UC Santa Barbara

Computer Science 160
Translation of Programming Languages

Instructor: Christopher Kruegel

UC Santa Barbara

Introduction to
Bottom-Up Parsing

compiler
— T~ T

Scan

parse

~ .

UC Santa Barbara

top down bottom up

N

AN

A

Pl

top down parsing

predictive parsing

with backtracking

UC Santa Barbara

Top-down parsers (LL(1), recursive descent parsers)

Start at the root of the parse tree from the start symbol and grow toward
leaves (similar to a derivation)

Pick a production and try to match the input

Bad “pick” = may need to backtrack

Some grammars are backtrack-free (predictive parsing)

Bottom-up parsers (LR(1), shift-reduce parsers)

Start at the leaves and grow toward root

We can think of the process as reducing the input string to the start symbol
At each reduction step, a particular substring matching the right-side of a
production is replaced by the symbol on the left-side of the production
Bottom-up parsers handle a large class of grammars

UC Santa Barbara

Bottom up parsers handle a larger class of useful grammars
Why is that?

With both techniques, we are trying to build a tree that connects the input
string to our start symbol (S) with a parse tree

Let’ s look at what what each technique looks like halfway through
parsing an input string

start symbol

S

left-to-right

scan ()
>

4

S

look-ahead |NPut
string

When we start with a predictive top down
parser, the look-ahead symbol we read
from our input string MUST fully specify the
parse tree from S to the input symbol. In

the example, we have to know that S—>AB
before we even see any of B

UC Santa Barbara

Top-down Parsing
S

N

y
fringe of the
parsge tree // 5\\/;
\ T— | : |
/'

left-most
look-ahead derivation

UC Santa Barbara

In a bottom up parser, we can delay this
. decision because we only need to build
Bottom-up Parsing the tree up above the part of the input
string we have examined so far.
S
upper fringe of S In the graphical example on the left, you
the parse tree ? can see that even though we are at the
lé \ same point in the input string, the
/ \ Vs production S—AB has not been specified
yet. This delayed decision allows us to
| e parse more grammars than predictive
right-most \ top-down parsing (LL).
derivation look-ahead
in reverse

As a nice side effect, bottom-up parsing allows us to handle left-recursive
grammars without modification

UC Santa Barbara

A k-look-ahead top-down predictive parser:
LL(k) = Parser must select the reduction (production) based on

1 The complete left context
2 The next k terminals

A k-look-ahead bottom-up parser:

LR(k) = Each reduction (production) in the parse is detectable with
1 the complete left context,
2 the reducible phrase, itself, and
3 the k terminal symbols to its right

Thus, LR(k) examines more context

UC Santa Barbara

« How does a bottom-up parser work
— The main idea of bottom-up parsing is to find the rightmost-derivation
of a sentence, by running the productions backwards from sentence to
the start symbol

A rightmost derivation
S=7V) 212DV > ... DV DYV, W

* Inthe above, w is derived from S via the sentential forms v, ... v,
What we are going to do is start with w, and figure out what vy, leads to
w, and then we will replace w with y,. Then, we will figure out what v,,_,
leads to y,, and so forth until we reach S.

UC Santa Barbara

The point of parsing is to construct a derivation

A derivation consists of a series of rewrite steps
S=vy =27 =2V, = ... = V51 = Y, = Sentence

« Each y; is a sentential form
— If a contains only terminal symbols, o is a sentence in L(G)
— If a contains = 1 non-terminals, o is just a sentential form

« To gety, from y,,, expand non-terminal a. € y;; by using a production o— 3
— Replace the occurrence of a € y, , with 3 to get y;
— In a leftmost derivation, it would be the first a € vy, ,

A left-sentential form occurs in a leftmost derivation
A right-sentential form occurs in a rightmost derivation

UC Santa Barbara

A bottom-up parser builds a derivation by working from the input sentence
back toward the start symbol S

S=vyv) =271 =72 = ... =V1=7v,= Sentence

To derive y.; from vy;, it matches some rhs (right-hand side) 3 against y;, then replace
B with its corresponding /hs (left-hand side) a.. (assuming a. —)

In terms of the parse tree, this is working from leaves to root

 Nodes with no parent in a partial tree form its upper fringe

« Since each replacement of B with a shrinks the upper fringe, we call it a reduction

The parse tree need not be built, it can be simulated

|parse tree nodes| = |words| + |reductions]|

fringe of the
parse tree

L

Top-down Parsing

S
|
left-most
Iook-ahead derivation

UC Santa Barbara

Bottom-up Parsing

upper fringe of
parse tree

L —>

//D

/N

S

?

™.
~—1l —+
right-most \
derivation look-ahead

in reverse

UC Santa Barbara

Consider the simple grammar

Sentential Next Reduction

S—> aABe Form Production Position

b abbcde
d a A bcde
a Ade
aABe
S

|A-I>I\JOO
|-I>OO-I>I\)

And the input string: abbcde

The trick is scanning the input and finding the next reduction
The mechanism for doing this must be efficient

UC Santa Barbara

The parser must find a substring Bud of the tree’ s fringe that matches
some production oo — Bud that occurs as one step in the rightmost derivation.

Informally, we call this substring Bud a handle

Formally, IMPORTANT)
* A handle of a right-sentential form y is a pair < o — Bud , k > where

a — Bud is a production and k is the position in y of Bud’ s rightmost symbol.
« If<a— Bud, k>is a handle, then replacing Bud at k with a produces

the right sentential form preceding y in the rightmost derivation.

Because v is a right-sentential form, the substring to the right of a handle
contains only terminal symbols

— The parser doesn’ t need to scan past the handle (needs only a look-ahead)

UC Santa Barbara

Insight

If G is unambiguous, then every right-sentential form has a
unique handle.

If we can find those handles, we can build a derivation !

Sketch of Proof:

1 G is unambiguous = rightmost derivation is unique

2 = aunique production o — Bud applied to take y.; to v;
3 = a unique position k at which a—pud is applied

4 = aunique handle < a—Byd , k>

This all follows from the definitions

UC Santa Barbara

CONOOODLWN-=-

S -
Expr —
|
|
Term —
|
|

Factor—

Expr

Expr + Term
Expr— Term
Term

Term* Factor
Term| Factor
Factor

num

id

The expression grammar

Sentential Form Handl/e
Prod’n, Pos’n

S —
Expr 1,1
Expr— Term 3,3
Expr—- Term* Factor 5,5
Expr—- Term* <id,y> 9,6
Expr— Factor* <id,y> 7,3
Expr- <num,2> * <id,y> 8,3
Term - <num,2> * <id,y> 4,1
Factor—- <num,2> * <id,y> 7,1
<id,x> - <num, 2> * <id,y> 9,1

If we start with our input string, we can work backwards to S

X—2*y

Handl/es for rightmost derivation of input:

