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Overview 

•  System calls (definition and overview)   

•  Processes and related system calls 

•  Signals and related system calls 

•  Memory-related system calls  

•  Files and related system calls 
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System Calls 

•  System calls are the interface to operating system services - 
they are how we tell the OS to do something on our behalf 

•  API to the OS 

•  Hide OS and hardware 
 complexity from us   
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System Calls 

Example 

#include <unistd.h> !

int main(int argc, char* argv[]) !
{ !
  int fd, nread; !
  char buf[1024];!

  fd = open("my_file",0); !/* Open file for reading */ !
  nread = read(fd,buf,1024); !/* Read some data */ !

  /* Presumably we do something with data here */ !

  close(fd); !
}  
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System Calls 

•  How the system calls communicate back to us? 

•  Return value – usually return -1 on error, >= 0 on success  
–  library functions set a global variable "errno" based on outcome 

•  0 on success,  
•  positive values encode various kinds of errors  

–  can use perror library function to get a string   

•  Buffers pointed to by system call arguments 
–  e.g., in case of a read system call 
–  values need to be copied between user and kernel space 
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Windows NT 

•  Competitor to Unix 
–  true multi-user 
–  emphasis on portability and object-oriented design 
–  isolation for applications and resource access control 
–  similar to Unix, kernel and user mode 
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Hardware and Hardware Abstraction Layer (HAL) 

User-mode programs System support 
processes (daemons) 

Environment 
subsystems (csrss) 

System DLLs (ntdll, user32, kernel32, gdi32) 

NT (Micro)-Kernel 

Executive (system call handlers, mem, procs, I/O, security monitor 
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Processes 

•  Concept 
–  processes - program in execution  

•  Each process has own memory space and process table entry 

•  Process table entry 
–  stores all information associated with a process (except memory)  
–  register values, open files, user ID (UID), group ID (GID), .. 

•  Processes are indexed by the process ID (PID) 
–  integer that indexes into process table 
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Processes 

•  Memory layout 

•  OS responsible for changing between multiple processes  

•  Shakespeare example  
–  multiple subplots which get advanced by interleaved scenes  
–  actors and props must be taken away and saved while next scene goes on, 

and they are brought back later  
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Process System Calls 

•  fork (create a new process)  

•  exec (change program in process)  

•  exit (end process)  

•  wait (wait for a child process) 

•  getpid(get process PID) 

•  getpgrp(get process GID)  
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fork() 

•  Get almost identical copy (the child) of the original parent  

•  File descriptors, arguments, memory, stack … all copied  

•  Even current program counter  

•  But not completely identical - why?  

•  Syntax:   pid = fork();  

•  Return value from fork call is different is zero in child, but in 
parent, it is PID of child.   
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fork() cont. 

int main(int argc, char* argv[]) !
{!
!int status; !

   char* ls_args[2]; !
   ls_args[0] = "."; !
   ls_args[1] = 0; !
   if(fork() > 0) !
   { !
!   /* Parent */ !

      waitpid(-1,&status,0); !
      exit(status); !
   } !
   else !
   { !
      /* Child */ !
      execve("/bin/ls", ls_args,0); !
   } !
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Process Hierarchy 

•  Notion of a hierarchy (tree) of processes  

•  Each process has a single parent - parent has special privileges  

•  In Unix, all user processes have ’init’ as their ultimate ancestor  

Additional ways to group processes 

•   Process Groups (job control) 
•   Sessions (all processes for a user)  
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exec() 

•  Change program in process 
–  i.e., launch a new program that replaces the current one 

•  Several different forms with slightly different syntax 

status = execve(prog, args, env); !

-1 on error. 
never see this 
if successful"

name of file 
that should be 
executed"

command line 
arguments -> 
char* args[]"

environment 
variables -> 
char* args[]"
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wait() 

•  When a process is done it can call exit(status).  

•  This is the status that "echo $?" can show you in the shell  
•  A parent can wait for its children (it blocks until they are done)  

status = waitpid(pid, &statloc, options); !

-1 on error - 
otherwise, PID 
of process that 
exited"

which PID to 
wait for; -1 
means any 
child"

exit code of 
process that 
has exited"

check man page 
for details"
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Shell 

•  Is an example of a program that makes heavy use of basic 

process system calls  

•  Basic cycle: 

 prompt, read line, parse line, fork (child execs the command, 
parent waits)  

•  Have to handle & (background job)  

•  Have to handle > | etc, - somehow connecting stdin and stdout 

of the child to files or other programs  
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Shell 



UC Santa Barbara 

17	


Signals 

•  Report events to processes in asynchronous fashion 
–  process stops current execution (saves context) 
–  invokes signal handler 
–  resumes previous execution 

•  Examples 
–  user interrupts process (terminate process with CTRL-C) 
–  timer expires 
–  illegal memory access 

•  Signal handling 
–  signals can be ignored 
–  signals can be mapped to a signal handler (all except SIGKILL) 
–  signals can lead to forced process termination 
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Signal System Calls 

•  kill (send signal to process) 

•  alarm(set a timer) 

•  pause(suspend until signal is received) 

•  sigaction(map signal handler to signal) 

•  sigprocmask(examine or change signal mask) 

•  sigpending(obtain list of pending signals that are blocked)  
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Memory System Call 

•  Quite simple in Unix 

–  brk, sbrk – increase size of data segment 
•  used internally by user-space memory management routines 

–  mmap 
•  map a (portion of a) file into process memory 

19	
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Files 

•  Conceptually, each file is an array of bytes 

•  Special files 
–  directories 
–  block special files (disk) 
–  character special files (modem, printer) 

•  Every running program has a table of open files (file table) 

•  File descriptors are integers which index into this table 

•  Returned by open, creat 

•  Used in read, write, etc. to specify which file we mean  
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Files 

•  Initially, every process starts out with a few open file descriptors 
–  0 - stdin 
–  1 - stdout 
–  2 - stderr   

•  We have a file pointer, which marks where we are currently up 
to in each file (kept in an OS file table) 

•  File pointer starts at the beginning of the file, but gets moved 
around as we read or write (or can move it ourselves with lseek 
system call) 
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Inode 

•  A file just contains its contents 

•  Information about the file is contained in a separate structure called an 
inode - one inode per file  

•  Inode stores 
–  permissions, access times, ownership 
–  physical location of the file contents on disk (list of blocks)  
–  number of links to the file - file is deleted when link counter drops to 0 

•  Each inode has an index (the I-number) that uniquely identifies it  

•  The OS keeps a table of all the inodes out on disk 

•  Inodes do not contain the name of the file - that’s directory information   
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OS File Data Structures 

•  Where is all the information stored? 
–  interaction is complex 

•  Example  
–  Process 1  

 open("x", O_RDONLY)!
!open("y", O_RDWR)!

–  Process 2  
!open("x", O_RDWR) !
!open(”z", O_WRONLY)!
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OS - File Data Structures 
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Process 1: File Table 

Process 2: File Table 

OS File Table 

OS Inode Table 
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OS File Data Structures 

•  File pointers live in the OS table, as does the RW information 

•  Why is it done this way?  

•  On a fork, the per-process file tables get duplicated in the child  

•  But child shares file pointer with parent 
–  note that counters in OS table would increase to 2 after a fork 

•  Note that on exec, file tables are not reset 
–  process can pass open files to child processes 
–  even when the child has no longer the right to actually open this file! 
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OS File Data Structures 

•  Counts in the inode are really the link counts 
–  processes can have a link into the file just like directories can  

•  Neat trick - do an open on a filename, then unlink the filename 
–  now, there is a file on disk that only you have a link to 
–  but no-one else can open (or delete) it 



UC Santa Barbara 

27	


File Permissions 

•  Users and processes have UIDs and GIDs 
–  where is mapping between usernames and UID? 

•  Every file has a UID and a GID of its owner 

•  Need a way to control who can access the file 

•  General schemes: 
–  ACL - Access Control Lists (every file lists who can access it)  
–  Capabilities (every identity lists what it can access)  

•  Unix scheme is a cut-down ACL 

•  There are three sets of bits that control who can do what to a file  
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File Permissions 

•  For example, via "ls -l" command   

!-rw-r--r-- 1 chris  chris  1868 Jan 8 22:02 schedule.txt!

•  Usual way to specify the "mode" in a system call is via a single 
integer using octal notation  
–  above example has mode 0644 

•  UID 0 is the "root" or "superuser" UID 
–  is omnipotent 

•  Ordinary users can only change the mode of their own files,  
 root can change mode or ownership of anybody’s files  
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File System System Calls 

•  open(open a file)  

•  close(close a file) 

•  creat(create a file) 

•  read(read from file) 

•  write(write from file) 

•  chown(change owner) 

•  chmod(change permission bits) 
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Directories 

•  Files are managed in a hierarchical structure (called file system) 
•  internal nodes in the file system are directories 
•  leaf nodes are files 
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Directories 

•  Directories are just regular files that happen to contain the 
names and locations (specifically I-numbers) of other files 

•  File system is a single name space that starts at the root 
directory 

•  Files can be uniquely identified by specifying their absolute path 
–  e.g., /home/chris/schedule.txt 

•  Relative path 
–  starts from current working directory (CWD) 
–  e.g., chris/schedule.txt, assuming that the current working directory 

is /home 
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Multiple File Systems 

•  How can we include another file system into our root file 
system? 

•  mount() system call is used to achieve this! 

mount(“/dev/floppy”,”/b”,0); 
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Links 

•  Since the only place that the name of a file appears is in a 
directory entry, it is possible to have multiple names correspond 
to the same file 

•  All it takes is several entries in one or more directories which 
point to the same I-node (I.e., have the same I-number).  

•  This is why the directory structure is not really a tree 
–  it is really a full directed graph (can even have cycles!) 

•  This concept refers to hard links. There are also soft links"
–  small file that contains the name of the target file"
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Links 

•  link() system call establishes a link between two files"

link(“/usr/jim/memo”,”/usr/ast/note”); 
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File Deletion 

•  How to delete files? 
–  implicitly done via the unlink() system call 
–  when there are no links to a file anymore, it gets removed 
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Synchronization 

•  The operating system keeps a lot of stuff in memory about the 
state of files on disk (e.g., the inodes) 

•  It does not necessarily store all changes onto disk immediately 
(for efficiency reasons, things are cached) 

•  Hence, if the OS dies unexpectedly, the file system can be in an 
inconsistent state 

•  sync()  
–  tells the OS to write out everything to disk 
–  invoked regularly by the update process 
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Pipes 

•  Common Unix mechanism for processes to communicate with 
one another  

•  Pipes are basically special files 

•  Implemented as circular buffer of fixed size (e.g., 4k) 

•  Communication through read and write system calls  

•  Block if reading an empty pipe or writing a full one  

•  Use at shell level (ls | wc, who | sort | lpr)  
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Pipe System Call 

•  Create a pipe: 
 need array of size 2 
 array[0] is FD for reading, array[1] is FD for writing. 

int fildes[2];  ! !/* FD’s for pipe. */ !
pipe(fildes);  ! !/* create pipe */ !
read(fildes[0], ...); !/* read from pipe */ !
write(fildes[1], ...); !/* write to pipe */!

•  But talking to ourselves is no fun. Need someone else to talk to 

•  Solution - create pipe, then fork 
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Inter-process Communication 
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Inter-process Communication 


