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Operating Systems 

•  Why do we care about operating systems (OS) security 
–  protect different applications that run at the same time 

–  applications may belong to different users, have different privileges 

–  keep buggy/malicious apps. from crashing each other 

–  keep buggy/malicious apps. from tampering with each other 

–  keep buggy/malicious apps. from crashing the OS 

•  OS provides security services 
–  isolation (between processes) 

–  access control (regulates who can access which resources) 
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Operating Systems 

•  Kernel 
–  provides an hardware abstraction layer for user-space programs 
–  complete access to all (physical) resources 
–  trusted computing base 

•  Dual mode operation 
–  hardware (processor) support 

–  when in kernel-mode, can do anything (direct hardware access) 

–  when in user-mode, restricted access 

–  typically, mode of operation is indicated by processor status bit(s) 

–  of course, this bit can only be directly manipulated in kernel-mode 
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Operating Systems 

Transition between different modes 
–  this crosses the border between two security domains 
–  clearly, a security relevant action 

•  System calls 
–  performs a transition from user mode to privileged (kernel) mode 
–  usually implemented with hardware (processor) support 

•  processor interrupt (int 0x80) 
•  x86 call gates (far call) 
•  fast system call features (sysenter) 

–  ensure that only specific kernel code can be invoked 
•  why not allow arbitrary calls into kernel code? 
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Operating Systems 

•  Memory protection 
–  through virtual memory abstraction 
–  every process gets its own virtual memory space 
–  no direct access to physical memory 
–  page tables and memory MMU perform translation 

•  Programs are isolated and cannot talk to each other directly 

•  Inter-process communication 
–  in some cases, shared memory can be requested 
–  pipes, messages (packets) -> input validation necessary 
–  file system (which is shared state) -> race conditions 
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Operating Systems 

•  Other type of memory protection 
–  physical memory can also be accessed via DMA (devices attached to bus) 

–  several attacks have been published based on this  
•  attack of the iPods 

–  idea of I/O MMU comes to rescue 
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Operating Systems 

•  Access control 
–  determine the actions that a process (subject) may perform 

 on resources (objects) 
–  requires to establish “identity” of subjects  
–  implemented as access control lists (ACL) on objects; or 

 capabilities carried by subjects 

•  Establishing identity 
–  process of authentication 
–  via something that one has, that one knows, or that one is (does) 
–  should be protected by a trusted path 
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Operating Systems 

•  Discretionary access control 
–  common model for contemporary operating systems 
–  subject (owner) can change permission of objects  

•  Mandatory access control 
–  less common, but gains popularity 
–  enforced by the OS when subject cannot change permissions 

 of objects 
–  often associated with multi-level security (MLS) systems 

 and the Bell-LaPadula model 
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Unix 

•  Kernel vulnerability  
–  usually leads to complete system compromise 
–  attacks performed via system calls 

•  Solaris / NetBSD call gate creation input validation problem 
–  malicious input when creating a LDT (x86 local descriptor table) 
–  used in 2001 by Last Stage of Delirium to win Argus Pitbull 

 Competition 

•  Kernel Integer Overflows 
–  FreeBSD procfs code (September 2003) 
–  Linux brk() used to compromise debian.org (December 2003) 
–  Linux setsockopt() (May 2004) 

•  Linux Memory Management 
–  mremap() and munmap() (March 2004) 
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Unix 

•  More recent Linux vulnerabilities 
–  Linux message interface (August 2005, CAN-2005-2490) 
–  race condition - proc and prctl (July 2006, CVE-2006-3626) 
–  local privilege escalation - (September 2007, CVE 2007-4573) 

•  Device driver code is particularly vulnerable 
–  (most) drivers run in kernel mode, either kernel modules or compiled-in  
–  often not well audited 
–  very large code based compared to core services 

•  Examples 
–  aironet, asus_acpi, decnet, mpu401, msnd, and pss (2004) 

 found by sparse (tool developed by Linus Torvalds) 
–  remote root (MadWifi - 2006, Broadcom - 2006) 
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Unix 

•  Code running in user mode is always linked to a certain identity 
–  security checks and access control decisions are based on user 

 identity  

•  Unix is user-centric 
–  no roles 

•  User 
–  identified by user name (UID), group name (GID) 
–  authenticated by password (stored encrypted) 

•  User root 
–  superuser, system administrator 
–  special privileges (access resources, modify OS) 
–  cannot decrypt user passwords 
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Process Management 

•  Process Attributes 
–  process ID (PID) 

•  uniquely identified process 
–  user ID (UID) 

•  ID of owner of process 
–  effective user ID (EUID) 

•  ID used for permission checks (e.g., to access resources) 
–  saved user ID (SUID) 

•  to temporarily drop and restore privileges 
–  lots of management information 

•  scheduling 
•  memory management, resource management 
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User Authentication 

•  How does a process get a user ID?  
  Authentication (login) 

•  Passwords 
–  user passwords are used as keys for crypt() function 
–  runs DES algorithm 25 times on a block of zeros 
–  12-bit “salt” 

•  4096 variations 
•  chosen from date, not secret  
•  prevent same passwords to map onto same string 

•  make dictionary attacks more difficult 

•  Password cracking 
–  dictionary attacks 
–  Crack, JohnTheRipper!
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User Authentication 

•  Shadow passwords 
–  password file is needed by many applications to map user ID  

 to user names 
–  encrypted passwords are not 

•  /etc/shadow  
–  holds encrypted passwords 
–  account information 

•  last change date 
•  expiration (warning, disabled) 
•  minimum change frequency 

–  readable only by superuser and privileged programs 
–  MD5 hashed passwords (default) to slow down guessing  
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File System 

•  File tree 
–  primary repository of information 
–  hierarchical set of directories 
–  directories contain file system objects (FSO) 
–  root is denoted “/” 

•  File system object 
–  files, directories, symbolic links, sockets, device files 
–  referenced by inode (index node)  
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File System 

•  Access Control 
–  permission bits 
–  chmod, chown, chgrp, umask!
–  file listing: 

Type r w x s t 

File read access write access execute 
suid / sgid 
inherit id 

sticky bit 

Directory list files insert and 
remove files 

stat / execute 
files, chdir 

new files 
have dir-gid 

files only delete-
able by owner 

         -    rwx     rwx     rwx!
(file type) (user)  (group) (other) 
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SUID Programs 

•  Each process has real and effective user / group ID 
–  usually identical 
–  real IDs 

•  determined by current user 
•  login, su!

–  effective IDs  
•  determine the “rights” of a process 
•  system calls (e.g., setuid()) 

–  suid / sgid bits 
•  to start process with effective ID different from real ID 
•  attractive target for attacker 

•  Never use SUID shell scripts (multiplying problems) 
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Shell 

•  Shell 
–  one of the core Unix application 
–  both a command language and programming language 
–  provides an interface to the Unix operating system 

–  rich features such as control-flow primitives, parameter 
 passing, variables, and string substitution 

–  communication between shell and spawned programs via 
 redirection and pipes 

–  different flavors 
•  bash and sh, tcsh and csh, ksh 
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Shell Attacks 

•  Environment Variables 

–  $HOME and $PATH can modify behavior of programs that 
 operate with relative path names 

–  $IFS – internal field separator 
•  used to parse tokens 
•  usually set to [ \t\n] but can be changed to “/“ 
•  “/bin/ls“ is parsed as “bin ls“ calling bin locally 
•  IFS now only used to split expanded variables 

–  preserve attack (/usr/lib/preserve is SUID) 
•  called “/bin/mail“ when vi crashes to preserve file 
•  change IFS, create bin as link to /bin/sh, kill vi 
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Shell Attacks 

•  Control and escape characters 
–  can be injected into command string 
–  modify or extend shell behavior 
–  user input used for shell commands has to be rigorously sanitized 
–  easy to make mistakes 
–  classic examples are `;’ and `&’ 

•  Applications that are invoked via shell can be targets as well 
–  increased vulnerability surface  

•  Restricted shell 
–  invoked with -r!
–  more controlled environment 
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Shell Attacks 

•  system(char *cmd) 
–  function called by programs to execute other commands 
–  invokes shell 
–  executes string argument by calling /bin/sh –c string 
–  makes binary program vulnerable to shell attacks 
–  especially when user input is utilized  

•  popen(char *cmd, char *type) 
–  forks a process, opens a pipe and invokes shell for cmd  
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File Descriptor Attacks 

•  SUID program opens file 

•  forks external process 
–  sometimes under user control 

•  on-execute flag 
–  if close-on-exec flag is not set, then 

 new process inherits file descriptor 
–  malicious attacker might exploit such weakness 

•  Linux Perl 5.6.0 
–  getpwuid() leaves /etc/shadow opened (June 2002) 
–  problem for Apache with mod_perl 
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Resource Limits 

•  File system limits 
–  quotas 
–  restrict number of storage blocks and number of inodes 
–  hard limit 

•  can never be exceeded (operation fails) 
–  soft limit 

•  can be exceeded temporarily 
–  can be defined per mount-point 
–  defend against resource exhaustion (denial of service) 

•  Process resource limits 
–  number of child processes, open file descriptors 
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Signals 

•  Signal 
–  simple form of interrupt 
–  asynchronous notification 
–  can happen anywhere for process in user space 
–  used to deliver segmentation faults, reload commands, … 
–  kill command 

•  Signal handling 
–  process can install signal handlers 
–  when no handler is present, default behavior is used 

•  ignore or kill process 
–  possible to catch all signals except SIGKILL (-9) 
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Signals 

•  Security issues 
–  code has to be be re-entrant 

•  atomic modifications 
•  no global data structures 

–  race conditions 
–  unsafe library calls, system calls 
–  examples 

•  wu-ftpd 2001, sendmail 2001 + 2006, stunnel 2003, ssh 2006 

•  Secure signals 
–  write handler as simple as possible 
–  block signals in handler 
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Windows 

•  > 90 % of all computers run Windows 
–  when dealing with security issues, it is important to  

 have (some) knowledge of Windows 
–  good example of non-open source system and security issues 

•  Started in 1985 
–  graphical add-on to MS DOS 

•  Two main families 
–  building on DOS legacy 

 Windows 1.0, Windows 3.11, Windows 95, Windows ME 
–  NT line (true 32 bit, multi-user OS) 

 started with NT 3.1, NT 4.0, Windows 2K, XP, Vista 
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Windows NT 

•  Competitor to Unix 
–  true multi-user 
–  emphasis on portability and object-oriented design 
–  isolation for applications and resource access control 
–  similar to Unix, kernel and user mode 

Hardware and Hardware Abstraction Layer (HAL) 

User-mode programs System support 
processes (daemons) 

Environment 
subsystems (csrss) 

System DLLs (ntdll, user32, kernel32, gdi32) 

NT (Micro)-Kernel 

Executive (system call handlers, mem, procs, I/O, security monitor 
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Windows NT 

Important system processes 

Session Manager (similar to init) 

Client Server Runtime 
Process (Win32)  

Windows Logon 
Process (login) 

Local security authentication (LSA) process 

Service Control 
Manager (SCM) 
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Windows NT 

Security Components 

•  Security Reference Monitor (SRM) 
–  kernel process 
–  performs access control decisions 
–  generates security context 

•  Local Security Authentication (LSA) 
–  user process 
–  manages security policies (permission settings) 
–  user authentication 

•  Windows Logon  
–  user process 
–  gather login information 
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Access Control Decisions 

•  Object 
–  Windows is object-oriented, everything is an object 
–  each object has security settings (security descriptor) 

•  Subject 
–  threads / processes 
–  have a security context 

•  Operation 
–  determines desired access (read, write, delete, …) 

•  Access Control Decision 
–  determines whether object permits certain operations for security context 
–  implemented by SRM functionality (SeAccessCheck) 
–  if access is permitted, typically an object handle is returned 
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Security Context 

•  Security Context 
–  stored in (access) token 
–  associated with every thread / process 

•  Access token 
–  kernel data structure that determines rights of a subject 
–  important fields 

•  User SID (Security IDentifiers) 
•  Group SIDs 
•  Privileges 
•  Default permissions (used for files that are created) 
•  Management information 
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Security Identifiers (SID) 

•  Secure Identifiers 
–  used to uniquely identify entities (users, groups, …) 
–  similar concept to UID/GID in Unix, but unified  
–  variable length, numeric values 

•  Structure 
–  SID structure revision number – 48-bit authority value –  

 variable number of 32-bit sub-authority   
–  Administrator has S-1-5-21-XXX-XXX-XXX-500 

•  Administrator 
–  account similar to the root user in Unix 
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Impersonation 

•  Impersonation 
–  used to create access tokens with different permissions 
–  the Windows equivalent of setuid* calls 
–  can be used to elevate or drop access rights 
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Security Descriptors 

•  Security descriptor 
–  security information associated with objects 
–  important fields 

•  owner SID 
•  primary group SID (only used by POSIX) 
•  discretionary access control list (DACL) – relevant for access control 
•  system access control list (SACL) – relevant for logging 

•  Access control list 
–  header + list of access control entries (ACE) 
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Security Descriptors 

•  Access control entry (ACE) 
–  contains a SID (e.g., for user chris) 
–  corresponding operations (e.g., write, read) 
–  type (that specifies either allow or deny) 

•  ACL assignment 
–  complex set of rules: 

 either directly set 
 or determined via “inheritance” – e.g., from the current directory 
 or default taken from access token 
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Security Descriptors 

•  Access decision 
–  traverse the DACL until 

 either all requested permissions are granted, or 
 a requested permission is denied 

–  this implies that the order of the ACE might matter! 
–  typically, deny entries appear first 

•  Owner of resource always gets right to modify the DACL 

•  In principle, concepts are more powerful that Unix 
–  permissions for many groups can be defined 
–  fine-grain control via allow and deny rules possible 
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Privileges 

•  Recall that access token also stores privileges 

•  Privileges 
–  not all (security-relevant) operations are associated with objects 

 examples: shut down computer, set system time, … 
–  other privileges might disable or bypass access control checks 

 examples: backup files, debug processes, … 

•  Super privileges 
–  some privileges are so powerful that they basically grant full access 

 “Act as part of the OS,” “Debug Program,” “Restore files” … 
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Authentication 

Winlogon process LSA Server 
(lsass.exe) 

GINA  
(Graphical Identification 
and Authentication) 

Authentication Package 
(MSV1_0) – LAN Manager 2 

SAM (Security Accounts 
Manager) Server 

SAM DB 
(Registry) 

User Desktop 
(Shell) 
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SAM DB 
•  Stores hashed passwords 

–  similar to /etc/passwd (and /etc/shadow) 

•  Two formats 
–  LM (LAN Manager) hash 
–  NTLM 

•  LM hash 
–  uses DES to encrypt static string 
–  however, a few flaws 

 no salt 
 splits 14 characters into 2 blocks of 7 characters (hashed separately) 
 all characters converted to uppercase (further reduces key space) 



UC Santa Barbara 

SAM DB 

•  LM hash 
–  can be cracked trivially (ophcrack) 
–  disabled by default in Vista (or when password > 14 characters) 

•  NTLM 
–  better security (MD5) 
–  still no salt, thus effective rainbow table attacks possible 
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SAM DB 
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File System 

•  NT File System (NTFS) 
–  successor of FAT (file allocation table) file system 
–  better performance, journaling support, quotas 
–  supports Windows security features (in particular, access control features) 

•  Interesting features 
–  links (since Vista, even symbolic links :-) ) 
–  alternate data streams (ADS) 

•  ADS 
–  adds additional streams to a file 
–  original file size is not modified, and ADS are difficult to identify 
–  accessed in the form of filename:streamname (e.g., text.txt:secret) 
–  planned to hold meta-data 
–  used by malware to hide presence 


