
UC Santa Barbara

Computer Science 160
Translation of Programming Languages

Instructor: Christopher Kruegel

UC Santa Barbara

Top-Down Parsing

UC Santa Barbara

Construct the root node of the parse tree, label it with the start symbol, and set the
current-node to root node

Repeat until all the input is consumed (i.e., until the frontier of the parse tree
matches the input string)

1 If the label of the current node is a non-terminal node A, select a production
with A on its lhs and, for each symbol on its rhs, construct the appropriate child

2 If the current node is a terminal symbol:
If it matches the input string, consume it (advance the input pointer)
If it does not match the input string, backtrack

3 Set the current node to the next node in the frontier of the parse tree
If there is no node left in the frontier of the parse tree and input is
not consumed, then backtrack

The key is picking the right production in step 1
– That choice should be guided by the input string

Top-down Parsing Algorithm

UC Santa Barbara

Predictive Parsing

• The main idea is to look ahead at the next token and use that token
to pick the production that you should apply

This technique is more general!

• Definition of FIRST sets

• This means that we have to examine ALL tokens that our
productions could potentially start with

X ® + X
| - Y

Here we can use the + and –
to decide which rule to apply

x Î FIRST(a) iff aÞ* x g, for some g
(Þ* means a series of (0 or more) productions)

UC Santa Barbara

FIRST Sets

• Intuitively, FIRST(S) is the set of all terminals that we could
possibly see when starting to parse S

• If we want to build a predictive parser, we need to make sure that
the look-ahead token tells us with 100% confidence which
production to apply

• In order for this to be true, anytime we have a production that looks
like A ® a | b, we need to make sure that FIRST(a) is distinct from
the FIRST(b)

• “Distinct” means that there is no element in FIRST(a) that is also in
FIRST(b) … or formally, that FIRST(a) Ç FIRST(b) = {}

UC Santa Barbara

Slightly More Tricky Examples

• Here is an example of
FIRST sets where the first
symbol in the production is
a non-terminal

• In this case, we have
to examine all possible
terminals that could begin
a sentence derived from S

• If we have an e, then we
need to look past the first
non-terminal

• If all the non-terminals
have e in their first sets,
then add e to the first set

S ® AB
A ® x | y
B ® 0 | 1

FIRST(S) = { x, y }

S ® AB
A ® x | y | e
B ® 0 | 1

FIRST(S) = { x, y, 0, 1 }

S ® AB
A ® x | y | e
B ® 0 | 1 | e

FIRST(S) = { x, y, 0, 1, e }

UC Santa Barbara

How to Generate FIRST Sets

For a string of grammar symbols a, define FIRST(a) as
• Set of tokens that appear as the first symbol in some string that derives from a
• If a Þ* e, then e is in FIRST(a)

To construct FIRST(X) for a grammar symbol X, apply the following rules until no
more symbols can be added to FIRST(X)

• If X is a terminal, then FIRST(X) is {X}

• If X ® e is a production, then e is in FIRST(X)

• If X is a non-terminal and X ®Y1Y2 ... Yk is a production, then put every
symbol in FIRST(Y1) other than e to FIRST(X)

• If X is a non-terminal and X ®Y1Y2 ... Yk is a production, then put terminal a
in FIRST(X) if a is in FIRST(Yi) and e is in FIRST(Yj) for all 1 £ j < i

• If X is a non-terminal and X ®Y1Y2 ... Yk is a production, then put e in
FIRST(X) if e is in FIRST(Yi) for all 1 £ i £ k

UC Santa Barbara

Computing FIRST Sets

To construct the FIRST set for any string of grammar symbols
X1X2 ... Xn (given the FIRST sets for symbols X1 , X2 , ... Xn),
apply the following rules.

FIRST(X1X2 ... Xn) contains:

– any symbol in FIRST(X1) other than e
– any symbol in FIRST(Xi) other than e, if e is in FIRST(Xj) for all 1 £ j < i
– e, if e is in FIRST(Xj) for all 1 £ i £ n

UC Santa Barbara

FIRST Sets

1 S ® Expr
2 Expr ® Term Expr¢
3 Expr¢ ® + Term Expr¢
4 | - Term Expr¢
5 | e
6 Term ® Factor Term¢
7 Term¢ ® * Factor Term¢
8 | / Factor Term¢
9 | e
10 Factor ® num
11 | id

Symbol FIRST

S {num, id}
Expr {num, id}
Expr¢ {e , +, - }
Term {num, id}
Term¢ {e , *, / }
Factor {num, id}

UC Santa Barbara

We still have those pesky epsilons …

• Despite our efforts to look past all of the e when defining our FIRST
sets, sometimes we still have e in our FIRST sets (as in the above
example). So, what can we do?

• The trick to doing it is to look past the current non-terminal and
examine the set of characters that can follow the current
non-terminal

• This is what the FOLLOW set defines

• We use the special character $ to denote the end of the file

S ® AB
A ® x | y | e
B ® 0 | 1 | e

FIRST(S) = { x, y, 0, 1, e }

UC Santa Barbara

FOLLOW Sets

For a non-terminal symbol A, define FOLLOW(A):

The set of terminal symbols that can appear immediately to the
right of A in some sentential form

To construct FOLLOW(A) for a non-terminal symbol A, apply the following rules
until no more symbols can be added to FOLLOW(A):

• Place $ in FOLLOW(S) ($ is the end-of-file symbol, S is the start symbol)

• If there is a production A ® a B b, then everything in FIRST(b) - except e - is
placed in FOLLOW(B)

• If there is a production A ® a B, then everything in FOLLOW(A) is placed in
FOLLOW(B)

• If there is a production A ® a B b, and e is in FIRST(b), then everything in
FOLLOW(A) is placed in FOLLOW(B)

UC Santa Barbara

FOLLOW Sets

1 S ® Expr
2 Expr ® Term Expr¢
3 Expr¢ ® + Term Expr¢
4 | - Term Expr¢
5 | e
6 Term ® Factor Term¢
7 Term¢ ® * Factor Term¢
8 | / Factor Term¢
9 | e
10 Factor ® num
11 | id

Symbol FOLLOW
S { $ }
Expr { $ }
Expr¢ { $ }
Term { $, +, - }
Term¢ { $, +, - }
Factor { $, +, -, *, / }

UC Santa Barbara

Another FIRST/FOLLOW Example

Expression ® Function
| (Expression)
| Primary + Expression
| Primary

Primary ® id
| integer

Function ® id (ParamList)
ParamList ® Expression ParamList

| e

FIRST (Expression) = { (, integer, id }
FIRST (Primary) = { integer, id }
FIRST (Function) = { id }
FIRST (ParamList) = { (, id, integer, e }

FOLLOW (Expression) = { $, (,) , id, integer }
FOLLOW (Primary) = { $, (,) , + , id, integer }
FOLLOW (Function) = { $, (,) , id, integer }
FOLLOW (ParamList) = {) }

Example Input: x + y (z + a (b))

UC Santa Barbara

LL(1) Grammars

Left-to-right scan of the input, Leftmost derivation, 1-token look-ahead

A grammar G is LL(1) if for each set of its productions
A ® a1 | a2 | ... | an:

FIRST(a1), FIRST(a2), ..., FIRST(an), are all pair-wise disjoint

If ai Þ* e , then FIRST (aj) Ç FOLLOW (A) = Æ for all 1 £ i £ n, i ¹ j

• In other words, LL(1) grammars
– productions are uniquely predictable given a context (look-ahead)
– cannot have left recursion (direct or indirect)

UC Santa Barbara

Recursive Descent Parsing

• Use a set of mutually recursive procedures
– one procedure for each non-terminal symbol
– start the parsing process by calling the procedure that corresponds to

the start symbol
– each production becomes one clause in procedure

• Use a look-ahead symbol to decide which production to use
– based on the elements in the FIRST sets

• When no element in FIRST set matches, check the FOLLOW set
– if look-ahead symbol is in FOLLOW set and there is an epsilon

production, return from procedure (i.e., take epsilon production)
– otherwise, terminate with a parsing error

UC Santa Barbara

Recursive Descent Parsing

1 S ® if E then S else S
2 | begin S L
3 | print E
4 L ® end
5 | ; S L
6 E ® num = num

void S() {
switch(lookahead) {

case IF: match(IF); E(); match(THEN); S();
match(ELSE); S(); break;

case BEGIN: match(BEGIN); S(); L(); break;
case PRINT: match(PRINT); E(); break;
default: error();

}
}

void E() { match(NUM); match(EQ); match(NUM); }

void L() {
switch(lookahead) {

case END: match(END); break;
case SEMI: match(SEMI); S();

L(); break;
default: error();

}
}

void main() {
lookahead=getNextToken();
S();
match(EOF);

}

void match(int token) {
if (lookahead==token)

lookahead=getNextToken();
else

error();
}

UC Santa Barbara

Alternative: Table-Driven Parsers

A table-driven parser looks like

Parsing tables can be built automatically!

Scanner
Table-driven

Parser

Parsing
Table

Parser
Generator

source
code

grammar

IR

Stack

UC Santa Barbara

Stack-Based, Table-Driven Parsing

The parsing table
• A two-dimensional array

M[A, a] ® gives a production
A: non-terminal symbol
a: terminal symbol

• What does it mean?
– If top of the stack is A and the look-ahead symbol is a, then we

apply the production M[A, a]

IF BEGIN PRINT END SEMI NUM

S S®if E then S else S S®begin S L S®print E

L L® end L® ; S L

E E®num = num

UC Santa Barbara

Table-Driven Parsing Algorithm

• Push the end-of-file symbol ($) and the start symbol S onto the
stack

• Consider the symbol X on the top of the stack and look-ahead
(terminal) symbol a

– If X = $ and a = $, then announce successful parse and halt

– If X = a (and a ¹ $), pop X off the stack and advance the input pointer
to the next input symbol (read in new a)

– If X is a non-terminal, look at the production M[X, a]
• If there is no such production (M[X, a] = error), then call an error routine
• If M[X, a] is a production X® Y1 Y2 ... Yk , then pop X and push
Yk , Yk-1 , ..., Y1 onto the stack with Y1 on top

– If none of the cases above apply, then call an error routine

UC Santa Barbara

Table-Driven Parsing Algorithm
Push($); // $ is the end-of-file symbol

Push(S); // S is the start symbol of the grammar

lookahead = get_next_token();

repeat

X = top_of_stack();

if (X is a terminal or X == $) then

if (X == lookahead) then

pop(X);

lookahead = get_next_token();

else error();

else // X is a non-terminal

if (M[X, lookahead] == X ® Y1 Y2 ... Yk) then

pop(X);

push(Yk); push(Yk-1); ... push(Y1);

else error();

until (X = $)

UC Santa Barbara

Table-Driven : if 2=2 then print 5=5 else print 1=1$

Stack lookahead Parse-table lookup
$,S IF M[S,IF]: S®if E then S else S
$,S,ELSE,S,THEN,E,IF IF
$S,ELSE,S,THEN,E NUM M[E,NUM]: E®num = num
$S,ELSE,S,THEN,NUM,EQ,NUM NUM
$S,ELSE,S,THEN,NUM,EQ EQ
$S,ELSE,S,THEN,NUM NUM
$S,ELSE,S,THEN THEN
$S,ELSE,S PRINT M[S,PRINT]: S®print E
$S,ELSE,E,PRINT PRINT
$S,ELSE,E NUM M[E,NUM]: E®num = num
$S,ELSE,NUM,EQ,NUM NUM
$S,ELSE,NUM,EQ EQ
$S,ELSE,NUM NUM
$S,ELSE ELSE
$S PRINT M[S,PRINT]: S®print E
$E,PRINT PRINT
$E NUM M[E,NUM]: E®num = num
$NUM,EQ,NUM NUM
$NUM,EQ EQ
$NUM NUM
$ $ report success!

UC Santa Barbara

LL(1) Parse Table Construction

• For all productions A ® a, perform the following steps:

– For each terminal symbol a in FIRST(a), add A® a to M[A, a]

– If e is in FIRST(a), then add A® a to M[A, b] for each terminal

symbol b in FOLLOW(A).

– Add A® a to M[A, $] if $ is in FOLLOW(A)

• Set all the undefined entries in M to ERROR

UC Santa Barbara

1 S ® Expr
2 Expr ® Term Expr¢
3 Expr¢ ® + Term Expr¢
4 | - Term Expr¢
5 | e
6 Term ® Factor Term¢
7 Term¢ ® * Factor Term¢
8 | / Factor Term¢
9 | e
10 Factor ® num
11 | id

Grammar:

LL(1) Parse Table Construction

Symbol FIRST

S {num, id}
Expr {num, id}
Expr¢ {e , +, - }
Term {num, id}
Term¢ {e , *, / }
Factor {num, id}
num {num}
id {id}
+ {+}
- {-}
* {*}
/ {/}

Symbol FOLLOW
S { $ }
Expr { $ }
Expr¢ { $ }
Term { $, +, - }
Term¢ { $, +, - }
Factor { $, +, -, *, / }

UC Santa Barbara

id num + - * / $

S S®E S®E

E E®T E¢ E®T E¢

E’ E¢® + T E¢ E¢® - T E¢ E¢® e

T T®F T¢ T®F T¢

T’ T’® e T’® e T¢ ® * F T¢ T¢ ® / F T¢ T’® e

F F ® id F ® num

LL(1) Parse table:

LL(1) Parse Table Construction

UC Santa Barbara

LL(1) Grammar

Left-to-right scan of the input, Leftmost derivation, 1-token look-ahead

Two alternative definitions of LL(1) grammars:

1. A grammar G is LL(1) if there are no multiple entries in its LL(1)
parse table

2. A grammar G is LL(1), if for each set of its productions
A ® a1 | a2 | ... | an

FIRST(a1), FIRST(a2), ..., FIRST(an) are all pair-wise disjoint

If ai Þ* e , then FIRST (aj) Ç FOLLOW (A) = Æ for all 1 £ i £ n, i ¹ j

UC Santa Barbara

The Verdict on Top-Down Parsing

• Top down parsers are great
– They are (relatively) simple to construct by hand
– They have many real-world applications
– They provide the most intuitive way to reason about parsing
– Predictive parsing is fast

• Top down has some problems
– It can get messy for complex grammars (like full Java)
– It does not handle left-recursion, which is how we would like to

specify left-associative operators
– It is quite restrictive on the the types of grammars we can parse

• What we need is a fast and automated approach that can handle a
more general set of grammars
– This requires a different way of thinking about parsing ...

UC Santa Barbara

Where are we in the process?

compiler

scan parse

top down parsing
with backtracking

predictive parsing

recursive
descent

top down bottom up

eliminating left
recursion

predictable grammar algorithms
table-driven
parsing

left factoring

