
Take The Money And Run

Decentralized Finance and
the New Frontiers of Crime

Giovanni Vigna
UCSB

$whoami

• Computer Science Professor at UC Santa Barbara
• Co-founder CTO at Lastline, Inc. (acquired by VMware in 2020)
• Sr. Director of Threat Intelligence at VMware
• Founder of Shellphish

What Is DeFi?

“Decentralized finance offers financial instruments without relying
on intermediaries such as brokerages, exchanges, or banks by
using smart contracts on a blockchain”
- Wikipedia

Enthusiasts

• Provides unfettered access to
financial instruments

• Takes out the middleman
• Takes away centralized

control
• Uses code as the law
• It’s transparent
• It’s cheap(er)

Detractors

• It’s a scam that hurts people
• Transactions are irreversible
• Its value is not backed by a

real economy
• It is not really decentralized
• It still has middlemen
• Most of its transactions are

speculation and scams
• It’s bad for the environment

Letter in Support of
Responsible Fintech Policy
“…we write to you urging you to take a critical, skeptical approach
toward industry claims that crypto-assets (sometimes called
cryptocurrencies, crypto tokens, or web3) are an innovative
technology that is unreservedly good. We urge you to resist pressure
from digital asset industry financiers, lobbyists, and boosters to
create a regulatory safe haven for these risky, flawed, and unproven
digital financial instruments and to instead take an approach that
protects the public interest and ensures technology is deployed in
genuine service to the needs of ordinary citizens”

https://concerned.tech/

A Wild Ride

https://www.statista.com/statistics/730876/cryptocurrency-maket-value/

Illicit Activity

https://go.chainalysis.com/2023-crypto-crime-report.html

5Introduction

$25B

$20B
$20.6B

$15B

$10B

$12.3B

$18.1B

$5B
$4.9B $4.6B

$8.4B

0

Total cryptocurrency value received by illicit addresses, 2017 - 2022

2017 2018 2019 2020 2021 2022

Child abuse material Ransomware Stolen funds Sanctions Terrorism financing

Scam Cybercriminal administrator Fraud shop Darknet market

See endnote [1] for notes on this chart.

Despite the market downturn, illicit transaction volume rose for the second consecutive year, hitting
an all-time high of $20.6 billion. We have to stress that this is a lower bound estimate — our measure
of illicit transaction volume is sure to grow over time as we identify new addresses associated with
illicit activity, and we have to keep in mind that this figure doesn’t capture proceeds from non-crypto
native crime (e.g. conventional drug trafficking involving cryptocurrency as a mode of payment).
For example, last year we published that we found $14 billion in illicit activity in 2021 — we’ve now
raised that figure to $18 billion, mostly due to the discovery of new crypto scams.

It’s also worth keeping in mind that 43% of 2022’s illicit transaction volume came from activity
associated with sanctioned entities, in a year when OFAC launched some of its most ambitious
and difficult-to-enforce crypto sanctions yet. Crypto exchange Garantex, which accounted for the
majority of sanctions-related transaction volume last year, is a great example. OFAC sanctioned
Garantex in April 2022, but as a Russia-based business, the exchange has been able to continue
operating with impunity. Transactions associated with Garantex or any other sanctioned crypto
service represent, at the very least, substantial compliance risk for businesses that are subject to U.S.
jurisdiction, including fines and potential criminal charges.

Ransomware

39THE 2022 CRYPTO CRIME REPORTRANSOMWARE

more at which ransomware strains were most prolific in 2021, how ransomware operators
laundered their funds, and examples of how law enforcement and security agencies are
fighting back against ransomware.

2021 ransomware activity summarized
Conti was the biggest ransomware strain by revenue in 2021, extorting at least $180
million from victims.

Believed to be based in Russia, Conti operates using the ransomware-as-a-service (RaaS)
model, meaning Conti’s operators allow affiliates to launch attacks using its ransomware
program in exchange for a fee.

DarkSide is also notable, both for ranking second in 2021 in funds extorted from victims
that we’ve been able to identify, and also for its role in the attack on oil pipeline Colonial
Pipeline, one of the year’s most notable ransomware attacks. The attack caused fuel
shortages in some areas, which were exacerbated by subsequent panic buying as word
of the attack’s impact spread. The Colonial story serves as an important reminder of one
reason ransomware attacks are so dangerous: They frequently target critical infrastruc-
ture we need to keep the country running — not just energy providers, but food providers,
schools, hospitals and financial services companies as well.

However, the Colonial Pipeline attack also turned into a success story, as the U.S.
Department of Justice was able to track and seize $2.3 million of the ransom that
Colonial paid to DarkSide. We’ll look more at how agents were able to do this later in the

Top 10 ransomware strains by revenue | 2021

$0

$50,000,000

$100,000,000

$150,000,000

$200,000,000

Conti

DarkS
ide

Pho
en

ix
Cryp

tolocke
r

REv
il/S

odino
kib

i
Cub

a
Clop

Lo
ckB

it
Hive

BlackM
atte

r
Ryu

k

Top 10 ransomware strains by revenue | 2021

https://go.chainalysis.com/2023-crypto-crime-report.html

27Ransomware

Ransomware Revenue Down As More
Victims Refuse to Pay
2022 was an impactful year in the fight against ransomware. Ransomware attackers extorted at
least $456.8 million from victims in 2022, down from $765.6 million the year before.

Total value received by ransomware attackers, 2017–2022

$0

$600M

$400M

$200M

$800M

2017 2018 2019 2020 2021 2022

$46M $43M

$174M

$765M

$457M

$766M

As always, we have to caveat these findings by noting that the true totals are much higher, as there
are cryptocurrency addresses controlled by ransomware attackers that have yet to be identified on
the blockchain and incorporated into our data. When we published last year’s version of this report,
for example, we had only identified $602 million in ransomware payments in 2021. Still, the trend is
clear: Ransomware payments are significantly down.

However, that doesn’t mean attacks are down, or at least not as much as the drastic dropoff in
payments would suggest. Instead, we believe that much of the decline is due to victim organizations
increasingly refusing to pay ransomware attackers. We’ll discuss this phenomenon more below, but
first, let’s look more at general ransomware trends in 2022.

https://go.chainalysis.com/2022-Crypto-Crime-Report.html

Compare to the Good Ol’ Days…

• Zeus: 2007-2010
• “More than 100 people were

arrested on charges of
conspiracy to commit bank
fraud and money laundering,
over 90 in the US, and the
others in the UK and Ukraine.
Members of the ring had
stolen $70 million.”

https://en.wikipedia.org/wiki/Zeus_(malware)

We Need to Talk About the
Blockchain..

Blockchains, Blocks, and Transactions

• Append-only distributed
security ledgers

• Consensus protocol allows for
agreement about the contents
of the blocks

• Most of the times, the
contents of the block are a list
of transactions

https://en.wikipedia.org/wiki/Blockchain

L1 Blockchains (and their coins)

• Bitcoin and Ethereum account
for the vast majority of the
market cap

• Ethereum
• Supports smart contracts
• In September 2022, moved

from Proof-of-Work to Proof-of-
Stake

https://coinranking.com/coins/layer-1

Smart Contracts

• Programs running on top of Ethereum blockchain
• Execute as bytecode on top of Ethereum Virtual Machine (EVM)
• Typically developed in higher-level languages such as Solidity
• Power DeFi applications, tokens, games, collectibles, …

Ethereum Transactions

• Transfer Ether from address A to address B
• Deploy a smart contract on the block chain
• Invoke a function in a deployed smart contract

• Transactions are submitted to a public mempool
• There are ways to bypass the mempool by using Flashbots

Block Producers and MEV

• Block Producers: Miners (PoW) and Validators (PoS)
• “Maximal Extractable Value (MEV) refers to the maximum value

that can be extracted from block production in excess of the
standard block reward and gas fees by including, excluding, and
changing the order of transactions in a block.”
(https://ethereum.org/en/developers/docs/mev/)

• Bots and producers compete to determine the selection and
ordering of transaction in a block

• Typical example: Arbitrage (more on that later)

Tokens

• Token contracts are used to track ownership of assets
• ERC-20 standardizes the interface for fungible token contracts
• ERC-721 standardizes the interface for non-fungible token

contracts

https://etherscan.io/tokens

Centralized Exchanges

• Ramp-in
• Transfer money from a bank account into Ether

• Ramp-out
• Transfer Ether into actual money in a bank account

https://coinmarketcap.com/rankings/exchanges/

Where’s the Money?

Make the Money

• Lending (Flash loans!)
• AAVE, Compound

• Derivatives
• dYdX

• Yield Farms
• Curve

• Decentralize Exchanges
• UniSwap, SushiSwap

Automated Market Makers (AMMs)

• Based on liquidity pools
• They do not maintain an order book

• Exchange price is automatically determined
• For example, the product of the two assets constant

• Created from smart contract factory

Arbitrage

• Opportunity caused by the same asset having different prices on
different exchanges

• Multiple exchanges in a single transaction
• Analysis performed off-line
• Execution by relayer smart

contract

functions on the blockchain. In this paper, we specifically
focus on decentralized exchanges (DEX) – a type of smart
contract that allows one to swap a token for another type of
token (or a token for Ether). In particular, we will focus on a
type of DEX called an Automated Market Maker (AMM).

AMM Structure. AMMs are a new type of exchange that
does not maintain buy-and-sell order books – i.e., they do
not match buyers and sellers. Instead, an AMM maintains
a balance of the tokens it trades, i.e., a liquidity pool. When
a user wishes to execute a swap, they invoke the AMM’s
smart contract; the AMM then automatically determines a
fair price, accepts tokens from the user as payment, deducts
some fees, and then invokes the transfer function on the
purchased token to send some of the liquidity pool’s balance to
the user. An AMM’s liquidity pool is maintained by liquidity
providers, who deposit tokens into the AMM in exchange for
a proportional share of the fees collected on each swap.

An AMM determines price according to its swap invari-
ant. In Section 4, we make use of three swap invariants:
constant-product [31], weighted constant-product [39], and
Uniswap v3’s bounded-liquidity constant-product [27]. Other
invariants, such as StableSwap [26], have also been proposed.

Briefly, a constant-product AMM permits any swap of
tokens a and b such that

RaRb(Ra+nin)(Rb�nout),

where Ra and Rb are the contract’s reserves of tokens a and b
before the swap, nin is the amount of token a paid to the AMM,
and nout is the amount of token b sent to the user by the AMM.

Creating an AMM. AMMs commonly follow the factory
pattern – anyone can add support for trading between a given
pair of tokens by invoking the factory smart contract. Then,
the factory smart contract deploys on the blockchain a new
contract that trades the specified pair of tokens. The liquidity
pool starts at zero balance, and users who wish to be liquidity
providers then begin adding tokens. At the time of writing,
we measure that the Uniswap v2 factory has deployed over
100,000 of such token-pair contracts.

Arbitrage. Arbitrage is “the process of earning risk-less
profits by taking advantage of differential pricing for the same
... asset or security” [47]. This is a common and expected
component of capital markets and develops naturally whenever
exchange prices for the same asset deviate significantly.

Arbitrage on AMMs. AMMs offer a unique opportunity for
those seeking to make nearly risk-free profits. Because the
smart contracts running these AMMs are immutable, one can
anticipate an AMM’s pricing model and construct a profitable
arbitrage transaction when an asset has different prices on
different AMMs. Moreover – since transactions are atomic
– an arbitrageur can interact with each exchange, one after the
other, within a single transaction and ensure that everything
executes appropriately. If anything is not as expected, then the

Figure 1: Arbitrage transaction in February 2021, which profits
the bot operator $2 million in a single atomic transaction. An
arbitrage bot sends a transaction invoking their relayer contract
on the blockchain. Then, the relayer sends 139 WETH from
itself to SushiSwap’s WETH-WBTC liquidity pool as payment
for 5.7 WBTC tokens. Next, the relayer uses the 5.7 WBTC
tokens to buy 2.2 million Tether tokens via 0x exchange. Last,
the relayer sends the 2.2 million Tether tokens to Uniswap’s
Tether-WETH liquidity pool as payment for 1,352 WETH.
Sushi Swap sends the WETH back to the relayer, and the bot
profits about 1,373 ETH ($2 million). This was made possible
by a counter-party’s very large order on the 0x exchange, which
swaps WBTC for Tether well above the prevailing market rate.

transaction is reverted, and no exchanges take place. This helps
guard against the risk of unfavorable AMM price changes
between the time of transaction construction and its execution
in the blockchain. Arbitrageurs typically deploy a utility smart
contract on the blockchain that manages trades and routes
value to and from exchanges. These utility contracts are simple
executors and are controlled by off-chain bots that implement
the sophisticated financial analysis logic that detects arbitrage
opportunities.

We include a concrete example of such an arbitrage in
Figure 1, which yields the bot owner $2 million.

FLASHBOTS. The FLASHBOTS system was motivated as
a response to Daian’s [33] work, which shows that high
activity among arbitrage bots leads to network congestion, as
competing bots try to bypass each other to capture arbitrage
opportunities that are published in the mempool. The FLASH-
BOTS system is a private, centralized, third-party relay between
bot operators and block producers. Bot operators are able to use
this system to purchase priority placement of their transactions
near the top of the block without going through the mempool,
preventing other bots from stealing the arbitrage opportunity
by offering higher incentives to the block producers.

On Proof-of-Stake. While preparing this publication, the
Ethereum network changed the consensus mechanism from
Proof-of-Work to Proof-of-Stake, in an event called The
Merge. While our data was collected in the Proof-of-Work
period, we re-run the analyses described in the remainder of
this paper over a span of 14 days and find that the situation
is fundamentally unchanged. Arbitrages still occur with

How Much Arbitrage?

• We analyzed 28 months of data (~1 billion transactions)
• Identified 4,070,938 arbitrage transactions

• 90+% only 2-3 exchanges involved
• 90+% pivoted on Wrapped ETH
• Uniswap v2 and v3 and SushiSwap are the most involved AMMs

• $321 millions in profit
• Top bot 1: $37M
• Top bot 2: $31M
• Top bot 3: $26M

A Large Scale Study of the Ethereum Arbitrage Ecosystem

Robert McLaughlin, Christopher Kruegel, Giovanni Vigna
University of California, Santa Barbara
{robert349, chris, vigna}@cs.ucsb.edu

Abstract
The Ethereum blockchain rapidly became the epicenter of
a complex financial ecosystem, powered by decentralized
exchanges (DEXs). These exchanges form a diverse capital
market where anyone can swap one type of token for another.
Arbitrage trades are a normal and expected phenomenon in
free capital markets, and, indeed, several recent works identify
these transactions on decentralized exchanges.

Unfortunately, existing studies leave significant knowledge
gaps in our understanding of the system as a whole, which hin-
ders research into the security, stability, and economic impacts
of arbitrage. To address this issue, we perform two large-scale
measurements over a 28-month period. First, we design a novel
arbitrage identification strategy capable of analyzing over 10x
more DEX applications than prior work. This uncovers 3.8
million arbitrages, which yield a total of $321 million in profit.
Second, we design a novel arbitrage opportunity detection sys-
tem, which is the first to support modern complex price models
at scale. This system identifies 4 billion opportunities and
would generate a weekly profit of 395 Ether (approximately
$500,000, at the time of writing). We observe two key insights
that demonstrate the usefulness of these measurements: (1) an
increasing percentage of revenue is paid to the miners, which
threatens consensus stability, and (2) arbitrage opportunities
occasionally persist for several blocks,which implies that price-
oracle manipulation attacks may be less costly than expected.

1 Introduction
Decentralized Finance (DeFi) is an alternative financial

infrastructure primarily run on the Ethereum blockchain
(the blockchain) [46]. The blockchain is fundamentally a
distributed state machine intended to facilitate transaction
settlement between non-trusting parties [52]. Financial assets
and instruments alike execute on the blockchain as “smart
contracts” – small interoperable programs that run on the
Ethereum Virtual Machine (EVM) [46, 52].

For example, USD Coin [21] (USDC) is one such ownable
asset represented by a smart contract on the blockchain. That
smart contract uses an interface compliant with the ERC-20

Token API [50], which is de facto standard for financial
instruments of this type. In particular, this standard interface
includes functions to check an account’s balance and transfer
value from one user to another.

Other financial instruments are likewise deployed as
smart contracts on the blockchain. These include ex-
changes [4, 16, 20], leverage providers [3], derivatives [17],
loans [2], and other applications.

In this work, we focus specifically on a type of transaction,
arbitrage, performed with a specific type of exchange, an
Automated Market Maker (AMM). Arbitrage is defined as
the simultaneous purchase and sale of the same asset in two
different markets for advantageously different prices, and is
widely considered a benign, yet critical element of modern
efficient markets [40, 47]. An AMM, put simply, is a smart
contract that enables users to swap one token for another
at an automatically determined price. AMMs are the most
popular form of exchange in the blockchain ecosystem and
they represent a very large Total Value Locked (TVL). For
example, the Uniswap v2 [20] AMM has more than $5 billion
of value deposited at the time of writing [7].

A recent publication from Zhou et al. made the shocking
finding that by using a simple arbitrage-detection algorithm
one could feasibly generate a weekly revenue of $76,592 [55].
Moreover, Qin et al. found that, over a study period of
32 months, $277.02 million in value was extracted by
arbitrageurs [44]. Making matters yet more dramatic, Wang et
al. found that unexploited arbitrage opportunities consistently
yield more than 1 ETH (at the time of their publication, about
$4,000) [51]. Daian likewise finds that arbitrageurs are not only
pervasive but also compete with each other aggressively [33].

However, we need more methods and materials to properly
understand the current situation of arbitrage on the blockchain,
above and beyond what has been studied by past works, which
have a number of limitations. Zhou’s method of arbitrage
opportunity detection is engineered to be real-time capable,
but this is accomplished by limiting the focus to a small subset
of decentralized exchanges, which results in missing sub-
stantial portions of the arbitrage phenomenon. Daian’s work
determined that arbitrage bots bid reactively to one another,

USENIX Security 2023

Transaction Order Matters

• Bots monitor the mempool
• Identify transactions that

might create an arbitrage
opportunity

• Attempt to put an arbitrage
transaction right after trade
(back-running)

• Might use Flashbots to avoid
a bidding war

Behavior Count %

No change 2,108,655 55.5%
No arbitrage 875,515 23.1%
Reverted 506,213 13.3%
Profit changed 238,329 6.3%
Sandwich 63,257 1.7%
New pivot token 5,260 0.1%
Cycle count changed 30 0.0%

Total 3,797,259 100%

Table 3: Observed behavior when executing identified
arbitrages at the top of the block.

3.2.5 Back-Running
It is well-known that arbitrageurs use a strategy called back-

running [44,51,57]. In this strategy, an arbitrageur monitors the
queue of pending transactions (the mempool) and examines it
for other users’ transactions that modify DEX prices. Occasion-
ally, one can observe a pending transaction that modifies prices
such that profit can be made from arbitrage. The arbitrageurs
then seek to construct and include this arbitrage immediately
after the observed target transaction. This is accomplished in
one of two ways, by either (a) exploiting the fact that block pro-
ducers tend to include transactions in order of descending trans-
action fees or (b) by using FLASHBOTS [22] (see Section 2).

Strategy (a) is a commonly noted method of exploiting trans-
actions placed in the mempool [33, 34, 42–44, 49, 57]. Using
this approach, one can strategically place a transaction either
immediately before, or immediately after a target transaction.

Strategy (b), however, is a more recent emergence, and is still
lightly studied [34,42,44]. The FLASHBOTS system is a central-
ized, third-party service that connects users seeking to avoid
the publicly observable mempool with block producers who
are willing to include their transactions for a fee. This keeps a
transaction’s content private (with respect to the Ethereum peer-
to-peer network) until its inclusion in a block. As an additional
feature, the FLASHBOTS system allows users to specify that a
block producer should relay several transactions in a predeter-
mined order. Arbitrageurs use this to back-run transactions.

In order to identify back-running arbitrages, we introduce
the following approach. For each identified arbitrage transac-
tion, we use a modified version of GANACHE [11] to fork the
blockchain at the block immediately preceding its inclusion.
Then, we re-play the transaction as if it were to execute first in
its block. Lastly, we observe the resulting ERC-20 token move-
ment logs and use them to run our arbitrage identification algo-
rithm. The results of this experiment are displayed in Table 3.

We define a back-running arbitrage as one which, when
re-ordered and executed as the first transaction in its block,
fails to re-produce an arbitrage – i.e., either it reverts or is no
longer labeled as an arbitrage under our analysis. This yields a
total of 1,381,728 back-running transactions. The profit-share

Figure 3: Share of total arbitrage profits taken by back-running
vs non-back-running transactions, drawn as a percentage
over a window of 6,646 blocks (about one day). We see
back-running emerge as a strategy around May 2020.

of back-running behavior is also plotted over time in Figure 3.
We augment this experiment with the publicly available

FLASHBOTS data feed [10], which identifies the transactions
that were relayed through their system. Based on this feed,
we find that 468,431 back-running transactions (or 32.4%)
leverage FLASHBOTS.

3.2.6 Revenue and Fees
In this section, we analyze the revenues, profits, yields, and

fees paid for arbitrage transactions. In order to make a fair
apples-to-apples comparison of revenue without dealing with
token-to-token conversion rates, we further limit the scope of
this analysis to only those arbitrages that took profit in WETH.

We say that the revenue of a transaction is the amount of
pivot token received minus the amount emitted to fund the
arbitrage trade.

The profit of a transaction is the revenue minus any fees
paid to the block producer. This is an important distinction.
As Daian [33] observed, arbitrage runners compete with each
other in “progressive gas-price auctions,” where arbitrageurs
bid ever-increasing fees for the privilege of being included
before all others seeking the same arbitrage opportunity. In
such gas auctions, the revenue stays the same, but the profit
kept by the arbitrageur approaches zero as they attempt to
out-bid the other bots. Note that transactions relayed through
FLASHBOTS may optionally include a direct transfer of Ether
to the block producer in addition to the standard transaction
fee, so we also collect all these direct transfers of Ether and
include them within the fees of the transaction.

Finally, we define the yield of an arbitrage transaction to be
the percentage of revenue that is taken as profit, where revenue
is positive.

The aggregate statistics of profit, revenue, and yield of our
identified arbitrages are summarized in Table 4. There are

Transaction Order Matters

• Sandwich attacks
• Identify a target transaction that might change the valuation of an asset
• Attempt to put a transaction before and one afterwards to take

advantage of the change
• Front-running attacks

• Identify a profit-making transaction
• Attempt to put a similar transaction (with a different beneficiary) before

the target transaction

Take the Money
• Stolen funds

• Hacks
• Wallet compromise

• Scams
• Ponzi schemes
• Pig butchering/romance scams
• Investment scams

• Ransomware
• Rag pulls

Hacks! Hacks!

• Traditional hacks
• Compromised credentials
• Unauthorized access

• Bridge hacks
• Custodian attacks
• Debt issuer attacks
• Communicator attacks

• Protocol hacks
• Oracle manipulation
• …

https://rekt.news/

Amount of Stolen Funds

56Stolen Funds

2022 Biggest Year Ever For Crypto
Hacking with $3.8 Billion Stolen, Primarily
from DeFi Protocols and by North Korea-
linked Attackers

Total value stolen in crypto hacks and number of hacks, 2016–2022

Total value stolen Total number of hacks

Cr
yp

to
cu

rr
en

cy
 v

al
ue

 st
ol

en

Nu
m

be
r o

f h
ac

ks

$0.0 B

$1.0 B

$0.1 B
$0.2 B

$1.5 B

$0.5 B $0.5 B

$2.0 B

$3.0 B

$4.0 B

0

100

200

300

2016 2017 2018 2019 2020 2021 2022

$3.3 B

$3.8 B

2022 was the biggest year ever for crypto hacking, with $3.8 billion stolen from cryptocurrency
businesses. Hacking activity ebbed and flowed throughout the year, with huge spikes in March and
October, the latter of which became the biggest single month ever for cryptocurrency hacking, as
$775.7 million was stolen in 32 separate attacks.

https://go.chainalysis.com/2023-crypto-crime-report.html

60

Stolen Funds

Yearly total cryptocurrency stolen by North Korea-linked hackers, 2016–2022

$0 M

$500 M

$522.3 M

$271.1 M

$299.5 M

$428.8 M

$1,650.5 M

$1,000 M

$1,500 M

$2,000 M

2016

2017

2018

2019

2020

2021

2022

$1.5 M

$29.2 M

North Korea-linked hackers break theft records yet again:

$1.7 billio
n stolen

North Korea-linked hackers su
ch as th

ose in cybercriminal syndicate Lazarus Group have been by

far the most p
rolific

 cryptocurrency hackers o
ver the last fe

w years. I
n 2022, they shattered their

own records fo
r theft, s

tealing an estim
ated $1.7 billio

n worth of cryptocurrency across se
veral hacks

we’ve attrib
uted to them. For context, N

orth Korea’s to
tal exports i

n 2020 totalled $142 millio
n worth

of goods, so
 it is

n’t a stre
tch to say that cryptocurrency hacking is a

 siza
ble chunk of the nation’s

economy. Most experts a
gree the North Korean government is

using these sto
len to fund its

nuclear

weapons programs.

$1.1 billio
n of that to

tal was sto
len in hacks of DeFi protocols, m

aking North Korea one of the driving

forces behind the DeFi hacking trend that intensifie
d in 2022. North Korea-linked hackers te

nd to

send much of what th
ey steal to other DeFi protocols, n

ot because these protocols are effective

for money laundering — they’re actually quite bad for money laundering given their in
creased

transparency compared to centralized services — but rather because DeFi hacks often result in
 cyber-

criminals acquiring large quantitie
s of illi

quid tokens th
at aren’t lis

ted at centralized exchanges. The

hackers th
erefore must tu

rn to other DeFi protocols, u
sually DEXes, to

 swap for more liquid assets.

Ronin Network Hack

• Side chain
• Required consensus of 5 out of 9 servers for transfer
• 4 servers were managed by the same entity
• A fifth entity had temporary delegated the right to sign
• The hacker stole $624M
• The team didn’t notice until a week later…

Nomad Bridge Hack

• Faulty update allows for address 0x0 to be authorized as root
• First attempt to compromise failed (and cost $350K in gas!)
• Second attempt succeeded and was followed by everyone else
• $190M stolen in 2.5 hours as a result

https://defillama.com/protocol/nomad

Wormhole Hack

• Wormhole is a token bridge between Ethereum and Solana
• A bug allowed an attacker to provide both a signature and the

contract needed to verify the signature
• This allowed for the minting of wrapped Ethereum on Solana,

which was then transferred back to Ethereum
• $326M were lost

Take the Money and Launder It

• Once the money is stolen, it can be tracked, requiring laundering
• Money can be laundered by mixers, exchanges, DeFi

applications, games, etc.
• DeFi application have seen a substantial increase as a means to

launder cash
• Tornado Cash is a mixer that uses Zero-Knowledge Succinct

Non-Interactive Argument of Knowledge (zk-SNARKs) to allow a
user to deposit an Ether amount and then extract it without the
possibility to link the two operations

Cryptolaundry

https://go.chainalysis.com/2023-crypto-crime-report.html

43Money Laundering

Total cryptocurrency laundered by year, 2015–2022

$0 B

$5 B

$10 B

$15 B

$20 B

$25 B

2015 2016 2017 2018 2019 2020 2021 2022

$0.4B $1.1B
$4.5B

$3.4B

$11.8B

$14.2B

$23.8B

$8.5B

Overall, illicit addresses sent nearly $23.8 billion worth of cryptocurrency in 2022, a 68.0% increase
over 2021. As is usually the case, mainstream centralized exchanges were the biggest recipient of
illicit cryptocurrency, taking in just under half of all funds sent from illicit addresses. That’s notable
not just because those exchanges generally have compliance measures in place to report this activity
and take action against the users in question, but also because those exchanges are fiat off-ramps,
where the illicit cryptocurrency can be converted into cash.

US Fights Back

• The US Office of Foreign Assets Control (OFAC) has put
exchanges (e.g., Russia-based Suex and Chatex, in September
2021) on the Specially Designated Nationals and Blocked
Persons (SDN) list

• In May 2022, OFAC put Blender.io on the SDN list
• In August 2022, OFAC put Tornado Cash on the SDN list

• Used to launder Lazarus group’s $455M heist

Securing Smart Contracts

• “The code is the law”
• What if the code is broken?
• What if the source code is not even public?
• Problems

• Function visibility
• Reentrancy and order of transactions
• Timing
• Randomness

Audits and Bug Bounties

• Ecosystem of companies that perform audits
• Trail of Bits, ConsenSys Diligence, Certik, Hacken, OpenZeppelin, …

• Provide no guarantees
• Bug bounties are a way to incentivize

responsible disclosure
• Immunefi, HackenProof

Automated Vulnerability Analysis

• Combination of static and dynamic analysis
• Small code sizes make it possible to adopt resource-heavy

approaches
• Execution is limited by gas price
• Memory models are simpler
• All the code is available

Reentrancy
• Bank contract allows withdrawal of

Ethers by users
• The withdraw() function transfers

the amount through an external call
• After the call returns, user’s balance is

updated.
• A user implements getEthers() to

withdraw 100 Ethers from the Bank
• She also invokes
bank.withdraw(100) within her
fallback() function as well

39

contract Bank {
mapping (address => uint) accounts;

function withdraw(uint amount) public {
if (accounts[msg.sender] >= amount) {

msg.sender.call.value(amount);
accounts[msg.sender] -= amount;

}
}

}

contract User {
Bank bank;
function getEthers() public { bank.withdraw(100);}
function () public payable { bank.withdraw(100);}

}

getEthers() {
bank.withdraw(100)

}

payable() {
bank.withdraw(100)

}

Attacker Bank

1

2

3

withdraw() {

}

if (accounts[msg.sender] >= amount)

msg.sender.call.value(amount)

accounts[msg.sender] -=
amount

Reentrancy

40

getEthers() {
bank.withdraw(100)

}

payable() {
bank.withdraw(100)

}

Attacker Bank

1

2

3

1
withdraw() {

}

2

3

if (accounts[msg.sender] >= amount)

msg.sender.call.value(amount)

accounts[msg.sender] -=
amount

Reentrancy

41

getEthers() {
bank.withdraw(100)

}

payable() {
bank.withdraw(100)

}

Attacker Bank

1

2

3

1

2

3

4 5

6

Reentr
ant							

				call

withdraw() {

}

if (accounts[msg.sender] >= amount)

msg.sender.call.value(amount)

accounts[msg.sender] -=
amount

Reentrancy

42

getEthers() {
bank.withdraw(100)

}

payable() {
bank.withdraw(100)

}

Attacker Bank

1

2

3

1

2

3

4 5

6

7

8

Reentr
ant							

				call

Deferred
update

withdraw() {

}

if (accounts[msg.sender] >= amount)

msg.sender.call.value(amount)

accounts[msg.sender] -=
amount

Reentrancy

43

Smart
contract

Static analysis

Hazardous accessesICFG SDG

Reachability in
SDG

ext.
call

reachable

Likely
Vulnerable

Sailfish

44

SAILFISH: Vetting Smart Contract
State-Inconsistency Bugs in Seconds

Priyanka Bose, Dipanjan Das, Yanju Chen, Yu Feng, Christopher Kruegel, and Giovanni Vigna
University of California, Santa Barbara

{priyanka, dipanjan, yanju, yufeng, chris, vigna}@cs.ucsb.edu

Abstract—This paper presents SAILFISH, a scalable system for
automatically finding state-inconsistency bugs in smart contracts.
To make the analysis tractable, we introduce a hybrid approach
that includes (i) a light-weight exploration phase that dramati-
cally reduces the number of instructions to analyze, and (ii) a pre-
cise refinement phase based on symbolic evaluation guided by our
novel value-summary analysis, which generates extra constraints
to over-approximate the side effects of whole-program execution,
thereby ensuring the precision of the symbolic evaluation. We
developed a prototype of SAILFISH and evaluated its ability to
detect two state-inconsistency flaws, viz., reentrancy and trans-
action order dependence (TOD) in Ethereum smart contracts.

Our experiments demonstrate the efficiency of our hybrid
approach as well as the benefit of the value summary analysis.
In particular, we show that SAILFISH outperforms five state-of-
the-art smart contract analyzers (SECURIFY, MYTHRIL, OYENTE,
SEREUM and VANDAL) in terms of performance, and precision.
In total, SAILFISH discovered 47 previously unknown vulnerable
smart contracts out of 89,853 smart contracts from ETHERSCAN.

I. INTRODUCTION

Smart contracts are programs running on top of the Ethereum
blockchain. Due to the convenience of high-level programming
languages like SOLIDITY and the security guarantees from
the underlying consensus protocol, smart contracts have seen
widespread adoption, with over 45 million [16] instances
covering financial products [6], online gaming [9], real estate,
and logistics. Consequently, a vulnerability in a contract can lead
to tremendous losses, as demonstrated by recent attacks [15],
[14], [12], [21]. For instance, the notorious “TheDAO” [11]
reentrancy attack led to a financial loss of about $50M in 2016.
Furthermore, in recent years, several other reentrancy attacks,
e.g., Uniswap [17], Burgerswap [7], Lendf.me [8], resulted in
multimillion dollar losses. To make things worse, smart contracts
are immutable—once deployed, the design of the consensus
protocol makes it particularly difficult to fix bugs. Since smart
contracts are not easily upgradable, auditing the contract’s source
pre-deployment, and deploying a bug-free contract is even more
important than in the case of traditional software.

In this paper, we present a scalable technique to detect state-
inconsistency (SI) bugs—a class of vulnerabilities that enables an
attacker to manipulate the global state, i.e., the storage variables
of a contract, by tampering with either the order of execution of
multiple transactions (transaction order dependence (TOD)), or
the control-flow inside a single transaction (reentrancy). In those
attacks, an attacker can tamper with the critical storage variables
that transitively have an influence on money transactions
through data or control dependency. Though “TheDAO” [11]

is the most well-known attack of this kind, through an offline
analysis [59], [50] of the historical on-chain data, researchers
have uncovered several instances of past attacks that leveraged
state-inconsistency vulnerabilities.

While there are existing tools for detecting vulnerabilities
due to state-inconsistency bugs, they either aggressively over-
approximate the execution of a smart contract, and report false
alarms [54], [36], or they precisely enumerate [3], [46] concrete
or symbolic traces of the entire smart contract, and hence, cannot
scale to large contracts with many paths. Dynamic tools [50], [59]
scale well, but can detect a state-inconsistency bug only when
the evidence of an active attack is present. Moreover, existing
tools adopt a syntax-directed pattern matching that may miss
bugs due to incomplete support for potential attack patterns [54].

A static analyzer for state-inconsistency bugs is crucial for
pre-deployment auditing of smart contracts, but designing such
a tool comes with its unique set of challenges. For example, a
smart contract exposes public methods as interfaces to interact
with the outside world. Each of these methods is an entry point
to the contract code, and can potentially alter the persistent
state of the contract by writing to the storage variables. An
attacker can invoke any method(s), any number of times, in
any arbitrary order—each invocation potentially impacting the
overall contract state. Since different contracts can communicate
with each other through public methods, it is even harder to
detect a cross-function attack where the attacker can stitch
calls to multiple public methods to launch an attack. Though
SEREUM [50] and ECFCHECKER [37] detect cross-function
attacks, they are dynamic tools that reason about one single
execution. However, statically detecting state-inconsistency bugs
boils down to reasoning about the entire contract control and
data flows, over multiple executions. This presents significant
scalability challenges, as mentioned in prior work [50].

This paper presents SAILFISH, a highly scalable tool that is
aimed at automatically identifying state-inconsistency bugs in
smart contracts. To tackle the scalability issue associated with stat-
ically analyzing a contract, SAILFISH adopts a hybrid approach
that combines a light-weight EXPLORE phase, followed by a RE-
FINE phase guided by our novel value-summary analysis, which
constrains the scope of storage variables. Our EXPLORE phase
dramatically reduces the number of relevant instructions to reason
about, while the value-summary analysis in the REFINE phase
further improves performance while maintaining the precision
of symbolic evaluation. Given a smart contract, SAILFISH first
introduces an EXPLORE phase that converts the contract into a

IEEE Symposium on Security and Privacy, May 2022

Confused Deputy

45

A B

Confused Deputy

46

Can I have
the key? NOPE

A B

Confused Deputy

47

A B

Confused Deputy

48

Ask for
the key
and give it
to me!

A C B

Confused Deputy

49

I need
the key!

A C B

Confused Deputy

50

Oh,
sure!

A C B

Confused Deputy

51

Thanks!

A C B

Confused Deputy

52

Here the
key, have a
nice day!

A C B

Confused Deputy

53

But…
I trusted
you…

Confused Deputy Target
A C B

Confused Contract

54

A B

CALL

Confused Contract

55

A B

CALL
msg.sender = A
tx.origin = A

iTX

Confused Contract

56

A B

CALL

Data provided must be coming from A!

msg.sender = A
tx.origin = A

iTX

Confused Contract

57

MyBot MyBankAlice

MyBot:

Bob:

Confused Contract

58

MyBot MyBankAlice

Bob:TX

msg.sender = A
tx.origin = A
func: transfer

to : Bob
val: 2

MyBot:

Transfer of funds
(benign)

Confused Contract

59

MyBot MyBankAlice

Bob:TX

CALL

MyBot:

msg.sender = A
tx.origin = A
func: transfer

to : Bob
val: 2

Transfer of funds
(benign)

Confused Contract

60

MyBot MyBankAlice

Bob:TX iTX

msg.sender = myBot
tx.origin = A
func: transfer

to : Bob
val: 2

MyBot:

msg.sender = A
tx.origin = A
func: transfer

to : Bob
val: 2

Transfer of funds
(benign)

Confused Contract

61

MyBot MyBankAlice

Bob:TX iTX

MyBot:

msg.sender = A
tx.origin = A
func: transfer

to : Bob
val: 2

msg.sender = myBot
tx.origin = A
func: transfer

to : Bob
val: 2

Transfer of funds
(benign)

Confused Contract

62

MyBot MyBank

MyBot:

Mallory:

Transfer of funds
(malicious)

Confused Contract

63

MyBot MyBank

TX

MyBot:

msg.sender = M
tx.origin = M
func: transfer

to : Mallory
val: 3

Mallory:

Transfer of funds
(malicious)

Mallory

Confused Contract

64

MyBot MyBank

TX

Transfer of funds
(malicious)

MyBot:

msg.sender = M
tx.origin = M
func: transfer

to : Mallory
val: 3

Mallory:
iTX

msg.sender = myBot
tx.origin = M
func: transfer

to : Mallory
val: 3

Mallory

Confused Contract

65

TX

MyBot:

msg.sender = M
tx.origin = M
func: transfer

to : Mallory
val: 3

Mallory:
iTX

msg.sender = myBot
tx.origin = M
func: transfer

to : Mallory
val: 3

Transfer of funds
(malicious)

Mallory MyBot MyBank

Confused Contract

66

TX

MyBot:

msg.sender = M
tx.origin = M
func: transfer

to : Mallory
val: 3

Mallory:
iTX

msg.sender = myBot
tx.origin = M
func: transfer

to : Mallory
val: 3

Transfer of funds
(malicious)

Mallory Deputy Target

KAI
Call Inspector

Identify controllable
CALLs

(Confused Contract)

Path Feasibility
Validator

Verify reachability of CALL
opcode

Lift & CFG
Translate EVM bytecode
into IR and create CFG

Identify Targets
Identify Contract Targets

on chain
Smart Contract

Binary

• 2,000,000+ smart contracts
• Deployed between December 2020 → December 2022

• 529 potential Confused Contracts
• 84 warnings Confused Contract + Contract Target

• 13 working exploits for a total value of more than $1,000,000

Call To Action
• We need better tools to analyze smart contracts

• Dynamic symbolic execution
• Static analysis
• Model checking
• Fuzzing
• Decompilers

• We need more people looking at smart contract
• Start breaking stuff (responsibly) and collect amazing bug bounties!

• We need ways to recover stolen funds
• Prevent money laundering
• Reversible tokens (ERC-20R and ERC-721R proposal by Stanford

researchers)

Conclusions

• The DeFi ecosystem is a fascinating new target for security
research

• For both enthusiasts and detractors!
• Tools are primitive, human expertise is lacking
• If DeFi truly becomes the future of finance, we need to do

something, or we are doomed…
… and maybe it’s a good thing!

NFTs

• Of course, we didn’t have the time to talk about NFTs…

ACM Conference on Computer and Communications Security (CCS), 2022

Thanks!
Questions to vigna@ucsb.edu

