Operating Systems

Christopher Kruegel
Department of Computer Science
UC Santa Barbara
http://www.cs.ucsb.edu/~chris/
Segmentation

- One-dimensional address space is cumbersome to deal with if different portions of the program have to grow/shrink

- Provide the virtual machine with several independent address spaces, called segments

- Addressing is done by specifying
 - Segment
 - Address within the segment

- Advantages
 - Easy to share code and data segments (shared libraries)
 - Different segments can have different types of protection

- Segmentation is usually composed with paging
Segmentation with Paging: Pentium

- Virtual memory with 16K segments
- Local Descriptor Table (LDT) for each program
- Global Descriptor Table (LDT) for the whole system
- To access a segment a selector for the segment is loaded into one of the segment registers (six in total)
 - CS holds code segment
 - DS holds data segment
Segment Selector

• A Pentium selector contains a bit to specify if the selector is part of the GDT or the LDT (8K segments each)
• A set of bits determines the privilege level
• Segment selector determines which segment descriptor to use
Segment Descriptor

- The segment descriptor is 64 bit long
- The “limit” is expressed with 20 bits: if Granularity bit is 0, then max limit is 1MB; if the G-bit is 1, then limit is in pages of 4K (the missing 12 bits!)
Mapping An Address

- Conversion of (selector, offset) pair to a linear address
Paging the Segment

- Mapping of linear address in a segment onto a physical address
Protection on the Pentium

- Calls to procedures between protection levels must be performed by specifying a selector.

- The selector is used to locate a call gate that gives the address of the required procedure.

- This way, it is not possible to jump to arbitrary locations.
Backing Store

- (a) Paging to static swap area
- (b) Backing up pages dynamically
Separate Instruction and Data Spaces

- One address space
- Separate I and D spaces