UC Santa Barbara

Operating Systems

Christopher Kruegel
Department of Computer Science
UC Santa Barbara
http://www.cs.ucsb.edu/~chris/

File Systems

UC Santa Barbara

File systems provide long-term information storage

Must store large amounts of data

Information stored must survive the termination of the process
using it

Multiple processes must be able to access the information

concurrently

Two facets:
— File system interface (logical view)

— File system implementation (physical view)

The File Abstraction

UC Santa Barbara

Files are named entities used by processes to store data

Defined by a number of attributes

Name: File name, Extension

Type: Data, Directory, Special (Devices, IPC, etc)
Location: Info to map file to disk blocks

Size

Protection: Read, Write, Execute

Time(s): Creation, Modification, Last use

Owner: User ID, Group ID etc

Usually seen as a stream of bytes (record-based structures are
possible)

File Access

UC Santa Barbara

* Sequential access
— Read all bytes/records from the beginning
— Cannot jump around, could rewind or back up
— Convenient when medium was tape

 Random access
— Bytes/records read in any order
— Essential for data base systems

— Read can be ...
* move file marker (seek), then read or ...
 read and then move file marker

* |ndexed access

File Operations

UC Santa Barbara

Create
Delete

Open

Close

Read

Write

Append

Seek

Get attributes
Set Attributes
Rename

An Example Program

UC Santa Barbara

/* File copy program. Error checking and reporting is minimal. */

#include <sys/types.h> /* include necessary header files */
#include <fcntl.h>

#include <stdlib.h>

#include <unistd.h>

int main(int argc, char *argv(]); /* ANSI prototype */
#define BUF _SIZE 4096 /* use a buffer size of 4096 bytes */
#define OUTPUT _MODE 0700 /* protection bits for output file */

int main(int argc, char *argvf])

{

int in_fd, out_fd, rd_count, wt_count;
char buffer[BUF _SIZE];

if (argc != 3) exit(1); /* syntax error if argc is not 3 */

An Example Program

UC Santa Barbara

/* Open the input file and create the output file */
in_fd = open(argv[1], O_RDONLY); /* open the source file */

if (in_fd < 0) exit(2); /* if it cannot be opened, exit */
out_fd = creat(argv[2], OUTPUT_MODE); /* create the destination file */
if (out_fd < 0) exit(3); /* if it cannot be created, exit */

/* Copy loop */
while (TRUE) {
rd_count = read(in_fd, buffer, BUF _SIZE); /* read a block of data */

if (rd__count <= 0) break; /* if end of file or error, exit loop */
wt_count = write(out_ fd, buffer, rd_count); /* write data */
if (wt_count <= 0) exit(4); /* wt_count <= 0 is an error */

}

/* Close the files */

close(in_fd);

close(out_fd);

if (rd_count == 0) /* no error on last read */
exit(0);

else
exit(5); /* error on last read */

Memory-Mapped Files

UC Santa Barbara

Some systems allow for mapping files into virtual memory

File is then accesses as part of the memory

If shared-memory is supported memory-mapped files can be
accessed by multiple processes

Solution can simplify access

Directories

UC Santa Barbara

Used to organize files
Usually organized in trees or directed graphs

File is identified by a path name in the graph
— absolute path name
— relative path name (wrt working directory as stored in the PCB)

[1ERL (13 7

. and “..” entries are used to identify current and parent
directories

A UNIX Directory Tree

bin |<— Root directory
etc
lib
usr
tmp l“
bin etc lib usr tmp
ast
jim
(lib }
ast lib jim
T ~—— /usr/jim

UC Santa Barbara

10

Directory Operations

Create
Delete
Opendir
Closedir
Readdir
Rename
Link
Unlink

UC Santa Barbara

11

File System Implementation

UC Santa Barbara

Disks may contain one or more file systems

Sector 0 is the Master Boot Record
— Used to boot the computer
— Contains a partition table with start and end address of each patrtition

An active partition is chosen and the first sector (the boot sector) is
read in memory and executed

Each partition contains extra information used to manage the partition
space

— Free blocks, Used blocks

— Root directories

12

File System Implementation

A

Partition table

|

_—

Entire disk

UC Santa Barbara

Disk partition

b~

Y

\

MBR

Boot block

Super block

Free space mgmt

I-nodes

Root dir

Files and directories

13

Blocks

UC Santa Barbara

Files and directories are allocated in blocks

Block size is usually a multiple of the sector size

Information about the blocks that compose a file must be
managed

File systems usually contain many small-size files
and few big ones

14

Blocks

UC Santa Barbara

Big block size (e.g., 32 KB)
— Management does not require much space
— Lots of wasted space
— Performance improves (one read for each block)

Small block size
— Saves space
— May requires large management data structure
— Requires many reads

15

Implementing the File System

UC Santa Barbara

Implementing files

— Keep track of which blocks are used by a files
» Contiguous space
* Linked list
* File Allocation Table (FAT)
* I-nodes

Implementing directories
— Keep track of which files are in a directory

Managing free lists
— Manage free disk space

16

Contiguous Allocation

UC Santa Barbara

Files are stored as a sequence of contiguous blocks

File-to-blocks mapping is implemented with two numbers:
— First block
— Number of blocks used

This schema supports sequential disk reads and delivers better
performance

Drawbacks:
— Fragmentation
— Changes in size require reallocation

Used in CD-ROM (ISO 9660)

17

Linked Lists

UC Santa Barbara

Each block contains a pointer to the next block in the file

A file can be accessed by specifying the address of the first
block and then following the list

Drawback: Random access is expensive

File A

Y

Y

Y

Y

File
block
0

File
block

File
block

File
block

File
block

Physical 4
block

7

File B

10

12

Y

Y

Y

File
block
0

File
block

File
block

File
block

Physical
block

6

11

14

18

File Allocation Table

UC Santa Barbara

Physical
Allocation table in RAM keeps block
track of “next block™ information 0
Random access is fast: 1
Requires traversing the list, but e 10
in RAM 3 i
. 4 7 —<—— File A starts here
A file can be accessed by 5
specifying the address of the . > e ElleB sl bers
first block and then following the . >
list 8
Drawback: 9
— Memory usage 10 12
* Block size: 1KB 11 14
» Partition size: 2 GB 12 1
* Number of blocks: 2M 13
* One FAT entry: 32 bits 14 1
* FAT size 64MBl! 15 <— Unused block

19

|I-Nodes

UC Santa Barbara

An i-node contains the file’s attributes and a list of pointers to
the blocks composing the files

A first set of pointer represent direct addresses

A second set of pointers are used to identify a block containing
more block pointers (single indirection)

A third set of pointers are used to implement double-indirection
A fourth set of pointers are used for triple-indirection

Advantage: I-node is in memory only when file is open

20

|I-Nodes

Disk addresses

UC Santa Barbara

I-node
Attributes ,
| Single
|y~ indirect
f— block
:; Double Addresses of
indirect = data blocks
block],
// T~
(T
\ Triple -
indirect | -
block
\ >
_/
\ 1,
T
T~ >
T

21

Example

Block size: 1KB

Block address size: 4 bytes

I-node contains 14 block pointers
— 10 direct

— 2 single indirect

— 1 double indirect

— 1 triple indirect

File size will be
— 4 KB, 100 KB, 500 KB, 64 MB, 1GB

UC Santa Barbara

22

Solution

UC Santa Barbara

1 block can contain 256 block address
— Single indirect: 256 KB
— Double indirect: 256 * 256 = 65, 536 KB = 64MB
— Triple indirect: 256 * 256 * 256 = 16,777,216 KB = 16 GB
10 KB: 10 direct
266 KB: 10 direct + 1 indirect
522 KB: 10 direct + 2 indirect
66,058 KB: 10 direct + 2 indirect + 1 d-indirect
16,843,274 KB: 10 direct + 2 indirect + 1 d-indirect + 1 t-indirect

23

Implementing Directories

UC Santa Barbara

Directory provide a mapping between a symbolic name and the
information used to retrieve the blocks composing the file

— File name, First block
— File name, I-node

In some cases the directory entries are used to maintain the
file’s attributes

24

Accessing File /usr/ast/mbox

UC Santa Barbara

I-node 6
Root directory is for /usr
1
Mode
1 size
, times
4 | bin
7 | dev 132
14 | lib
9 | efc
6 | usr
8 | tmp
I-node 6
Looking up says that
usr yields /usr is in
i-node 6 block 132

Block 132 [-node 26 Block 406
is /usr is for is /usr/ast
directory /usr/ast directory
6| ° 26 | -
Mode
1| oo size 6 | o
_ times
19 | dick 64 | grants
30 | erik 406 92 | books
51 | jim 60 | mbox
26 | ast 81 | minix
45 | bal 17 | src
|-node 26
/usr/ast says that /usr/ast/mbox
is i-node /usr/ast is in is i-node
26 block 406 60

Shared Files

UC Santa Barbara

In some file systems, file names referring to same file can be place in
more than one directory

Two types of references
— Symbolic links
» Entry contains actual path to be followed to access the file
« Easy to manage
* Generates small overhead
« Can become invalid

— Hard links
« Entry directly points to file block information
* No overhead
» Deleting a file reference does not free the i-node
« Must maintain counters of reference to file info (e.g., i-node)
* must stay on same partition

26

Shared Files

UC Santa Barbara

Root directory

Shared file

27

Free Space Management

UC Santa Barbara

Free blocks can be maintained using lists of blocks or bitmaps

Free disk blocks: 16, 17, 18

42 s 230 Vam 86 1001101101101100
136 162 234 0110110111110111
210 612 897 1010110110110110
97 342 422 01101101101110M
41 214 140 1110111011101111
63 160 223 1101101010001111
21 664 223 0000111011010111
48 216 160 1011101101101111
262 320 126 1100100011101111
310 180 142 0111011101110111
516 / 482 // 141 1101111101110111
A 1 KB disk block can hold 256 A bit map

32-bit disk block numbers
(b)

File System Performance

UC Santa Barbara

File system performance is increased using
— Block cache (e.g., managed in LRU mode)
— Read-ahead
— Minimizing disk arm motion

29

The ISO 9660 File System

payload

UC Santa Barbara

CD-ROM organized in sectors of 2352 bytes with a 2048

File system composed of a preamble (primary volume

descriptor) containing authoring information and a pointer to the

root directory

contiguously allocated files

11 8

8

7 1 2

4 1

Each directory is composed of a list of entries identifying

4-15

Padding

|

Location of file

File Size

Date and time

CD# |L

File name

T_1— Extended attribute record length

Directory entry length

Flags - T

Interleave

.............

Base name

.Ext_

30

UNIX File System

UC Santa Barbara

« Disk layout in classical UNIX systems
— Boot block contains bootstrap information
— Superblock contains critical info such as

 number of i-nodes
 number of blocks

Boot Super
block block

Y ¥

| nodes

Data blocks

)
(

))
«

31

l-node In UNIX

UC Santa Barbara

Field | Bytes | Description

Mode 2 File type, protection bits, setuid, setgid bits

Nlinks 2 Number of directory entries pointing to this i-node

Uid 2 UID of the file owner

Gid 2 GID of the file owner

Size 4 File size in bytes

Addr 39 Address of first 10 disk blocks, then 3 indirect blocks

Gen 1 Generation number (incremented every time i-node is reused)
Atime 4 Time the file was last accessed

Mtime 4 Time the file was last modified

Ctime 4 Time the i-node was last changed (except the other times)

32

Accessing a File

UC Santa Barbara

When a process requests the opening of a file, the i-node index is
retrieved from the enclosing directory

The actual i-node is retrieved from the i-node list on disk and put in the
i-node table in the kernel

An entry is created in the open file description table in the kernel
— Contains current read/write position
— Points to the i-node

An entry is created in the file descriptor table in the process
— Contains file descriptor that points to entry in kernel file description table

This is done to allow parent/children to share file positioning

33

UNIX File System

UC Santa Barbara

Open file
description i-node
Parent’s File position Mod
file e ety / o=
descriptor Pointer to i-node Link count
table - — :
File position Uid
- R/W ;
.~ Gid
Ch_”d S Pointer to i-node
file File size
descriptor
table A A Times
Unrelated 1 Ad?irriﬁ%s of =pPe Pointers to
rocess’ — i
-l disk blocks = diskblocks
descriptor Single indirect —
table L —
Double indirect
Triple indirect

=P
/ — — A
Triple — \E 4
indirect / I~
block Double .
indirect /
Single
block .7 .
indirect

block

The Ext2 File System

UC Santa Barbara

Boot| Block group 0

Block group 1

Block group 2

Block group 3

Block group 4

—
—
—_——
-—

-
-
-—
-
-
-—
-
-
-
-
-
-
-
-
-
-
—

uper—| Group

|§Iock descriptor

Block |l-node
bitmap | bitmap

|-nodes

Data
blocks

35

Mounting File Systems

Hard disk

B

Hard disk

