
UC Santa Barbara

Operating Systems

Christopher Kruegel
Department of Computer Science

UC Santa Barbara
http://www.cs.ucsb.edu/~chris/

UC Santa Barbara

2	

Deadlock

•  When processes try to acquire resources concurrently they may
end up “stuck”

•  Process A needs P, Q
•  Process B needs Q, P

•  Process A gets P
•  Process B gets Q

•  Process A tries to get Q and blocks

•  Process B tries to get P and blocks

UC Santa Barbara

3	

Resources

•  Examples of computer resources
–  Printers
–  Tape drives
–  Tables

•  Resources can be available
–  In a single instance (e.g., one printer)
–  In multiple identical copies (e.g., an array of tape drives)

•  Resources can be
–  Preemptable: the resource can be taken away from a process with

no negative side-effects
–  Nonpreemptable: taking away the resource will cause the process

to fail

UC Santa Barbara

4	

Accessing Resources

•  Deadlocks occur when processes are granted exclusive access
to non-preemptable resources

•  Sequence of events required to use a resource
–  Request the resource
–  Use the resource
–  Release the resource

•  If request is denied
–  Requesting process may be blocked
–  May fail with error code

UC Santa Barbara

5	

Defining Deadlocks

•  Formal definition :
A set of processes is deadlocked if each process in the set is
waiting for an event that only another process in the set can
cause

•  Usually the event is the release of a currently held resource

•  None of the processes can
–  Run
–  Release resources
–  Be awakened

UC Santa Barbara

6	

Four Conditions for Deadlock

1.  Mutual exclusion condition
 Each resource is assigned to exactly one process or is available

2.  Hold and wait condition
 A process holding resources can request additional ones

3.  No preemption condition
 Previously granted resources cannot forcibly be taken away

4.  Circular wait condition
 There must be a circular chain of two or more processes, each of
which is waiting for a resource held by next member of the chain

UC Santa Barbara

7	

Deadlock Modeling

•  Modeled with directed graphs
–  Processes: circles
–  Resources: squares

(a) Resource R assigned to process A
(b) Process B is requesting/waiting for resource S
(c) Process C and D are in deadlock over resources T and U

UC Santa Barbara

8	

An Example

A B C

UC Santa Barbara

9	

Another Example
A B C

UC Santa Barbara

10	

Dealing With Deadlocks

•  Just ignore the problem altogether
–  Bad things happen!

•  Detection and recovery
–  Let them occur and deal with it

•  Dynamic avoidance
–  Careful resource allocation

•  Prevention
–  Negating one of the four necessary conditions

UC Santa Barbara

11	

The Ostrich Algorithm

•  Pretend there is no problem

•  Reasonable if
–  Deadlocks occur very rarely
–  Cost of prevention is high

•  UNIX and Windows takes this approach

•  It is a trade off between
–  Convenience
–  Correctness

UC Santa Barbara

12	

Detection And Recovery

•  Let deadlocks happen and deal with the situation

•  Need to detect: Deadlock detection algorithms

•  Need to recover: Preemption, Rollback, Killing

UC Santa Barbara

13	

Detection with
One Resource of Each Type

•  Note the resource ownership and requests
•  If a cycle can be found within the graph, then there is a deadlock

UC Santa Barbara

14	

Detection with
One Resource of Each Type

L: list of nodes
Arcs can be marked to indicate that they have been inspected

1.  For each node N in the graphs do the following
2.  L := empty, arcs all unmarked
3.  Add current node to L and check if it appears two times

1.  Yes: there is a cycle
2.  No: continue

4.  Are there outgoing, unmarked arcs? If not go to step 6
5.  Pick randomly an unmarked arc and mark it, follow the arc to the node

and go to step 3
6.  Remove current node from the list, go back to the previous node, and

jump to step 3. If this is the root node then there are no cycles

UC Santa Barbara

15	

Detection with
Multiple Resources of Each Type

UC Santa Barbara

16	

Detection with
Multiple Resources of Each Type

•  Comparing vectors: A < B iff for every corresponding element Ai,
Bi it is Ai < Bi

•  Initially all processes are unmarked (not deadlocked)

•  Look for a process for which the corresponding row in R is less
than or equal to A
–  If such process exists add the corresponding row of C to A, mark

the process and restart to look
–  If there is no such process then exit

•  At the end, unmarked processes are in deadlock

UC Santa Barbara

17	

Detection with
Multiple Resources of Each Type

UC Santa Barbara

18	

Recovery from Deadlock

•  Recovery through preemption
–  Take a resource from some other process
–  Depends on nature of the resource

•  Recovery through rollback
–  Checkpoint a process periodically
–  Use this saved state
–  Restart the process if it is found deadlocked

•  Recovery through killing processes
–  Crudest but simplest way to break a deadlock
–  Kill one of the processes in the deadlock cycle: the other processes

get its resources
–  Choose process that can be rerun from the beginning

UC Santa Barbara

19	

Deadlock Avoidance

•  When a process requests a resource the system must decide if
resource should be granted

•  To avoid deadlocks system should stay in safe state

•  State: matrices C, R, E, A

•  Safe state: there is currently no deadlocked process and there is
some scheduling order in which every process can run to
completion, even if all the processes request all the resources at
the same time

UC Santa Barbara

20	

Resource Trajectories

UC Santa Barbara

21	

Safe and Unsafe States

•  State (a) is safe
–  Max possible allocation is A=6, B=2, C=5
–  Three are free, give two to B and let it run to completion

•  State (c)
–  Max possible allocation is A=6, C=5
–  Five are free give to C and let it run to completion

(a) (b) (c) (d) (e)

Total number of resources: 10

UC Santa Barbara

22	

Moving to an Unsafe State

•  From State (a) one resource is given to A
•  State (b) is unsafe because there is not a scheduling order in

which every process can run to completion if all the processes
request all the resources at the same time

•  B gets 2 and returns 4, but both A and C need 5

(a) (b) (c) (d)

UC Santa Barbara

23	

The Banker’s Algorithm

•  Algorithm considers each request and examines if it leads to a
safe state
–  Check if there are enough resources to satisfy at least one process
–  Sum the resources of the process to those available, mark the

process and iterate
–  If at the end there are processes that are left unmarked the process

would lead to an unsafe state

•  If granting the request would lead to an unsafe state then
resource is not granted

UC Santa Barbara

24	

The Banker’s Algorithm

•  B requests a scanner. Should the scanner be granted?
•  Then E requests the last scanner. Should it be granted?

UC Santa Barbara

25	

Deadlock Prevention

Invalidate one of the following:

1.  Mutual exclusion condition
 Each resource is assigned to exactly one process or is available

2.  Hold and wait condition
 A process holding resources can request additional ones

3.  No preemption condition
 Previously granted resources cannot forcibly be taken away

4.  Circular wait condition
 There must be a circular chain of two or more processes, each of
which is waiting for a resource held by next member of the chain

UC Santa Barbara

26	

Attacking the Mutual Exclusion
Condition

•  Some devices (such as printer) can be spooled
–  Only the printer daemon uses printer resource
–  Deadlock for printer eliminated

•  Not all devices can be spooled

•  Principle:
–  Avoid assigning resource when not absolutely necessary
–  As few processes as possible actually claim the resource

UC Santa Barbara

27	

Attacking the Hold and Wait
Condition

•  Require processes to request all their resources before starting
–  A process never has to wait for what it needs

•  Problems
–  Process may not know required resources at start of run
–  Ties up resources that other processes could be using

•  Possible solution
–  Process must give up all resources before acquiring a new one
–  Then request all needed resources at once

UC Santa Barbara

28	

Attacking the No Preemption
Condition

•  This is not a very appealing option

•  Consider a process that is using a printer
–  Let process go halfway through its job
–  Then forcibly take away printer
–  Results can be unpredictable

UC Santa Barbara

29	

Attacking the Circular Wait Condition

•  Require a process to request/hold only one resource at a time

•  Provide global numbering of resources and require ordered
acquisitions
–  A process holding resource j cannot ask for resource i, with i < j

•  The resulting resource graph is cycle-free

UC Santa Barbara

30	

Two-Phase Locking

•  Phase One
–  Process tries to lock all records it needs, one at a time
–  If needed record found locked, release all the locks and start over

•  If phase one succeeds, it starts second phase
–  Performing updates
–  Releasing locks

•  Similar to requesting all resources at once

UC Santa Barbara

31	

Non-resource Deadlocks

•  Possible for two processes to deadlock
–  Each is waiting for the other to do some task

•  Can happen with semaphores
–  Each process required to do a down() on two semaphores (mutex

and another)
–  If done in wrong order, deadlock results

UC Santa Barbara

32	

Starvation

•  Algorithm to allocate a resource
–  May be to give to shortest job first

•  Works great for multiple short jobs in a system

•  May cause long job to be postponed indefinitely
–  Even though not blocked

•  Solution:
–  First-come, first-serve policy

