UC Santa Barbara

Computer Science 160 Translation of Programming Languages

Instructor: Christopher Kruegel

UC Santa Barbara 🔹

Building a Handle Recognizing Machine: [now, with a look-ahead token, which is LR(1)]

LR(*k*) items

UC Santa Barbara

An LR(*k*) item is a pair [*A*, *B*], where *A* is a production $\alpha \rightarrow \beta \gamma \delta$ with a • at some position in the *rhs B* is a look-ahead string of length $\leq k$ (terminal symbols or \$)

Examples: $[\alpha \rightarrow \beta \gamma \delta, a], [\alpha \rightarrow \beta \gamma \delta, a], [\alpha \rightarrow \beta \gamma \delta, a], \& [\alpha \rightarrow \beta \gamma \delta, a]$

The • in an item indicates the position of the top of the stack

LR(0) items [$\alpha \rightarrow \beta \cdot \gamma \delta$] (no look-ahead symbol) LR(1) items [$\alpha \rightarrow \beta \cdot \gamma \delta$, a] (one token look-ahead) LR(2) items [$\alpha \rightarrow \beta \cdot \gamma \delta$, a b] (two token look-ahead) ...

UC Santa Barbara

- The in an item indicates the position of the top of the stack
- $[\alpha \rightarrow \bullet \beta \gamma \delta, a]$ means that the input seen so far is consistent with the use of $\alpha \rightarrow \beta \gamma \delta$ immediately after the symbol on top of the stack
- $[\alpha \rightarrow \beta \gamma \cdot \delta, a]$ means that the input seen so far is consistent with the use of $\alpha \rightarrow \beta \gamma \delta$ at this point in the parse, <u>and</u> that the parser has already recognized $\beta \gamma$.
- $[\alpha \rightarrow \beta \gamma \delta \bullet, \mathbf{a}]$ means that the parser has seen $\beta \gamma \delta$, <u>and</u> the lookahead \mathbf{a} is consistent with reducing to α (for LR(k) parsers, \mathbf{a} is a string of terminal symbols of length k)

The table construction algorithm uses items to represent valid configurations of an LR(1) parser

LR(1) Items

UC Santa Barbara

The production $\alpha \rightarrow \beta \gamma \delta$, with lookahead **a**, generates 4 items

$$[\alpha \rightarrow \bullet \beta \gamma \delta, a], [\alpha \rightarrow \beta \bullet \gamma \delta, a], [\alpha \rightarrow \beta \gamma \bullet \delta, a], \& [\alpha \rightarrow \beta \gamma \delta \bullet, a]$$

The set of LR(1) items for a grammar is finite

What's the point of all these look-ahead symbols?

- Carry them along to choose correct reduction
- Look-ahead symbols are bookkeeping, *unless* item has at right end
 - Has no direct use in $[\alpha \rightarrow \beta \gamma \cdot \delta$, **a**]
 - In $[\alpha \rightarrow \beta \gamma \delta \bullet$, **a**], a look-ahead of **a** implies a reduction by $\alpha \rightarrow \beta \gamma \delta$

- For {
$$[\alpha \rightarrow \gamma \bullet, \mathbf{a}], [\beta \rightarrow \gamma \bullet \delta, \mathbf{b}]$$
 }
lookahead = $\mathbf{a} \Rightarrow reduce$ to α
lookahead $\in FIRST(\delta) \Rightarrow shift$

 \Rightarrow Limited right context is enough to pick the actions

Back to Finding Handles

UC Santa Barbara

Parser in a state where the stack (the fringe) was

Expr – Term

With look-ahead of *

How did it choose to expand Term rather than reduce to Expr?

- *Look-ahead* symbol is the key
- With look-ahead of + or –, parser should reduce to *Expr*
- With look-ahead of * or /, parser should shift
- Parser uses look-ahead to decide
- All this context from the grammar is encoded in the handle recognizing mechanism

Back to x - 2 * y

LR(1) Table Construction

UC Santa Barbara

High-level overview

- 1 Build the handle recognizing DFA (aka *Canonical Collection* of sets of LR(1) items), $C = \{ I_0, I_1, ..., I_n \}$
 - a) Introduce a new start symbol S' which has only one production $S' \rightarrow S$
 - b) Initial state, I_0 should include
 - $[S' \rightarrow S, \$]$, along with any equivalent items
 - Derive equivalent items as $closure(I_0)$
 - c) Repeatedly compute, for each I_k , and each grammar symbol α , $goto(I_k, \alpha)$
 - If the set is not already in the collection, add it
 - Record all the transitions created by goto()

This eventually reaches a fixed point

2 Fill in the ACTION and GOTO tables using the DFA

Computing Closures

UC Santa Barbara

closure(I) adds all the items implied by items already in I

- Any item $[\alpha \rightarrow \beta \bullet A\delta$, a] implies $[A \rightarrow \bullet \tau, x]$ for each production with A on the *lhs*, and $x \in FIRST(\delta a)$
- Since A is valid, any way to derive A is valid, too
- FIRST(δa) tells us the set of things that could possibly come after this particular use of A (and would tell us the production to use)

The algorithm

```
Closure(1)

while (1 is still changing)

for each item [\alpha \rightarrow \beta \cdot \gamma \delta, a] \in I

for each production \gamma \rightarrow \tau \in P

for each terminal b \in FIRST(\delta a)

if [\gamma \rightarrow \cdot \tau, b] \notin I

then add [\gamma \rightarrow \cdot \tau, b] to 1
```

Example Grammar

UC Santa Barbara

Initial step builds the item [S $\rightarrow \bullet Z$,\$] and takes its *closure()*

 $Closure([S \rightarrow \bullet Z , \$])$

Item	From
$[S \rightarrow \bullet Z, \$]$	Original item
[<i>Z</i> →• <i>Z</i> z,\$]	1 , δ a is \$
$[Z \rightarrow \bullet z, \$]$	1, δ a is \$
$[Z \rightarrow \bullet Z z, z]$	2, δ a is z \$
$[Z \rightarrow \bullet z, z]$	2, δ a is z \$

 $\begin{array}{ccccccc}
1 & S & \rightarrow & Z \\
2 & Z & \rightarrow & Z z \\
3 & & | & z \\
\end{array}$

So, initial state s_0 is

 $\{ [S \rightarrow \bullet Z, \$], [Z \rightarrow \bullet Zz, \$], [Z \rightarrow \bullet z, \$], [Z \rightarrow \bullet Zz, z], [Z \rightarrow \bullet z, z] \}$

Computing Gotos

UC Santa Barbara

goto(I, x) computes the state that the parser would reach if it recognized an x while in state I

- $goto(\{ [\alpha \rightarrow \beta \bullet \gamma \delta, a] \}, \gamma) \text{ produces } [\alpha \rightarrow \beta \gamma \bullet \delta, a]$
- It also includes *closure(* $[\alpha \rightarrow \beta \gamma \bullet \delta, a]$) to fill out the state

The algorithm

Goto(*I*, *x*) new = Ø for each $[\alpha \rightarrow \beta \cdot x \delta, a] \in I$ new = new $\cup [\alpha \rightarrow \beta x \cdot \delta, a]$ return closure(new)

- Not a fixpoint method
- Uses closure

Example Grammar

UC Santa Barbara

s_0 is { $[S \rightarrow \bullet Z, \$], [Z \rightarrow \bullet Zz, \$], [Z \rightarrow \bullet z, \$], [Z \rightarrow \bullet Zz, z], [Z \rightarrow \bullet z, z]$ }

 $goto(S_0, z)$

Loop produces

Item	From
$[Z \rightarrow z \bullet, \$]$	Item 3 in s_o
$[Z \rightarrow z \bullet, z]$	Item 5 in s_0

Closure adds nothing since • is at end of rhs in each item

Canonical Collection of LR(1) Items

UC Santa Barbara

This is where we build the handle recognizing DFA!

Start from $I_0 = closure([S' \rightarrow \bullet S, \$])$

Repeatedly construct new states, until no new states are generated

The algorithm

```
I_{0} = \text{closure}([S' \rightarrow \cdot S, \$])

C = \{I_{0}\}

while (C is still changing)

for each I_{i} \in C and for each x \in (T \cup NT)

I_{new} = \text{goto}(I_{i}, x)

if I_{new} \notin C then

C = C \cup I_{new}

record transition I_{i} \rightarrow I_{new} on x
```

- Fixed-point computation
- Loop adds to C
- $C \subseteq 2^{\text{ITEMS}}$, so *C* is finite

Algorithms - Overview

Computing closure of set of LR(1) items:

```
Closure(1)

while (1 is still changing)

for each item [\alpha \rightarrow \beta \cdot \gamma \delta, a] \in I

for each production \gamma \rightarrow \tau \in P

for each terminal b \in FIRST(\delta a)

if [\gamma \rightarrow \cdot \tau, b] \notin I

then add [\gamma \rightarrow \cdot \tau, b] to 1
```

UC Santa Barbara

Computing goto for set of LR(1) items:

Goto(*I*, *x*) new = Ø for each $[\alpha \rightarrow \beta \cdot x \delta, a] \in I$ new = new $\cup [\alpha \rightarrow \beta x \cdot \delta, a]$ return closure(new)

Constructing canonical collection of LR(1) items:

```
I_{0} = \text{closure}([S' \rightarrow \cdot S, \$])
C = \{I_{0}\}
while (C is still changing)
for each I_{i} \in C and for each x \in (T \cup NT)
I_{new} = \text{goto}(I_{i}, x)
if I_{new} \notin C then
C = C \cup I_{new}
record transition I_{i} \rightarrow I_{new} on x
```

Canonical collection construction algorithm is the algorithm for constructing handle recognizing DFA
Uses Closure to compute the states of the DFA
Uses Goto to compute the transitions of the DFA

Practical Approach to LR(1) Parsing

Example

UC Santa Barbara

Simplified, right recursive expression grammar

 $S \rightarrow Expr$ $Expr \rightarrow Term - Expr$ $Expr \rightarrow Term$ $Term \rightarrow Factor * Term$ $Term \rightarrow Factor$ $Factor \rightarrow id$

Symbol	FIRST
S	{ id }
Expr	{ id }
Term	{ id }
Factor	{ id }
-	{-}
*	{*}
id	{ id }

Constructing the ACTION and GOTO Tables

Example (Constructing the LR(1) tables)

UC Santa Barbara 🗕

The algorithm produces the following table

	ACTION			GOTO			
	id	-	*	\$	Expr	Term	Factor
0	s 4				1	2	3
1				асс			
2		s 5		r 3			
3		r 5	s 6	r 5			
4		r 6	r 6	r 6			
5	s 4				7	2	3
6	s 4					8	3
7				r 2			
8		r 4		r 4			

Parsing Example (x-z*y)

– UC Santa Barbara 🔸

		1	ACTION			GOTO				
Stack	Input	Action		id	-	*	\$	Expr	Term	Factor
S_{o}	\$id * id - id	<u>S4</u>	0	s 4				1	2	3
S_0 id S_4	\$id * id –	R6 G3	1				acc			
~ <i>,</i>	$\mathfrak{I}\mathfrak{I}\mathfrak{I}$ $\mathfrak{I}\mathfrak{I}\mathfrak{I}\mathfrak{I}$	$\mathbf{P} = \mathbf{P} \mathbf{C} \mathbf{C}$	23		s 5	s 6	r 3 r 5			
$S_0 F S_3$	\$id * id –		4		r 5 r 6	r 6	r6			
$S_0 \operatorname{T} S_2$	\$id * id –	S 5	5	s 4	10		10	7	2	3
$S_0 T S_2 - S_5$	\$id * id	S4	6	s 4					8	3
$S_0 T S_2 - S_5$ id S_4		R6, G3	7				r 2			
$S_0^{0} T S_3^{2} - S_5^{2} F S_3^{4}$	\$id *	S 6	8		r 4		r 4			
$S_0 T S_3 - S_5 F S_3 * S_6$	\$id	S4								
$S_0 T S_3 - S_5 T S_3 * S_6 \text{ id } S_4$	\$	R6,G3								
$S_0^{T}TS_3 - S_5^{T}FS_3 * S_6^{T}FS_3$	S	R5,G8			0 5					
$S_0 T S_3 - S_5 F S_3 * S_6 T S_8$	\$	R4,G2	1. $S \rightarrow Expr$ 2. Expr \rightarrow Term - Expr							
° 5 5 5 0 0		R3,G7								
$S_0 \operatorname{T} S_3 - S_5 \operatorname{T} S_2$	\$,								
$S_0 T S_3 - S_5 E S7$	\$	R2,G1								
$S_0 \to S_1$	\$	ACC	5. Term → Factor							
				6.	Factor	. → į(d			

Conflicts and Associativity/Precedence

UC Santa Barbara

Conflicts and Associativity/Precedence

What can go wrong in LR(1) parsing?

UC Santa Barbara

What if state *s* contains $[\alpha \rightarrow \beta \bullet a\gamma, b]$ and $[\alpha \rightarrow \beta \bullet, a]$?

- First item generates "shift", second generates "reduce"
- Both define ACTION[*s*,*a*] cannot do both actions
- This is called a *shift/reduce conflict*
- Modify the grammar to eliminate it
- Shifting will often resolve it correctly (dangling else problem?)

What if set s contains $[\alpha \rightarrow \beta \bullet, a]$ and $[\gamma \rightarrow \beta \bullet, a]$?

- Each generates "reduce", but with a different production
- Both define ACTION[*s*,a] cannot do both reductions
- This is called a *reduce/reduce conflict*
- Modify the grammar to eliminate it

In either case, the grammar is not LR(1)

UC Santa Barbara

- **Panic-mode recovery:** On discovering an error, discard input symbols one at a time until one synchronizing token is found
 - For example delimiters such as ";" or "}" can be used as synchronizing tokens
- **Phrase-level recovery:** On discovering an error make local corrections to the input
 - For example replace "," with ";"
- Error-productions: If we have a good idea about what type of errors occur, we can augment the grammar with error productions and generate appropriate error messages when an error production is used
- **Global correction:** Given an incorrect input string try to find a correct string which will require minimum changes to the input string
 - In general too costly

Direct Encoding of Parse Tables

UC Santa Barbara

Rather than using a table-driven interpreter ...

- Generate spaghetti code that implements the logic
- Each state becomes a small case statement or if-then-else
- Analogous to direct coding a scanner

Advantages

- No table lookups and address calculations
- No representation for don't care states
- No outer loop it is implicit in the code for the states

This produces a faster parser with more code but no table

UC Santa Barbara

- LR(k) parsers are table-driven, bottom-up, shift-reduce parsers that use a limited right context (k-token look-ahead) for handle recognition
- LR(k): Left-to-right scan of the input, rightmost derivation in reverse with k token look-ahead

A grammar is LR(k) if, given a rightmost derivation

 $S \Rightarrow \gamma_0 \Rightarrow \gamma_1 \Rightarrow \gamma_2 \Rightarrow \dots \Rightarrow \gamma_{n-1} \Rightarrow \gamma_n \Rightarrow sentence$

We can

1. isolate the handle of each right-sentential form γ_i , and

2. determine the production by which to reduce, by scanning γ_i from left-to-right, going at most k symbols beyond the right end of the handle of γ_i

Summary

UC Santa Barbara 🗕

Top-down recursive descent	<i>Advantages</i> Fast Simplicity Good error detection	<i>Disadvantages</i> Hand-coded High maintenance Right associativity
LR(1)	Fast Deterministic langs. Automatable Left associativity	Large working sets Poor error messages Large table sizes