
UC Santa Barbara

Operating Systems

Christopher Kruegel
Department of Computer Science

UC Santa Barbara
http://www.cs.ucsb.edu/~chris/

UC Santa Barbara

Operating Systems Security

UC Santa Barbara

Operating Systems

•  Why do we care about operating systems (OS) security
–  protect different applications that run at the same time

–  applications may belong to different users, have different privileges

–  keep buggy/malicious apps. from crashing each other

–  keep buggy/malicious apps. from tampering with each other

–  keep buggy/malicious apps. from crashing the OS

•  OS provides security services
–  isolation (between processes)

–  access control (regulates who can access which resources)

UC Santa Barbara

Operating Systems

•  Kernel
–  provides an hardware abstraction layer for user-space programs
–  complete access to all (physical) resources
–  trusted computing base

•  Dual mode operation
–  hardware (processor) support

–  when in kernel-mode, can do anything (direct hardware access)

–  when in user-mode, restricted access

–  typically, mode of operation is indicated by processor status bit(s)

–  of course, this bit can only be directly manipulated in kernel-mode

UC Santa Barbara

Operating Systems

Transition between different modes
–  this crosses the border between two security domains
–  clearly, a security relevant action

•  System calls
–  performs a transition from user mode to privileged (kernel) mode
–  usually implemented with hardware (processor) support

•  processor interrupt (int 0x80)
•  x86 call gates (far call)
•  fast system call features (sysenter)

–  ensure that only specific kernel code can be invoked
•  why not allow arbitrary calls into kernel code?

UC Santa Barbara

Operating Systems

•  Memory protection
–  through virtual memory abstraction
–  every process gets its own virtual memory space
–  no direct access to physical memory
–  page tables and memory MMU perform translation

•  Programs are isolated and cannot talk to each other directly

•  Inter-process communication
–  in some cases, shared memory can be requested
–  pipes, messages (packets) -> input validation necessary
–  file system (which is shared state) -> race conditions

UC Santa Barbara

Operating Systems

•  Other type of memory protection
–  physical memory can also be accessed via DMA (devices attached to bus)

–  several attacks have been published based on this
•  attack of the iPods

–  idea of I/O MMU comes to rescue

UC Santa Barbara

Operating Systems

•  Access control
–  determine the actions that a process (subject) may perform

 on resources (objects)
–  requires to establish “identity” of subjects
–  implemented as access control lists (ACL) on objects; or

 capabilities carried by subjects

•  Establishing identity
–  process of authentication
–  via something that one has, that one knows, or that one is (does)
–  should be protected by a trusted path

UC Santa Barbara

Operating Systems

•  Discretionary access control
–  common model for contemporary operating systems
–  subject (owner) can change permission of objects

•  Mandatory access control
–  less common, but gains popularity
–  enforced by the OS when subject cannot change permissions

 of objects
–  often associated with multi-level security (MLS) systems

 and the Bell-LaPadula model

UC Santa Barbara

Unix (Posix) Security

UC Santa Barbara

Unix

•  Kernel vulnerability
–  usually leads to complete system compromise
–  attacks performed via system calls

•  Solaris / NetBSD call gate creation input validation problem
–  malicious input when creating a LDT (x86 local descriptor table)
–  used in 2001 by Last Stage of Delirium to win Argus Pitbull

 Competition

•  Kernel Integer Overflows
–  FreeBSD procfs code (September 2003)
–  Linux brk() used to compromise debian.org (December 2003)
–  Linux setsockopt() (May 2004)

•  Linux Memory Management
–  mremap() and munmap() (March 2004)

UC Santa Barbara

Unix

•  More recent Linux vulnerabilities
–  Linux message interface (August 2005, CAN-2005-2490)
–  race condition - proc and prctl (July 2006, CVE-2006-3626)
–  local privilege escalation - (September 2007, CVE 2007-4573)

•  Device driver code is particularly vulnerable
–  (most) drivers run in kernel mode, either kernel modules or compiled-in
–  often not well audited
–  very large code based compared to core services

•  Examples
–  aironet, asus_acpi, decnet, mpu401, msnd, and pss (2004)

 found by sparse (tool developed by Linus Torvalds)
–  remote root (MadWifi - 2006, Broadcom - 2006)

UC Santa Barbara

Unix

•  Code running in user mode is always linked to a certain identity
–  security checks and access control decisions are based on user

 identity

•  Unix is user-centric
–  no roles

•  User
–  identified by user name (UID), group name (GID)
–  authenticated by password (stored encrypted)

•  User root
–  superuser, system administrator
–  special privileges (access resources, modify OS)
–  cannot decrypt user passwords

UC Santa Barbara

Process Management

•  Process Attributes
–  process ID (PID)

•  uniquely identified process
–  user ID (UID)

•  ID of owner of process
–  effective user ID (EUID)

•  ID used for permission checks (e.g., to access resources)
–  saved user ID (SUID)

•  to temporarily drop and restore privileges
–  lots of management information

•  scheduling
•  memory management, resource management

UC Santa Barbara

User Authentication

•  How does a process get a user ID?
  Authentication (login)

•  Passwords
–  user passwords are used as keys for crypt() function
–  runs DES algorithm 25 times on a block of zeros
–  12-bit “salt”

•  4096 variations
•  chosen from date, not secret
•  prevent same passwords to map onto same string

•  make dictionary attacks more difficult

•  Password cracking
–  dictionary attacks
–  Crack, JohnTheRipper!

UC Santa Barbara

User Authentication

•  Shadow passwords
–  password file is needed by many applications to map user ID

 to user names
–  encrypted passwords are not

•  /etc/shadow
–  holds encrypted passwords
–  account information

•  last change date
•  expiration (warning, disabled)
•  minimum change frequency

–  readable only by superuser and privileged programs
–  MD5 hashed passwords (default) to slow down guessing

UC Santa Barbara

File System

•  File tree
–  primary repository of information
–  hierarchical set of directories
–  directories contain file system objects (FSO)
–  root is denoted “/”

•  File system object
–  files, directories, symbolic links, sockets, device files
–  referenced by inode (index node)

UC Santa Barbara

File System

•  Access Control
–  permission bits
–  chmod, chown, chgrp, umask!
–  file listing:

Type r w x s t

File read access write access execute
suid / sgid
inherit id

sticky bit

Directory list files insert and
remove files

stat / execute
files, chdir

new files
have dir-gid

files only delete-
able by owner

 - rwx rwx rwx!
(file type) (user) (group) (other)

UC Santa Barbara

SUID Programs

•  Each process has real and effective user / group ID
–  usually identical
–  real IDs

•  determined by current user
•  login, su!

–  effective IDs
•  determine the “rights” of a process
•  system calls (e.g., setuid())

–  suid / sgid bits
•  to start process with effective ID different from real ID
•  attractive target for attacker

•  Never use SUID shell scripts (multiplying problems)

UC Santa Barbara

Shell

•  Shell
–  one of the core Unix application
–  both a command language and programming language
–  provides an interface to the Unix operating system

–  rich features such as control-flow primitives, parameter
 passing, variables, and string substitution

–  communication between shell and spawned programs via
 redirection and pipes

–  different flavors
•  bash and sh, tcsh and csh, ksh

UC Santa Barbara

Shell Attacks

•  Environment Variables

–  $HOME and $PATH can modify behavior of programs that
 operate with relative path names

–  $IFS – internal field separator
•  used to parse tokens
•  usually set to [\t\n] but can be changed to “/“
•  “/bin/ls“ is parsed as “bin ls“ calling bin locally
•  IFS now only used to split expanded variables

–  preserve attack (/usr/lib/preserve is SUID)
•  called “/bin/mail“ when vi crashes to preserve file
•  change IFS, create bin as link to /bin/sh, kill vi

UC Santa Barbara

Shell Attacks

•  Control and escape characters
–  can be injected into command string
–  modify or extend shell behavior
–  user input used for shell commands has to be rigorously sanitized
–  easy to make mistakes
–  classic examples are `;’ and `&’

•  Applications that are invoked via shell can be targets as well
–  increased vulnerability surface

•  Restricted shell
–  invoked with -r!
–  more controlled environment

UC Santa Barbara

Shell Attacks

•  system(char *cmd)
–  function called by programs to execute other commands
–  invokes shell
–  executes string argument by calling /bin/sh –c string
–  makes binary program vulnerable to shell attacks
–  especially when user input is utilized

•  popen(char *cmd, char *type)
–  forks a process, opens a pipe and invokes shell for cmd

UC Santa Barbara

File Descriptor Attacks

•  SUID program opens file

•  forks external process
–  sometimes under user control

•  on-execute flag
–  if close-on-exec flag is not set, then

 new process inherits file descriptor
–  malicious attacker might exploit such weakness

•  Linux Perl 5.6.0
–  getpwuid() leaves /etc/shadow opened (June 2002)
–  problem for Apache with mod_perl

UC Santa Barbara

Resource Limits

•  File system limits
–  quotas
–  restrict number of storage blocks and number of inodes
–  hard limit

•  can never be exceeded (operation fails)
–  soft limit

•  can be exceeded temporarily
–  can be defined per mount-point
–  defend against resource exhaustion (denial of service)

•  Process resource limits
–  number of child processes, open file descriptors

UC Santa Barbara

Signals

•  Signal
–  simple form of interrupt
–  asynchronous notification
–  can happen anywhere for process in user space
–  used to deliver segmentation faults, reload commands, …
–  kill command

•  Signal handling
–  process can install signal handlers
–  when no handler is present, default behavior is used

•  ignore or kill process
–  possible to catch all signals except SIGKILL (-9)

UC Santa Barbara

Signals

•  Security issues
–  code has to be be re-entrant

•  atomic modifications
•  no global data structures

–  race conditions
–  unsafe library calls, system calls
–  examples

•  wu-ftpd 2001, sendmail 2001 + 2006, stunnel 2003, ssh 2006

•  Secure signals
–  write handler as simple as possible
–  block signals in handler

UC Santa Barbara

Windows Security

UC Santa Barbara

Windows

•  > 90 % of all computers run Windows
–  when dealing with security issues, it is important to

 have (some) knowledge of Windows
–  good example of non-open source system and security issues

•  Started in 1985
–  graphical add-on to MS DOS

•  Two main families
–  building on DOS legacy

 Windows 1.0, Windows 3.11, Windows 95, Windows ME
–  NT line (true 32 bit, multi-user OS)

 started with NT 3.1, NT 4.0, Windows 2K, XP, Vista

UC Santa Barbara

Windows NT

•  Competitor to Unix
–  true multi-user
–  emphasis on portability and object-oriented design
–  isolation for applications and resource access control
–  similar to Unix, kernel and user mode

Hardware and Hardware Abstraction Layer (HAL)

User-mode programs System support
processes (daemons)

Environment
subsystems (csrss)

System DLLs (ntdll, user32, kernel32, gdi32)

NT (Micro)-Kernel

Executive (system call handlers, mem, procs, I/O, security monitor

U
se

r m
od

e
K

er
ne

l m
od

e

UC Santa Barbara

Windows NT

Important system processes

Session Manager (similar to init)

Client Server Runtime
Process (Win32)

Windows Logon
Process (login)

Local security authentication (LSA) process

Service Control
Manager (SCM)

UC Santa Barbara

Windows NT

Security Components

•  Security Reference Monitor (SRM)
–  kernel process
–  performs access control decisions
–  generates security context

•  Local Security Authentication (LSA)
–  user process
–  manages security policies (permission settings)
–  user authentication

•  Windows Logon
–  user process
–  gather login information

UC Santa Barbara

Access Control Decisions

•  Object
–  Windows is object-oriented, everything is an object
–  each object has security settings (security descriptor)

•  Subject
–  threads / processes
–  have a security context

•  Operation
–  determines desired access (read, write, delete, …)

•  Access Control Decision
–  determines whether object permits certain operations for security context
–  implemented by SRM functionality (SeAccessCheck)
–  if access is permitted, typically an object handle is returned

UC Santa Barbara

Security Context

•  Security Context
–  stored in (access) token
–  associated with every thread / process

•  Access token
–  kernel data structure that determines rights of a subject
–  important fields

•  User SID (Security IDentifiers)
•  Group SIDs
•  Privileges
•  Default permissions (used for files that are created)
•  Management information

UC Santa Barbara

Security Identifiers (SID)

•  Secure Identifiers
–  used to uniquely identify entities (users, groups, …)
–  similar concept to UID/GID in Unix, but unified
–  variable length, numeric values

•  Structure
–  SID structure revision number – 48-bit authority value –

 variable number of 32-bit sub-authority
–  Administrator has S-1-5-21-XXX-XXX-XXX-500

•  Administrator
–  account similar to the root user in Unix

UC Santa Barbara

Impersonation

•  Impersonation
–  used to create access tokens with different permissions
–  the Windows equivalent of setuid* calls
–  can be used to elevate or drop access rights

UC Santa Barbara

Security Descriptors

•  Security descriptor
–  security information associated with objects
–  important fields

•  owner SID
•  primary group SID (only used by POSIX)
•  discretionary access control list (DACL) – relevant for access control
•  system access control list (SACL) – relevant for logging

•  Access control list
–  header + list of access control entries (ACE)

UC Santa Barbara

Security Descriptors

•  Access control entry (ACE)
–  contains a SID (e.g., for user chris)
–  corresponding operations (e.g., write, read)
–  type (that specifies either allow or deny)

•  ACL assignment
–  complex set of rules:

 either directly set
 or determined via “inheritance” – e.g., from the current directory
 or default taken from access token

UC Santa Barbara

Security Descriptors

•  Access decision
–  traverse the DACL until

 either all requested permissions are granted, or
 a requested permission is denied

–  this implies that the order of the ACE might matter!
–  typically, deny entries appear first

•  Owner of resource always gets right to modify the DACL

•  In principle, concepts are more powerful that Unix
–  permissions for many groups can be defined
–  fine-grain control via allow and deny rules possible

UC Santa Barbara

Privileges

•  Recall that access token also stores privileges

•  Privileges
–  not all (security-relevant) operations are associated with objects

 examples: shut down computer, set system time, …
–  other privileges might disable or bypass access control checks

 examples: backup files, debug processes, …

•  Super privileges
–  some privileges are so powerful that they basically grant full access

 “Act as part of the OS,” “Debug Program,” “Restore files” …

UC Santa Barbara

Authentication

Winlogon process LSA Server
(lsass.exe)

GINA
(Graphical Identification
and Authentication)

Authentication Package
(MSV1_0) – LAN Manager 2

SAM (Security Accounts
Manager) Server

SAM DB
(Registry)

User Desktop
(Shell)

UC Santa Barbara

SAM DB
•  Stores hashed passwords

–  similar to /etc/passwd (and /etc/shadow)

•  Two formats
–  LM (LAN Manager) hash
–  NTLM

•  LM hash
–  uses DES to encrypt static string
–  however, a few flaws

 no salt
 splits 14 characters into 2 blocks of 7 characters (hashed separately)
 all characters converted to uppercase (further reduces key space)

UC Santa Barbara

SAM DB

•  LM hash
–  can be cracked trivially (ophcrack)
–  disabled by default in Vista (or when password > 14 characters)

•  NTLM
–  better security (MD5)
–  still no salt, thus effective rainbow table attacks possible

UC Santa Barbara

SAM DB

UC Santa Barbara

File System

•  NT File System (NTFS)
–  successor of FAT (file allocation table) file system
–  better performance, journaling support, quotas
–  supports Windows security features (in particular, access control features)

•  Interesting features
–  links (since Vista, even symbolic links :-))
–  alternate data streams (ADS)

•  ADS
–  adds additional streams to a file
–  original file size is not modified, and ADS are difficult to identify
–  accessed in the form of filename:streamname (e.g., text.txt:secret)
–  planned to hold meta-data
–  used by malware to hide presence

