
UC Santa Barbara

Operating Systems

Christopher Kruegel
Department of Computer Science

UC Santa Barbara
http://www.cs.ucsb.edu/~chris/

UC Santa Barbara

Input and Output

UC Santa Barbara

3	

Input/Output Devices

•  The OS is responsible for managing I/O devices
–  Issue requests

–  Manage corresponding interrupts

•  The OS provides a high-level, easy-to-use interface to
processes

•  The interface, in principle, should be as uniform as possible

•  The I/O subsystem is the part of the kernel responsible for
managing I/O

•  Composed of a number of device drivers that deal directly with
the hardware

UC Santa Barbara

4	

I/O Devices

•  Two categories:
–  Block devices

•  Store information in blocks of a specified size
•  Block can be accessed (read or written) independently
•  Example: disk

–  Character devices
•  Deal with a stream of characters without a predefined structure
•  Characters cannot be addressed independently
•  Example: mouse, printer, keyboard

•  Classification not perfect
–  Example: Clocks

UC Santa Barbara

5	

Device Data Rates

UC Santa Barbara

6	

Device Controllers

•  I/O devices typically have two components
–  Mechanical component
–  Electronic component (e.g., connected to the mechanical component

through a cable)

•  The electronic component is the device controller
–  Often a PCI/ISA card installed on the motherboard (host adapter)
–  May be able to handle multiple devices (e.g., daisy chained)
–  May implement a standard interface (SCSI/EIDE/USB)

•  Controller's tasks
–  Convert serial bit stream to block(s) of bytes (e.g., by internal buffering)
–  Perform error correction as necessary
–  Make data available to CPU/memory system

UC Santa Barbara

7	

Accessing the Controller

•  The OS interacts with a controller
–  By writing/reading registers (command/status)
–  By writing/reading memory buffers (actual data)

•  Registers can be accessed through dedicate CPU instructions
–  Registers mapped to I/O ports
–  IN REG, PORT and OUT REG, PORT

 transfer data from CPU’s registers to a controller’s registers

•  Registers can be mapped onto memory (Memory-Mapped)

•  Hybrid approach
–  Registers are accessed as I/O ports
–  Buffers are memory mapped
–  Used by the Pentium (640K-1M mem-mapped buffer, 0-64K ports)

UC Santa Barbara

8	

Accessing the Controller

I/O Ports Memory-Mapped Hybrid

UC Santa Barbara

9	

Accessing the Controller

•  When a controller register has to be accessed
–  CPU puts address on the bus
–  CPU sets a line that tells if this address is a memory address or an

I/O port
–  In case the register/buffer is memory-mapped, the corresponding

controller is responsible for checking the address and service the
request if the address is in its range

UC Santa Barbara

10	

Memory-Mapped I/O

•  Advantages
–  Does not require special instructions to access the controllers
–  Protection mechanisms can be achieved by not mapping

processes’ virtual memory space onto I/O memory

•  Disadvantages
–  Caching would prevent correct interaction (hardware must provide

a way to disable caching)
–  If the bus connecting the CPU to the main memory is not

accessible to the device controllers, the hardware has find a way to
let controllers know which addresses have been requested

UC Santa Barbara

11	

Memory-Mapped I/O

UC Santa Barbara

12	

Direct Memory Access (DMA)

•  Reading/writing one word at a time may waste CPU time

•  A DMA controller supports “automatic” transfer between
controllers and main memory

•  A DMA controller can be associated with each device or can be
one for all the devices

•  The DMA controller
–  Has access to the device bus and to the memory
–  Has a memory address register, a count register, and one or more

control register (I/O port to use, direction of transfer, etc.)

UC Santa Barbara

13	

Reading with Direct Memory Access

•  The CPU
–  Loads the correct values in the DMA controller
–  Sends a read operation to the device controller

•  The DMA
–  Waits for the operation to complete
–  Sets the destination memory address on the bus
–  Sends a transfer request to the controller

•  The controller
–  Transfers the data to memory
–  Sends an ACK signal when the operation is completed

•  When the DMA has finished it sends an interrupt to the CPU

UC Santa Barbara

14	

Direct Memory Access (DMA)

UC Santa Barbara

15	

DMA Schema Variations

•  Cycle stealing
–  DMA acquires the bus competing with the CPU for each word

transfer

•  Burst mode
–  DMA tells the controller to acquire the bus and issue a number of

transfers

•  The DMA may ask the controller to transfer data to a buffer on
the DMA controller and then perform the actual transfer to
memory
–  supports device-to-device direct transfer

UC Santa Barbara

16	

Interrupts

•  When a device has completed a task it sends out a signal

•  The signal is detected by the interrupt controller

•  The interrupt controller puts the device address on the bus and
sends a signal to the CPU

•  The CPU
–  Stops
–  Saves PC and PSW and uses the address on the bus to look up

the interrupt vector

•  The interrupt vector contains the address of the handling routine
which is loaded in the program counter

•  After the processing of the interrupt has started an ack is sent to
the interrupt controller

UC Santa Barbara

17	

Interrupts

UC Santa Barbara

18	

Saving the CPU State

•  The interrupt handler should save the current CPU state

•  If registers are used, nested interrupts would overwrite the data
and, therefore, the acknowledgment to the interrupt controller
must be delayed

•  If a stack is used, the information should be stored in a portion
of memory that will not generate page faults

UC Santa Barbara

19	

Restoring the CPU State

•  Restoring is easier said then done when instructions may end
up... half-baked (in case of pipelining)

•  A precise interrupt leaves the machine in a well-defined state
–  The PC is saved in a known place
–  All instructions before the one pointed by the PC have been fully

executed
–  No instruction beyond the one pointed by the PC has been

executed
–  The execution state of the instruction pointed by the PC is known

•  Restoring in case of imprecise interrupts requires a lot of
information to be saved

UC Santa Barbara

20	

Goals of I/O Software

•  Device independence
–  Programs can access any I/O device without specifying device in

advance (reading from floppy, hard drive, or CD-ROM should not
be different)

•  Uniform naming
–  Name of a file or device should not depending on the device

•  Error handling
–  Errors should be handled as close to the hardware as possible

•  Synchronous vs. asynchronous transfers
–  User program should see blocking operations even though the

actual transfer is implemented asynchronously

•  Buffering

UC Santa Barbara

21	

I/O Software

•  System call in user-space

•  Data is copied from user space to kernel space

•  I/O software can operate in several modes
–  Programmed I/O

•  Polling/Busy waiting for the device
–  Interrupt-Driven I/O

•  Operation is completed by interrupt routine
–  DMA-based I/O

•  Set up controller and let it deal with the transfer

UC Santa Barbara

22	

Programmed I/O

UC Santa Barbara

23	

Interrupt-Driven I/O

UC Santa Barbara

24	

I/O Using DMA

UC Santa Barbara

25	

I/O Software Layers

UC Santa Barbara

26	

Interrupt Handlers

•  Device driver starts I/O and then blocks (e.g., p->down)

•  Interrupt handler does the actual work and then then unblocks
driver that started it (e.g., p->up)

•  Mechanism works best if device drivers are threads in the kernel

UC Santa Barbara

27	

Interrupt Handlers

•  Save registers not already saved by interrupt hardware

•  Set up context for interrupt service procedure (TLB, MMU)
•  Set up stack for interrupt service procedure

•  Acknowledge interrupt controller, re-enable interrupts

•  Copy registers from where saved to process table
•  Run service procedure

•  Decide which process to run next
•  Set up MMU context for process to run next

•  Load new process' registers

•  Start running the new process

UC Santa Barbara

28	

Device Drivers

•  A device driver is a specific module that manages the interaction
between the device controller and the OS

•  Device drivers are usually provided by the device manufacturer
(or by frustrated Linux users!)

•  Device are usually part of the kernel
–  compiled and linked in

–  loadable modules

•  Usually provide a standard API depending on the type of device
–  Character

–  Block

•  Device drivers are usually the source of kernel problems

UC Santa Barbara

29	

Device Drivers

UC Santa Barbara

30	

Device Driver’s Tasks

•  Device initialization

•  Accept read-write request from the OS

•  Check input parameters

•  Start the device if necessary (e.g., start spinning the CD-ROM)

•  Check if device is available: if not, wait

•  Issue command(s)

•  Wait for results
–  Busy wait (awakened by interrupt)

–  Block

•  Check for possible errors

•  Return results

UC Santa Barbara

31	

Device-Independent I/O Software

•  Some I/O related functionalities are independent of the
particular device and may be carried out outside the device
driver
–  Uniform interfacing for device drivers: make all the devices look

more or less the same
•  Uniform API
•  Uniform naming

–  Buffering: maintain a copy of the data to read/write in the kernel
and transfer to user-space only when needed

–  Error reporting
–  Allocating and releasing dedicate devices
–  Providing a device-independent block size: hide logical/physical

differences

UC Santa Barbara

32	

User-Space I/O Software

UC Santa Barbara

33	

Disk

•  Most important and commonly used device

•  Used for secondary memory (swap space, file system)

•  Different types:
–  Magnetic (floppy, hard disk)
–  Optical (CD-ROM, DVD)

UC Santa Barbara

34	

Magnetic Disks

•  Disk “geometry” specified in terms of
–  Cylinders composed of tracks (one per head)
–  Tracks composed of sectors
–  Sectors composed of bytes

UC Santa Barbara

•  Hard disk
•  several platters – disks (heads)
•  each platter has multiple tracks (start with 0)
•  each track has multiple sectors (start with 1)

Disk Architecture

35	

UC Santa Barbara

Disk Architecture

Addressing sectors (blocks)

•  CHS (cylinder, head, sector) triple
–  old disks use 10 bits for cylinder, 8 bits for head, 6 for sector
–  limits maximum disk size to ~ 8.4 GB

•  Logical block address (LBA)
–  decouples logical and physical location
–  specifies 48 bit logical block numbers
–  allows controller to mask corrupt blocks

36	

UC Santa Barbara

37	

Disk Geometry

•  Physical geometry could be different from the
“logical” geometry
–  Mapping between the two performed by the controller

UC Santa Barbara

Disk Architecture

Disk Interfaces
 between controller (motherboard) and disk

•  ATA (AT Attachment)
–  28 bit addresses (~128 GB maximum size)
–  40 pin cables, 16 bit parallel transfer (single-ended signaling)
–  2 devices (master and slave) can be attached to connection cable
–  ATA-3 introduced security features (passwords)

•  Serial ATA (SATA)
–  8 pin cables
–  higher data transfer (differential signaling)

38	

UC Santa Barbara

Disk Architecture

•  Hidden protected area (HPA)
–  introduced with ATA-4
–  disk can be set to report to OS less blocks than actually available
–  remaining blocks can be used for data that is not formatted

 utilities and diagnostic tools, but also malicious code or illegal material

•  Device configuration overlay (DCO)
–  introduced with ATA-6
–  additional space (blocks) after HPA
–  used by manufacturers to shrink different disks to appear with

 exactly the same size

39	

UC Santa Barbara

40	

RAID

•  Redundant Array of Inexpensive Disks vs.
 Single Large Expensive Disk (SLED)

•  A set of disks is managed by a RAID controller
•  Different RAID modes (called “levels”)

•  RAID 0
–  Disks are divided into strips of k sector each
–  Strips are allocated to disks in a round-robin fashion
–  Request for consecutive strips can be carried out in parallel

•  RAID 1
–  Striping + redundancy

•  RAID 2
–  Striping at the word/byte level + ECC

UC Santa Barbara

41	

RAID

UC Santa Barbara

42	

RAID

•  RAID 3
–  Parity word kept on a separate drive

•  RAID 4
–  Strip parity on extra drive (XOR of strip contents)

UC Santa Barbara

43	

RAID

•  RAID 5
–  Parity strips are distributed over the disks

UC Santa Barbara

44	

Cylinder Skew

•  The initial sector for each track
is skewed with respect to the
previous one

•  This facilitates continuous
reads across contiguous tracks
by taking into account the
rotation of the disk when the arm
is moved

•  7,200 rpm with 360 sectors
•  Cycle in 60/7,200 = 8,3msec
•  Sector rate 8.3msec/360 =

23usec
•  Moving from track to track =

900usec
•  Skew ~ 40 sectors

UC Santa Barbara

45	

Interleaving

•  A disk reads a sector and puts it in the controller’s buffer
•  While the sector is being transferred to memory the next sector

will pass under the disk head
•  Solution: Interleaving (single, double, etc)
•  Solution: Buffer a whole track at a time

UC Santa Barbara

46	

Disk Arm Scheduling Algorithms

•  Time required to read or write a disk block determined by 3 factors
–  Seek time
–  Rotational delay
–  Actual transfer time

•  Seek time is the most relevant and must be minimized

•  Possible scheduling algorithms
–  First-Come First-Served: bad
–  Algorithms with request buffering in the driver

•  Shortest Seek First (SSF)
•  Elevator Algorithm

•  Note that these algorithms imply that logical/physical geometry match
or at least mapping is known

UC Santa Barbara

47	

Shortest Seek First Algorithm

•  SSF moves the arm towards the closest request
•  If request are many the algorithm may be unfair towards request

for sectors far from the arm’s current position

Initial
position

Pending
requests

UC Santa Barbara

48	

Elevator Algorithm

•  The arms moves in one direction until there is no
request left, then it changes direction

UC Santa Barbara

49	

Clocks

•  The clock is a fundamental device
•  The counter is initialized with a OS-defined value
•  The hardware decrements the counter with a certain frequency

(e.g., 500 MHz)
•  When the counter reaches 0 an interrupt is sent and the start

value is restored

UC Santa Barbara

50	

Clock Driver

•  Maintains the time of day

•  Checks processes’ CPU quantum usage
–  Calls the scheduler if quantum expired

•  Does accounting of CPU usage and profiling of the system

•  Handles alarms
–  Alarms are maintained in a list and fired whenever they expire

UC Santa Barbara

51	

Character Oriented Terminals

•  Simplest form of user-interaction

•  A terminal is composed of a keyboard and a screen

•  Characters typed from the keyboard are sent to the driver

•  Characters sent by the driver are displayed on the screen

•  Different modes of operation
–  Raw (non canonical): characters are passed by the driver to the user

process as they are typed

–  Cooked, line-oriented (canonical): the drivers performs line-by-line
processing before passing the line to the user process

•  Drivers maintain buffered input/output and process special characters

UC Santa Barbara

52	

RS-232 Terminal Hardware

•  An RS-232 terminal communicates with computer 1 bit at a time
(serial line)

•  Bits are reassembled into characters by the UART (Universal
Asynchronous Receiver/Transmitter)

•  Windows uses COM1 and COM2 ports, UNIX uses /dev/ttyn
•  Computer and terminal are completely independent

UC Santa Barbara

53	

Special Input Characters

UC Santa Barbara

54	

Special Output Characters

•  The ANSI escape sequences are accepted by terminal driver on
output and converted in specific terminal commands through the
termcap mapping

