles through NT in order
3.  Inner loop ensures that a production expanding Ai has no

 non-terminal Aj in its rhs, for j < i
4.  Last step in outer loop converts any direct recursion on Ai

 to right recursion using the transformation showed earlier
5.  New non-terminals are added at the end of the order and have

 no left recursion

 At the start of the ith outer loop iteration
For all k < i, no production that expands Ak contains a non-terminal 	

As in its rhs, for s < k	

UC Santa Barbara

Picking the “Right” Production

If it picks the wrong production, a top-down parser may backtrack
Alternative is to look ahead in input & use context to pick correctly

How much look-ahead is needed?
•  In general, an arbitrarily large amount
•  Use the Cocke-Younger, Kasami, or Earley’s algorithm

–  Complexity is O(|x|3) where x is the input string

Fortunately,
•  Large subclasses of context free grammars can be parsed efficiently with

limited look-ahead
–  Linear complexity, O(|x|) where x is the input string

•  Most programming language constructs fall in those subclasses

Among the interesting subclasses are LL(1) and LR(1) grammars

UC Santa Barbara

Left-Recursive and Right-Recursive Grammar

1 S → Expr
2 Expr → Expr + Term
3 | Expr – Term
4 | Term
5 Term → Term * Factor
6 | Term / Factor
7 | Factor
8 Factor → num
9 | id

1 S → Expr
2 Expr → Term Exprʹ′
3 Exprʹ′ → + Term Exprʹ′
4 | – Term Exprʹ′
5 | ε
6 Term → Factor Termʹ′
7 Termʹ′ → * Factor Termʹ′
8 | / Factor Termʹ′
9 | ε
10 Factor → num
11 | id

Why is this better? It is no longer left recursive so we eventually need to
eat a token before we can continue expanding our parse tree…. We can
use this token to help us figure out which rule to apply.

Enter Predictive Parsing

UC Santa Barbara

Predictive Parsing

Basic idea
 Given A → α | β, the parser should be able to choose between
 α & β based on peeking at the next token in the stream

FIRST sets
For a string of grammar symbols α, define FIRST(α) as the set of tokens
that appear as the first symbol in some string that derives from α
That is, x ∈ FIRST(α) iff α ⇒* x γ, for some γ
(⇒* means a bunch of (0 or more) productions applied in series)

The LL(1) Property
If A → α and A → β both appear in the grammar, we would like

FIRST(α) ∩ FIRST(β) = ∅
This would allow the parser to make a correct choice with a look-ahead of
exactly one symbol !

(Pursuing this idea leads to LL(1) parser generators...)

UC Santa Barbara

Recursive Descent Parsing

Recursive-descent parsing
•  A top-down parsing method

•  The term descent refers to the direction in which the parse tree is
traversed (or built).

•  Use a set of mutually recursive procedures (one procedure for each
non-terminal symbol)
–  Start the parsing process by calling the procedure that corresponds to

the start symbol
–  Each production becomes one clause in procedure

•  We consider a special type of recursive-descent parsing called
predictive parsing
–  Use a look-ahead symbol to decide which production to use

UC Santa Barbara

Recursive Descent Parsing

1 S → if E then S else S
2 | begin S L
3 | print E
4 L → end
5 | ; S L
6 E → num = num

void S() {
 switch(lookahead) {
 case IF: match(IF); E(); match(THEN); S();
 match(ELSE); S(); break;
 case BEGIN: match(BEGIN); S(); L(); break;
 case PRINT: match(PRINT); E(); break;
 default: error();
 }
}

void E() { match(NUM); match(EQ); match(NUM); }

void L() {
 switch(lookahead) {
 case END: match(END); break;
 case SEMI: match(SEMI); S();
 L(); break;
 default: error();
 }
}

void main() {
 lookahead=getNextToken();
 S();
 match(EOF);
}

void match(int token) {
 if (lookahead==token)
 lookahead=getNextToken();
 else
 error();

}

UC Santa Barbara

Execution For Input: if 2=2 then print 5=5 else print 1=1

main: call S();
 S1: find the production for (S, IF) : S → if E then S else S
 S1: match(IF);
 S1: call E();
 E1: find the production for (E, NUM): E → num = num
 E1: match(NUM); match(EQ); match(NUM);
 E1: return from E1 to S1
 S1: match(THEN);
 S1:call S();
 S2: find the production for (S, PRINT): S → print E
 S2: match(PRINT);
 S2: call E();
 E2: find the production for (E, NUM): E → num = num
 E2: match(NUM); match(EQ); match(NUM);
 E2: return from E2 to S2
 S2: return from S2 to S1
 S1: match(ELSE);
 S1: call S();
 S3: find the production for (S, PRINT): S → print E
 S3: match(PRINT);
 S3: call E();
 E3: find the production for (E, NUM): E → num = num
 E3: match(NUM); match(EQ); match(NUM);
 E3: return from E2 to S3
 S3: return from S3 to S1

 S1: return from S1 to main
main: match(EOF); return success;

UC Santa Barbara

Left Factoring

What if the grammar does not have the LL(1) property?
•  We already learned one transformation: Removing left-recursion
•  There is another transformation called left-factoring

Left-Factoring Algorithm: ∀ A ∈ NT,

 find the longest prefix α that occurs in two
 or more right-hand sides of A

 if α ≠ ε then replace all of the A productions,
 A → αβ1 | αβ2 | … | αβn | γ1 | γ2 | … | γk ,
 with
 A → α Z | γ1 | γ2 | … | γk
 Z → β1 | β2 | … | βn
 where Z is a new element of NT

Repeat until no common prefixes remain

UC Santa Barbara

A graphical explanation for the left-factoring

becomes …

Left Factoring

A → αβ1
 | αβ2
 | αβn

A → α Z
Z → β1
 | β2
 | βn

A

αβ1

αβ3

αβ2

αZ

β1

β3

β2 A

UC Santa Barbara

Left Factoring - Example

Consider the following fragment of the expression grammar

After left factoring, it becomes

FIRST(rhs1) = { Id }
FIRST(rhs2) = { Id }
FIRST(rhs3) = { Id }

FIRST(rhs1) = { Id }
FIRST(rhs2) = { [}
FIRST(rhs3) = { (}

FIRST(rhs4) = ?
(Intuitively, we can think of the FOLLOW of
Arguments as the first of rhs4)
FOLLOW(Arguments)=FOLLOW(Factor) = { $ }
They are all distinct

⇒ Grammar has the LL(1) property

1 Factor → Id
2 | Id [ExprList]
3 | Id (ExprList)

1 Factor → Id Arguments
2 Arguments → [ExprList]
3 | (ExprList)
4 | ε

This grammar accepts the same language,
and it has the the LL(1) property

