
UC Santa Barbara

Operating Systems

Christopher Kruegel
Department of Computer Science

UC Santa Barbara
http://www.cs.ucsb.edu/~chris/

UC Santa Barbara

2	

Scheduling

•  Many processes to execute, but one CPU
•  OS time-multiplexes the CPU by operating context switching

–  Between user processes
–  Between user processes and the operating system

•  Operation carried out by scheduler following a scheduling
algorithm

•  Switching is expensive
–  Switch from user to kernel model
–  Save the state of the current process (including memory map)
–  Select a process for execution (scheduler)
–  Restore the saved state of the new process

UC Santa Barbara

3	

CPU-bound and
I/O-bound Processes

•  Bursts of CPU usage alternate with periods of I/O wait
–  a CPU-bound process (a)
–  an I/O bound process (b)

UC Santa Barbara

4	

When To Schedule

•  Must schedule
–  a process blocks (I/O, semaphore, etc)
–  a process exits

•  May schedule
–  new process is created (parent and child are both ready)
–  I/O interrupt
–  clock interrupt

UC Santa Barbara

5	

Scheduling Algorithms

•  Non-preemptive
–  CPU is switched when process

•  has finished
•  executes a yield()
•  blocks

•  Preemptive
–  CPU is switched independently of the process behavior

•  A clock interrupt is required

•  Scheduling algorithms should enforce
–  Fairness
–  Policy
–  Balance

UC Santa Barbara

6	

Scheduling in Batch Systems

•  Goals
–  Throughput:

 maximize jobs per hour
–  Turnaround time:

 minimize time between submission and termination
–  CPU utilization

 keep processor busy

•  Examples
–  First-come first-served
–  Shortest job first
–  Shortest remaining time next

UC Santa Barbara

7	

First-Come First-Served

•  Processes are inserted in a queue
•  The scheduler picks up the first process, executes it to

termination or until it blocks, and then picks the next one
•  Very simple

•  Disadvantage
–  I/O-bound processes could be slowed down by CPU-bound ones

UC Santa Barbara

8	

Shortest Job First

•  This algorithm assumes that running time for all the processes
to be run is known in advance

•  Scheduler picks the shortest job first
•  Optimizes turnaround time

–  a) Turnaround is A=8, B=12, C=16, D=20 (avg. 14)
–  b) Turnaround is B=4, C=8, D=12, A=20 (avg. 11)

•  Problem: what if new jobs arrive?

UC Santa Barbara

9	

Shortest Remaining Time Next

•  This algorithm also assumes that running time for all the
processes to be run is known in advance

•  The algorithm chooses the process whose remaining run time is
the shortest

•  When a new job arrive, its remaining run time is compared to
the one of the process running

•  If current process has more remaining time than the run time of
new process, the current process is preempted and the new one
is run

UC Santa Barbara

10	

Scheduling in Interactive Systems

•  Goals
–  Response time:

 minimize time needed to react to requests
–  Proportionality:

 meet user expectations

•  Examples
–  Round robin
–  Priority scheduling
–  Lottery scheduling

UC Santa Barbara

11	

Round Robin Scheduling

•  Each is process is assigned a quantum

•  The process
–  Suspends before the end of the quantum or
–  Is preempted at the end of the quantum

•  Scheduler maintains a list of ready processes

UC Santa Barbara

12	

Round Robin Scheduling

•  Parameters:
–  Context switch (e.g., 1 msec)
–  Quantum length (e.g., 25 msec)

•  If quantum is too small, a notable percentage of the CPU time is
spent in switching contexts

•  If quantum is too big, response time can be very bad

UC Santa Barbara

13	

Priority Scheduling

•  Each process is assigned a priority

•  The process with the highest priority is allowed to run
•  I/O bound processes should be given higher priorities

•  Problem: low priority processes may end up starving...

•  First solution: As the process uses CPU, the corresponding
priority is decreased

•  Second solution: Set priority as the inverse of the fraction of
quantum used

•  Third solution: Used priority classes (starvation is still possible)

UC Santa Barbara

14	

Priority Scheduling

UC Santa Barbara

15	

Lottery Scheduling

•  OS gives “lottery tickets” to processes
•  Scheduler picks a ticket randomly and gives CPU to the winner
•  Higher-priority processes get more tickets

•  Advantage:
–  processes may exchange tickets
–  it is possible to fine tune the share of CPU that a process receives
–  easy to implement

UC Santa Barbara

16	

Scheduling

•  Example
–  non-preemtive priority scheduling

Process Start Runtime Priority
A 0 5 2

B 3 1 1

C 4 3 4

D 8 7 0

E 12 2 3

UC Santa Barbara

17	

Scheduling

Process Start Runtime Priority
A 0 5 2

B 3 1 1

C 4 3 4

D 8 7 0

E 12 2 3

0 2 4 6 8 10 12 t 14 16 18 20

E

D

C

B

A

UC Santa Barbara

18	

Scheduling

Process Start Runtime Priority
A 0 5 2

B 3 1 1

C 4 3 4

D 8 7 0

E 12 2 3

0 2 4 6 8 10 12 t 14 16 18 20

E

D

C

B

A

UC Santa Barbara

19	

Scheduling

Process Start Runtime Priority
A 0 5 2

B 3 1 1

C 4 3 4

D 8 7 0

E 12 2 3

0 2 4 6 8 10 12 t 14 16 18 20

E

D

C

B

A

UC Santa Barbara

20	

Scheduling

Process Start Runtime Priority
A 0 5 2

B 3 1 1

C 4 3 4

D 8 7 0

E 12 2 3

0 2 4 6 8 10 12 t 14 16 18 20

E

D

C

B

A

UC Santa Barbara

21	

Scheduling

Process Start Runtime Priority
A 0 5 2

B 3 1 1

C 4 3 4

D 8 7 0

E 12 2 3

0 2 4 6 8 10 12 t 14 16 18 20

E

D

C

B

A

UC Santa Barbara

22	

Scheduling

Process Start Runtime Priority
A 0 5 2

B 3 1 1

C 4 3 4

D 8 7 0

E 12 2 3

0 2 4 6 8 10 12 t 14 16 18 20

E

D

C

B

A

UC Santa Barbara

23	

Scheduling

Process Start Runtime Priority
A 0 5 2

B 3 1 1

C 4 3 4

D 8 7 0

E 12 2 3

0 2 4 6 8 10 12 t 14 16 18 20

E

D

C

B

A

UC Santa Barbara

24	

Scheduling

Process Start Runtime Priority
A 0 5 2

B 3 1 1

C 4 3 4

D 8 7 0

E 12 2 3

0 2 4 6 8 10 12 t 14 16 18 20

E

D

C

B

A

UC Santa Barbara

25	

Scheduling

Process Start Runtime Priority
A 0 5 2

B 3 1 1

C 4 3 4

D 8 7 0

E 12 2 3

0 2 4 6 8 10 12 t 14 16 18 20

E

D

C

B

A

UC Santa Barbara

26	

Scheduling

Process A C B D E

Time (RUNNING) 0 5 8 9 16

0 2 4 6 8 10 12 t 14 16 18 20

E

D

C

B

A

UC Santa Barbara

27	

Scheduling

•  Example
–  preemtive priority scheduling

Process Start Runtime Priority
A 0 5 2

B 3 1 1

C 4 3 4

D 8 7 0

E 12 2 3

UC Santa Barbara

28	

Scheduling

Process Start Runtime Priority
A 0 5 2

B 3 1 1

C 4 3 4

D 8 7 0

E 12 2 3

0 2 4 6 8 10 12 t 14 16 18 20

E

D

C

B

A

UC Santa Barbara

29	

Scheduling

Process Start Runtime Priority
A 0 5 2

B 3 1 1

C 4 3 4

D 8 7 0

E 12 2 3

0 2 4 6 8 10 12 t 14 16 18 20

E

D

C

B

A

UC Santa Barbara

30	

Scheduling

Process Start Runtime Priority
A 0 5 2

B 3 1 1

C 4 3 4

D 8 7 0

E 12 2 3

0 2 4 6 8 10 12 t 14 16 18 20

E

D

C

B

A

UC Santa Barbara

31	

Scheduling

Process Start Runtime Priority
A 0 5 2

B 3 1 1

C 4 3 4

D 8 7 0

E 12 2 3

0 2 4 6 8 10 12 t 14 16 18 20

E

D

C

B

A

UC Santa Barbara

32	

Scheduling

Process Start Runtime Priority
A 0 5 2

B 3 1 1

C 4 3 4

D 8 7 0

E 12 2 3

0 2 4 6 8 10 12 t 14 16 18 20

E

D

C

B

A

UC Santa Barbara

33	

Scheduling

Process Start Runtime Priority
A 0 5 2

B 3 1 1

C 4 3 4

D 8 7 0

E 12 2 3

0 2 4 6 8 10 12 t 14 16 18 20

E

D

C

B

A

UC Santa Barbara

34	

Scheduling

Process Start Runtime Priority
A 0 5 2

B 3 1 1

C 4 3 4

D 8 7 0

E 12 2 3

0 2 4 6 8 10 12 t 14 16 18 20

E

D

C

B

A

UC Santa Barbara

35	

Scheduling

Process Start Runtime Priority
A 0 5 2

B 3 1 1

C 4 3 4

D 8 7 0

E 12 2 3

0 2 4 6 8 10 12 t 14 16 18 20

E

D

C

B

A

UC Santa Barbara

36	

Scheduling

Process Start Runtime Priority
A 0 5 2

B 3 1 1

C 4 3 4

D 8 7 0

E 12 2 3

0 2 4 6 8 10 12 t 14 16 18 20

E

D

C

B

A

UC Santa Barbara

37	

Scheduling

0 2 4 6 8 10 12 t 14 16 18 20

E

D

C

B

A

Process A C A B D E D

Time (RUNNING) 0 4 7 8 9 12 14

UC Santa Barbara

38	

Thread Scheduling

•  If threads are implemented in user space, only one process’
threads are run inside a quantum

•  Possible scheduling of user-level threads
–  48-msec process

quantum
–  Threads run

8 msec/CPU burst

UC Santa Barbara

39	

Thread Scheduling

•  If threads are implemented in
the kernel, threads can be
interleaved

•  Kernel may decide to switch to a
thread belonging to the same
process for efficiency reasons
(memory map does not change)

UC Santa Barbara

40	

Policy versus Mechanism

•  Sometimes an application may want to influence the scheduling of
cooperating processes (same user, or children processes) to achieve
better overall performance

•  Separate what is allowed to be done with how it is done
–  process knows which of its children threads are important and need priority

•  Scheduling algorithm parameterized
–  Mechanism in the kernel

•  Parameters filled in by user processes
–  Policy set by user process

UC Santa Barbara

41	

Linux - CFS

•  Completely fair scheduler (CFS)

!Ingo Molnar:!
!80% of CFS's design can be summed up in a single sentence:
CFS basically models an "ideal, precise multi-tasking CPU"
on real hardware.!

!On real hardware, we can run only a single task at once, so
while that one task runs, the other tasks that are waiting
for the CPU are at a disadvantage - the current task gets
an unfair amount of CPU time. In CFS this fairness
imbalance is expressed and tracked via the per-task
p->wait_runtime (nanosec-unit) value. "wait_runtime" is the
amount of time the task should now run on the CPU for it to
become completely fair and balanced.

