Computer Science 160 Translation of Programming Languages

Instructor: Christopher Kruegel

Building a Handle Recognizing Machine: [now, with a look-ahead token, which is LR(1)]

LR(k) items

An $\operatorname{LR}(k)$ item is a pair $[A, B]$, where
A is a production $\alpha \rightarrow \beta \gamma \delta$ with a \cdot at some position in the rhs
B is a look-ahead string of length $\leq k$ (terminal symbols or $\$$)

Examples: $[\alpha \rightarrow \bullet \beta \gamma \delta, a],[\alpha \rightarrow \beta \bullet \gamma \delta, a],[\alpha \rightarrow \beta \gamma \bullet \delta, a], \&[\alpha \rightarrow \beta \gamma \delta \bullet, a]$

The • in an item indicates the position of the top of the stack

LR(0) items [$\alpha \rightarrow \beta \cdot \gamma \delta$] (no look-ahead symbol)
$\operatorname{LR}(1)$ items $[\alpha \rightarrow \beta \cdot \gamma \delta$, a] (one token look-ahead)
$\operatorname{LR}(2)$ items [$\alpha \rightarrow \beta \cdot \gamma \delta$, a b] (two token look-ahead) ...

LR(k) items

The • in an item indicates the position of the top of the stack
[$\alpha \rightarrow \bullet \beta \gamma \delta, a]$ means that the input seen so far is consistent with the use of $\alpha \rightarrow \beta \gamma \delta$ immediately after the symbol on top of the stack
[$\left.\alpha \rightarrow \beta \gamma^{\bullet} \delta, a\right]$ means that the input seen so far is consistent with the use of $\alpha \rightarrow \beta \gamma \delta$ at this point in the parse, and that the parser has already recognized $\beta \gamma$.
[$\alpha \rightarrow \beta \gamma \delta \bullet$ • a] means that the parser has seen $\beta \gamma \delta$, and the lookahead \mathbf{a} is consistent with reducing to α (for $\operatorname{LR}(\mathrm{k})$ parsers, \mathbf{a} is a string of terminal symbols of length k)

The table construction algorithm uses items to represent valid configurations of an $\operatorname{LR}(1)$ parser

LR(1) Items

The production $\alpha \rightarrow \bullet \beta \gamma \delta$, with lookahead \mathbf{a}, generates 4 items

$$
[\alpha \rightarrow \bullet \beta \gamma \delta, a],[\alpha \rightarrow \beta \bullet \gamma \delta, a],[\alpha \rightarrow \beta \gamma \bullet \delta, a], \&[\alpha \rightarrow \beta \gamma \delta \bullet, a]
$$

The set of $\operatorname{LR}(1)$ items for a grammar is finite
What's the point of all these look-ahead symbols?

- Carry them along to choose correct reduction
- Look-ahead symbols are bookkeeping, unless item has • at right end
- Has no direct use in $[\alpha \rightarrow \beta \gamma \bullet \delta$, a]
- In [$\alpha \rightarrow \beta \gamma \delta \bullet$, a], a look-ahead of a implies a reduction by $\alpha \rightarrow \beta \gamma \delta$
- For $\left\{\left[\alpha \rightarrow \gamma^{\bullet}, \mathbf{a}\right],\left[\beta \rightarrow \gamma^{\bullet} \delta, b\right]\right\}$
lookahead = a $\quad \Rightarrow$ reduce to α
lookahead $\in \operatorname{FIRST}(\delta) \quad \Rightarrow$ shift
\Rightarrow Limited right context is enough to pick the actions

Back to Finding Handles

Parser in a state where the stack (the fringe) was
Expr-Term
With look-ahead of *

How did it choose to expand Term rather than reduce to Expr?

- Look-ahead symbol is the key
- With look-ahead of + or -, parser should reduce to Expr
- With look-ahead of * or /, parser should shift
- Parser uses look-ahead to decide
- All this context from the grammar is encoded in the handle recognizing mechanism

Back to x-2 * y

Stack	Input	Handle	Action
\$	id - num * id \$	none	shift
\$ id	- num * id \$	9,1	red. 9
\$ Factor	- num * id \$	7,1	red. 7
\$ Term	- num * id \$	4,1	red. 4
\$ Expr	- num * id \$	none	shift
\$ Expr-	num * id \$	none	shift
\$ Expr- num	* id \$	8,3	red. 8
\$ Expr - Factor	* id \$	7,3	red. 7
\$ Expr- Term	*id \$	none	shift
\$ Expr-Term *	Id \$	none	shift
\$ Expr - Term * id	\$	9,5	red. 9
\$ Expr- Term * Factor	\$	5,5	red. 5
\$ Expr- Term		3,3	red. 3
\$ Expr	\$	1,1	red.
\$ S	\$	none	accept

1. Shift until TOS is the right end of a handle
2. Find the left end of the handle \& reduce

LR(1) Table Construction

High-level overview
1 Build the handle recognizing DFA (aka Canonical Collection of sets of $\operatorname{LR}(1)$ items), $C=\left\{I_{0}, I_{1}, \ldots, I_{n}\right\}$
a) Introduce a new start symbol S^{\prime} which has only one production

$$
S^{\prime} \rightarrow S
$$

b) Initial state, I_{0} should include

- [$S^{\prime} \rightarrow \bullet S, \$$], along with any equivalent items
- Derive equivalent items as closure $\left(I_{0}\right)$
c) Repeatedly compute, for each I_{k}, and each grammar symbol α, $\operatorname{goto}\left(I_{k}, \alpha\right)$
- If the set is not already in the collection, add it
- Record all the transitions created by goto()

This eventually reaches a fixed point
2 Fill in the ACTION and GOTO tables using the DFA

Computing Closures

closure(I) adds all the items implied by items already in I

- Any item $[\alpha \rightarrow \beta \bullet A \delta, a]$ implies $[A \rightarrow \bullet \tau, x]$ for each production with A on the $l h s$, and $x \in \operatorname{FIRST}(\delta a)$
- Since A is valid, any way to derive A is valid, too
- FIRST($\delta a)$ tells us the set of things that could possibly come after this particular use of A (and would tell us the production to use)
The algorithm

```
Closure(I)
    while (I is still changing )
        for each item [\alpha->\beta}\boldsymbol{\alpha}\boldsymbol{\delta},\textrm{a}]\in
        for each production }\gamma->\tau\in
            for each terminal b \in FIRST(\deltaa)
                if [\gamma->\bullet\tau,b]}\not\in
            then add [ }\gamma->\bullet\tau,b] to I
```


Example Grammar

Initial step builds the item [S \rightarrow • Z,\$] and takes its closure()

Closure ([S \rightarrow • Z , \$])

$$
\begin{array}{cccc}
1 & S & \rightarrow & Z \\
2 & Z & \rightarrow & Z z \\
3 & & \mid z
\end{array}
$$

Item	From
$[S \rightarrow \cdot Z, \$]$	Original item
$[Z \rightarrow \cdot Z z, \$]$	$1, \delta a$ is $\$$
$[Z \rightarrow \cdot z, \$]$	$1, \delta a$ is $\$$
$[Z \rightarrow \cdot Z z, z]$	$2, \delta a$ is $z \$$
$[Z \rightarrow \cdot z, z]$	$2, \delta a$ is $z \$$

So, initial state s_{0} is

$$
\{[S \rightarrow \cdot Z, \$],[Z \rightarrow \cdot Z z, \$],[Z \rightarrow \bullet z, \$],[Z \rightarrow \cdot Z z, z],[Z \rightarrow \cdot z, z]\}
$$

Computing Gotos

goto (I, x) computes the state that the parser would reach if it recognized an x while in state I

- goto $\{[\alpha \rightarrow \beta \bullet \gamma \delta, a]\}, \gamma)$ produces $[\alpha \rightarrow \beta \gamma \bullet \delta, a]$
- It also includes closure($[\alpha \rightarrow \beta \gamma \bullet \delta, a])$ to fill out the state

The algorithm

```
Goto( I, \(x\) )
    new = Ø
    for each \([\alpha \rightarrow \beta \bullet x \delta, a] \in I\)
        new \(=\) new \(\cup[\alpha \rightarrow \beta x \cdot \delta, a]\)
    return closure(new)
```


Example Grammar

s_{0} is $\{[S \rightarrow \bullet Z, \$],[Z \rightarrow \bullet Z z, \$],[Z \rightarrow \bullet z, \$],[Z \rightarrow \bullet Z z, z],[Z \rightarrow \bullet z, z]\}$
goto($\left.S_{0}, ~ z ~\right)$

- Loop produces

Item	From
$\left[Z \rightarrow z^{\bullet}, \$\right]$	Item 3 in s_{o}
$\left[Z \rightarrow z^{\bullet}, z\right]$	Item 5 in s_{0}

- Closure adds nothing since • is at end of r hs in each item

In the construction, this produces s_{2}

$$
\{[Z \rightarrow z \cdot,\{\$, z\}]\}
$$

New, but obvious, notation for two distinct items
$[\mathbf{Z} \rightarrow \mathbf{Z} \cdot, \$]$ and $[\mathbf{Z} \rightarrow \mathbf{Z} \cdot, \mathbf{z}]$

Canonical Collection of LR(1) Items

This is where we build the handle recognizing DFA!
Start from $I_{0}=$ closure ([S' $\rightarrow \bullet$ S , \$])
Repeatedly construct new states, until no new states are generated

The algorithm

```
\(I_{0}=\operatorname{closure}\left(\left[S^{\prime} \rightarrow \cdot S, \$\right]\right)\)
\(C=\left\{I_{0}\right\}\)
while ( \(C\) is still changing )
    for each \(I_{i} \in C\) and for each \(x \in(T \cup N T)\)
        \(I_{\text {new }}=\operatorname{goto}\left(I_{i}, x\right)\)
        if \(I_{\text {new }} \notin C\) then
        \(C=C \cup I_{\text {new }}\)
        record transition \(I_{i} \rightarrow I_{\text {new }}\) on \(x\)
```

- Fixed-point computation
- Loop adds to C
- $C \subseteq 2^{\text {ITEMS }}$, so C is finite

Algorithms - Overview

Computing closure of set of LR(1) items:

```
Closure(I)
    while (I is still changing )
        for each item [\alpha->\beta}\boldsymbol{\alpha
            for each production }\gamma->\tau\in
            for each terminal b \in FIRST(\deltaa)
                    if [ }\gamma->\cdot\tau,b]\not\in
                    then add [ }\gamma->\bullet\tau,b] to I
```

Constructing canonical collection of LR(1) items:

```
I
C = {IO}
while ( C is still changing )
    for each I}\mp@subsup{I}{i}{}\inC\mathrm{ and for each }x\in(T\cupNT
        Inew }=\operatorname{goto(I},x
        if }\mp@subsup{I}{\mathrm{ new }}{}\not\inC\mathrm{ then
        C=C\cupI Imew
        record transition I}\mp@subsup{I}{i}{}->\mp@subsup{I}{\mathrm{ new }}{}\mathrm{ on }
```

Computing goto for set of LR(1) items:

```
```

Goto(I, X)

```
```

Goto(I, X)
new = \varnothing
new = \varnothing
for each $[\alpha \rightarrow \beta \cdot x \delta, a] \in I$
for each $[\alpha \rightarrow \beta \cdot x \delta, a] \in I$
new $=$ new $\cup[\alpha \rightarrow \beta x \cdot \delta, a]$
new $=$ new $\cup[\alpha \rightarrow \beta x \cdot \delta, a]$
return closure(new)

```
```

 return closure(new)
    ```
```


Practical Approach to LR(1) Parsing

| Construct a DFA representing with
 Grammar
 all possible legal transition on
 terminal and non-terminals.
 Technically, this is a bunch of
 NFAs grouped together via
 e-closure | UC Santa Barbara
 Canonical Collection
 This is the DFA which
 represents all valid transitions
 through the grammar. We
 need this for efficient handle
 finding |
| :--- | :--- |
| Input Sentence | |

Example

Simplified, right recursive expression grammar

| S \rightarrow Expr |
| :--- |
| Expr \rightarrow Term - Expr |
| Expr \rightarrow Term |
| Term \rightarrow Factor ${ }^{*}$ Term |
| Term \rightarrow Factor |
| Factor \rightarrow id |

| Symbol | FIRST |
| :--- | :---: |
| S | $\{$ id $\}$ |
| Expr | $\{$ id $\}$ |
| Term | $\{$ id $\}$ |
| Factor | $\{$ id $\}$ |
| \star | $\{-\}$ |
| ${\hline \multirow{8}{}}{ } }$ | $\{\star\}$ |

Constructing the Action and Goto Tables

The algorithm
x is the state number Each state
for each set of items $I_{x} \in C$ corresponds to a set of $\operatorname{LR}(1)$ items
if item is $[\alpha \rightarrow \beta \cdot \mathbf{a} \gamma, \mathrm{b}]$ and $\mathrm{a} \in T$ and goto $\left(I_{x}, a\right)=I_{k}$, then ACTION $[x, \mathrm{a}] \leftarrow$ "shift k "
else if item is $\left[S^{\prime} \rightarrow S \cdot, \$\right]$
then ACTION $[x, \$] \leftarrow$ "accept"
else if item is $[\alpha \rightarrow \beta$, , $]$
then $\operatorname{ACTION}[x, a] \leftarrow$ "reduce $\alpha \rightarrow \beta$ "
for each $n \in N T$
if $\operatorname{goto}\left(I_{x}, n\right)=I_{k}$ then GOTO $[x, \mathrm{n}] \leftarrow k$

Example (Constructing the LR(1) tables)

The algorithm produces the following table

| | ACTION | | | | GOTO | | |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- | :--- |
| | id | - | $*$ | $\$$ | Expr | Term | Factor |
| 0 | s 4 | | | | 1 | 2 | 3 |
| 1 | | | | acc | | | |
| 2 | | s 5 | | r 3 | | | |
| 3 | | r 5 | s 6 | r 5 | | | |
| 4 | | r 6 | r 6 | r 6 | | | |
| 5 | s 4 | | | | 7 | 2 | 3 |
| 6 | s 4 | | | | | 8 | 3 |
| 7 | | | | r 2 | | | |
| 8 | | r 4 | | r 4 | | | |

Parsing Example (x-z*y)

| Stack | Input | Action | | Action | | | | GотO | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | id | - | * | \$ | Expr | Term | Factor |
| $\begin{aligned} & S_{0} \\ & S_{0} \mathrm{id} S_{4} \\ & S_{0} \mathrm{~F} S_{3} \\ & S_{0} \mathrm{~T} S_{2} \\ & S_{0} \mathrm{~T} S_{2}-S_{5} \\ & S_{0} \mathrm{~T} S_{2}-S_{5} \mathrm{id} S_{4} \\ & S_{0} \mathrm{~T} S_{3}-S_{5} \mathrm{~F} S_{3} \\ & S_{0} \mathrm{~T} S_{3}-S_{5} \mathrm{~F} S_{3} * S_{6} \\ & S_{0} \mathrm{~T} S_{3}-S_{5} \mathrm{~F} S_{3} * S_{6} \mathrm{id} S_{4} \\ & S_{0} \mathrm{~T} S_{3}-S_{5} \mathrm{~F} S_{3} * S_{6} \mathrm{~F} S_{3} \\ & S_{0} \mathrm{~T} S_{3}-S_{5} \mathrm{~F} S_{3} * S_{6} \mathrm{~T} S_{8} \\ & S_{0} \mathrm{~T} S_{3}-S_{5} \mathrm{~T} S_{2} \\ & S_{0} \mathrm{~T} S_{3}-S_{5} \mathrm{E} S 7 \\ & S_{0} \mathrm{E} S_{1} \end{aligned}$ | $\$ i d * \text { id - id }$$\$ \mathrm{id} * \mathrm{id}-$ | $\begin{aligned} & \text { S4 } \\ & \text { R6. G3 } \end{aligned}$ | 0 | 54 | | | | 1 | 2 | 3 |
| | | | $\frac{1}{2}$ | | s 5 | | acc r | | | |
| | $\begin{gathered} \$ \mathrm{id} * \mathrm{id}- \\ \$ \mathrm{id} * \mathrm{id}- \\ \$ \mathrm{id} * \mathrm{id}- \\ \$ \mathrm{id} * \mathrm{id} \end{gathered}$ | $\begin{aligned} & \text { R6, G3 } \\ & \text { R5,G2 } \end{aligned}$ | 3 | | r 5 | s6 | r 5 | | | |
| | | S5 | 4 | | r6 | r 6 | r6 | | | |
| | | | 5 | s 4 | | | | 7 | 2 | 3 |
| | \$id * id
 Sid* | $\begin{aligned} & \text { S4 } \\ & \mathrm{R} 6, ~ G 3 \end{aligned}$ | 7 | s | | | r 2 | | 8 | |
| | \$id* | S6 | 8 | | r 4 | | r4 | | | |
| | \$id | | | | | | | | | |
| | \$ | R6,G3 | | | | | | | | |
| | | R5,G8 | | 1. $S \rightarrow$ Expr | | | | | | |
| | \$ | R4,G2 | | 2. Expr \rightarrow Term-Expr | | | | | | |
| | \$ | R3,G7 | | 3. Expr \rightarrow Term | | | | | | |
| | \$ | R2,G1 | | 4. Term \rightarrow Factor ${ }^{*}$ Term | | | | | | |
| | \$ | ACC | | 5. Term \rightarrow Factor | | | | | | |

Conflicts and Associativity/Precedence

State 0

| | * | + | \$ | n | E |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | | | | S1 | 2 |
| 1 | R3 | R3 | R3 | | |
| 2 | S5 | S4 | S3 | | |
| 3 | | | A | | |
| 4 | | | | S1 | 6 |
| 5 | | | | S1 | 7 |
| 6 | S5/R1 | S4/R2 | R2 | R2 | |
| 7 | S5/R1 | S4/R1 | R1 | R1 | |

Conflicts and Associativity/Precedence

What can go wrong in LR(1) parsing?

What if state s contains $[\alpha \rightarrow \beta \cdot \mathrm{a} \gamma, \mathrm{b}]$ and $[\alpha \rightarrow \beta \bullet, \mathrm{a}]$?

- First item generates "shift", second generates "reduce"
- Both define ACTION[s,a] - cannot do both actions
- This is called a shift/reduce conflict
- Modify the grammar to eliminate it
- Shifting will often resolve it correctly (dangling else problem?)

What if set s contains $[\alpha \rightarrow \beta \bullet$, a] and $[\gamma \rightarrow \beta \bullet$, a] ?

- Each generates "reduce", but with a different production
- Both define ACTION[s,a] - cannot do both reductions
- This is called a reduce/reduce conflict
- Modify the grammar to eliminate it

In either case, the grammar is not $L R(1)$

Error recovery

- Panic-mode recovery: On discovering an error, discard input symbols one at a time until one synchronizing token is found
- For example delimiters such as ";" or "\}" can be used as synchronizing tokens
- Phrase-level recovery: On discovering an error make local corrections to the input
- For example replace "," with ";"
- Error-productions: If we have a good idea about what type of errors occur, we can augment the grammar with error productions and generate appropriate error messages when an error production is used
- Global correction: Given an incorrect input string try to find a correct string which will require minimum changes to the input string
- In general too costly

Direct Encoding of Parse Tables

Rather than using a table-driven interpreter ...

- Generate spaghetti code that implements the logic
- Each state becomes a small case statement or if-then-else
- Analogous to direct coding a scanner

Advantages

- No table lookups and address calculations
- No representation for don't care states
- No outer loop - it is implicit in the code for the states

This produces a faster parser with more code but no table

LR Parsers

- $\quad \mathrm{LR}(\mathrm{k})$ parsers are table-driven, bottom-up, shift-reduce parsers that use a limited right context (k-token look-ahead) for handle recognition
- $\mathrm{LR}(\mathrm{k})$: Left-to-right scan of the input, rightmost derivation in reverse with k token look-ahead

A grammar is $\operatorname{LR}(k)$ if, given a rightmost derivation

$$
S \Rightarrow \gamma_{0} \Rightarrow \gamma_{1} \Rightarrow \gamma_{2} \Rightarrow \ldots \Rightarrow \gamma_{n-1} \Rightarrow \gamma_{n} \Rightarrow \text { sentence }
$$

We can

1. isolate the handle of each right-sentential form γ_{i}, and
2. determine the production by which to reduce, by scanning γ_{i} from left-to-right, going at most k symbols beyond the right end of the handle of γ_{i}

Summary

| | Advantages | Disadvantages |
| :---: | :--- | :--- |
| Top-down
 recursive
 descent | Fimplicity
 Good error detection | Hand-coded
 High maintenance
 Right associativity |
| LR(1) | Fast
 Deterministic langs.
 Automatable
 Left associativity | Poor error messages
 Large table sizes |
| | | |

