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Scheduling 

•  Many processes to execute, but one CPU 
•  OS time-multiplexes the CPU by operating context switching 

–  Between user processes 
–  Between user processes and the operating system 

•  Operation carried out by scheduler following a scheduling 
algorithm 

•  Switching is expensive 
–  Switch from user to kernel model 
–  Save the state of the current process (including memory map) 
–  Select a process for execution (scheduler) 
–  Restore the saved state of the new process 
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CPU-bound and  
I/O-bound Processes 

•  Bursts of CPU usage alternate with periods of I/O wait 
–  a CPU-bound process (a) 
–  an I/O bound process (b) 
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When To Schedule 

•  Must schedule 
–  a process blocks (I/O, semaphore, etc) 
–  a process exits 

•  May schedule 
–  new process is created (parent and child are both ready) 
–  I/O interrupt 
–  clock interrupt 
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Scheduling Algorithms 

•  Non-preemptive 
–  CPU is switched when process  

•  has finished  
•  executes a yield() 
•  blocks 

•  Preemptive 
–  CPU is switched independently of the process behavior 

•  A clock interrupt is required 

•  Scheduling algorithms should enforce 
–  Fairness 
–  Policy 
–  Balance 
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Scheduling in Batch Systems 

•  Goals 
–  Throughput: 

 maximize jobs per hour 
–  Turnaround time:  

 minimize time between submission and termination 
–  CPU utilization 

 keep processor busy 

•  Examples 
–  First-come first-served 
–  Shortest job first 
–  Shortest remaining time next 
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First-Come First-Served 

•  Processes are inserted in a queue 
•  The scheduler picks up the first process, executes it to 

termination or until it blocks, and then picks the next one 
•  Very simple 

•  Disadvantage 
–  I/O-bound processes could be slowed down by CPU-bound ones  
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Shortest Job First 

•  This algorithm assumes that running time for all the processes 
to be run is known in advance 

•  Scheduler picks the shortest job first 
•  Optimizes turnaround time 

–  a) Turnaround is A=8, B=12, C=16, D=20 (avg. 14) 
–  b) Turnaround is B=4, C=8, D=12, A=20 (avg. 11) 

•  Problem: what if new jobs arrive? 
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Shortest Remaining Time Next 

•  This algorithm also assumes that running time for all the 
processes to be run is known in advance  

•  The algorithm chooses the process whose remaining run time is 
the shortest 

•  When a new job arrive, its remaining run time is compared to 
the one of the process running 

•  If current process has more remaining time than the run time of 
new process, the current process is preempted and the new one 
is run  
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Scheduling in Interactive Systems 

•  Goals 
–  Response time:  

 minimize time needed to react to requests 
–  Proportionality: 

 meet user expectations 

•  Examples 
–  Round robin 
–  Priority scheduling 
–  Lottery scheduling 
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Round Robin Scheduling 

•  Each is process is assigned a quantum 

•  The process 
–  Suspends before the end of the quantum or 
–  Is preempted at the end of the quantum 

•  Scheduler maintains a list of ready processes 
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Round Robin Scheduling 

•  Parameters: 
–  Context switch (e.g., 1 msec) 
–  Quantum length (e.g., 25 msec) 

•  If quantum is too small, a notable percentage of the CPU time is 
spent in switching contexts 

•  If quantum is too big, response time can be very bad 
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Priority Scheduling 

•  Each process is assigned a priority 

•  The process with the highest priority is allowed to run 
•  I/O bound processes should be given higher priorities 

•  Problem: low priority processes may end up starving... 

•  First solution: As the process uses CPU, the corresponding 
priority is decreased 

•  Second solution: Set priority as the inverse of the fraction of 
quantum used 

•  Third solution: Used priority classes (starvation is still possible)  
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Priority Scheduling 
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Lottery Scheduling 

•  OS gives “lottery tickets” to processes 
•  Scheduler picks a ticket randomly and gives CPU to the winner 
•  Higher-priority processes get more tickets 

•  Advantage: 
–  processes may exchange tickets 
–  it is possible to fine tune the share of CPU that a process receives 
–  easy to implement 
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Scheduling 

•  Example 
–  non-preemtive priority scheduling 

Process Start Runtime Priority 
A 0 5 2 

B 3 1 1 

C 4 3 4 

D 8 7 0 

E 12 2 3 
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Thread Scheduling 

•  If threads are implemented in user space, only one process’ 
threads are run inside a quantum 

•  Possible scheduling of user-level threads 
–  48-msec process  

quantum 
–  Threads run  

8 msec/CPU burst 
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Thread Scheduling 

•  If threads are implemented in 
the kernel, threads can be 
interleaved 

•  Kernel may decide to switch to a 
thread belonging to the same 
process for efficiency reasons 
(memory map does not change) 
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Policy versus Mechanism 

•  Sometimes an application may want to influence the scheduling of 
cooperating processes (same user, or children processes) to achieve 
better overall performance 

•  Separate what is allowed to be done with how it is done 
–  process knows which of its children threads are important and need priority 

•  Scheduling algorithm parameterized 
–  Mechanism in the kernel 

•  Parameters filled in by user processes 
–  Policy set by user process 
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Linux - CFS 

•  Completely fair scheduler (CFS) 

!Ingo Molnar:!
!80% of CFS's design can be summed up in a single sentence: 
CFS basically models an "ideal, precise multi-tasking CPU" 
on real hardware.!

!On real hardware, we can run only a single task at once, so 
while that one task runs, the other tasks that are waiting 
for the CPU are at a disadvantage - the current task gets 
an unfair amount of CPU time. In CFS this fairness 
imbalance is expressed and tracked via the per-task       
p->wait_runtime (nanosec-unit) value. "wait_runtime" is the 
amount of time the task should now run on the CPU for it to 
become completely fair and balanced. 


