UC Santa Barbara

Operating Systems

Christopher Kruegel
Department of Computer Science
UC Santa Barbara
http://www.cs.ucsb.edu/~chris/

UC Santa Barbara

Input and Output

Input/Output Devices

UC Santa Barbara

The OS is responsible for managing I/O devices

— Issue requests

— Manage corresponding interrupts
The OS provides a high-level, easy-to-use interface to
processes

The interface, in principle, should be as uniform as possible

The I/O subsystem is the part of the kernel responsible for
managing 1/0O

Composed of a number of device drivers that deal directly with
the hardware

/O Devices

UC Santa Barbara

 Two categories:

— Block devices
« Store information in blocks of a specified size
« Block can be accessed (read or written) independently
« Example: disk

— Character devices
« Deal with a stream of characters without a predefined structure
« Characters cannot be addressed independently
« Example: mouse, printer, keyboard

» Classification not perfect
— Example: Clocks

Device Data Rates

Device Data rate
Keyboard 10 bytes/sec
Mouse 100 bytes/sec
56K modem 7 KB/sec
Telephone channel 8 KB/sec
Dual ISDN lines 16 KB/sec
Laser printer 100 KB/sec
Scanner 400 KB/sec
Classic Ethernet 1.25 MB/sec
USB (Universal Serial Bus) 1.5 MB/sec
Digital camcorder 4 MB/sec
IDE disk 5 MB/sec
40x CD-ROM 6 MB/sec
Fast Ethernet 12.5 MB/sec
ISA bus 16.7 MB/sec
EIDE (ATA-2) disk 16.7 MB/sec
FireWire (IEEE 1394) 50 MB/sec
XGA Monitor 60 MB/sec
SONET OC-12 network 78 MB/sec
SCSI Ultra 2 disk 80 MB/sec
Gigabit Ethernet 125 MB/sec
Ultrium tape 320 MB/sec
PCI bus 528 MB/sec
Sun Gigaplane XB backplane 20 GB/sec

UC Santa Barbara

Device Controllers

UC Santa Barbara

» 1/O devices typically have two components
— Mechanical component

— Electronic component (e.g., connected to the mechanical component
through a cable)

« The electronic component is the device controller
— Often a PCI/ISA card installed on the motherboard (host adapter)
— May be able to handle multiple devices (e.g., daisy chained)
— May implement a standard interface (SCSI/EIDE/USB)

« Controller's tasks
— Convert serial bit stream to block(s) of bytes (e.g., by internal buffering)
— Perform error correction as necessary
— Make data available to CPU/memory system

Accessing the Controller

UC Santa Barbara

The OS interacts with a controller
— By writing/reading registers (command/status)
— By writing/reading memory buffers (actual data)

Registers can be accessed through dedicate CPU instructions
— Registers mapped to I/O ports
— IN REG, PORT and OUT REG, PORT
transfer data from CPU’s registers to a controller’s registers

Registers can be mapped onto memory (Memory-Mapped)

Hybrid approach
— Registers are accessed as /O ports
— Buffers are memory mapped
— Used by the Pentium (640K-1M mem-mapped buffer, 0-64K ports)

Accessing the Controller

UC Santa Barbara

Two address One address space Two address spaces

OxFFFF... Memory

I/O ports

/

/0 Ports Memory-Mapped Hybrid

Accessing the Controller

UC Santa Barbara

 When a controller register has to be accessed
— CPU puts address on the bus

— CPU sets a line that tells if this address is a memory address or an
I/O port

— In case the register/buffer is memory-mapped, the corresponding
controller is responsible for checking the address and service the
request if the address is in its range

Memory-Mapped I/O

UC Santa Barbara

Advantages

— Does not require special instructions to access the controllers

— Protection mechanisms can be achieved by not mapping
processes’ virtual memory space onto I/O memory

Disadvantages

— Caching would prevent correct interaction (hardware must provide
a way to disable caching)
— If the bus connecting the CPU to the main memory is not

accessible to the device controllers, the hardware has find a way to
let controllers know which addresses have been requested

10

Memory-Mapped I/O

CPU

Memory

1/O

\

All addresses (memory
and |/O) go here

Bus

CPU

UC Santa Barbara

CPU reads and writes of memory
go over this high-bandwidth bus

Memory l/O

A

AN]

N

This memory port is
to allow 1/O devices
access to memory

11

Direct Memory Access (DMA)

UC Santa Barbara

Reading/writing one word at a time may waste CPU time

A DMA controller supports “automatic” transfer between
controllers and main memory

A DMA controller can be associated with each device or can be
one for all the devices

The DMA controller

— Has access to the device bus and to the memory

— Has a memory address register, a count register, and one or more
control register (/O port to use, direction of transfer, etc.)

12

Reading with Direct Memory Access

UC Santa Barbara

The CPU

— Loads the correct values in the DMA controller
— Sends a read operation to the device controller

The DMA
— Waits for the operation to complete
— Sets the destination memory address on the bus
— Sends a transfer request to the controller

The controller
— Transfers the data to memory

— Sends an ACK signal when the operation is completed

When the DMA has finished it sends an interrupt to the CPU

13

Direct Memory Access (DMA)

UC Santa Barbara

@, Drive

1.CPU
programs DMA Disk Main
CPU the DMA controller controller memory
controller e Buffer
L
yd RN
4. Ack A
// i
4 L 4
Interrupt when 2. DMA requests
done transfer to memory (3 Data transferred y
-<—Bus

14

DMA Schema Variations

UC Santa Barbara

Cycle stealing

— DMA acquires the bus competing with the CPU for each word
transfer

Burst mode

— DMA tells the controller to acquire the bus and issue a number of
transfers

The DMA may ask the controller to transfer data to a buffer on
the DMA controller and then perform the actual transfer to

memory
— supports device-to-device direct transfer

15

Interrupts

UC Santa Barbara

When a device has completed a task it sends out a signal
The signal is detected by the interrupt controller

The interrupt controller puts the device address on the bus and
sends a signal to the CPU

The CPU
— Stops
— Saves PC and PSW and uses the address on the bus to look up
the interrupt vector

The interrupt vector contains the address of the handling routine
which is loaded in the program counter

After the processing of the interrupt has started an ack is sent to
the interrupt controller

16

Interrupts

UC Santa Barbara

Interrupt 1. Device is finished
CPU 3. CPU acks controller /
interrupt <—| I DISk
L {3 | EEssms | Keyboard
—1 L} Clock
2. Controller I— - == Print
X issues 4 e

W

17

Saving the CPU State

UC Santa Barbara

The interrupt handler should save the current CPU state

If registers are used, nested interrupts would overwrite the data

and, therefore, the acknowledgment to the interrupt controller
must be delayed

If a stack is used, the information should be stored in a portion
of memory that will not generate page faults

18

Restoring the CPU State

UC Santa Barbara

« Restoring is easier said then done when instructions may end
up... half-baked (in case of pipelining)

» A precise interrupt leaves the machine in a well-defined state
— The PC is saved in a known place

— All instructions before the one pointed by the PC have been fully
executed

— No instruction beyond the one pointed by the PC has been
executed

— The execution state of the instruction pointed by the PC is known

» Restoring in case of imprecise interrupts requires a lot of
information to be saved

19

Goals of I/O Software

UC Santa Barbara

Device independence

— Programs can access any I/O device without specifying device in
advance (reading from floppy, hard drive, or CD-ROM should not
be different)

Uniform naming
— Name of a file or device should not depending on the device
Error handling

— Errors should be handled as close to the hardware as possible

Synchronous vs. asynchronous transfers

— User program should see blocking operations even though the
actual transfer is implemented asynchronously

Buffering

20

/O Software

UC Santa Barbara

System call in user-space

Data is copied from user space to kernel space

|/O software can operate in several modes
— Programmed I/O
+ Polling/Busy waiting for the device
— Interrupt-Driven I/O
« Operation is completed by interrupt routine
— DMA-based I/0O
« Set up controller and let it deal with the transfer

21

Programmed |/O

UC Santa Barbara

copy_from__user(buffer, p, count); /* p is the kernel bufer */

for (i = 0; i < count; i++) { /* loop on every character */
while (*printer_status_reg != READY) ; /* loop until ready */
printer _data_ register = pJ[i]; / output one character */

}

return_to_user();

22

Interrupt-Driven |/O

UC Santa Barbara

copy_from__user(buffer, p, count); if (count == 0) {
enable_interrupts(); unblock__user();
while (*printer_status_reg != READY) ; } else {
*printer _data_ register = p[0]; *printer _data_ register = p[i];
scheduler(); count = count — 1;
i=i+1;
}

acknowledge interrupt();
return_from_interrupt();

23

/0O Using DMA

copy_from_user(buffer, p, count);
set_up_DMA_controller();
scheduler();

UC Santa Barbara

acknowledge _interrupt();
unblock _user();
return_from_interrupt();

24

/O Software Layers

UC Santa Barbara

User-level |/O software

Device-independent operating system software

Device drivers

Interrupt handlers

Hardware

25

Interrupt Handlers

UC Santa Barbara

Device driver starts 1/0O and then blocks (e.g., p->down)

Interrupt handler does the actual work and then then unblocks
driver that started it (e.g., p->up)

Mechanism works best if device drivers are threads in the kernel

26

Interrupt Handlers

UC Santa Barbara

Save registers not already saved by interrupt hardware
Set up context for interrupt service procedure (TLB, MMU)
Set up stack for interrupt service procedure

Acknowledge interrupt controller, re-enable interrupts
Copy registers from where saved to process table

Run service procedure

Decide which process to run next

Set up MMU context for process to run next

Load new process' registers

Start running the new process

27

Device Drivers

UC Santa Barbara

A device driver is a specific module that manages the interaction
between the device controller and the OS

Device drivers are usually provided by the device manufacturer
(or by frustrated Linux users!)

Device are usually part of the kernel
— compiled and linked in

— |loadable modules

Usually provide a standard API depending on the type of device
— Character
— Block

Device drivers are usually the source of kernel problems

28

Device Drivers

User <
space

Kernel <
space

Hardware

Devices

UC Santa Barbara

User process

Y
User

program

Rest of the operating system

Y Y Y

Printer Camcorder CD-ROM
driver driver driver

Y Y Y

| Printer controller ||Camcorder controller”CD-ROM controllerl

J - =

29

Device Driver's Tasks

UC Santa Barbara

Device initialization

Accept read-write request from the OS

Check input parameters

Start the device if necessary (e.g., start spinning the CD-ROM)
Check if device is available: if not, wait

Issue command(s)

Wait for results

— Busy wait (awakened by interrupt)
— Block

Check for possible errors

Return results

30

Device-Independent |/O Software

UC Santa Barbara

Some 1/O related functionalities are independent of the
particular device and may be carried out outside the device
driver
— Uniform interfacing for device drivers: make all the devices look
more or less the same
* Uniform API
« Uniform naming
— Buffering: maintain a copy of the data to read/write in the kernel
and transfer to user-space only when needed
— Error reporting
— Allocating and releasing dedicate devices

— Providing a device-independent block size: hide logical/physical
differences

31

User-Space |/O Software

UC Santa Barbara

/O
Layer / reply /O functions
Ve User processes # Make |/O call; format |/O; spoolin
9
request _+¢ 4
Device-independent : : : : :
| coftware + Naming, protection, blocking, buffering, allocation

|

* Device drivers + Set up device registers; check status
|

Interrupt handlers + Wake up driver when 1/O completed
Y |

Hardware Perform |/O operation
P

32

Disk

UC Santa Barbara

Most important and commonly used device

Used for secondary memory (swap space, file system)

Different types:
— Magnetic (floppy, hard disk)
— Optical (CD-ROM, DVD)

33

Magnetic Disks

UC Santa Barbara

« Disk “geometry” specified in terms of
— Cylinders composed of tracks (one per head)
— Tracks composed of sectors
— Sectors composed of bytes

Parameter IBM 360-KB floppy disk | WD 18300 hard disk
Number of cylinders 40 10601
Tracks per cylinder 2 12
Sectors per track 9 281 (avg)
Sectors per disk 720 35742000
Bytes per sector 512 512
Disk capacity 360 KB 18.3 GB
Seek time (adjacent cylinders) 6 msec 0.8 msec
Seek time (average case) 77 msec 6.9 msec
Rotation time 200 msec 8.33 msec
Motor stop/start time 250 msec 20 sec
Time to transfer 1 sector 22 msec 17 usec

Disk Architecture

H

ard disk

several platters — disks (heads)

UC Santa Barbara

each platter has multiple tracks (start with 0)
each track has multiple sectors (start with 1)

Boom Head Sector Spindle Track Platter

Cylinder

35

Disk Architecture

UC Santa Barbara

Addressing sectors (blocks)

 CHS (cylinder, head, sector) triple
— old disks use 10 bits for cylinder, 8 bits for head, 6 for sector
— limits maximum disk size to ~ 8.4 GB

« Logical block address (LBA)
— decouples logical and physical location
— specifies 48 bit logical block numbers
— allows controller to mask corrupt blocks

36

Disk Geometry

UC Santa Barbara

Physical geometry could be different from the
“logical” geometry
— Mapping between the two performed by the controller

37

Disk Architecture

UC Santa Barbara

Disk Interfaces
between controller (motherboard) and disk

« ATA (AT Attachment)
— 28 bit addresses (~128 GB maximum size)
— 40 pin cables, 16 bit parallel transfer (single-ended signaling)
— 2 devices (master and slave) can be attached to connection cable
— ATA-3 introduced security features (passwords)

- Serial ATA (SATA)

— 8 pin cables
— higher data transfer (differential signaling)

38

Disk Architecture

UC Santa Barbara

» Hidden protected area (HPA)
— introduced with ATA-4
— disk can be set to report to OS less blocks than actually available
— remaining blocks can be used for data that is not formatted
utilities and diagnostic tools, but also malicious code or illegal material

« Device configuration overlay (DCO)
— introduced with ATA-6
— additional space (blocks) after HPA
— used by manufacturers to shrink different disks to appear with
exactly the same size

39

RAID

Redundant Array of Inexpensive Disks vs.
Single Large Expensive Disk (SLED)

A set of disks is managed by a RAID controller
Different RAID modes (called “levels”)

RAID 0

— Disks are divided into strips of k sector each

— Strips are allocated to disks in a round-robin fashion

— Request for consecutive strips can be carried out in parallel
RAID 1

— Striping + redundancy
RAID 2

- Striping at the word/byte level + ECC

UC Santa Barbara

40

RAID

UC Santa Barbara

(a) RADeveIO

(5] (Ses] (sio] (s,

Al D D D D D Y D Y

(b)RAD1
eve

(Stee] (s] (svoo] (svort] (Sioe) (Siiee) (are) (S

Bt | | Bte || Bt | | Bie] | s | me) | BT)
o [T T 2]] [e

41

RAID

UC Santa Barbara

« RAID 3
— Parity word kept on a separate drive

G G (5e]] B

« RAID 4
— Strip parity on extra drive (XOR of strip contents)

(] (o] o] (5] (2

42

RAID

UC Santa Barbara

« RAID 5

— Parity strips are distributed over the disks

C OO LS

Strip 0 Strip 1 Strip 2 Strip 3 PO-3
Ne— A M~— A M1 "

Strip 4 Strip 5 Strip 6 P4-7 Strip 7
e A M~

N A N —
Strip 8 Strip 9 P8-11 Strip 10| | Strip 11| RAID level 5
e A M~ A M~ " "

Strip 12| | P12-15| [Strip 13| | Strip 14
N A M~ A A ~—_

Strip 15
N

P16-19 | | Strip 16| | Strip 17| |Strip 18| | Strip 19
N\, O~ S~ S

Cylinder Skew

 The initial sector for each track

 This facilitates continuous

« 7,200 rpm with 360 sectors
 Cycle in 60/7,200 = 8,3msec
 Sector rate 8.3msec/360 =

* Moving from track to track =

« Skew ~ 40 sectors

is skewed with respect to the
previous one

reads across contiguous tracks
by taking into account the
rotation of the disk when the arm
is moved

23usec

900usec

UC Santa Barbara

44

Interleaving

UC Santa Barbara

A disk reads a sector and puts it in the controller’s buffer

While the sector is being transferred to memory the next sector
will pass under the disk head

Solution: Interleaving (single, double, etc)
Solution: Buffer a whole track at a time

45

Disk Arm Scheduling Algorithms

UC Santa Barbara

Time required to read or write a disk block determined by 3 factors
— Seek time
— Rotational delay
— Actual transfer time

Seek time is the most relevant and must be minimized

Possible scheduling algorithms
— First-Come First-Served: bad

— Algorithms with request buffering in the driver
+ Shortest Seek First (SSF)
» Elevator Algorithm

Note that these algorithms imply that logical/physical geometry match
or at least mapping is known

46

Shortest Seek First Algorithm

—-—Time

UC Santa Barbara

SSF moves the arm towards the closest request

If request are many the algorithm may be unfair towards request
for sectors far from the arm’s current position

Initial Pending
position requests
X X[[x]x X T Tx
5 10 15 20 25 30 35 Cylinder

i Sequence of seeks

47

Elevator Algorithm

UC Santa Barbara

 The arms moves in one direction until there is no
request left, then it changes direction

Initial
position

\

X X [X][X X Xl |X

—-—Time

0 5 10 15 20 25 30 35 Cylinder

\ Sequence of seeks

+

o~

/

48

Clocks

UC Santa Barbara

The clock is a fundamental device
The counter is initialized with a OS-defined value

The hardware decrements the counter with a certain frequency
(e.g., 500 MHz)

When the counter reaches 0 an interrupt is sent and the start
value is restored

Crystal oscillator

LI

Counter is decremented at each pulse

Holding register is used to load the counter

49

Clock Driver

UC Santa Barbara

Maintains the time of day

Checks processes’ CPU quantum usage
— Calls the scheduler if qguantum expired

Does accounting of CPU usage and profiling of the system

Handles alarms
— Alarms are maintained in a list and fired whenever they expire

50

Character Oriented Terminals

UC Santa Barbara

Simplest form of user-interaction

A terminal is composed of a keyboard and a screen
Characters typed from the keyboard are sent to the driver
Characters sent by the driver are displayed on the screen

Different modes of operation

— Raw (non canonical): characters are passed by the driver to the user
process as they are typed

— Cooked, line-oriented (canonical): the drivers performs line-by-line
processing before passing the line to the user process

Drivers maintain buffered input/output and process special characters

51

RS-232 Terminal Hardware

UC Santa Barbara

An RS-232 terminal communicates with computer 1 bit at a time
(serial line)

Bits are reassembled into characters by the UART (Universal
Asynchronous Receiver/Transmitter)

Windows uses COM1 and COM2 ports, UNIX uses /dev/ttyn
Computer and terminal are completely independent

Computer
RS-232
CPU Memor interface i
y UART Transmit
V'
[=

Recieve

Bus

52

Special Input Characters

UC Santa Barbara

Character | POSIX name Comment

CTRL-H ERASE Backspace one character
CTRL-U KILL Erase entire line being typed
CTRL-V LNEXT Interpret next character literally
CTRL-S STOP Stop output

CTRL-Q START Start output

DEL INTR Interrupt process (SIGINT)
CTRL-\ QUIT Force core dump (SIGQUIT)
CTRL-D EOF End of file

CTRL-M CR Carriage return (unchangeable)
CTRL-J NL Linefeed (unchangeable)

53

Special Output Characters

UC Santa Barbara

The ANSI escape sequences are accepted by terminal driver on
output and converted in specific terminal commands through the
termcap mapping

Escape sequence Meaning

ESC [nA Move up nlines

ESC [nB Move down n lines

ESC[nC Move right n spaces

ESC[nD Move left n spaces

ESC[m;nH Move cursor to (m,n)

ESC [sJ Clear screen from cursor (0 to end, 1 from start, 2 all)
ESC [sK Clear line from cursor (0 to end, 1 from start, 2 all)

ESC [nL Insert n lines at cursor

ESC [nM Delete nlines at cursor

ESC[nP Delete n chars at cursor

ESC[n@ Insert n chars at cursor

ESC[nm Enable rendition n (O=normal, 4=bold, 5=blinking, 7=reverse)
ESC M Scroll the screen backward if the cursor is on the top line

54

