
UC Santa Barbara 

Computer Science 160 
Translation of Programming Languages 

 
 

Instructor: Christopher Kruegel 



UC Santa Barbara 

 
 
 

Building a Handle Recognizing Machine: 
[now, with a look-ahead token, which is LR(1) ] 



UC Santa Barbara 

LR(k) items 

An LR(k) item is a pair [A , B], where 
A is a production α→βγδ with a • at some position in the rhs 
B is a look-ahead string of length ≤ k  (terminal symbols or $) 

 
Examples: [α→•βγδ , a], [α→β•γδ , a], [α→βγ•δ , a], & [α→βγδ• , a] 
 
The  •  in an item indicates the position of the top of the stack 
 
LR(0) items [ α→β • γδ ]  (no look-ahead symbol) 
LR(1) items [ α→β • γδ , a ]  (one token look-ahead) 
LR(2) items [ α→β • γδ , a b ]  (two token look-ahead) ... 



UC Santa Barbara 

LR(k) items 

The  •  in an item indicates the position of the top of the stack 

[α→•βγδ , a] means that the input seen so far is consistent with the use of 
α→βγδ immediately after the symbol on top of the stack 

 

[α→βγ•δ , a] means that the input seen so far is consistent with the use of 
α→βγδ at this point in the parse, and that the parser has already 
recognized βγ. 

 

[α→βγδ• , a] means that the parser has seen βγδ, and the lookahead a is 
consistent with reducing to α (for LR(k) parsers, a is a string of terminal 
symbols of length k) 

 
The table construction algorithm uses items to represent valid 
 configurations of an LR(1) parser 



UC Santa Barbara 

LR(1) Items 

The production α→•βγδ, with lookahead a, generates 4 items 

[α→•βγδ , a], [α→β•γδ , a], [α→βγ•δ , a], & [α→βγδ• , a]  

The set of LR(1) items for a grammar is finite 

What’s the point of all these look-ahead symbols? 
•  Carry them along to choose correct reduction 
•  Look-ahead symbols are bookkeeping, unless item has • at right end 

–  Has no direct use in [α→βγ•δ , a] 
–  In [α→βγδ• , a], a look-ahead of a implies a reduction by α→βγδ  
–  For { [α→γ• , a],[β→γ•δ , b] }  

lookahead = a    ⇒  reduce to α  
lookahead  ∈ FIRST(δ)  ⇒  shift 

⇒  Limited right context is enough to pick the actions 



UC Santa Barbara 

Back to Finding Handles 

Parser in a state where the stack (the fringe) was 
Expr – Term  
With look-ahead of  *  

How did it choose to expand Term rather than reduce to Expr? 

•  Look-ahead symbol is the key 

•  With look-ahead of + or –, parser should reduce to Expr 

•  With look-ahead of * or /, parser should shift 

•  Parser uses look-ahead to decide  

•  All this context from the grammar is encoded in the handle 

 recognizing mechanism 



UC Santa Barbara 

Back to x - 2 * y 
Stack Input Handle Action 
$ id – num * id $ none shift 
$ id – num * id $ 9,1 red. 9 
$ Factor – num * id $ 7,1 red. 7 
$ Term – num * id $ 4,1 red. 4 
$ Expr – num * id $ none shift 
$ Expr – num * id $ none shift 
$ Expr – num * id $ 8,3 red. 8 
$ Expr – Factor * id $ 7,3 red. 7 
$ Expr – Term * id $ none shift 
$ Expr – Term *   Id $ none shift 
$ Expr – Term * id $ 9,5 red. 9 
$ Expr – Term * Factor $ 5,5 red. 5 
$ Expr – Term $ 3,3 red. 3 
$ Expr  $ 1,1 red. 1 
$ S $ none accept 

 

 
1. Shift until TOS is the right end of  a handle 
2. Find the left end of  the handle & reduce  

shift here 

reduce here 



UC Santa Barbara 

High-level overview 
1  Build the handle recognizing DFA (aka Canonical Collection of sets of  

 LR(1) items),  C = { I0 , I1 , ... , In } 
a) Introduce a new start symbol S’ which has only one production 

 S’ → S 
b) Initial state, I0 should include 

•  [S’ →•S, $], along with any equivalent items 
•  Derive equivalent items as closure( I0 ) 

c)  Repeatedly compute, for each Ik , and each grammar symbol α, 
goto(Ik , α) 

•  If the set is not already in the collection, add it 
•  Record all the transitions created by goto( ) 

     This eventually reaches a fixed point 

2  Fill in the ACTION and GOTO tables using the DFA 

LR(1) Table Construction 



UC Santa Barbara 

Computing Closures 

closure(I)  adds all the items implied by items already in I 
•  Any item [α→β•Aδ , a] implies [A→• τ , x] for each production  

 with A on the lhs,  and  x ∈ FIRST(δa) 
•  Since A is valid, any way to derive A is valid, too 
•  FIRST(δa) tells us the set of things that could possibly come after 

this particular use of A (and would tell us the production to use) 
The algorithm 

Closure( I ) 
    while ( I is still changing ) 
        for each item [α → β • γδ , a] ∈ I 
            for each production γ  → τ ∈ P 
                for each terminal b  ∈ FIRST(δa) 
                     if  [γ → • τ , b] ∉ I 
                          then add [γ → • τ , b] to I     

Fixpoint computation 



UC Santa Barbara 

Example Grammar 

Initial step builds the item [S → •  Z ,$] 
and takes its closure( ) 

Closure( [S → •  Z  , $] ) 

So, initial state s0  is  
{ [S→ • Z ,$], [Z→ • Z z, $],[Z→•  z , $], [Z→ • Z z , z], [Z→ • z , z] }

1  S  →   Z   
2  Z  →  Z z 
3    |   z 

Item    From 
[S → • Z , $]   Original item 
[Z→ • Z z , $]   1, δ a is $ 
[Z → • z , $]   1, δ a is $ 
[Z → • Z z , z]   2, δ a is z $ 
[Z → • z , z]   2, δ a is z $ 



UC Santa Barbara 

Computing Gotos 

goto(I , x) computes the state that the parser would reach  
if it recognized an x while in state I 
•  goto( { [α→β • γδ , a] }, γ ) produces [α→βγ • δ , a]                 
•  It also includes closure( [α→βγ • δ , a] ) to fill out the state 

The algorithm 

Goto( I, x ) 
    new  = Ø 
     for each  [α → β • x δ , a] ∈ I 
              new = new ∪ [α → βx • δ , a] 
     return closure(new) 

•  Not a fixpoint method 
•  Uses closure 



UC Santa Barbara 

Example Grammar 

 
s0  is { [S→ • Z ,$], [Z→ • Z z, $],[Z→ • z , $], [Z→ • Z z , z], [Z→ • z , z] }

goto( S0 , z ) 

•  Loop produces 

•  Closure adds nothing since • is at end of rhs in each item 

In the construction, this produces s2  
{ [Z → z  • , {$ , z}]} 

New, but obvious, notation 
for two distinct items 

[Z→z • , $] and  [Z→z • , z] 

Item   From 
[Z → z • , $]  Item 3 in s0 
[Z → z • ,  z]  Item 5 in s0 



UC Santa Barbara 

Canonical Collection of LR(1) Items 

This is where we build the handle recognizing DFA! 
Start from I0 = closure( [S’→ • S , $] ) 
Repeatedly construct new states, until no new states are generated  
 
The algorithm 

I0  = closure( [S’ → • S , $] ) 
C  = { I0  } 
while ( C is still changing ) 
    for each Ii ∈ C and for each  x  ∈  ( T∪NT ) 
         Inew  =  goto(Ii , x) 
         if  Inew ∉ C then 
             C = C ∪ Inew   
             record transition Ii  → Inew on x 

•  Fixed-point computation 

•  Loop adds to C 

•  C ⊆ 2ITEMS, so C is finite 



UC Santa Barbara 

Algorithms - Overview 

Constructing canonical collection of LR(1) items: 

Computing closure of set of LR(1) items: Computing goto for set of LR(1) items: 

•  Canonical collection construction 
algorithm is the algorithm for  
constructing handle recognizing DFA 
•  Uses Closure to compute the states 
of the DFA  
•   Uses Goto to compute the transitions  
of the DFA 

I0  = closure( [S’ → • S , $] ) 
C  = { I0  } 
while ( C is still changing ) 
    for each Ii ∈ C and for each  x  ∈  ( T∪NT ) 
         Inew  =  goto(Ii , x) 
         if  Inew ∉ C then 
             C = C ∪ Inew   
             record transition Ii  → Inew on x 

Closure( I ) 
    while ( I is still changing ) 
        for each item [α → β • γδ , a] ∈ I 
            for each production γ  → τ ∈ P 
                for each terminal b  ∈ FIRST(δa) 
                     if  [γ → • τ , b] ∉ I 
                          then add [γ → • τ , b] to I     

Goto( I, x ) 
    new  = Ø 
     for each  [α → β • x δ , a] ∈ I 
              new = new ∪ [α → βx • δ , a] 
     return closure(new) 



UC Santa Barbara 

Practical Approach to LR(1) Parsing 

Start with 
Grammar 

Construct a DFA representing 
all possible legal transition on 
terminal and non-terminals. 
Technically, this is a bunch of 
NFAs grouped together via 
e-closure 

Canonical Collection 
This is the DFA which 
represents all valid transitions 
through the grammar. We 
need this for efficient handle 
finding 

Use the CC to fill in the 
LR tables (ACTION and 
GOTO tables), which is 
the way to program an 
automated LR(1) parser 

Parser 

Input Sentence Reverse rightmost 
derivation 



UC Santa Barbara 

Example 

Simplified, right recursive expression grammar 

S → Expr 
Expr → Term - Expr 
Expr → Term 
Term → Factor * Term  
Term → Factor 
Factor → id 

Symbol          FIRST     
S   { id } 
Expr   { id } 
Term   { id } 
Factor   { id } 
-   { - } 
*   { * } 
id   { id } 



UC Santa Barbara 

I0= {[S  → •Expr ,$]  
       [Expr → •Term - Expr , $]  
       [Expr → •Term , $]   
       [Term → •Factor * Term , {$,-}]  
       [Term → •Factor , {$,-}]  
       [Factor → • id ,{$,-,*}]} 

I1= {[S → Expr •, $]} 

I4 = { [Factor → id •, {$,-,*}] } 

 I2  = { [Expr → Term • - Expr , $],  
           [Expr → Term •, $] } 

I3 = {[Term → Factor •* Term , {$,-}],  
        [Term → Factor •, {$,-}]} 

I6 ={[Term → Factor * • Term , {$,-}] 
       [Term → • Factor * Term , {$,-}]  
       [Term → • Factor , {$,-}]  
       [Factor → • id , {$, -, *}]} 

I8 = { [Term → Factor * Term •, {$,-}] }  
I7 = { [Expr → Term - Expr •, $] } 

 I5 = {[Expr → Term - •Expr , $]  
         [Expr  → •Term - Expr , $] 
         [Expr → •Term , $] 
         [Term  → •Factor * Term , {$,-}] 
         [Term → •Factor , {$,-}] 
         [Factor → • id , {$,-,*}] } 

Expr 

Factor 

id 

Term 

 id   id  

Term 

Factor 

* 

- 

Factor 

Expr 

Term 



UC Santa Barbara 

Constructing the ACTION and GOTO Tables 

The algorithm 

 

for each set of  items Ix ∈ C 
    for each  item ∈ Ix 
        if   item is [α→β •aγ,b] and a ∈ T  and goto(Ix,a) = Ik ,  
             then ACTION[x,a] ← “shift k” 
        else if   item is [S’→S •,$] 
             then ACTION[x ,$] ← “accept” 
        else if   item is [α→β •,a] 
              then ACTION[x,a] ← “reduce α→β” 

    for each n ∈ NT 
        if   goto(Ix ,n) = Ik 
            then GOTO[x,n] ← k 

x is the state number 
Each state 
corresponds to a set 
of  LR(1) items 



UC Santa Barbara 

Example (Constructing the LR(1) tables) 

The algorithm produces the following table 

 ACTION GOTO 
 id - * $ Expr Term Factor 
0 s 4    1 2 3 
1    acc    
2  s 5  r 3    
3  r 5 s 6 r 5    
4  r 6 r 6 r 6    
5 s 4    7 2 3 
6 s 4     8 3 
7    r 2    
8  r 4  r 4    

 

 



UC Santa Barbara 

Parsing Example (x-z*y) 

 ACTION GOTO 
 id - * $ Expr Term Factor 
0 s 4    1 2 3 
1    acc    
2  s 5  r 3    
3  r 5 s 6 r 5    
4  r 6 r 6 r 6    
5 s 4    7 2 3 
6 s 4     8 3 
7    r 2    
8  r 4  r 4    

 

 

Input Stack Action 
$id * id - id 

$id * id – 
$id * id –  
$id * id – 

$id * id 
$id * 
$id * 

$id 
$ 
$ 
$ 
$ 
$ 
$ 

S0 

S0 id S4 
S0 F S3 
S0 T S2 
S0 T S2 – S5   
S0 T S2 – S5 id S4 
S0 T S3 – S5  F S3  
S0 T S3 – S5  F S3 * S6 
S0 T S3 – S5  F S3 * S6 id S4 
S0 T S3 – S5  F S3 * S6 F  S3 
S0 T S3 – S5  F S3 * S6 T  S8 
S0 T S3 – S5   T S2  
S0 T S3 – S5  E S7  
S0 E S1 

S4 
R6, G3 
R5,G2 
S5 
S4 
R6, G3 
S6 
S4 
R6,G3 
R5,G8 
R4,G2 
R3,G7 
R2,G1 
ACC 

1. S → Expr 
2. Expr → Term - Expr 
3. Expr → Term 
4. Term → Factor * Term  
5. Term → Factor 
6. Factor → id 



UC Santa Barbara 

0   S’ → E $ 
1   E  → E * E 
2   E  → E + E 
3   E  → n 
 

example S’ → • E $ 
E → • E * E  
E → • E + E 
E → • n 

State 0 

E → n  •  

State 1 n 

S’ → E • $ 
E → E • * E 
E → E • + E 

State 2 
S → E $ • 

State 3 

E 
$ 

E → E * • E 
E → • E + E 
E → • E * E 
E → • n 

E → E + • E 
E → • E + E 
E → • E * E 
E → • n 

State 5 State 4 

E → E * E • 
E → E • + E 
E → E • * E 

E → E * E • 
E → E • + E 
E → E • * E 

+ * n 

+ 

n 

* 

* + 

E E State 7 State 6 

* + $ n E 
0 S1 2 
1 R3 R3 R3 
2 S5 S4 S3 
3 A 
4 S1 6 
5 S1 7 
6 S5/R1 S4/R2 R2 R2 
7 S5/R1 S4/R1 R1 R1 

reduce 

shift 

Conflicts and Associativity/Precedence 



UC Santa Barbara 

0   S’ → E $ 
1   E  → E + T 
2   E  → T  
3   T  → T * F 
4   T  → F 
5   F  → n 
 

example 

+ * $ n E T F 
0 S1 2 4 9 
1 R5 R5 R5 
2 S5 S3 
3 A 
4 R2 S6 R2 
5 S1 7 9 
6 S1 8 
7 R1 S6 R1 
8 R3 R3 R3 
9 R4 R4 R4 

S’ → • E $ 
E → • E + T  
E → • T 
T → • T * F  
T → • F 
F → • n 

State 0 

F → n  •  

State 1 n 

S’ → E • $ 
E → E • + T 

State 2 

S → E $ • 

State 3  
E $ 

E → E + • T 
T → • T * F 
T → • F 
F → • n 

T → T * • F 
F → • n 

State 5 State 6 

E → E + T • 
T → T • * F 

 
T → T * F • 
 

+ 

n 

F 
* 

T F State 7 State 8 

n 

Conflicts and Associativity/Precedence 

 
T →  F • 
 

State 9 

F T → T • * F 
E → T• 

State 4 T 

* 



UC Santa Barbara 

What can go wrong in LR(1) parsing? 

What if state s contains [α → β • aγ , b] and [α → β • , a] ? 
•  First item generates “shift”, second generates “reduce”  
•  Both define ACTION[s,a] — cannot do both actions 
•  This is called a shift/reduce conflict 
•  Modify the grammar to eliminate it   
•  Shifting will often resolve it correctly (dangling else problem?) 

What if set s contains [α → β • , a] and [γ → β • , a] ? 
•  Each generates “reduce”, but with a different production 
•  Both define ACTION[s,a] — cannot do both reductions 
•  This is called a reduce/reduce conflict 
•  Modify the grammar to eliminate it 

In either case, the grammar is not LR(1) 



UC Santa Barbara 

Error recovery 

•  Panic-mode recovery: On discovering an error, discard input 
symbols one at a time until one synchronizing token is found  
–  For example delimiters such as “;” or “}” can be used as 

synchronizing tokens 
•  Phrase-level recovery: On discovering an error make local 

corrections to the input  
–  For example replace “,”  with “;” 

•  Error-productions: If we have a good idea about what type of 
errors occur, we can augment the grammar with error productions 
and generate appropriate error messages when an error production 
is used 

•  Global correction: Given an incorrect input string try to find a 
correct string which will require minimum changes to the input 
string 
–  In general too costly   



UC Santa Barbara 

Direct Encoding of Parse Tables 

Rather than using a table-driven interpreter … 
•  Generate spaghetti code that implements the logic 
•  Each state becomes a small case statement or if-then-else 
•  Analogous to direct coding a scanner 

Advantages 
•  No table lookups and address calculations 
•  No representation for don’t care states 
•  No outer loop — it is implicit in the code for the states 

This produces a faster parser with more code but no table  



UC Santa Barbara 

LR Parsers 

•  LR(k)  parsers are table-driven, bottom-up, shift-reduce parsers  
     that use a limited right context (k-token look-ahead) for handle 

recognition 
 
•  LR(k): Left-to-right scan of the input, rightmost derivation in reverse 

with k token look-ahead 
 
A grammar is LR(k) if, given a rightmost derivation 

S ⇒ γ0  ⇒ γ1  ⇒ γ2  ⇒ …  ⇒ γn-1 ⇒ γn ⇒ sentence 
We can  

1. isolate the handle of each right-sentential form γi , and  
2. determine the production by which to reduce, 

by scanning γi from left-to-right, going at most k symbols beyond  
the right end of the handle of γi  



UC Santa Barbara 

Summary 

Advantages 

Fast 

Simplicity 

Good error detection 

 

 

Fast  

Deterministic langs. 

Automatable 

Left associativity 

Disadvantages 

Hand-coded 

High maintenance 

Right associativity 

 

 

Large working sets 

Poor error messages 

Large table sizes 

Top-down 

recursive 

descent 

LR(1) 


