
UC Santa Barbara

Operating Systems

Christopher Kruegel
Department of Computer Science

UC Santa Barbara
http://www.cs.ucsb.edu/~chris/

UC Santa Barbara

2	

Overview

•  System calls (definition and overview)

•  Processes and related system calls

•  Signals and related system calls

•  Memory-related system calls

•  Files and related system calls

UC Santa Barbara

3	

System Calls

•  System calls are the interface to operating system services -
they are how we tell the OS to do something on our behalf

•  API to the OS

•  Hide OS and hardware
 complexity from us

UC Santa Barbara

4	

System Calls

Example

#include <unistd.h> !

int main(int argc, char* argv[]) !
{ !
 int fd, nread; !
 char buf[1024];!

 fd = open("my_file",0); !/* Open file for reading */ !
 nread = read(fd,buf,1024); !/* Read some data */ !

 /* Presumably we do something with data here */ !

 close(fd); !
}

UC Santa Barbara

5	

System Calls

•  How the system calls communicate back to us?

•  Return value – usually return -1 on error, >= 0 on success
–  library functions set a global variable "errno" based on outcome

•  0 on success,
•  positive values encode various kinds of errors

–  can use perror library function to get a string

•  Buffers pointed to by system call arguments
–  e.g., in case of a read system call
–  values need to be copied between user and kernel space

UC Santa Barbara

Windows NT

•  Competitor to Unix
–  true multi-user
–  emphasis on portability and object-oriented design
–  isolation for applications and resource access control
–  similar to Unix, kernel and user mode

6	

Hardware and Hardware Abstraction Layer (HAL)

User-mode programs System support
processes (daemons)

Environment
subsystems (csrss)

System DLLs (ntdll, user32, kernel32, gdi32)

NT (Micro)-Kernel

Executive (system call handlers, mem, procs, I/O, security monitor

U
se

r m
od

e
K

er
ne

l m
od

e

UC Santa Barbara

7	

Processes

•  Concept
–  processes - program in execution

•  Each process has own memory space and process table entry

•  Process table entry
–  stores all information associated with a process (except memory)
–  register values, open files, user ID (UID), group ID (GID), ..

•  Processes are indexed by the process ID (PID)
–  integer that indexes into process table

UC Santa Barbara

8	

Processes

•  Memory layout

•  OS responsible for changing between multiple processes

•  Shakespeare example
–  multiple subplots which get advanced by interleaved scenes
–  actors and props must be taken away and saved while next scene goes on,

and they are brought back later

UC Santa Barbara

9	

Process System Calls

•  fork (create a new process)

•  exec (change program in process)

•  exit (end process)

•  wait (wait for a child process)

•  getpid(get process PID)

•  getpgrp(get process GID)

UC Santa Barbara

10	

fork()

•  Get almost identical copy (the child) of the original parent

•  File descriptors, arguments, memory, stack … all copied

•  Even current program counter

•  But not completely identical - why?

•  Syntax: pid = fork();

•  Return value from fork call is different is zero in child, but in
parent, it is PID of child.

UC Santa Barbara

11	

fork() cont.

int main(int argc, char* argv[]) !
{!
!int status; !

 char* ls_args[2]; !
 ls_args[0] = "."; !
 ls_args[1] = 0; !
 if(fork() > 0) !
 { !
! /* Parent */ !

 waitpid(-1,&status,0); !
 exit(status); !
 } !
 else !
 { !
 /* Child */ !
 execve("/bin/ls", ls_args,0); !
 } !

UC Santa Barbara

12	

Process Hierarchy

•  Notion of a hierarchy (tree) of processes

•  Each process has a single parent - parent has special privileges

•  In Unix, all user processes have ’init’ as their ultimate ancestor

Additional ways to group processes

•  Process Groups (job control)
•  Sessions (all processes for a user)

UC Santa Barbara

13	

exec()

•  Change program in process
–  i.e., launch a new program that replaces the current one

•  Several different forms with slightly different syntax

status = execve(prog, args, env); !

-1 on error.
never see this
if successful"

name of file
that should be
executed"

command line
arguments ->
char* args[]"

environment
variables ->
char* args[]"

UC Santa Barbara

14	

wait()

•  When a process is done it can call exit(status).

•  This is the status that "echo $?" can show you in the shell
•  A parent can wait for its children (it blocks until they are done)

status = waitpid(pid, &statloc, options); !

-1 on error -
otherwise, PID
of process that
exited"

which PID to
wait for; -1
means any
child"

exit code of
process that
has exited"

check man page
for details"

UC Santa Barbara

15	

Shell

•  Is an example of a program that makes heavy use of basic

process system calls

•  Basic cycle:

 prompt, read line, parse line, fork (child execs the command,
parent waits)

•  Have to handle & (background job)

•  Have to handle > | etc, - somehow connecting stdin and stdout

of the child to files or other programs

UC Santa Barbara

16	

Shell

UC Santa Barbara

17	

Signals

•  Report events to processes in asynchronous fashion
–  process stops current execution (saves context)
–  invokes signal handler
–  resumes previous execution

•  Examples
–  user interrupts process (terminate process with CTRL-C)
–  timer expires
–  illegal memory access

•  Signal handling
–  signals can be ignored
–  signals can be mapped to a signal handler (all except SIGKILL)
–  signals can lead to forced process termination

UC Santa Barbara

18	

Signal System Calls

•  kill (send signal to process)

•  alarm(set a timer)

•  pause(suspend until signal is received)

•  sigaction(map signal handler to signal)

•  sigprocmask(examine or change signal mask)

•  sigpending(obtain list of pending signals that are blocked)

UC Santa Barbara

Memory System Call

•  Quite simple in Unix

–  brk, sbrk – increase size of data segment
•  used internally by user-space memory management routines

–  mmap
•  map a (portion of a) file into process memory

19	

UC Santa Barbara

20	

Files

•  Conceptually, each file is an array of bytes

•  Special files
–  directories
–  block special files (disk)
–  character special files (modem, printer)

•  Every running program has a table of open files (file table)

•  File descriptors are integers which index into this table

•  Returned by open, creat

•  Used in read, write, etc. to specify which file we mean

UC Santa Barbara

21	

Files

•  Initially, every process starts out with a few open file descriptors
–  0 - stdin
–  1 - stdout
–  2 - stderr

•  We have a file pointer, which marks where we are currently up
to in each file (kept in an OS file table)

•  File pointer starts at the beginning of the file, but gets moved
around as we read or write (or can move it ourselves with lseek
system call)

UC Santa Barbara

22	

Inode

•  A file just contains its contents

•  Information about the file is contained in a separate structure called an
inode - one inode per file

•  Inode stores
–  permissions, access times, ownership
–  physical location of the file contents on disk (list of blocks)
–  number of links to the file - file is deleted when link counter drops to 0

•  Each inode has an index (the I-number) that uniquely identifies it

•  The OS keeps a table of all the inodes out on disk

•  Inodes do not contain the name of the file - that’s directory information

UC Santa Barbara

23	

OS File Data Structures

•  Where is all the information stored?
–  interaction is complex

•  Example
–  Process 1

 open("x", O_RDONLY)!
!open("y", O_RDWR)!

–  Process 2
!open("x", O_RDWR) !
!open(”z", O_WRONLY)!

UC Santa Barbara

24	

OS - File Data Structures

1	

2	

3	

4	

5	

1	

2	

3	

4	

5	

1 R	

1 W	

1 RW	

2 “x”	

1 “y”	

1 “z”	

1 RW	

Process 1: File Table

Process 2: File Table

OS File Table

OS Inode Table

UC Santa Barbara

25	

OS File Data Structures

•  File pointers live in the OS table, as does the RW information

•  Why is it done this way?

•  On a fork, the per-process file tables get duplicated in the child

•  But child shares file pointer with parent
–  note that counters in OS table would increase to 2 after a fork

•  Note that on exec, file tables are not reset
–  process can pass open files to child processes
–  even when the child has no longer the right to actually open this file!

UC Santa Barbara

26	

OS File Data Structures

•  Counts in the inode are really the link counts
–  processes can have a link into the file just like directories can

•  Neat trick - do an open on a filename, then unlink the filename
–  now, there is a file on disk that only you have a link to
–  but no-one else can open (or delete) it

UC Santa Barbara

27	

File Permissions

•  Users and processes have UIDs and GIDs
–  where is mapping between usernames and UID?

•  Every file has a UID and a GID of its owner

•  Need a way to control who can access the file

•  General schemes:
–  ACL - Access Control Lists (every file lists who can access it)
–  Capabilities (every identity lists what it can access)

•  Unix scheme is a cut-down ACL

•  There are three sets of bits that control who can do what to a file

UC Santa Barbara

28	

File Permissions

•  For example, via "ls -l" command

!-rw-r--r-- 1 chris chris 1868 Jan 8 22:02 schedule.txt!

•  Usual way to specify the "mode" in a system call is via a single
integer using octal notation
–  above example has mode 0644

•  UID 0 is the "root" or "superuser" UID
–  is omnipotent

•  Ordinary users can only change the mode of their own files,
 root can change mode or ownership of anybody’s files

UC Santa Barbara

29	

File System System Calls

•  open(open a file)

•  close(close a file)

•  creat(create a file)

•  read(read from file)

•  write(write from file)

•  chown(change owner)

•  chmod(change permission bits)

UC Santa Barbara

30	

Directories

•  Files are managed in a hierarchical structure (called file system)
•  internal nodes in the file system are directories
•  leaf nodes are files

UC Santa Barbara

31	

Directories

•  Directories are just regular files that happen to contain the
names and locations (specifically I-numbers) of other files

•  File system is a single name space that starts at the root
directory

•  Files can be uniquely identified by specifying their absolute path
–  e.g., /home/chris/schedule.txt

•  Relative path
–  starts from current working directory (CWD)
–  e.g., chris/schedule.txt, assuming that the current working directory

is /home

UC Santa Barbara

32	

Multiple File Systems

•  How can we include another file system into our root file
system?

•  mount() system call is used to achieve this!

mount(“/dev/floppy”,”/b”,0);

UC Santa Barbara

33	

Links

•  Since the only place that the name of a file appears is in a
directory entry, it is possible to have multiple names correspond
to the same file

•  All it takes is several entries in one or more directories which
point to the same I-node (I.e., have the same I-number).

•  This is why the directory structure is not really a tree
–  it is really a full directed graph (can even have cycles!)

•  This concept refers to hard links. There are also soft links"
–  small file that contains the name of the target file"

UC Santa Barbara

34	

Links

•  link() system call establishes a link between two files"

link(“/usr/jim/memo”,”/usr/ast/note”);

UC Santa Barbara

35	

File Deletion

•  How to delete files?
–  implicitly done via the unlink() system call
–  when there are no links to a file anymore, it gets removed

UC Santa Barbara

36	

Synchronization

•  The operating system keeps a lot of stuff in memory about the
state of files on disk (e.g., the inodes)

•  It does not necessarily store all changes onto disk immediately
(for efficiency reasons, things are cached)

•  Hence, if the OS dies unexpectedly, the file system can be in an
inconsistent state

•  sync()
–  tells the OS to write out everything to disk
–  invoked regularly by the update process

UC Santa Barbara

37	

Pipes

•  Common Unix mechanism for processes to communicate with
one another

•  Pipes are basically special files

•  Implemented as circular buffer of fixed size (e.g., 4k)

•  Communication through read and write system calls

•  Block if reading an empty pipe or writing a full one

•  Use at shell level (ls | wc, who | sort | lpr)

UC Santa Barbara

38	

Pipe System Call

•  Create a pipe:
 need array of size 2
 array[0] is FD for reading, array[1] is FD for writing.

int fildes[2]; ! !/* FD’s for pipe. */ !
pipe(fildes); ! !/* create pipe */ !
read(fildes[0], ...); !/* read from pipe */ !
write(fildes[1], ...); !/* write to pipe */!

•  But talking to ourselves is no fun. Need someone else to talk to

•  Solution - create pipe, then fork

UC Santa Barbara

39	

Inter-process Communication

UC Santa Barbara

40	

Inter-process Communication

