UC Santa Barbara

Operating Systems

Christopher Kruegel
Department of Computer Science
UC Santa Barbara
http://www.cs.ucsb.edu/~chris/

The Process Concept

UC Santa Barbara

The OS creates number of virtual computers

Execution of a program on one of these virtual computer is called a
sequential process

The virtual computer gives the illusion to each process that it is running
on a dedicated CPU with a dedicated memory

The actual CPU is switched back and forth among the processes
(multiprogramming with time-sharing)

Process memory is managed so that all the needed portions are
present in the actual memory

The virtual computer is the execution environment, the process is the
executor, and the program being executed determines the process
behavior

Programs and Processes

UC Santa Barbara

Static object existing in a file * Dynamic object — program in
_ _ execution

A sequence of instruction « A sequence of instruction

Static existence in space & time executions

« Exists in limited span of time

« Same process may execute
different program

Same program can be executed
by different processes

main () {
int i, prod = 1;
for (i=0 ; i < 100; i++)
prod = prod * i;

}

prod = prod*i; Process executes it 100 times

Process Life Cycle

UC Santa Barbara

« A process can be created
— During OS initialization
* “init” process in UNIX
— By another process
 fork(), or NtCreateProcess()

« A process can be terminated
— By itself
» exit(), or ExitProcess()
— Because of an error
* e.g., segmentation fault
— By another process
* Kill(), TerminateProcess()

Process States

UC Santa Barbara

* Process states
— Running (using the CPU)
— Ready (waiting for the CPU)
— Blocked (waiting for a resource to become available)

1. Process blocks for input

2. Scheduler picks another process
3. Scheduler picks this process

4. Input becomes available

Blocked

Process States

UC Santa Barbara

* Process hierarchy
— each process has a parent
— each process can have many children
— does not have to be like that (e.g., Windows NT)

« Parent must collect status of child processes
— otherwise, children become zombie processes
— what happens when parent dies first?

 How is signal delivery handled
— l.e., do children receive signals of parents?

Process Implementation

UC Santa Barbara

 The OS maintains a process table with an entry for each
process, called Process Control Block (PCB)

« The PCB contains:
— Process ID, User ID, Group ID
— Process state (Running, Ready, Blocked)
— Registers (Program counter, PSW, Stack pointer, etc)
— Pointers to memory segments (Stack, Heap, Data, Text)
— Periority/Scheduling parameters
— Accounting information
— Signal management functions
— Open file tables
— Working directory

Process Implementation

UC Santa Barbara

In Minix, different pieces of information about a process are stored in
different parts of the OS

Kernel
— register values (PC, stack pointer, ...)
— scheduling information

Process management

— memory information (pointers to text, data, bss segment)
— IDs (UID, GID, ...)

File management
— working directory
— umask
— file table

Threads

UC Santa Barbara

A process is a way to
— Group resources (memory, open files, ...)

— Perform the execution of a program: a thread of execution (code, program
counter, registers, stack)

Multiple threads of execution can run in the same process environment

Multiple threads share
— Common address space (shared memory)
— Open files
— Process, user, and group IDs

Each thread has its own code, program counter, set of registers, and
stack

Threads

Process 1

~

User <
space

Kernel
space

Process 1

|

Process 1

|

\

Thread

UC Santa Barbara

Process

Kernel

l

Thread

(a)

Kernel

(b)

Parallel Processes

N = T = T o T = T = S e
0 N o0 U W N HE O
0 0 LX) LX) L1} L1} L1}

O 00 J 6o U b W N =
e 60 ee o0 oo oo

: int i;

2 g()
2 {

printf(“value of i is %d\n“, i);

: int main(int argc, char **argv)

: {

i = get_input();
£(0);

return O;

UC Santa Barbara

' Address space (Data)

i=7? i=7?

P1] P2

Registers (here: Program Counter)
PC=15 . (PC=15

P1 i P2

Stack (Historx of Execution)

P1) P2

Running

Parallel Processes

R =
N =)
L1} L1} L1}

S
o U
LX)

— =
o
0 0 LX)

O 00 J 6o U b W N =
e 60 ee o0 oo oo

: int i;

2 g()
2 {

printf(“value of i is %d\n“, i);

: int main(int argc, char **argv)

: {

i = get_input();
£();
return O;

UC Santa Barbara

' Address space (Data)

i =42 i=7?

P1] P2

Registers (here: Program Counter)
PC =16 . (PC=15

P1 i P2

Stack (Historx of Execution)

P1) P2

Running

Parallel Processes

= .

11:
12:
13:
14:
‘ 15:
16:
17:
18:

O 00 J 6o U b W N =
e ee e 60 e oo

: int i;

2 g()
2 {

printf(“value of i is %d\n“, i);

int main(int argc, char **argv)
{

i = get_input();

£(0);

return O;

UC Santa Barbara

/' Adressraum (Daten)

i =42 i

P1] P2
Registers (here: Program Counter)
PC=10 . (PC=15

P1 i P2
Stack
17

P1): P2
Running

Parallel Processes

= .

11:
12:
13:
14:
15:
...}' l6:
17:
18:

O 00 J 6o U b W N =
e ee e 60 e oo

: int i;

2 g()
2 {

printf(“value of i is %d\n“, i);

int main(int argc, char **argv)
{

i = get_input();

£(0);

return O;

UC Santa Barbara

Address space;(Data)

i =42 i F A7

P1] P2
Registers (heré: Program Couniter)
PC=10 PC=16 '

P1] P2 |:
Stack
17

P1] P2

Running

Parallel Processes

y

T T T T T S T
N o Ol W N
L1 oo oo (1] (L] (L]

=
(o]
L1

O 00 J 6o U b W N =
e 60 ee o0 oo oo

: int i;

2 g()
2 {

printf(“value of i is %d\n“, i);

: int main(int argc, char **argv)

: {

i = get_input();
£(0);

return O;

UC Santa Barbara

Address space;(Data)

i =42 i F A7

P1] P2
Registers (heré: Program Couniter)
PC=10 PC=10 '

P1] P2 |:
Stack
17 17

P1] P2

Running

Parallel Processes

O 00 4 & U1 b W N =

=),

11:
12:
13:
14:
15:
16:
17:
18:

: int i;

2 g()
2 {

printf(“value of i is %d\n“, i);

int main(int argc, char **argv)
{

i = get_input();

£(0);

return O;

UC Santa Barbara

Address space;(Data)

i =42 i F A7

P1] P2
Registers (heré: Program Couniter)
PC=10 PC=5 '

P1] P2 |:
Stack .
17 17

i 11
P1] | P2
Running

Parallel Processes

= .

11:
12:
13:
14:
15:
16:
17:
18:

O 00 J 6o U b W N =
e ee e oo oo

: int i;

2 g()
2 {

printf(“value of i is %d\n“, i);

2} Value of i is 17

int main(int argc, char **argv)
{

i = get_input();

£(0);

return O;

UC Santa Barbara

Address space;(Data)

i =42 i F A7

P1] P2
Registers (herez.' Program Couniter)
PC=10 PC=6 ’

P1] P2 |:
Stack
17 17

i 11
P1] P2
Running

Parallel Processes

O 00 4 & U1 b W N =
L]

N = T = T e T o T = S = e
0 N o0 U W N HE O
0 0 LX) LX) L1} L1} L1} 0

: int i;

2 g()
2 {

printf(“value of i is %d\n“, i);

: int main(int argc, char **argv)

: {

i = get_input();
£(0);

return O;

UC Santa Barbara

' Address space (Data)

i =42 i 517

P1] P2
Registers (here: Program Counter)
PC=5 . (PC=6

P1 i P2
Stack .
17 |7
11 11

P1): P2

Running

Parallel Processes

§

O 00 J 6o U b W N =
e o0 e oo oo

N = T = T e T o T = S = e
0 N o0 U W N HE O
0 0 LX) LX) L1} L1} L1}

: int i;

2 g()
2 {

printf(“value of i is %d\n“, i);

2} Value of i is 42

: int main(int argc, char **argv)

: {

i = get_input();
£(0);

return O;

UC Santa Barbara

' Address space (Data)

i =42 i 517

P1] P2
Registers (here: Program Counter)
PC=6 . (PC=6

P1 i P2
Stack .
17 |7
11 11

P1) P2

Running

Threads

N = T = T o T = T = S e
0 N o0 U W N HE O
0 0 LX) LX) L1} L1} L1}

O 00 J 6o U b W N =
e 60 ee o0 oo oo

: int i;

2 g()
2 {

printf(“value of i is %d\n“, i);

: int main(int argc, char **argv)

: {

i = get_input();
£(0);

return O;

UC Santa Barbara

Address space (Data)
=%

/' Registers (he@e.' Program Counter)

PC =15 PC =15
T1 | T2
Stack
T1 | T2
Running

Threads

R =
N =)
L1} L1} L1}

=
A O
oo

= =
0
L1 L1 oo

O 00 J 6o U b W N =
e 60 ee o0 oo oo

: int i;

2 g()
2 {

printf(“value of i is %d\n“, i);

: int main(int argc, char **argv)

: {

i = get_input();
£(0);

return O;

UC Santa Barbara

Address space (Data)
i =42

/' Registers (he@e.' Program Counter)

PC = 16 PC =15

T1 | T2
Stack

T1 | T2
Running

Threads

= .

11:
12:
13:
14:
...}, 15:
16:
17:
18:

O 00 J 6o U b W N =
e ee e 60 e oo

: int i;

2 g()
2 {

printf(“value of i is %d\n“, i);

int main(int argc, char **argv)
{

i = get_input();

£(0);

return O;

UC Santa Barbara

Address space (Data)
i =42

/' Registers (he@e.' Program Counter)

PC =10 PC =15
T1 T2
Stack
17
1| T2
Running

Threads

= .

11:
12:
13:
14:
15:
...}. 16:
17:
18:

O 00 J 6o U b W N =
e ee e 60 e oo

: int i;

2 g()
2 {

printf(“value of i is %d\n“, i);

int main(int argc, char **argv)
{

i = get_input();

£(0);

return O;

UC Santa Barbara

Address space (Data)

\i=17

Registers (here."."" Program Cou'fgter)

PC =10 PC =16
T1 T2
Stack
17
T1 T2
Running

Threads

y

T T T T T S T
N o Ol W N
L1 oo oo (1] (L] (L]

=
(o]
L1

O 00 J 6o U b W N =
e 60 ee o0 oo oo

: int i;

2 g()
2 {

printf(“value of i is %d\n“, i);

: int main(int argc, char **argv)

: {

i = get_input();
£(0);

return O;

UC Santa Barbara

Address space (Data)
i=17

Registers (here;’.': Program Cou'fgter)

PC =10 PC =10
T1 T2
Stack
17 17
T1 T2
Running

Threads

O 00 4 & U1 b W N =

=),

11:
12:
13:
14:
15:
16:
17:
18:

: int i;

2 g()
2 {

printf(“value of i is %d\n“, i);

int main(int argc, char **argv)
{

i = get_input();

£(0);

return O;

UC Santa Barbara

Address space (Data)
i=17

Registers (here;’.': Program Cou'fgter)

PC =10 PC=5
T1| T2
Stack
17 |17
i1
1| T2
Running

Threads

= .

11:
12:
13:
14:
15:
16:
17:
18:

O 00 J 6o U b W N =
e ee e oo oo

: int i;

2 g()
2 {

printf(“value of i is %d\n“, i);

2} Value of i is 17

int main(int argc, char **argv)
{

i = get_input();

£(0);

return O;

UC Santa Barbara

Address space (Data)
i=17

Registers (here;’.': Program Cou'fgter)

PC =10 PC=6
T1| T2
Stack
17 |17
i1
1| T2
Running

Threads

O 00 4 & U1 b W N =
L]

N = T = T e T o T = S = e
0 N o0 U W N HE O
0 0 LX) LX) L1} L1} L1} 0

: int i;

2 g()
2 {

printf(“value of i is %d\n“, i);

: int main(int argc, char **argv)

: {

i = get_input();
£(0);

return O;

UC Santa Barbara

Address space (Data)
i=17

¢ Registers (he@e.' Program Counter)

PC=5 PC=6
T1 | T2
Stack :
17 | 17
11 | 11
T1 | T2
Running

Threads

§

O 00 J 6o U b W N =
e o0 e oo oo

N = T = T e T o T = S = e
0 N o0 U W N HE O
0 0 LX) LX) L1} L1} L1}

: int i;

2 g()
2 {

printf(“value of i is %d\n“, i);

2} Value of i is 17

: int main(int argc, char **argv)

: {

i = get_input();
£(0);

return O;

UC Santa Barbara

Address space (Data)
i=17

¢ Registers (he@e.' Program Counter)

PC =6 PC=6
T1 | T2
Stack :
17 | 17
11 | 11
T | T2
Running

Why Threads?

UC Santa Barbara

Useful to structure applications that have to do many things
concurrently

— One thread is waiting for 1/O

— Another thread in the same process is doing some computation

Having threads share common address space makes it easier to
coordinate activities

Use a shared data-structure through which the processes can
be coordinated:

— Producer-Consumer interactions
— Shared data structures/counts

More efficient than using processes (context switch is faster)

Thread Primitives

UC Santa Barbara

« thread create
« thread_exit

* thread_join

« thread yield

(synchronization primitives)

Thread Implementation

UC Santa Barbara

 Threads can be implemented in user space

— Pros
» Performance (no kernel/user switch)
» Portability (same primitives for every environment)
 Flexibility (custom scheduling algorithm)

— Cons

» Blocking system calls block the process, not the thread
— need to check if a system call would block before each invocation

« Threads cannot be easily preempted (they have to yield)

Thread Implementation

UC Santa Barbara

 Threads can be implemented in the kernel

— Pros
» Blocking system calls suspend the calling thread only

» Can take advantage of multiple CPUs
» Signals can be delivered more precisely

— Cons
« Can be heavy, not as flexible

Threading Issues

UC Santa Barbara

What happens on a fork()?
— only a single thread is created in the child

What happens with shared data structures and files?
— threads need to be careful and synchronize access

What about stack management?
— each thread needs its own stack

What about signal delivery?
— complicated!
— some signals are sent to specific thread (alarm, segfault)
— others to the first that does not block them (termination request)

Reentrant Functions

UC Santa Barbara

« What about global variables in libraries?
— functions need to be reentrant

« Some functions are not designed to be invoked concurrently
— Use of global variables, such as errno

* Functions used by threads need to be reentrant

Portability Issues and Pthreads

UC Santa Barbara

POSIX 1003.1c (a.k.a. pthreads) is an API for multi-threaded
programming standardized by IEEE as part of the POSIX standards

Most Unix vendors have endorsed the POSIX 1003.1¢c standard

Implementations of 1003.1c API are available for many UNIX systems

pthreads defines an interface
— implementation can be done in either user or kernel space

Thus, multithreaded programs using the 1003.1c API are likely to run
unchanged on a wide variety of Unix platforms

