
UC Santa Barbara

Operating Systems

Christopher Kruegel
Department of Computer Science

UC Santa Barbara
http://www.cs.ucsb.edu/~chris/

UC Santa Barbara

2	

Memory Management

•  Ideally memory would be
–  Large
–  Fast
–  Non volatile

•  In practice, a memory hierarchy is used
–  Small amount of fast, expensive memory cache
–  Some medium-speed, medium price main memory
–  Gigabytes of slow, cheap disk storage

•  The memory manager handles the memory hierarchy

UC Santa Barbara

3	

Memory Management Approaches

•  Mono-programming vs. multi-programming

•  Fixed program set vs. swapping

•  Complete image vs. partial image (virtual memory)

•  Modern systems
–  multi-programmed, with swapping and virtual memory

UC Santa Barbara

4	

Simplest Memory Management

•  Run only one user process at a time
•  Operating/system and device drivers resident or in ROM

UC Santa Barbara

5	

Dealing With Multiprogramming

•  Available memory is divided into a number of fixed partitions

•  Partitions can be of different sizes

•  When process needs to be executed, put in one of available partitions

•  Problem: if a small program gets a big partition memory gets wasted

•  Solution
–  Use different queues for different partitions

–  Use one queue and choose the largest job that fits an available partition and
use some aging mechanisms to ensure that small jobs are not left to starve
(e.g., an “ignored” counter)

UC Santa Barbara

6	

Multiprogramming
with Fixed Partitions

UC Santa Barbara

7	

Relocation and Protection

•  The programmer cannot be sure where program will be loaded
in memory
–  Address locations of variables, code routines cannot be absolute
–  Must keep a program out of other processes’ partitions

•  Relocation can be done at loading time
–  Maintain information about the addresses that need to be relocated
–  Does not solve the protection problem (protection bits)

•  Use base and limit registers
–  Address locations added to base value to map to physical address
–  Attempts to access address locations beyond the limit value

generates an error

UC Santa Barbara

8	

Swapping

•  Most of the time there is not enough memory to hold all the
active processes at the same time

•  Swapping is the process of saving a task to disk
•  In swapping processes are loaded to and discarded from

memory following the needs of execution

•  Address must be relocated each time either by hardware or by
software

•  After a while memory can get fragmented and may need
compaction, which is computationally expensive

•  A process may also try to get bigger and bigger and bigger

UC Santa Barbara

9	

An Example

P1 600k 10s
P2 1000k 5s
P3 300k 10s
P4 700k 8s
P5 500k 15s

OS

0

400

2560

P1

1000

P2 can be loaded

UC Santa Barbara

10	

An Example

OS
0

400

2560 P1 600k 10s
P2 1000k 5s
P3 300k 10s
P4 700k 8s
P5 500k 15s

P1

1000

P3 can be loaded

P2

2000

UC Santa Barbara

11	

An Example

OS
0

400

2560
P1 600k 10s
P2 1000k 5s
P3 300k 10s
P4 700k 8s
P5 500k 15s

P1

1000

P4 & P5 need to wait!

P2

2000

P3
2300

UC Santa Barbara

12	

An Example

OS
0

400

2560
P1 600k 10s
P2 1000k 5s Terminates
P3 300k 10s
P4 700k 8s
P5 500k 15s

P1

1000

P4 can be loaded

2000

P3
2300

UC Santa Barbara

13	

An Example

OS
0

400

2560
P1 600k 10s
P2 1000k 5s
P3 300k 10s
P4 700k 8s
P5 500k 15s

P1

1000

2000

P3
2300

P4

1700

UC Santa Barbara

14	

Memory Management with Bitmaps

•  Divide memory in allocation units
•  Keep track of which units have been used and which ones are

free using a bitmap
•  Tradeoff:

–  Big allocation units: +small bitmap -may waste memory
–  Small allocation units: -better “fit” +big bitmap

UC Santa Barbara

15	

Memory Management
with Linked Lists

•  Maintain a linked list where each element
–  May represent a process (P) or a piece of free memory (“hole”, H)
–  Contains number of initial unit
–  Contains length of memory block
–  Maintains pointer to each element (single- or double-linked)

•  List is usually keep ordered

UC Santa Barbara

16	

List Management

•  Two possible events
–  A process gets out of the memory

•  Compaction
–  A new process wants to be in memory

•  Allocation algorithms

•  First fit
–  Search the list until a suitable hole is found
–  Split the hole in a P and an H

•  Best fit
–  Search the entire list and use the smallest hole that fits the program
–  Slow (requires complete scan through the list)

UC Santa Barbara

17	

List Management

•  Separate lists
–  Maintains two separate lists for processes and holes
–  Holes are ordered by size
–  Speeds up search
–  Makes compaction difficult

•  Quick fit
–  Separate lists, hashed by size or size ranges
–  Speeds up search
–  Makes compaction difficult

•  Techniques still very relevant for heap management (malloc)

UC Santa Barbara

18	

Virtual Memory

•  What if a program is too big to be loaded in memory?

•  What if a higher degree of multiprogramming is desirable?

•  Physical memory is split into page frames

•  Virtual memory is split into pages

•  OS (with help from the hardware) manages the mapping
between pages and page frames

