
UC Santa Barbara

Computer Science 160
Translation of Programming Languages

Instructor: Christopher Kruegel

UC Santa Barbara

Shift-Reduce Parsing

UC Santa Barbara

Parsing Techniques

Top-down parsers (LL(1), recursive descent parsers)
•  Start at the root of the parse tree from the start symbol and grow toward

 leaves (similar to a derivation)
•  Pick a production and try to match the input
•  Bad “pick” ⇒ may need to backtrack
•  Some grammars are backtrack-free (predictive parsing)

Bottom-up parsers (LR(1), shift-reduce parsers)
•  Start at the leaves and grow toward root
•  We can think of the process as reducing the input string to the start symbol
•  At each reduction step, a particular substring matching the right-side of a

 production is replaced by the symbol on the left-side of the production
•  Bottom-up parsers handle a large class of grammars

UC Santa Barbara

Bottom-Up Parsers

•  Bottom up parsers handle a larger class of useful grammars
 Why is that?

•  With both techniques, we are trying to build a tree that connects the input

 string to our start symbol (S) with a parse tree

•  Let’s look at what what each technique looks like halfway through

 parsing an input string

UC Santa Barbara

S

look-ahead input
string

?

start symbol

left-to-right
scan

S

A B

?
look-ahead

fringe of the
parse tree

left-most
derivation

Top-down Parsing

D C

When we start with a predictive top down
parser, the look-ahead symbol we read
from our input string MUST fully specify
the parse tree from S to the input symbol.
In the example, we have to know that
S→AB before we even see any of B

Top-Down Parsing

UC Santa Barbara

C

A ?

look-ahead

upper fringe of
the parse tree

Bottom-up Parsing

D

S

right-most
derivation
in reverse

In a bottom up parser, we can delay this
decision because we only need to build
the tree up above the part of the input
string we have examined so far.

In the graphical example on the left, you
can see that even though we are at the
same point in the input string, the
production S→AB has not been specified
yet. This delayed decision allows us to
parse more grammars than predictive
top-down parsing (LL).

As a nice side effect, bottom-up parsing allows us to handle left-recursive
grammars without modification

Bottom-Up Parsing

UC Santa Barbara

From the Bottom Up

•  How does a bottom-up parser work
–  The main idea of bottom-up parsing is to find the rightmost-derivation

 of a sentence, by running the productions backwards from sentence to
 the start symbol

A rightmost derivation
S ⇒ γ0 ⇒ γ1 ⇒ γ2 ⇒ … ⇒ γn-1 ⇒ γn ⇒ w

•  In the above, w is derived from S via the sentential forms γ0 … γn
 What we are going to do is start with w, and figure out what γn leads to
 w, and then we will replace w with γn. Then, we will figure out what γn-1

 leads to γn and so forth until we reach S.

UC Santa Barbara

Bottom-up Parsing

The point of parsing is to construct a derivation

A derivation consists of a series of rewrite steps
S ⇒ γ0 ⇒ γ1 ⇒ γ2 ⇒ … ⇒ γn-1 ⇒ γn ⇒ sentence

•  Each γi is a sentential form
–  If α contains only terminal symbols, α is a sentence in L(G)
–  If α contains ≥ 1 non-terminals, α is just a sentential form

•  To get γi from γi-1, expand non-terminal α ∈ γi-1 by using a production α→ β
–  Replace the occurrence of α ∈ γi-1 with β to get γi
–  In a leftmost derivation, it would be the first α ∈ γi-1

A left-sentential form occurs in a leftmost derivation
A right-sentential form occurs in a rightmost derivation

UC Santa Barbara

S

A B

?

look-ahead

fringe of the
parse tree

left-most
derivation

Top-down Parsing

D C

C

A ?

look-ahead

upper fringe of
parse tree

Bottom-up Parsing

D

S

right-most
derivation
in reverse

Parsing Techniques

UC Santa Barbara

Finding Reductions (Handles)

The parser must find a substring βµδ of the tree’s fringe that matches
some production α → βµδ that occurs as one step in the rightmost derivation.
Informally, we call this substring βµδ a handle

Formally, (IMPORTANT)
•  A handle of a right-sentential form γ is a pair < α → βµδ , k > where

 α → βµδ is a production and k is the position in γ of βµδ’s rightmost symbol.
•  If < α → βµδ , k > is a handle, then replacing βµδ at k with α produces

 the right sentential form preceding γ in the rightmost derivation.

Because γ is a right-sentential form, the substring to the right of a handle
contains only terminal symbols

⇒ The parser doesn’t need to scan past the handle (needs only a look-ahead)

UC Santa Barbara

Finding Reductions (Handles)

Insight
If G is unambiguous, then every right-sentential form has a
unique handle.

If we can find those handles, we can build a derivation !

Sketch of Proof:
1  G is unambiguous ⇒ rightmost derivation is unique
2  ⇒ a unique production α → βµδ applied to take γi-1 to γi

3  ⇒ a unique position k at which α→βµδ is applied
4  ⇒ a unique handle < α→βγδ , k >

This all follows from the definitions

UC Santa Barbara

Expression Example

The expression grammar

Handles for rightmost derivation of input:

x – 2 * y

Sentential Form Handle
 Prod’n , Pos’n

S —
Expr 1,1
Expr – Term 3,3
Expr – Term * Factor 5,5
Expr – Term * <id,y> 9,5
Expr – Factor * <id,y> 7,3
Expr – <num,2> * <id,y> 8,3
Term – <num,2> * <id,y> 4,1
Factor – <num,2> * <id,y> 7,1
<id,x> – <num,2> * <id,y> 9,1

1 S → Expr
2 Expr → Expr + Term
3 | Expr – Term
4 | Term
5 Term → Term * Factor
6 | Term / Factor
7 | Factor
8 Factor → num
9 | id

If we start with our input string, we can work backwards to S

UC Santa Barbara

Handle-pruning, Bottom-up Parsers

•  The process of discovering a handle & reducing it to the
 appropriate left-hand side is called handle pruning

•  Handle pruning forms the basis for a bottom-up parsing method

•  To construct a rightmost derivation
S ⇒ γ0 ⇒ γ1 ⇒ γ2 ⇒ … ⇒ γn-1 ⇒ γn ⇒ w

•  Apply the following simple algorithm

for i ← n to 1 by -1
 Find the handle < αi →βi , ki > in γi
 Replace βi with αi to generate γi-1

UC Santa Barbara

Shift-Reduce Parsing

•  Let’s say that we have a way of finding the handles (which we will
 discuss later), how can I build a parser that can will actually do

 bottom up parsing?

•  The easiest way to implement it is with “shift-reduce” parsing

•  Shift-reduce parsing makes use of two data structures,
 a stack and an input buffer

•  At each point in time, you have two main choices
–  Shift (which eats input terminals and moves them on the stack)
–  Reduce (which applies some production in reverse, replacing some

 right hand side (β) with the corresponding left hand side (α)

•  The other two options you have are:
–  Accept, in which case you are all done
–  Error when something has gone wrong

UC Santa Barbara

Shift reduce parsers are easily built and easily understood

A shift-reduce parser has just four actions
•  Shift — next word is shifted onto the stack
•  Reduce — right end of handle is at top of stack

 Locate left end of handle within the stack
 Pop handle off stack & push appropriate lhs

•  Accept — stop parsing & report success
•  Error — call an error reporting/recovery routine

Accept & Error are simple
Shift is just a push and a call to the scanner
Reduce takes |rhs| pops & 1 push

If handle-finding requires state, put it in the stack

Shift-Reduce Parsing

UC Santa Barbara

Handle-pruning, Bottom-up Parsers

One implementation of a simple shift-reduce parser

push $
lookahead = get_ next_token()
repeat until (top of stack == start symbol and lookahead == $)
 if the top of the stack is a handle α→β
 then /* reduce β to α */
 pop |β| symbols off the stack
 push α onto the stack
 else if (token ≠ $)
 then /* shift */
 push lookahead
 lookahead = get_next_token()

How do errors show up?

•  failure to find a handle

•  hitting $ and needing to
 shift (final else clause)

Either generates an error

“pop |β| symbols off the stack” means that if we have some production A→BCx then
we need to pop B, C, and x off the stack (|b| = 3 in this case) before we push A

UC Santa Barbara

An Example

•  Let us run “x-2*y” through our shift-reduce parser

•  We will use the expression grammar from before (which has all of
the handles we already listed by hand)

•  At each step, we will either shift a new terminal onto the stack (from
the input buffer) or we will reduce some right-hand side β to a left-
hand side α

•  When we are done, we should have nothing left in our input and $S
should be left of the stack (which means we successfully reduced
our input to our start symbol).

UC Santa Barbara

Back to x - 2 * y Example

Stack Input Handle Action
$ id – num * id none shift
$ id – num * id 9,1 red. 9
$ Factor – num * id 7,1 red. 7
$ Term – num * id 4,1 red. 4
$ Expr – num * id none shift
$ Expr – num * id none shift
$ Expr – num * id 8,3 red. 8
$ Expr – Factor * id 7,3 red. 7
$ Expr – Term * id none shift
$ Expr – Term * id none shift
$ Expr – Term * id 9,5 red. 9
$ Expr – Term * Factor 5,5 red. 5
$ Expr – Term 3,3 red. 3
$ Expr 1,1 red. 1
$ S none accept

1. Shift until top-of-
stack is the right
end of a handle

2. Reduce: Pop the
right-hand side of
the production that
corresponds to the
handle from the
stack, and push
the left hand side
(to figure out if it is
a handle, check the
handles we
highlighted in the
derivation from
before)

UC Santa Barbara

Example: Corresponding Parse Tree

S

<id,x>

Term

Fact.

Expr –

Expr

<id,y>

<num,2>

Fact.

Fact. Term

Term

*

Stack Input Handle Action
$ id – num * id none shift
$ id – num * id 9,1 red. 9
$ Factor – num * id 7,1 red. 7
$ Term – num * id 4,1 red. 4
$ Expr – num * id none shift
$ Expr – num * id none shift
$ Expr – num * id 8,3 red. 8
$ Expr – Factor * id 7,3 red. 7
$ Expr – Term * id none shift
$ Expr – Term * id none shift
$ Expr – Term * id 9,5 red. 9
$ Expr – Term * Factor 5,5 red. 5
$ Expr – Term 3,3 red. 3
$ Expr 1,1 red. 1
$ S none accept

UC Santa Barbara

LR Parsers

•  Shift-reduce parsers are very fast and simple to implement
–  They keep moving more input onto the stack
–  All the while they look for handles to reduce
–  The tricky part is recognizing the handles

•  Wait a minute… recognizing… we studied something that
recognizes strings: State machines!

•  The big picture is that LR parsers use a state machine (to recognize
handles) in coordination with a stack (to handle the recursive nature of
grammars) to parse an input.

UC Santa Barbara

LR Parsers

•  Then the hard part is figuring out the language of handles that we need
to recognize
–  There are several different ways of doing this: SLR, LALR, LR

each of varying power and complexity

•  At the end of the day, they all generate a state machine
 in the form of a table

UC Santa Barbara

LR Parsers

A table-driven LR parser looks like

Scanner
Table-driven

Parser

ACTION &
GOTO
Tables

Parser
Generator

source
code

grammar

IR

Stack

UC Santa Barbara

LR Parser Tables

•  SLR, LALR, and LR are all different ways of automatically
generating a state machine to capture handles encoded into the
form of a table. However, unlike a normal state machine, this one is
searching the top of a stack

•  There are in fact two different tables
–  The ACTION table tells you if you should shift, reduce, accept, or

throw and error.
•  It additionally tells you how to update the state on a shift

–  The GOTO table tells you how to update the state on a reduce

•  The other major difference is that now we not only push symbols
onto the stack, we also push an associated state onto the stack
with each symbol (always in pairs: 1 symbol and 1 state (just a
number))

UC Santa Barbara

push($); // $ is the end-of-file symbol
push(s0); // s0 is the start state of the DFA that recognizes handles
lookahead = get_next_token();
repeat forever
 s = top_of_stack();
 if (ACTION[s,lookahead] == reduce α→β) then
 pop 2*|β| symbols;
 s = top_of_stack();
 push(α);
 push(GOTO[s,α]);
 else if (ACTION[s,lookahead] == shift si) then
 push(lookahead);
 push(si);
 lookahead = get_next_token();
 else if (ACTION[s,lookahead] == accept and lookahead == $)
 then return success;
 else error();

The skeleton parser

• uses ACTION & GOTO

•  does |words| shifts

•  does |derivation|
 reductions
•  does 1 accept

LR Shift-Reduce Parsers

UC Santa Barbara

•  First part: Initialization
–  Push $ and the specified init state (usually called s0)

•  Clause: Shift
–  We consult the ACTION table, and see if it tells us to do a shift
–  If it does, then we move the look-ahead onto the stack and update

 the state with the value read from the ACTION table

•  Last Clauses:
–  The final part of the algorithm checks for accept and error

LR Shift-Reduce Algorithm

UC Santa Barbara

•  Clause: Reduce
–  We consult the ACTION table, and see if it tells us to do a reduce

–  We index the ACTION table with the state on top of the stack and
 our look-ahead symbol

–  If we are to do a reduction we pop all the symbols that match β
 along with all the paired state variables (hence the 2*). For
 example if we are doing the reduction X→YZ then |β| = 2 and the
 top of the stack would look like “Y s5 Z s6” so we pop 2*2=4 things
 off the stack

–  We then push α onto the stack (which would be X in X→YZ) and
 the some new state that is found in the GOTO table

LR Shift-Reduce Algorithm

UC Santa Barbara

To make a parser for L(G), we need a set of tables

The grammar

The tables

LR Parsers (Parse Tables) Simple Example

1 S → Z
2 Z → Z x
3 | x

ACTION
State $ x

0 — shift 2
1 accept shift 3
2 reduce 3 reduce 3
3 reduce 2 reduce 2

GOTO
State Z
0 1
1
2
3

S0

S3

S2

S1

x

x
Z

Control DFA for the
simple example

Reduce
action

Reduce
action

UC Santa Barbara

Simple Example Parses

The string “x”

The string “xx”

Stack Input Action
$ s0 x $ shift 2
$ s0 x s2 $ reduce 3
$ s0 Z s1 $ accept

Stack Input Action
$ s0 x x $ shift 2
$ s0 x s2 x $ reduce 3
$ s0 Z s1 x $ shift 3
$ s0 Z s1 x s3 $ reduce 2
$ s0 Z s1 $ accept

UC Santa Barbara

A More Complex Example

0 S’ → S $
1 S → V = E
2 S → E
3 E → V
4 V → x
5 V → * E

S8 S6 2 5 3
A

S4 R3
S8 S6 9 7

R2
S8 S6 10 7

R3 R3
R4 R4

R1
R5 R5

 X * = $ S E V

1
2
3
4
5
6
7
8
9

10

S8 means shift and add
state 8 to the top of stack

R4 means reduce by
production number 4

ACTION GOTO

A means accept, and an empty
square should indicate an error

UC Santa Barbara

A more complex example

look-ahead Stack:

 $ s1
x $ s1 x s8
= $ s1 V s3
= $ s1 V s3 = s4
* $ s1 V s3 = s4 * s6
x $ s1 V s3 = s4 * s6 x s8
$ $ s1 V s3 = s4 * s6 V s7
$ $ s1 V s3 = s4 * s6 E s10
$ $ s1 V s3 = s4 V s7
$ $ s1 V s3 = s4 E s9
$ $ s1 S s2

x = * x $

Accept!

s3 comes from GOTO[s1,V]
s8 comes from ACTION[s1,x]

Make, sure that you understand
when it is shifting, when in is reducing
and where the states come from.

UC Santa Barbara

LR Parsers

How does this LR stuff work?
•  Unambiguous grammar ⇒ unique rightmost derivation

•  Keep upper fringe on a stack
–  All active handles include TOS
–  Shift inputs until TOS is right end of a handle

•  Language of handles is regular
–  Build a handle-recognizing DFA
–  ACTION & GOTO tables encode the DFA

•  To match sub-terms, recurse and leave
 DFA’s state on stack

•  Final states of the DFA correspond to reduce actions
–  New state is GOTO[lhs , state at TOS]
–  For Z, this takes the DFA to S1

S0

S3

S2

S1

z

z
Z

Control DFA for the
simple example

Reduce
action

Reduce
action

UC Santa Barbara

How do we recognize Handles?

•  The complete left context in conjunction with the look-ahead tell us if
we have recognized a handle or not

•  This grammar requires us to look at just the next one terminal to
 make our decision if the TOS is a handle or not.

•  This is an LR(1) grammar

Stack Input Handle Action
$ Expr – Factor * id 7,3 red. 7
$ Expr – Term * id none shift
$ Expr – Term * id none shift
$ Expr – Term * id 9,5 red. 9
$ Expr – Term * Factor 5,5 red. 5
$ Expr – Term 3,3 red. 3
$ Expr 1,1 red. 1
$ S none accept

UC Santa Barbara

•  We need to enumerate the list of handles based on the look-ahead
 (this list is finite), and then we need to build a recognizer that can
 check for this list on the TOS

•  The problem is that we need to recognize something on the top of a
 stack, NOT on a “stream” of tokens as before

–  We don’t want to have to re-run the recognizer on the entire left
context each and every time that we do a reduction

–  We need to ‘save our work’ on the stack

How do we recognize Handles?

UC Santa Barbara

Building a Handle Recognizing Machine:
[for now, without look-ahead, which is LR(0)]

UC Santa Barbara

Let’s build an NFA (nondeterministic finite automaton) to
recognize the right hand sides of our rule assuming that
our machine will read both terminal and non-terminals

For example: Let’s start with production 1 from our grammar

0 S’ → S $
1 S → V = E
2 S → E
3 E → V
4 V → x
5 V → * E

example

S → • V = E S → V • = E S →V = • E S → V = E • V = E

Each one of the squares above is an “item” which is a production with a special
placeholder (the “•”) that says how far along we are in matching this
production. If the dot is at the start of the right-hand-side (RHS) then it
means we should have the entire RHS on the top of the stack.

Understanding a Handle Recognizing Machine

UC Santa Barbara

Now let’s expand our example to look for each right-hand side we might see. If we hit
the

state [S → S $ •] then I know I am done.

The big problem we are left with is that, we will never see a non-terminal (such as S) on
the input stream. The solution to this is to make “subroutine” calls to the other state
machines that match the other non-terminals you need

0 S’ → S $
1 S → V = E
2 S → E
3 E → V
4 V → x
5 V → * E

example

S → • V = E S → V • = E S →V = • E S → V = E • V = E

S’ → • S $ S’ → S • $ S’ → S $ • S $

S → • E S → E • E

E → • V E → V • V

V → • x V → x • x

V → • * E V → * • E * V →* E • E

Understanding a Handle Recognizing Machine

UC Santa Barbara

For example, to match [S → • V = E] we need to first match V. Let us connect the
NFA states together with ε-transitions whenever one state needs to make a
“subroutine” call to another state. If you need to review what an ε-transition is
and how an NFA works, now is a good time.

0 S’ → S $
1 S → V = E
2 S → E
3 E → V
4 V → x
5 V → * E

example

S → • V = E S → V • = E S →V = • E S → V = E • V = E

S’ → • S $ S’ → S • $ S’ → S $ • S $

S → • E S → E • E

E → • V E → V • V

V → • x V → x • x

V → • * E V → * • E * V →* E • E

ε ε

ε

ε

ε

ε

ε

ε

ε

Understanding a Handle Recognizing Machine

UC Santa Barbara

 Now we are going to build a real state machine from our NFA.
Let’s compute it as needed as we process the sentence “x=*x$”
as we had before. Our first state starts with [S’ → • S $] where we
have not started parsing our start symbol yet.

0 S’ → S $
1 S → V = E
2 S → E
3 E → V
4 V → x
5 V → * E

example

S → • V = E S → V • = E S →V = • E S → V = E • V = E

S’ → • S $ S’ → S • $ S’ → S $ • S $

S → • E S → E • E

E → • V E → V • V

V → • x V → x • x

V → • * E V → * • E * V →* E • E

ε ε

ε

ε

ε

ε

ε

ε

ε

S’ → • S $ After ε-closure
S’ → • S $
S → • E
S → • V = E
E → • V
V → • x
V → • * E

Understanding a Handle Recognizing Machine

UC Santa Barbara

What state will our machine be in after we read the “x” in “x=*x$”? If we look
to the NFA, it should now be in a state [V → x •] which means that we
have seen the complete right hand side of our first non-terminal!

This means we have hit a terminal, and we need to “pop” x off the stack and
end up back in State 0.

0 S’ → S $
1 S → V = E
2 S → E
3 E → V
4 V → x
5 V → * E

example

S → • V = E S → V • = E S →V = • E S → V = E • V = E

S’ → • S $ S’ → S • $ S’ → S $ • S $

S → • E S → E • E

E → • V E → V • V

V → • x V → x • x

V → • * E V → * • E * V →* E • E

ε ε

ε

ε

ε

ε

ε

S’ → • S $
S → • V = E
S → • E
E → • V
V → • x
V → • * E

V → x •
x

ε

ε

Understanding a Handle Recognizing Machine

UC Santa Barbara

After we pop “x” off the stack we end up in state 0, but now we recognize a “V” which comes from the
left hand side of the production “V → x”.
To handle this we need to add a new edge from State 0, that is traversed when we found our “V”.
Which of the items from the NFA below for State 0 were looking for a “V”? There are exactly 2: “S →

•
V = E” and “E → • V”. After following the V edge of these two states we end up in a new state. This
state is shown below. Now we have two choices, should we reduce (E →V) or should we shift the
“=“? For now let us assume that we want to do the shift, which would mean we need to consider an
equal sign.

0 S’ → S $
1 S → V = E
2 S → E
3 E → V
4 V → x
5 V → * E

example

S’ → • S $
S → • V = E
S → • E
E → • V
V → • x
V → • * E

V → x •

State 1

x

S → • V = E S → V • = E S →V = • E S → V = E • V = E

S’ → • S $ S’ → S • $ S’ → S $ • S $

S → • E S → E • E

E → • V E → V • V

V → • x V → x • x

V → • * E V → * • E * V →* E • E

ε ε

ε

ε

ε

ε

ε

S → V • = E
E → V •

State 2

V

ε

ε

Understanding a Handle Recognizing Machine

UC Santa Barbara

If we consider the last state (2) and then consider what happens if
we find a “=”, we will need a new state. Following the equal sign
gives us the item “S →V = • E”, and taking the ε-closure of this

will
give us our new state 3.

0 S’ → S $
1 S → V = E
2 S → E
3 E → V
4 V → x
5 V → * E

example

S’ → • S $
S → • V = E
S → • E
E → • V
V → • x
V → • * E

State 0 V → x •

State 1

x

S → • V = E S → V • = E S →V = • E S → V = E • V = E

S’ → • S $ S’ → S • $ S’ → S $ • S $

S → • E S → E • E

E → • V E → V • V

V → • x V → x • x

V → • * E V → * • E * V →* E • E

ε ε

ε

ε

ε

ε

ε

ε

ε

S → V • = E
E → V •

State 2

V

S →V = • E
E → • V
V → • x
V → • * E

=

State 3

Understanding a Handle Recognizing Machine

UC Santa Barbara

At each point in time, we are going to build out our state machine by considering what the possible out
edges are for each new state.

To figure out what each possible out edge is, we need to look at all the symbols that are to the right of
the dot. For example, from state 1 there is no symbol the right of the dot. For State 2, there is only
one thing to the right of the dot, the “=” sign. The list of out edges from State 3 are “E”, “V”, “x”, and
“*”. Let’s start with “x”. The “x” will lead to a state with the item “V → • x”. But we already have

such
an state, it is called state 1.

We can grow the new states for “E”, “V”, and “*” in a similar way.

0 S’ → S $
1 S → V = E
2 S → E
3 E → V
4 V → x
5 V → * E

example

S’ → • S $
S → • V = E
S → • E
E → • V
V → • x
V → • * E

State 0 V → x •

State 1

x

S → V • = E
E → V •

State 2

V

S →V = • E
E → • V
V → • x
V → • * E =

State 3 x

V → * • E
E → • V
V → • x
V → • * E

State 4

*

E → V •

V
State 5

S → V = E •

State 6

E

Understanding a Handle Recognizing Machine

UC Santa Barbara

In the same way we can build the states that stem from state 4. State 4
should have out edges for “E”, “V”, “x”, and “*” because all of those symbol
appear to the right of the “•”.

In this case, there are many “new” states that are the same as existing states,
so we just link them together as we did from State 3 to State 1 for “x”.

0 S’ → S $
1 S → V = E
2 S → E
3 E → V
4 V → x
5 V → * E

example

S’ → • S $
S → • V = E
S → • E
E → • V
V → • x
V → • * E

State 0 V → x •

State 1

x

S → V • = E
E → V •

State 2

V

S →V = • E
E → • V
V → • x
V → • * E =

State 3 x

V → * • E
E → • V
V → • x
V → • * E

State 4

*

E → V •

V
State 5

S → V = E •

State 6

E

V → * E •

State 7

E

*

x V

Understanding a Handle Recognizing Machine

UC Santa Barbara

Let’s go back and re-evaluate State 0. What are the out edges do we need to
consider for State 0? We should have out edges for “S”, “V”, “x”, and “*”.

The
edge that goes from State 0 to State 8 with an S get’s us close to done.

Finally, if we end up in state 9 then we are done! That means we have seen
successfully parsed S, and all that we are left with is the end of file!

0 S’ → S $
1 S → V = E
2 S → E
3 E → V
4 V → x
5 V → * E

example

S’ → • S $
S → • V = E
S → • E
E → • V
V → • x
V → • * E

State 0 V → x •

State 1

x

S → V • = E
E → V •

State 2

V

S →V = • E
E → • V
V → • x
V → • * E =

State 3 x

V → * • E
E → • V
V → • x
V → • * E

State 4

*

E → V •

V
State 5

S → V = E •

State 6

E

V → * E •

State 7

E

*

x V * S’ → S • $

S State 8

S’ → S $ •

$

S → E •

E State 9

Understanding a Handle Recognizing Machine

UC Santa Barbara

Table Example

S1 S4 8 9 2
R4 R4
S3/R3 R3

S1 S4 6 5
S1 S4 7 5

R3 R3
R1

R5 R5
A
R2

 x * = $ S E V

ACTION GOTO

0
1
2
3
4
5
6
7
8
9

0 S’ → S $
1 S → V = E
2 S → E
3 E → V
4 V → x
5 V → * E

example

UC Santa Barbara

Table Example

S1 S4 8 9 2
R4 R4
S3/R3 R3

S1 S4 6 5
S1 S4 7 5

R3 R3
R1

R5 R5
A
R2

 x * = $ S E V

ACTION GOTO

0
1
2
3
4
5
6
7
8
9

0 S’ → S $
1 S → V = E
2 S → E
3 E → V
4 V → x
5 V → * E

example

Shift/Reduce conflict
will choose to shift

UC Santa Barbara

Building LR Parsers

How do we generate the ACTION and GOTO tables?
•  Use the grammar to build a model of the handle recognizing DFA
•  Use the DFA model to build ACTION & GOTO tables
•  If construction succeeds, the grammar is LR

How do we build the handle recognizing DFA ?
•  Encode the set of productions that can be used as handles in the

 DFA state – Also use LR(k) items
•  Use two functions goto(s, α) and closure(s)

–  closure() finds the sets of “equivalent” parsing states
–  goto() figures out what state will result after we match something

•  Build up the states and transition functions of the DFA
•  Use this information to fill in the ACTION and GOTO tables

