
UC Santa Barbara

Computer Science 160
Translation of Programming Languages

Instructor: Christopher Kruegel

UC Santa Barbara

Introduction to
Bottom-Up Parsing

UC Santa Barbara

Where are we in the process?

compiler

scan parse

top down parsing
with backtracking

predictive parsing

top down bottom up

UC Santa Barbara

Parsing Techniques

Top-down parsers (LL(1), recursive descent parsers)

• Start at the root of the parse tree from the start symbol and grow toward
leaves (similar to a derivation)

• Pick a production and try to match the input
• Bad “pick”Þ may need to backtrack
• Some grammars are backtrack-free (predictive parsing)

Bottom-up parsers (LR(1), shift-reduce parsers)

• Start at the leaves and grow toward root
• We can think of the process as reducing the input string to the start symbol
• At each reduction step, a particular substring matching the right-side of a

production is replaced by the symbol on the left-side of the production
• Bottom-up parsers handle a large class of grammars

UC Santa Barbara

Bottom-Up Parsers

• Bottom up parsers handle a larger class of useful grammars
Why is that?

• With both techniques, we are trying to build a tree that connects the input
string to our start symbol (S) with a parse tree

• Let’s look at what what each technique looks like halfway through
parsing an input string

UC Santa Barbara

S

look-ahead input
string

?

start symbol

left-to-right
scan

S

A B

?
look-ahead

fringe of the
parse tree

left-most
derivation

Top-down Parsing

D C

When we start with a predictive top down
parser, the look-ahead symbol we read
from our input string MUST fully specify the
parse tree from S to the input symbol. In
the example, we have to know that S®AB
before we even see any of B

Top-Down Parsing

UC Santa Barbara

C

A ?

look-ahead

upper fringe of
the parse tree

Bottom-up Parsing

D

S

right-most
derivation
in reverse

In a bottom up parser, we can delay this
decision because we only need to build
the tree up above the part of the input
string we have examined so far.

In the graphical example on the left, you
can see that even though we are at the
same point in the input string, the
production S®AB has not been specified
yet. This delayed decision allows us to
parse more grammars than predictive
top-down parsing (LL).

As a nice side effect, bottom-up parsing allows us to handle left-recursive
grammars without modification

Bottom-Up Parsing

UC Santa Barbara

LR(k) versus LL(k)

A k-look-ahead top-down predictive parser:
LL(k) Þ Parser must select the reduction (production) based on
1 The complete left context
2 The next k terminals

A k-look-ahead bottom-up parser:
LR(k) Þ Each reduction (production) in the parse is detectable with
1 the complete left context,
2 the reducible phrase, itself, and
3 the k terminal symbols to its right

Thus, LR(k) examines more context

UC Santa Barbara

From the Bottom Up

• How does a bottom-up parser work
– The main idea of bottom-up parsing is to find the rightmost-derivation

of a sentence, by running the productions backwards from sentence to
the start symbol

A rightmost derivation
S Þ g0 Þ g1 Þ g2 Þ … Þ gn-1 Þ gn Þ w

• In the above, w is derived from S via the sentential forms g0 … gn
What we are going to do is start with w, and figure out what gn leads to
w, and then we will replace w with gn. Then, we will figure out what gn-1

leads to gn and so forth until we reach S.

UC Santa Barbara

Bottom-up Parsing

The point of parsing is to construct a derivation

A derivation consists of a series of rewrite steps
S Þ g0 Þ g1 Þ g2 Þ … Þ gn-1 Þ gn Þ sentence

• Each gi is a sentential form
– If a contains only terminal symbols, a is a sentence in L(G)
– If a contains ≥ 1 non-terminals, a is just a sentential form

• To get gi from gi-1, expand non-terminal a Î gi-1 by using a production a® b
– Replace the occurrence of a Î gi-1 with b to get gi

– In a leftmost derivation, it would be the first a Î gi-1

A left-sentential form occurs in a leftmost derivation
A right-sentential form occurs in a rightmost derivation

UC Santa Barbara

Bottom-up Parsing

A bottom-up parser builds a derivation by working from the input sentence
back toward the start symbol S

S Þ g0 Þ g1 Þ g2 Þ … Þ gn-1 Þ gn Þ sentence

To derive gi-1 from gi , it matches some rhs (right-hand side) b against gi , then replace
b with its corresponding lhs (left-hand side) a. (assuming a ® b)

In terms of the parse tree, this is working from leaves to root

• Nodes with no parent in a partial tree form its upper fringe

• Since each replacement of b with a shrinks the upper fringe, we call it a reduction

The parse tree need not be built, it can be simulated

|parse tree nodes| = |words| + |reductions|

UC Santa Barbara

S

A B

?

look-ahead

fringe of the
parse tree

left-most
derivation

Top-down Parsing

D C

C

A ?

look-ahead

upper fringe of
parse tree

Bottom-up Parsing

D

S

right-most
derivation
in reverse

Parsing Techniques

UC Santa Barbara

Finding Reductions

Consider the simple grammar

And the input string: abbcde

The trick is scanning the input and finding the next reduction
The mechanism for doing this must be efficient

1 S ® a A B e
2 A ® A b c
3 | b
4 B ® d

Sentential Next Reduction
Form Production Position

abbcde 3 2
a A bcde 2 4
a A de 4 3
a A B e 1 4
S — —

UC Santa Barbara

Finding Reductions (Handles)

The parser must find a substring bµd of the tree’s fringe that matches
some production a ® bµd that occurs as one step in the rightmost derivation.
Informally, we call this substring bµd a handle

Formally, (IMPORTANT)
• A handle of a right-sentential form g is a pair < a ® bµd , k > where

a ® bµd is a production and k is the position in g of bµd’s rightmost symbol.
• If < a ® bµd , k > is a handle, then replacing bµd at k with a produces

the right sentential form preceding g in the rightmost derivation.

Because g is a right-sentential form, the substring to the right of a handle
contains only terminal symbols

Þ The parser doesn’t need to scan past the handle (needs only a look-ahead)

UC Santa Barbara

Finding Reductions (Handles)

Insight
If G is unambiguous, then every right-sentential form has a
unique handle.

If we can find those handles, we can build a derivation !

Sketch of Proof:
1 G is unambiguous Þ rightmost derivation is unique
2 Þ a unique production a ® bµd applied to take gi-1 to gi
3 Þ a unique position k at which a®bµd is applied
4 Þ a unique handle < a®bgd , k >

This all follows from the definitions

UC Santa Barbara

Expression Example

The expression grammar

Handles for rightmost derivation of input:

x – 2 * y

Sentential Form Handle
Prod’n , Pos’n

S —
Expr 1,1
Expr – Term 3,3
Expr – Term * Factor 5,5
Expr – Term * <id,y> 9,5
Expr – Factor * <id,y> 7,3
Expr – <num,2> * <id,y> 8,3
Term – <num,2> * <id,y> 4,1
Factor – <num,2> * <id,y> 7,1
<id,x> – <num,2> * <id,y> 9,1

1 S ® Expr
2 Expr ® Expr + Term
3 | Expr – Term
4 | Term
5 Term ® Term * Factor
6 | Term / Factor
7 | Factor
8 Factor ® num
9 | id

If we start with our input string, we can work backwards to S

