Computer Science 160 Translation of Programming Languages

Instructor: Christopher Kruegel

Top-Down Parsing

Top-down Parsing Algorithm

Construct the root node of the parse tree, label it with the start symbol, and set the current-node to root node

Repeat until all the input is consumed (i.e., until the frontier of the parse tree matches the input string)

1 If the label of the current node is a non-terminal node A, select a production with A on its Ihs and, for each symbol on its rhs, construct the appropriate child

2 If the current node is a terminal symbol:
If it matches the input string, consume it (advance the input pointer)
If it does not match the input string, backtrack
3 Set the current node to the next node in the frontier of the parse tree If there is no node left in the frontier of the parse tree and input is not consumed, then backtrack

The key is picking the right production in step 1

- That choice should be guided by the input string

Predictive Parsing

- The main idea is to look ahead at the next token and use that token to pick the production that you should apply

```
X + X Here we can use the + and -
    | Y to decide which rule to apply
```

This technique is more general!

- Definition of FIRST sets
$x \in \operatorname{FIRST}(\alpha)$ iff $\alpha \Rightarrow^{*} x \gamma$, for some γ
(\Rightarrow^{*} means a series of (0 or more) productions)
- This means that we have to examine ALL tokens that our productions could potentially start with

FIRST Sets

- Intuitively, $\operatorname{FIRST}(S)$ is the set of all terminals that we could possibly see when starting to parse S
- If we want to build a predictive parser, we need to make sure that the look-ahead token tells us with 100% confidence which production to apply
- In order for this to be true, anytime we have a production that looks like $A \rightarrow \alpha \mid \beta$, we need to make sure that $\operatorname{FIRST}(\alpha)$ is distinct from the $\operatorname{FIRST}(\beta)$
- "Distinct" means that there is no element in $\operatorname{FIRST}(\alpha)$ that is also in $\operatorname{FIRST}(\beta) \ldots$ or formally, that $\operatorname{FIRST}(\alpha) \cap \operatorname{FIRST}(\beta)=\{ \}$

Slightly More Tricky Examples

$\mathrm{S} \rightarrow \mathrm{AB}$
$\mathrm{A} \rightarrow \mathrm{x} \mid \mathrm{y}$
$\mathrm{B} \rightarrow 0 \mid 1$
$\operatorname{FIRST}(S)=\{x, y\}$
$\mathrm{S} \rightarrow \mathrm{AB}$

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{x}|\mathrm{y}| \varepsilon \\
& \mathrm{B} \rightarrow 0 \mid 1
\end{aligned}
$$

$\mathrm{S} \rightarrow \mathrm{AB}$
$\mathrm{A} \rightarrow \mathrm{x}|\mathrm{y}| \varepsilon \quad \operatorname{FIRST}(\mathrm{S})=\{\mathrm{x}, \mathrm{y}, 0,1, \varepsilon\}$
$\mathrm{B} \rightarrow 0|1| \varepsilon$

- Here is an example of FIRST sets where the first symbol in the production is a non-terminal
- In this case, we have to examine all possible terminals that could begin a sentence derived from S
- If we have an ε, then we need to look past the first non-terminal
- If all the non-terminals have ε in their first sets, then add ε to the first set

How to Generate FIRST Sets

For a string of grammar symbols α, define $\operatorname{FIRST}(\alpha)$ as

- Set of tokens that appear as the first symbol in some string that derives from α
- If $\alpha \Rightarrow^{*} \varepsilon$, then ε is in $\operatorname{FIRST}(\alpha)$

To construct FIRST (X) for a grammar symbol X, apply the following rules until no more symbols can be added to $\operatorname{FIRST}(X)$

- If X is a terminal, then $\operatorname{FIRST}(X)$ is $\{X\}$
- If $X \rightarrow \varepsilon$ is a production, then ε is in $\operatorname{FIRST}(X)$
- If X is a non-terminal and $X \rightarrow Y_{1} Y_{2} \ldots Y_{k}$ is a production, then put every symbol in $\operatorname{FIRST}\left(Y_{1}\right)$ other than ε to $\operatorname{FIRST}(X)$
- If X is a non-terminal and $X \rightarrow Y_{1} Y_{2} \ldots Y_{k}$ is a production, then put terminal a in $\operatorname{FIRST}(X)$ if a is in $\operatorname{FIRST}\left(Y_{i}\right)$ and ε is in $\operatorname{FIRST}\left(Y_{j}\right)$ for all $1 \leq \mathrm{j}<\mathrm{i}$
- If X is a non-terminal and $X \rightarrow Y_{1} Y_{2} \ldots Y_{k}$ is a production, then put ε in $\operatorname{FIRST}(X)$ if ε is in $\operatorname{FIRST}\left(Y_{i}\right)$ for all $1 \leq i \leq k$

Computing FIRST Sets

To construct the FIRST set for any string of grammar symbols $X_{1} X_{2} \ldots X_{n}$ (given the FIRST sets for symbols $X_{1}, X_{2}, \ldots X_{n}$), apply the following rules.
$\operatorname{FIRST}\left(X_{1} X_{2} \ldots X_{n}\right)$ contains:

- any symbol in $\operatorname{FIRST}\left(X_{1}\right)$ other than ε
- any symbol in $\operatorname{FIRST}\left(X_{i}\right)$ other than ε, if ε is in $\operatorname{FIRST}\left(X_{j}\right)$ for all $1 \leq \mathrm{j}<\mathrm{i}$
- ε, if ε is in $\operatorname{FIRST}\left(X_{j}\right)$ for all $1 \leq \mathrm{i} \leq \mathrm{n}$

FIRST Sets

1	S	\rightarrow	Expr
2	Expr	\rightarrow	Term Expr
3	Expr	\rightarrow	+ Term Expr'
4		1	- Term Expr'
5		1	ε
6	Term	\rightarrow	Factor Term'
7	Term'	\rightarrow	* Factor Term
8		\mid	I Factor Term'
9		1	ε
10	Factor	\rightarrow	num
11		1	id

Symbol	FIRST
S	$\{$ num, id $\}$
Expr	$\{$ num, id $\}$
Expr $^{\prime}$	$\{\varepsilon,+,-\}$
Term	$\{$ num, id $\}$
Term	$\{\varepsilon, *, /\}$
Factor	$\{$ num, id $\}$

We still have those pesky epsilons

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{AB} \\
& \mathrm{~A} \rightarrow \mathrm{x}|\mathrm{y}| \varepsilon \\
& \mathrm{B} \rightarrow 0|1| \varepsilon
\end{aligned} \quad \quad \operatorname{FIRST}(\mathrm{S})=\{\mathrm{x}, \mathrm{y}, 0,1, \varepsilon\}
$$

- Despite our efforts to look past all of the ε when defining our FIRST sets, sometimes we still have ε in our FIRST sets (as in the above example). So, what can we do?
- The trick to doing it is to look past the current non-terminal and examine the set of characters that can follow the current non-terminal
- This is what the FOLLOW set defines
- We use the special character \$ to denote the end of the file

FOLLOW Sets

For a non-terminal symbol A, define $\operatorname{FOLLOW}(A)$:
The set of terminal symbols that can appear immediately to the right of A in some sentential form

To construct $\operatorname{FOLLOW}(A)$ for a non-terminal symbol A, apply the following rules until no more symbols can be added to $\operatorname{FOLLOW}(A)$:

- Place $\$$ in $\operatorname{FOLLOW}(S)$ ($\$$ is the end-of-file symbol, S is the start symbol)
- If there is a production $A \rightarrow \alpha B \beta$, then everything in $\operatorname{FIRST}(\beta)$ - except ε - is placed in FOLLOW(B)
- If there is a production $A \rightarrow \alpha B$, then everything in $\operatorname{FOLLOW}(A)$ is placed in FOLLOW(B)
- If there is a production $A \rightarrow \alpha B \beta$, and ε is in $\operatorname{FIRST}(\beta)$, then everything in $\operatorname{FOLLOW}(A)$ is placed in $\operatorname{FOLLOW}(B)$

FOLLOW Sets

1	S	\rightarrow	Expr
2	Expr	\rightarrow	Term Expr
3	Expr	\rightarrow	+ Term Expr
4		\mid	- Term Expr
5		I	ε
6	Term	\rightarrow	Factor Term
7	Term'	\rightarrow	* Factor Term
8		\mid	I Factor Term
9		\mid	ε
10	Factor	\rightarrow	num
11		I	id

Symbol	FOLLOW
S	$\{\$\}$
Expr	$\{\$\}$
Expr $^{\prime}$	$\{\$\}$
Term	$\{\$,+,-\}$
Term	$\{\$,+,-\}$
Factor	$\{\$,+,-, *, /\}$

Another FIRST/FOLLOW Example

Example Input: $x+y(z+a(b))$

```
Expression }->\mathrm{ Function
    | ( Expression )
        Primary + Expression
        | Primary
Primary }\quad->\mathrm{ id
    | integer
Function }->\mathrm{ id ( ParamList )
ParamList }->\mathrm{ Expression ParamList
    | \varepsilon
```

FIRST (Expression) $=\{$ (, integer, id $\}$
FIRST (Primary) $=\{$ integer, id $\}$
FIRST (Function) $=\{$ id $\}$
FIRST (ParamList) $=\{($, id, integer, $\varepsilon\}$

FOLLOW (Expression) $=\{\$,($,$) , id, integer \}$ FOLLOW (Primary) $=\{\$,(),$,+ , id, integer $\}$ FOLLOW (Function) $=\{\$,($,$) , id, integer \}$
FOLLOW (ParamList) $=\{)\}$

LL(1) Grammars

Left-to-right scan of the input, Leftmost derivation, 1-token look-ahead

A grammar G is $\operatorname{LL}(1)$ if for each set of its productions
$A \rightarrow \alpha_{1}\left|\alpha_{2}\right| \ldots \mid \alpha_{n}$:
$\operatorname{FIRST}\left(\alpha_{1}\right), \operatorname{FIRST}\left(\alpha_{2}\right), \ldots, \operatorname{FIRST}\left(\alpha_{n}\right)$, are all pair-wise disjoint
If $\alpha_{i} \Rightarrow^{*} \varepsilon$, then $\operatorname{FIRST}\left(\alpha_{j}\right) \cap \operatorname{FOLLOW}(A)=\varnothing$ for all $1 \leq i \leq n, i \neq j$

- In other words, $\operatorname{LL}(1)$ grammars
- productions are uniquely predictable given a context (look-ahead)
- cannot have left recursion (direct or indirect)

Recursive Descent Parsing

- Use a set of mutually recursive procedures
- one procedure for each non-terminal symbol
- start the parsing process by calling the procedure that corresponds to the start symbol
- each production becomes one clause in procedure
- Use a look-ahead symbol to decide which production to use
- based on the elements in the FIRST sets
- When no element in FIRST set matches, check the FOLLOW set
- if look-ahead symbol is in FOLLOW set and there is an epsilon production, return from procedure (i.e., take epsilon production)
- otherwise, terminate with a parsing error

Recursive Descent Parsing

1	S	\rightarrow	if E then S else S
2		\mid	begin $S L$
3		\mid	print E
4	L	\rightarrow	end
5		\mid	$; S L$
6	E	\rightarrow	num = num

```
void match(int token) {
        if (lookahead==token)
            lookahead=getNextToken();
        else
            error();
}
```

void main() \{
lookahead=getNextToken() ;
S () ;
match(EOF); void E() \{ match(NUM); match(EQ); match(NUM); \}

```
```

void S() {

```
```

void S() {
switch(lookahead) {
switch(lookahead) {
case IF: match(IF); E(); match(THEN); S();
case IF: match(IF); E(); match(THEN); S();
match(ELSE); S(); break;
match(ELSE); S(); break;
case BEGIN: match(BEGIN); S(); L(); break;
case BEGIN: match(BEGIN); S(); L(); break;
case PRINT: match(PRINT); E(); break;
case PRINT: match(PRINT); E(); break;
default: error();
default: error();
}
}
}
}
void L() {
void L() {
switch(lookahead) {
switch(lookahead) {
case END: match(END); break;
case END: match(END); break;
case SEMI: match(SEMI); S();
case SEMI: match(SEMI); S();
L(); break;
L(); break;
default: error();
default: error();
}
}
}

```
```

}

```
```


Alternative: Table-Driven Parsers

A table-driven parser looks like

Parsing tables can be built automatically!

Stack-Based, Table-Driven Parsing

The parsing table

- A two-dimensional array
$\mathrm{M}[A, a] \rightarrow$ gives a production
A: non-terminal symbol
a: terminal symbol
- What does it mean?
- If top of the stack is A and the look-ahead symbol is a, then we apply the production $\mathrm{M}[A, a]$

	IF	BEGIN	PRINT	END	SEMI	NUM
S	$S \rightarrow$ if E then S else S	$S \rightarrow \operatorname{begin} S L$	$S \rightarrow \operatorname{print} E$			
L				$L \rightarrow$ end	$L \rightarrow ; S L$	
E						$E \rightarrow$ num $=$ num

Table-Driven Parsing Algorithm

- Push the end-of-file symbol (\$) and the start symbol S onto the stack
- Consider the symbol X on the top of the stack and look-ahead (terminal) symbol a
- If $X=\$$ and $\mathrm{a}=\$$, then announce successful parse and halt
- If $X=\mathbf{a}$ (and $\mathbf{a} \neq \$$), pop X off the stack and advance the input pointer to the next input symbol (read in new a)
- If X is a non-terminal, look at the production $\mathrm{M}[X, a]$
- If there is no such production ($\mathrm{M}[X, a]=$ error), then call an error routine
- If $M[X, a]$ is a production $X \rightarrow Y_{1} Y_{2} \ldots Y_{k}$, then pop X and push $Y_{k}, Y_{k-1}, \ldots, Y_{1}$ onto the stack with Y_{1} on top
- If none of the cases above apply, then call an error routine

Table-Driven Parsing Algorithm

Table-Driven : if $2=2$ then print $5=5$ else print $1=1 \$$

```
Stack
$,S
$,S,ELSE,S,THEN,E,IF
$S,ELSE,S,THEN,E
$S,ELSE,S,THEN,NUM,EQ,NUM
$S,ELSE,S,THEN,NUM,EQ
$S,ELSE,S,THEN,NUM
$S,ELSE,S,THEN
$S,ELSE,S
$S,ELSE,E,PRINT
$S,ELSE,E
$S,ELSE,NUM,EQ,NUM
$S,ELSE,NUM,EQ
$S,ELSE,NUM
$S,ELSE
$S
$E,PRINT
$E
$NUM,EQ,NUM
$NUM,EQ
$NUM
$
```


lookahead

IF
IF
NUM
NUM
EQ
NUM
THEN
PRINT
PRINT
NUM
NUM
EQ
NUM
ELSE
PRINT
PRINT
NUM
NUM
EQ
NUM
\$ report success!

Parse-table lookup

M[S,IF]: $S \rightarrow$ if E then S else S
$\mathrm{M}[E, \mathrm{NUM}]: \quad E \rightarrow$ num $=$ num

M[S,PRINT]: $S \rightarrow$ print E
$\mathrm{M}[E, \mathrm{NUM}]: E \rightarrow$ num $=$ num

M[S,PRINT]: $S \rightarrow$ print E
$\mathrm{M}[E, \mathrm{NUM}]: \quad E \rightarrow$ num $=$ num

LL(1) Parse Table Construction

- For all productions $A \rightarrow \alpha$, perform the following steps:
- For each terminal symbol a in $\operatorname{FIRST}(\alpha)$, add $A \rightarrow \alpha$ to $\mathrm{M}[A, a]$
- If ε is in $\operatorname{FIRST}(\alpha)$, then add $A \rightarrow \alpha$ to M[A, $b]$ for each terminal symbol b in FOLLOW (A).
- Add $A \rightarrow \alpha$ to $\mathrm{M}[A, \$]$ if $\$$ is in $\operatorname{FOLLOW}(A)$
- Set all the undefined entries in M to ERROR

LL(1) Parse Table Construction

Grammar:

1	S	\rightarrow	Expr
2	Expr	\rightarrow	Term Expr'
3	Expr' $^{\prime}$	\rightarrow	+ Term Expr
4		\mid	- Term Expr'
5		\mid	ε
6	Term	\rightarrow	Factor Term'
7	Term'	\rightarrow	* Factor Term
8		\mid	I Factor Term
9		\mid	ε
10	Factor	\rightarrow	num
11		\mid	id

Symbol	FOLLOW
S	$\{\$\}$
Expr	$\{\$\}$
Expr $^{\prime}$	$\{\$\}$
Term	$\{\$,+,-\}$
Term	$\{\$,+,-\}$
Factor	$\{\$,+,-, *, /\}$

Symbol	FIRST
S	$\{$ num, id $\}$
Expr	$\{$ num, id $\}$
Expr $^{\prime}$	$\{\varepsilon,+,-\}$
Term	$\{$ num, id $\}$
Term	$\{\varepsilon, *, /\}$
Factor	$\{$ num, id $\}$
num	$\{$ num $\}$
id	$\{$ id $\}$
+	$\{+\}$
-	$\{-\}$
$*$	$\{*\}$
$/$	$\{/\}$

LL(1) Parse Table Construction

LL(1) Parse table:

S	id	num	+	-	$*$	$/$	$\$$
E	$E \rightarrow E$	$S \rightarrow E$					
E^{\prime}							
T	$T \rightarrow F T^{\prime}$	$T \rightarrow T E^{\prime}$					
T^{\prime}			$E^{\prime} \rightarrow+T E^{\prime}$	$E^{\prime} \rightarrow-T E^{\prime}$			
F	$F \rightarrow \mathrm{id}$	$F \rightarrow$ num					

LL(1) Grammar

Left-to-right scan of the input, Leftmost derivation, 1-token look-ahead

Two alternative definitions of $\operatorname{LL}(1)$ grammars:

1. A grammar G is $L L(1)$ if there are no multiple entries in its $L L(1)$ parse table
2. A grammar G is $L L(1)$, if for each set of its productions $A \rightarrow \alpha_{1}\left|\alpha_{2}\right| \ldots \mid \alpha_{n}$
$\operatorname{FIRST}\left(\alpha_{1}\right), \operatorname{FIRST}\left(\alpha_{2}\right), \ldots, \operatorname{FIRST}\left(\alpha_{\mathrm{n}}\right)$ are all pair-wise disjoint If $\alpha_{i} \Rightarrow^{*} \varepsilon$, then $\operatorname{FIRST}\left(\alpha_{j}\right) \cap \operatorname{FOLLOW}(A)=\varnothing$ for all $1 \leq i \leq n, i \neq j$

The Verdict on Top-Down Parsing

- Top down parsers are great
- They are (relatively) simple to construct by hand
- They have many real-world applications
- They provide the most intuitive way to reason about parsing
- Predictive parsing is fast
- Top down has some problems
- It can get messy for complex grammars (like full Java)
- It does not handle left-recursion, which is how we would like to specify left-associative operators
- It is quite restrictive on the the types of grammars we can parse
- What we need is a fast and automated approach that can handle a more general set of grammars
- This requires a different way of thinking about parsing ...

Where are we in the process?

