
UC Santa Barbara

Operating Systems

Christopher Kruegel
Department of Computer Science

UC Santa Barbara
http://www.cs.ucsb.edu/~chris/

UC Santa Barbara

2	

CS 170 Info

•  Web page: http://www.cs.ucsb.edu/~chris/cs170/index.html

•  Mailing lists (one for class, one for instructors)
 cs170-users – used to disseminate information and ask fellow classmates

 cs170-admin – use to reach TA and me

UC Santa Barbara

3	

Requirements

•  The course requirements include
–  several projects
–  a midterm and a final exam

•  The projects (and exams) are individual efforts

•  The final grade will be determined according to the following weight
–  projects: 50%
–  exams: 50%

•  Class participation and non-graded quizzes

UC Santa Barbara

4	

Lab Projects

~5 programming assignments

•  Shell (system calls)

•  Threads (parallel execution, scheduling)

•  Synchronization (semaphores, …)

•  Memory (virtual memory, shared regions, …)

•  File systems

UC Santa Barbara

5	

Material

•  The course will adopt the following book:
 Andrew S. Tanenbaum and Albert S. Woodhull
 Operating Systems (Design and Implementation)
 3rd Edition, Prentice-Hall, 2006

•  The set of assignments will be updated during the course

•  Additional material (slides) is provided on the class Web page

UC Santa Barbara

Operating Systems

•  Let us do amazing things …
–  allow you to run multiple programs at the same time

–  protect all other programs when one app crashes

–  allow programs to use more memory that your computer has RAM

–  allow you to plug in a device and just use it (well, most of the time)

–  protects your data from fellow students on CSIL

6	

UC Santa Barbara

What is the most-used OS?

•  Desktops
–  Microsoft Windows

•  sells 10 million copies per month and ~90% desktop market share
–  Apple Mac OS

•  ~8% share
–  Linux

•  negligible

7	

UC Santa Barbara

What is the most-used OS?

•  But wait … what about embedded devices?
–  order of magnitude more devices

 iTron (several billion installations)

 Wind River (VxWorks) – market leader, “Lord of Toasters”

 Linux is growing rapidly

 Symbian and cell phones (73 million in 2008)

•  Smartphone ecosystem is moving extremely fast (600M forecast for ‘12)
–  Android 49% (Linux-based)
–  iOS 19% (derived from Mac OS X – Darwin/Unix foundation)
–  BlackBerry 13% (proprietary OS developed by RIM)
–  Windows 11%
–  Symbian 5%

8	

UC Santa Barbara

9	

Outline

•  Introduction to Operating Systems

•  Processes and Threads

•  IPC, Synchronization, and Deadlocks

•  Memory Management

•  Input/Output

•  File Systems

•  Security

UC Santa Barbara

10	

In The Beginning There Was Hardware

CPU Memory Video
Controller

Keyboard
 Controller

Floppy Disk
 Controller

Hard Disk
 Controller

Mouse
 Controller

Other I/O
 Controllers

BUS(es)

UC Santa Barbara

11	

Central Processing Unit

•  Fetches instructions from memory and executes them

•  Characterized by an instruction set
–  Loads and stores values to/from memory/registers
–  Performs simple operations (add, and, xor)
–  Jumps to locations

•  Contains a set of registers
–  Program counter
–  Stack pointer
–  PSW (Program Status Word)

•  Kernel mode: total access to memory/registers and instructions
•  User mode: limited access to memory/registers and subset of

instructions

UC Santa Barbara

12	

Memory

•  Set of locations that can hold values

•  Organized in a hierarchy of layers
–  Registers (access time ~1 nsec)
–  Cache memory (access time ~2 nsec)
–  Main memory - RAM (access time ~10 nsec)
–  Hard disk (access time ~10 msec)

•  Read Only Memory (ROM) used to store values ... permanently

UC Santa Barbara

13	

I/O Devices

•  Controllers connected to the bus

•  Device connected to a controller

•  The controller provides an interface to access the device
resources/functionalities
–  done by storing values into device registers

•  Memory mapped access
–  device registers mapped into memory region

•  Dedicated I/O
–  special CPU instructions

UC Santa Barbara

14	

Disk

•  One or more metal platters that rotate at a constant speed (e.g., 5400
rpm, 7200 rpm, …)

•  Each platter has many concentric tracks

•  Corresponding tracks in different platters compose a cylinder

•  Each track is divided in sectors

•  A mechanical arm with a set of heads (one per surface) moves on
platters and reads/writes sectors

–  Move to the right track (1 to 10 msec)
–  Wait for the sector to appear under the head (5 to 10 msec)
–  Perform the actual read/write

UC Santa Barbara

15	

Buses
•  Used to transfer data among components
•  Different functions, speeds, number of bytes transferred

•  Cache bus
•  Memory bus (FrontSide Bus, QuickPath Interconnect)

•  ISA (Industry Standard Architecture) bus
–  8.33 MHz, 2 bytes, 16.67 MB/sec

•  PCI (Peripheral Component Interconnect) bus
–  66 MHz, 8 bytes, 528 MB/sec

•  PCIe (PCI Express)
•  USB (Universal Serial Bus)
•  SCSI (Small Computer System Interface) bus
•  IEEE 1394/FireWire bus

UC Santa Barbara

16	

There Be Power...

UC Santa Barbara

17	

There Be Power...

•  CPU starts and loads instructions starting at 0xfffffff0

•  Instruction jumps to BIOS code

•  BIOS (Basic Input/Output System) is started

–  Performs basic tests (memory, keyboard, etc) – POST (power on self test)

–  Determines the “boot device” (Hard disk, Floppy, CD-ROM)

–  Loads the contents of the first physical sector (the Master Boot Record -
MBR - Cyl 0, Head 0, Sect 1) in memory 0x7C00 - 0x7DFF

–  Jumps to 0x7C00

•  MBR code finds an “active” file system, loads the corresponding
 boot sector in memory, and jumps to it

•  The boot sector code loads the operating system

UC Santa Barbara

A few words about the BIOS

•  Two main components
–  Boot services

•  initialize hardware (including RAM)
•  read and load boot code
•  transfer control

–  Runtime services
•  basic routines for accessing devices
•  can display menus, boot from devices (and even network)
•  access to clock, NVRAM, …
•  OS typically bring their own device drivers

•  Developments
–  Standard PC BIOS around for a long time
–  recently, Unified Extensible Firmware Interface (UEFI) started as

replacement
–  UEFI is more general, supports boot from large disks

18	

UC Santa Barbara

19	

The Operating System

•  Where does an operating system fit in a computing system?

•  What does an operating system do?

•  Why do we need an operating system?

•  How is an operating system structured?

UC Santa Barbara

20	

Where?

User Programs

Operating System

Hardware Platform

HW Interface

OS Interface

UC Santa Barbara

21	

What?

•  The operating system is a resource manager that provides an
orderly and controlled allocation of resources

•  The operating system is an implementer of multiple virtual
(extended) machines that are easier to program than the
underlying hardware

•  Goal:
–  Each program/application can be developed as if the whole

computer were dedicated to its execution

UC Santa Barbara

22	

Resource Management

•  Multiplexing
–  creating an illusion of multiple (logical) resources from a single (physical) one

•  Allocation
–  keep track of who has the right to use what

•  Transformation
–  creating a new resource (logical) from existing resource (physical)

 primarily for “ease of use”

•  An OS multiplexes, allocates, and transforms HW resources

UC Santa Barbara

23	

Types of Multiplexing

•  Time multiplexing
–  time-sharing
–  scheduling a serially-reusable resource among several users

•  e.g., CPU or printer

•  Space multiplexing
–  space-sharing
–  dividing a multiple-use resource up among several users

•  e.g., memory, disk space

UC Santa Barbara

24	

Multiple Virtual Computers

•  Multiple processors
–  capability to execute multiple flows of instructions at the same time

•  Multiple memories
–  capability to store information of multiple applications at the same time

•  Access to file system as an abstraction of the disk

•  Access to other I/O devices in abstract, uniform ways
–  e.g., as objects or files

UC Santa Barbara

25	

Virtual Computers

•  OS creates multiple processes (simulated processors) out of the single CPU
–  time-multiplexing the CPU

•  OS creates multiple address spaces (memory for a process to execute in)
 out of the physical memory (RAM)

–  space-multiplexing of the memory

•  OS implements a file-system and I/O system so that processes use
 and share the disks and I/O simultaneously

–  space-multiplexing the disk and time-multiplexing the I/O channels

•  OS creates multiple virtual computers from a single physical machine

UC Santa Barbara

26	

Virtual Computers

Physical Computer

Operating System

VC1 VC2 VCn

User Proc. User Proc. User Proc.

UC Santa Barbara

27	

OS Interface – Virtual Processors

•  Nearly the same interface as the physical CPU

•  OS removes privileged operations
–  PSW determines if the code is either “user code” or “OS code”

–  changes in status are strictly regulated...

•  OS adds instructions (system calls)
–  create new virtual computers (processes)

–  communicate with other VCs

–  allocate memory

–  perform input and output operations I/O

–  access the file system

UC Santa Barbara

28	

OS Interface – Virtual Memory

•  Memory of the Virtual Computer is similar to the hardware memory (i.e.,
a sequence of words), and it is accessed the same way

•  The OS divides up the memory into parts and gives each part to each
virtual computer

•  OS creates an illusion that each virtual computer has a memory starting
from address 0x0000

•  OS creates an illusion that the virtual computer has more memory than
the physical memory

UC Santa Barbara

29	

OS Interface – Virtual File System

•  Secondary storage provides long-term storage for data

•  Storage is done physically in term of disk sectors and virtually in
terms of disk files

•  The virtual computer sees a file system consisting of named
files with arbitrary size

UC Santa Barbara

30	

OS Interface – Virtual I/O

•  I/O operations of the virtual computer are completely different from the
I/O operations of the physical computer

•  The physical computer has devices with complex control and status
registers

•  In contrast, the virtual I/O is simple and easy to use

•  In fact, in most OSes (e.g., UNIX) virtual I/O abstraction is almost
identical to the file-system interface giving rise to uniformity of
treatment with respect to all types of I/O devices including disks,
terminals, printers, network connections

•  Each VC sees a dedicated I/O device: the actual hardware is space/
time multiplexed by the OS

UC Santa Barbara

31	

Operating System Services

•  The programs running on virtual computers access the
operating system services through system calls

•  A system call is carried out by
–  Storing the parameters of the system calls in specific locations

(registers, memory)
–  Calling a “software interrupt” or “trap”

•  Switch to kernel mode: the OS is notified and takes control of
the situation

UC Santa Barbara

32	

Do We Need an OS?

•  For a specialized application (e.g., a microwave oven, a car), an OS
may not be needed

•  The hardware can directly be programmed with the rudimentary
functionalities required by these applications

•  A general-purpose computer, on the other hand, needs to run a wide
range of user programs

•  For such a system, an OS is indeed necessary

•  Otherwise, each user will need to program its own operating system
services

•  An OS can do this for once and make it available to the user programs

