
UC Santa Barbara

CS 177 - Computer Security

Memory Corruption

UC Santa Barbara

Agenda

• Intel x86-64 (64-bit) architecture basics
• Stack-based overflows

– A deeper look into the stack
– Taking control of the program
– The shellcode

• Defenses and evolution of attacks
• Other overflows and considerations

2

UC Santa Barbara

X86 (64-BIT) ARCHITECTURE
AND ASSEMBLER BASICS

3

UC Santa Barbara

Computer Architecture

• The modern computer architecture is based on “Von
Neuman”

– Two main parts: CPU (Central Processing Unit) and Memory
– This architecture is used everywhere (incl., cell phones)
– This architecture is fundamental, has not changed

• What is memory used for?
– E.g., location of curser, size of windows, shape of each letter

being displayed, graphics of icons, text, values, etc.
– Von Neuman also says that not only data, but programs (code)

should be in memory, too

4

UC Santa Barbara

The CPU

• Storing data by itself, of course, is not enough
– CPU reads instructions from memory (one after the other)
– Then executes each instruction (fetch-execute-cycle)

• Some important components that make up the CPU
– General-purpose registers
– Arithmetic and logic unit (ALU)
– Special registers, incl. program counter

5

UC Santa Barbara

This Class

• Focus on Intel x86 architecture (64-bit architecture)
• Illustrates principles well

– similar problems appear on other architectures

6

UC Santa Barbara

Intel x86 Architecture

• Very popular, but “crazy”
• CISC (complex instruction set computing)

– hundreds of distinct opcodes

• Variable-length instructions
• Built of many backwards-compatible revisions
• Register-poor

– 32-bit architecture has only six general purpose registers
– 64-bit architecture extends this to 16 general registers (R0..R15)
– R0..R7 have aliases RAX, RCX, RBX, RDX, RSP, RBP, RSI, RDI

7

UC Santa Barbara

x86-64 Registers

• General purpose registers
– for “normal” computation, to store addresses, …

• Floating point registers (FPU)
• XMM registers
• Segment registers

– for segmentation-based memory access

• Special purpose registers:
– Instruction pointer (RIP)
– Flags register (RFLAGS)
– Stack pointer (RSP)
– Base pointer (RBP) – can be used as a general register as well

8

UC Santa Barbara

Program Counter (RIP)

• Is used to tell the CPU where to fetch next instruction
– there is no difference between memory and data
– program counter holds memory address of next instruction

• Instruction decoder then makes sense of the instruction
– Addition? Subtraction? Multiplication? Move operation?
– Instructions often include memory locations as well

• move this piece of data from address X to address Y in memory

9

UC Santa Barbara

Important Instructions

• Data move instruction
– mov: used often to move around data

• Arithmetic and logic instructions
– add, sub, mul, and, or, xor, …

• Stack manipulation
– push, pop

• Control flow instructions
– compare instruction: cmp
– branch and jump instructions: je, jg, jge, jl, jle, jmp

10

UC Santa Barbara

Data Accessing Methods

Many different ways of accessing data in memory

• Immediate mode
– Value is part of instruction itself

• Register addressing mode
– Instruction references a register (rather than memory location)

• Direct addressing mode
– Instruction references a memory address (that is accessed)

• Indirect addressing mode
– Instruction references a register that holds the memory address (that

is accessed)

11

UC Santa Barbara

Instruction Syntax (AT&T Syntax)

• Format opcode src, dst

• Constants preceded by $

• Registers preceded by %

• Indirection uses ()

mov $16, %rbx

mov (%rax), %rbx

mov 4(%rax), %rbx
The item stored at %rax + 4

mov %rax, %rbx

12

UC Santa Barbara

Process Memory Layout

• .text
– machine code of executable

• .data
– global initialized variables

• .bss
– global uninitialized variables

.text .data .bss heap stackfree env

High memory
addresses

Low memory
addresses Grows upward Grows downward

Example: Outside of any function:

int val = 3;
char string[] = "Hello World";

Example: Outside of any function:

static int i;
13

UC Santa Barbara

Process Memory Layout

• .text
– machine code of executable

• .data
– global initialized variables

• .bss
– global uninitialized variables

.text .data .bss heap stackfree env

High memory
addresses

Low memory
addresses Grows upward Grows downward

• heap
– dynamic variables (malloc)

• stack
– local variables and function

call information (frames)

• env
– environment variables and

arguments
14

UC Santa Barbara

Process Memory Layout

• Process memory layout is entirely virtual, and for now,
we do not need to understand how it really works!

• Process memory layout thus always addresses the
whole (in our case, 64-bit) address space.

.text .data .bss heap stackfree env

High memory
addresses

Low memory
addresses Grows upward Grows downward

15

UC Santa Barbara

sub Instruction

• Subtract from a register value

%rax 7

re
gi

st
er

s
m

em
or

y

sub %rax, %rbx

%rbx 9 2

16

UC Santa Barbara

push Instruction

• Put a value on the stack
– value from register
– value goes to (%rsp)
– subtract 8 from %rsp

• Example
push %rax

%rax 7

re
gi

st
er

s
m

em
or

y

Stackpush %rax

%rsp N%rbp M

%rax 7

re
gi

st
er

s
m

em
or

y

Stack

%rsp N-8%rbp M

7

17

UC Santa Barbara

pop Instruction

• Take value from the stack
– value from (%rsp)
– value goes into register
– add 8 to %rsp

• Example
pop %rax

%rax 9

re
gi

st
er

s
m

em
or

y

Stackpop %rax

%rsp N%rbp M

%rax 7

re
gi

st
er

s
m

em
or

y

Stack

%rsp N+8%rbp M

7

18

UC Santa Barbara

jmp Instruction

• Control flow transfer
– %rip points to the currently

executing instruction (in the
text section)

– Has unconditional and
conditional forms

– Example uses relative
addressing

%rip K

re
gi

st
er

s
m

em
or

y

StackK: jmp $-20

%rsp N%rbp M

%rip K-20

re
gi

st
er

s
m

em
or

y

Stack

%rsp%rbp M N

19

UC Santa Barbara

call Instruction

• Used for function calls
• Saves the current

instruction pointer to the
stack

• Jumps to the argument
value

%rip K

re
gi

st
er

s
m

em
or

y

StackA: call foo
A+i: next instruction

%rsp N%rbp M

%rip foo

re
gi

st
er

s
m

em
or

y

Stack

%rsp%rbp M N-8

A+ifoo: first instr.

20

UC Santa Barbara

ret Instruction

• Return from a function call
• Pops the top value of the

stack into the instruction
pointer

%rip K

re
gi

st
er

s
m

em
or

y

Stack

%rsp N%rbp M

%rip A

re
gi

st
er

s
m

em
or

y

Stack

%rsp%rbp M N+8

A: instr.

AK: ret

21

UC Santa Barbara

leave Instruction

• Prepare return
• Equivalent to

mov %rbp, %rsp
pop %rbp

%rip K

re
gi

st
er

s
m

em
or

y

%rsp N%rbp M

%rip K+i

re
gi

st
er

s
m

em
or

y

Stack

%rsp%rbp A M

ret

A
K: leave
K+i: ret Stack

22

UC Santa Barbara

BUFFER OVERFLOWS

23

UC Santa Barbara

Buffer Overflows

• A buffer overflow occurs any time the program attempts
to store data beyond the boundaries of a buffer,
overwriting the adjacent memory locations

• Goals
– Overwrite other “interesting” variables

(file names, passwords, pointers...)
– Force program to execute operations it was not intended to do

• inject (or simply find) code into the process memory
• change flow of control (flow of execution) to execute that code

24

UC Santa Barbara

Buffer Overflows

• Common targets
– setuid/setgid programs
– network servers

• Vulnerable software
– Mostly C/C++ programs
– Programs written in memory-safe languages (Java, Python, C#)

are typically safe

25

UC Santa Barbara

Buffer Overflows

• Stack-based buffer overflows are the quintessential
memory corruption vulnerability

– problem known since the 1970s, but first exploited by the Morris
worm in 1988

– rediscovered in a 1995 Bugtraq post
– Aleph One wrote an accessible Phrack article in 1996
– people suddenly realized they were everywhere...

26

UC Santa Barbara

Part I
A deeper look into the stack

27

UC Santa Barbara

The Stack

• In most architectures (Intel, Motorola, Sparc), stack grows
towards bottom

• A running program uses the stack to enable functions to
work properly

• For each function that is invoked at runtime, we allocate a
(stack) frame for this function

• Each frame stores a number of important pieces of data
for this function

28

UC Santa Barbara

Stack Frames

• A stack frame can be used to hold
– (some) function parameters

• items passed to function for processing
• in x86-64, first six arguments are passed in registers (in order: RDI, RSI, RDX,

RCX, R8, R9)

– local variables
• temporary storage areas used in the function
• thrown away when the processing finishes

– return address
• where to jump when you are done
• when a function is invoked, the calling point is saved
• when the function completes, it returns to the initial calling point

– return value
• we can also use registers for that (in x86, we use RAX)

29

UC Santa Barbara

Stack Frames

• We use two registers to manage stack and stack frames
– RSP (stack pointer) register points to the top of the stack
– RBP (base pointer) points to the current frame

30

UC Santa Barbara

Calling Convention

• Calling conventions define how parameters and return
values are exchanged between a caller function and the
called function (callee)

• In principle, you can define your own calling conventions

• However, if you want to interoperate with functions and
libraries written by others, everyone needs to follow a
common calling convention

31

UC Santa Barbara

C/x86-64 Calling Convention

• Caller
– puts first six arguments into registers
– puts remaining arguments (if any) onto the stack
– invokes callee function by using call instruction

• Callee
– saves key registers for caller
– makes room for local variables
– does work
– puts return value into register (EAX)
– cleans up stack frame and restores key registers
– invokes ret(urn) call

32

UC Santa Barbara

C/x86-64 Calling Convention

Caller frame

Free memory

RBP

RSP
We want to call a function

33

UC Santa Barbara

C/x86-64 Calling Convention

We want to call a function

• Caller might push parameters on the
stack (if there are more than 6)

– this is done in reverse order, right to
left: first push last parameter

Caller frame

Free memory

(Maybe) Parameters

RSP

RBP

34

UC Santa Barbara

C/x86-64 Calling Convention

We want to call a function

• Caller might push parameters on the
stack (if there are more than 6)

– this is done in reverse order, right to
left: first push last parameter

• Then, invoke function (via call)
– when this is done, the return address

is automatically pushed on the stack

Caller frame

Return address

Free memory

RSP

RBP

35

(Maybe) Parameters

UC Santa Barbara

C/x86-64 Calling Convention

• In the function prologue of the
callee, we first save the old
frame (base) pointer

push %rbp

Caller frame

Return address

Old frame pointer

Free memory

RSP

RBP

36

(Maybe) Parameters

UC Santa Barbara

C/x86-64 Calling Convention

• In the function prologue of the
callee, we first save the old
frame (base) pointer

push %rbp

• Then, we copy the stack pointer
value into EBP to get our new
base pointer

– allows access to parameters

mov %rsp, %rbp

Caller frame

Return address

Old frame pointer

Free memory

RBP
RSP

37

(Maybe) Parameters

UC Santa Barbara

C/x86-64 Calling Convention

• Stack frame holds all local
variables

• We need to make room
– simply move the stack pointer

(downwards)
– for example, if we need space

for two 64-bit integers
sub $16, %rsp

– the sub is sometimes omitted
when function is a leaf function

– EBP is used as anchor to access
local variables

Caller frame

Return address

Old frame pointer

Free memory

Local variable #1

Local variable #2
RSP

RBP

38

(Maybe) Parameters

UC Santa Barbara

C/x86-64 Calling Convention

Caller frame

Return address

Old frame pointer

Free memory

RBP
RSP

When function is done

• Store return value in RAX

• Reset the stack
mov %rbp, %rsp

39

(Maybe) Parameters

UC Santa Barbara

C/x86-64 Calling Convention

When function is done

• Store return value in RAX

• Reset the stack
mov %rbp, %rsp

• Restore old frame pointer
pop %rbp

• Now we are ready for ret

Caller frame

Return address

Free memory

RSP

RBP

40

(Maybe) Parameters

UC Santa Barbara

Function Call Example

int foo(int a, int b)
{

int i = 3;
return (a + b) * i;

}

int main()
{

int e = 0;
e = foo(4, 5);
printf(“%d”, e);

}

Return address

Old frame pointer

Local variable (int i)

41

Arguments are passed
in registers (%rdi, %rsi)

UC Santa Barbara

A Closer Look

(gdb) disassemble main
Dump of assembler code for function main:

0x0000555555555150 <+4>: push %rbp
0x0000555555555151 <+5>: mov %rsp,%rbp

0x0000555555555154 <+8>: sub $0x10,%rsp
0x0000555555555158 <+12>: mov $0x0,-0x4(%rbp)
0x000055555555515f <+19>: mov $0x5,%esi
0x0000555555555164 <+24>: mov $0x4,%edi
0x0000555555555169 <+29>: call 0x555555555129 <foo>

0x000055555555516e <+34>: mov %eax,-0x4(%rbp)
0x0000555555555171 <+37>: mov $0x0,%eax
0x0000555555555176 <+42>: leave
0x0000555555555177 <+43>: ret

End of assembler dump.

42

0x00005555
5555516e

Arguments are passed
in registers (%rdi, %rsi)

UC Santa Barbara

A Closer Look

Breakpoint 1, 0x0000555555555129 in foo ()
(gdb) disassemble

Dump of assembler code for function foo:
0x0000555555555129 <+0>: endbr64

0x000055555555512d <+4>: push %rbp
0x000055555555512e <+5>: mov %rsp,%rbp
0x0000555555555131 <+8>: mov %edi,-0x14(%rbp)
0x0000555555555134 <+11>: mov %esi,-0x18(%rbp)
0x0000555555555137 <+14>: movl $0x3,-0x4(%rbp)

0x000055555555513e <+21>: mov -0x14(%rbp),%edx
0x0000555555555141 <+24>: mov -0x18(%rbp),%eax
0x0000555555555144 <+27>: add %edx,%eax
0x0000555555555146 <+29>: imul -0x4(%rbp),%eax
0x000055555555514a <+33>: pop %rbp
0x000055555555514b <+34>: ret

End of assembler dump.

43

0x00005555
5555516e

0x00007fff
ffffdfd0

3

UC Santa Barbara

The “foo” Frame

44

0x00005555
5555516e

0x00007fff
ffffdfd0

3

Breakpoint 2, 0x0000555555555137 in foo ()
(gdb) stepi
0x000055555555513e in foo ()
(gdb) x/8w $rbp-8
0x7fffffffdfa8: 0x55555180 0x00000003 0xffffdfd0 0x00007fff
0x7fffffffdfb8: 0x5555516e 0x00005555 0xffffe0c0 0x00007fff

$rbp-8

$rbp

UC Santa Barbara

Part II
Taking Control of the Program

45

UC Santa Barbara

The Idea

• Overwrite a pointer with the address of our code
• First, locate a pointer that will be copied to the RIP

register, or that points to the data that will be copied to
the RIP

– function return address
– function pointers
– saved RBP
– entry in the GOT (Global Offset Table)

• Second, overwrite pointer with “good” value
– we will see what good value means

46

UC Santa Barbara

Smashing the Stack

• A procedure contains local variable allocated on the stack

• Procedure copies user-controlled data (input) to the buffer without
verifying that the data size is smaller than the buffer

• The user data overwrites all other variables on the stack, up to the
return address

• Procedure returns, program fetches the return address that has been
modified and jumps to it

47

UC Santa Barbara

Example

$ cat test.c
#include <stdio.h>
#include <string.h>

int vulnerable(char* param)
{

char buffer[100];
strcpy(buffer, param);

}

int main(int argc, char* argv[])
{

vulnerable(argv[1]);
printf(“Everything's fine\n”);

}

$ gcc -fno-stack-protector -o test test.c

Buffer that can hold up to
100 bytes

Copy an arbitrary number of
characters from param to
buffer

48

UC Santa Barbara

Let's Make it Crash

$./test hello
Everything's fine

$./test AA
AAA
AAAAAAAAAAAAAAAAAAAAAAAAA
Segmentation fault (core dumped)

49

UC Santa Barbara

What Just Happened?

GNU gdb (Ubuntu 9.2-0ubuntu1~20.04) 9.2
(gdb) r hello
Everything's fine

(gdb) r
AAA
AAA
AAAAAAAAAAAAAAAAAAAAAAA
Program received signal SIGSEGV, Segmentation fault.
0x000055555555518e in vulnerable ()

(gdb) disassemble
Dump of assembler code for function vulnerable:

0x000055555555518d <+36>: leave
=> 0x000055555555518e <+37>: ret
End of assembler dump.

(gdb) x $rsp
0x7fffffffdf18: 0x41414141

50

buffer

41 41 41 41

41 41 41 41

41 41 41 41

41 41 41 41

41 41 41 41

41 41 41 41

41 41 41 41

41 41 41 41

41 41 41 41

ret address
saved RBP

UC Santa Barbara

Choosing Where to Jump

• Address inside a buffer that contains content controlled by the attacker
– PRO: works for remote attacks
– CON: the attacker needs to know the address of the buffer,

the memory page containing the buffer must be executable

• Address of an environment variable
– PRO: easy to implement, works with tiny buffers
– CON: only for local exploits, some program clean the environment, the stack

must be executable

• Address of a function inside the program
– PRO: works for remote attacks, does not require an executable stack
– CON: need to find the right code

51

UC Santa Barbara

Jumping into a Buffer

• The buffer that we are overflowing is usually a good place
to put the code that we want to execute

• The buffer is somewhere on the stack, but in most cases
the exact address is unknown

– The address must be precise: jumping one byte before or after
would typically just make the application crash

– On the local system, it is possible to calculate the address with a
debugger, but it is very unlikely to be the same address on a
different machine

– Any change to the environment variables affect the stack position

52

UC Santa Barbara

Jumping into a Buffer

Two Steps

1. Get an estimate

2. Make guess robust to errors: Rather than having to hit precisely,
hitting somewhat close is enough (NOP sled)

Still, trial and error is often necessary
53

$ cat get_sp.c
#include <stdio.h>
void* get_sp(void)
{

__asm__("mov %rsp, %rax");
}
int main(int argc, char **argv)
{

printf("Stack pointer (RSP): %p\n", get_sp());
return 0;

}

$./get_sp
Stack pointer (RSP): 0x7ffe6e093220

UC Santa Barbara

The NOP Sled

• A sled is a “landing area” that is put in front of the shellcode
• Must be created in a way such that wherever the program

jumps into it …
– ... it always finds a valid instruction
– … it always reaches the end of the sled and the beginning

of the shellcode

• The simplest sled is a sequence of no operation (NOP) instructions
– Single byte instruction (0x90) that does not do anything

• It mitigates the problem of finding the exact address to the buffer by
increasing the size of the target area

54

UC Santa Barbara

Assembling the Malicious Buffer

ret address
base pointer

buffer90 90 90 90

90 90 90 90

90 90 90 90

shellcode

buf address

55

UC Santa Barbara

Part III
The Shellcode

56

UC Santa Barbara

Shellcode

• Sequence of machine instructions that is executed when
the attack is successful

• Traditionally, the goal was to spawn a shell (that explains
the name “shell code”)

• They can do practically anything
– create a new user, change a user password
– bind a shell to a port (remote shell)
– open a connection to the attacker machine (reverse shell)

...

57

UC Santa Barbara

How to Spawn a Shell

$ man execve

int execve(const char *pathname, char *const argv[], char *const envp[]);

DESCRIPTION
execve() executes the program referred to by pathname. This causes the program
that is currently being run by the calling process to be replaced with a new
program.

pathname must be either a binary executable, or a script starting with a line of
the form: #!interpreter [optional-arg]

argv is an array of argument strings passed to the new program. By convention, the
first of these strings (i.e., argv[0]) should contain the filename associated
with the file being executed.

envp is an array of strings, conventionally of the form key=value, which are
passed as environment to the new program.

The argv and envp arrays must each include a null pointer at the end of the
array.

58

UC Santa Barbara

How to Spawn a Shell

$ man execve

int execve(const char *pathname, char *const argv[], char *const envp[]);

DESCRIPTION
execve() executes the program referred to by pathname. This causes the program
that is currently being run by the calling process to be replaced with a new
program.

pathname must be either a binary executable, or a script starting with a line of
the form: #!interpreter [optional-arg]

argv is an array of argument strings passed to the new program. By convention, the
first of these strings (i.e., argv[0]) should contain the filename associated
with the file being executed.

envp is an array of strings, conventionally of the form key=value, which are
passed as environment to the new program.

The argv and envp arrays must each include a null pointer at the end of the
array.

59

int main(int argc, char **argv) {
char *name[2];
name[0] = “/bin/sh“;
name[1] = NULL;

execve(name[0], name, NULL);
}

UC Santa Barbara

How to Spawn a Shell

• Let’s call the execve system call directly
• Use the syscall instruction
• execve syscall has number 59 (integer) - 0x3b (hex)
• System call number goes into RAX
• Similar to function calls, arguments passed in registers (RDI, RSI, RDX)

• Shellcode needs to set up the arguments, load system call number,
and invoke syscall instruction

60

UC Santa Barbara

How to Spawn a Shell

• Shellcode needs to set up the arguments, load system call number, and
finally invoke syscall instruction

xor %rax, %rax ; set RAX to 0

push %rax ; push ‘\0’ (will be string terminator)
mov $0x68732f6e69622f2f, %rax ; move "hs/nib//” into RAX

push %rax ; push "//bin/sh\0” on the stack
mov %rsp, %rdi ; 1st arg (RDI): RSP points to //bin/sh\0
xor %rsi, %rsi ; 2nd arg (RSI): NULL

xor %rdx, %rdx ; 3rd arg (RDX): NULL
xor %rax, %rax

mov $0x3b, %al ; 0x3b in RAX -> syscall will be execve
syscall ; invoke execve() with ‘/bin/sh’

61

UC Santa Barbara

The Zeros Problem

• The shellcode is usually copied into a string buffer
• \x00 is the string terminator character
• Problem: any null byte in the shellcode would stop copying

• One solution: substitute any instruction containing zeros with an
alternative instruction

• Alternative solution to modifying shellcode: staging
– encode shellcode (e.g., base64, eliminate unwanted chars)
– decode before jumping to original code

mov 0x0, reg --> xor reg, reg
mov 0x1, reg --> xor reg, reg

inc reg

62

UC Santa Barbara

Exploit Considerations

• You might want more powerful shellcode
– typically, you don’t write it yourself
– there are generator tools, such as pwntools or metasploit/venom

• If you want to develop on your own machine
– you want to disable OS and compiler defenses (see next section)

• echo 0 > /proc/sys/kernel/randomize_va_space
• gcc -fno-stack-protector -z execstack -o program program.c

63

UC Santa Barbara

DEFENSES AND
EVOLUTION OF ATTACKS

64

UC Santa Barbara

Defense in Depth

• Program / programmer level
– write safe code
– static (source) code analysis

• Compiler and run-time level
– safe libraries (that add extra checks)
– stack protection (stack canaries)
– control flow integrity (CFI)

• Operating system level
– data execution protection (DEP)
– address space layout randomization (ASLR)

65

UC Santa Barbara

Stack Protection

• Goal
– protect the function frame from being overwritten by the

attacker

• Idea
– add a "canary" value between the local variables and the saved

EBP
– at the end of the function, check that the canary is “still alive”
– a different canary value means that a buffer preceding it in

memory has been overflowed

ret addrsaved ebplocal variables canary params

66

UC Santa Barbara

Canary Values

• Terminator canaries: contain string terminator characters
(\0) to stop string copy routines

• Random canaries: contain a random value generated at
program initialization and stored in a global variable

– the attacker has to find a way to read the canary

• Random XOR canaries: contain a random value XORed
with all (or part of) the control data to protect

– can be used to detect attacks in which the attacker is able to
modify the return address without overwriting the canary

67

UC Santa Barbara

Stack Protection Implementations

• StackGuard
– first canary implementation (by Immunix Corp) in 1997
– implemented as a patch for gcc 2.95

• GCC Stack-Smashing Protector (ProPolice)
– first developed as a patch for gcc 3.x
– supports canary and stack variable rearrangement
– part of gcc 4.1

• Visual Studio 2003 - GS option
– compiler option to insert canaries (called security cookies by

Microsoft), stack rearrangement
68

UC Santa Barbara

Stack Protection in gcc

• -fstack-protector
– StackGuard and ProPolice (more modern)
– ProPolice – also makes sure that stack pointers are put at lower

addresses than buffers (why is that smart?)

• -fstack-protector-strong from gcc 4.9
• -fno-stack-protector

– Deactivate it, good for practicing buffer overflows

69

UC Santa Barbara

Data Execution Prevention (DEP)

• Does not block buffer overflows, but prevents the
shellcode from being executed

– ensure that data (on heap or stack cannot be executed)
– might affect the execution of some programs that normally

require to execute data on the stack (trampolines)

• Supported by most operating systems
– originally implemented in software by PaX on Linux, closely

followed by OpenBSD W^X
– modern implementations rely on hardware support (e.g.,

ia32/x86_64 NX bit, tagged memory)

70

UC Santa Barbara

Code Reuse

• Idea: Instead of injecting a payload, construct an exploit
by reusing existing code

• Application and library code must be executable, thus,
DEP does not apply

• Desired functionality must be present in addressable
memory

– Simplest example: Return-into-libc
– More general approach: Return-oriented programming (ROP)

71

UC Santa Barbara

Return-into-libc

• The shellcode in the buffer cannot be executed but ...
– the attacker can still control the stack content
– thus, the attacker can control the RIP value

• Why not call existing code?

• libc is an attractive target
– very powerful functions (system(), execve()...)
– linked by almost every program

72

UC Santa Barbara

Return-into-libc

return address

saved rbp

buffer

system() addr

.....

.....

.....

addr of /bin/sh

buffer overflow

.....

addr of /bin/sh

function returns

system() return
address

function param

73

UC Santa Barbara

Return-Oriented Programming

• Return-oriented programming (ROP) extends return-into-
libc

– introduced by Hovav Shacham in 2007
– shown to be Turing complete (for libc)
– in practice, it is used to bypass memory protections

• Instead of reusing functions, ROP reuses code gadgets
– gadgets are small sequences of instructions ending in a return
– each gadget performs some small update to the program state
– execution becomes a chain of returns to gadgets

74

UC Santa Barbara

Gadgets

&gadget_0

&gadget_1

&gadget_2

…

sub eax, edx
ret

inc edx
ret

xor edx, edx
ret

Goal: eax = eax - 1

75

UC Santa Barbara

Gadgets

&gadget_0

…

mov [ecx], ebx
ret

pop ecx
ret

pop ebx
ret

Goal: *addr = 0xdeadbeef

0xdeadbeef

&gadget_1

addr

&gadget_2

76

UC Santa Barbara

Gadget Extraction

5d c304 a3 ff d0 05 08 83 c4 04 5b89 50

77

UC Santa Barbara

Gadget Extraction

5d c304 a3 ff d0 05 08 83 c4 04 5b89 50

mov[eax+4], edx mov 0x805d0ff, eax add esp, 4

pop ebx ret

pop ebp

78

UC Santa Barbara

Gadget Extraction

5d c304 a3 ff d0 05 08 83 c4 04 5b89 50

mov[eax+4], edx mov 0x805d0ff, eax add esp, 4

pop ebx ret

pop ebp

add al, 0xa3 call [eax]

79

UC Santa Barbara

Gadget Extraction

5d c304 a3 ff d0 05 08 83 c4 04 5b89 50

mov[eax+4], edx mov 0x805d0ff, eax add esp, 4

pop ebx ret

pop ebp

add al, 0xa3 call [eax]
add al, 0x5b

pop ebp
ret

80

UC Santa Barbara

Return-Oriented Programming

• Works against virtually every architecture
• Useful in many situations

– non-executable memory regions
– signed code

• When combined with memory disclosure vulnerabilities,
ROP is very difficult to defend against

• State of the art in exploit development

81

UC Santa Barbara

Address Space Layout Randomization

• Introduce artificial diversity by randomly arranging the
positions of key data areas (base of the executable,
position of libraries, heap, and stack)

– prevent the attacker from being able to easily predict target
addresses

• Idea: Randomize code and data addresses to make their
locations difficult to predict

– adversaries must now find the location of injected code
– adversaries now cannot easily reuse code

• Coarse-grained ASLR ⇒ random segment base offsets
– implemented in virtually all modern operating systems

82

UC Santa Barbara

Defeating ASLR

Coarse-grained ASLR on 64-bit architectures is a strong
defense, but can still be circumvented

• If any addresses or known code or data is leaked, segment
offsets can easily be recovered

• Spraying can reduce non-determinism (e.g., heap
spraying)

• Fixed structures sometimes remain despite ASLR

83

UC Santa Barbara

Heap Spraying

• Overwriting a function pointer is often easily achieved

• Idea: Instead of getting the address exactly right, try to
increase the chance of hitting shellcode

– force allocation of many memory objects containing shellcode

84

UC Santa Barbara

Heap Spraying

• Process layout (32-bit Linux systems)

0x00000000 – 0xbfffffff: user memory

0xc0000000 – 0xffffffff: kernel memory

heap

stack

.code

buf

foo() bar()

85

UC Santa Barbara

Heap Spraying

• Process layout (32-bit Linux systems)

0x00000000 – 0xbfffffff: user memory

0xc0000000 – 0xffffffff: kernel memory

heap

stack

.code

buf

foo() bar()

86

UC Santa Barbara

Heap Spraying

• Process layout (32-bit Linux systems)

0x00000000 – 0xbfffffff: user memory

0xc0000000 – 0xffffffff: kernel memory

heap

stack

.code

buf

foo() bar()

87

UC Santa Barbara

Heap Spraying

• Process layout (32-bit Linux systems)

0x00000000 – 0xbfffffff: user memory

0xc0000000 – 0xffffffff: kernel memory

heap

stack

.code

buf

foo() bar()

buf
bufbuf

buf

buf

buf

buf

buf

buf

88

UC Santa Barbara

Heap Spraying

• Process layout (32-bit Linux systems)

0x00000000 – 0xbfffffff: user memory

0xc0000000 – 0xffffffff: kernel memory

heap

stack

.code

buf

foo() bar()

buf
bufbuf

buf

buf

buf

buf

buf

buf

89

UC Santa Barbara

Heap Spraying

• Requirement
– we need control over memory allocations
– must create many objects containing shellcode

• Solution: embedded scripts
– today, many applications allow execution of user-provided scripts

in the context of the application/document to enrich usability
– JavaScript (browsers, PDF readers)

• Before exploiting a memory corruption bug, allocate many
objects (e.g., strings) filled with shellcode

90

UC Santa Barbara

Control Flow Integrity (CFI)

• A control transfer is allowed ⟺
the control transfer is present in the original program

• First stage: Determine legal control transfers
– extract control flow model from a program
– using static code analysis, could be part of compiler pass

• Second stage: Enforce that only legal control transfers
occur at run-time

– add runtime checks at call sites
– program terminated if a check fails

91

UC Santa Barbara

OTHER MEMORY
CORRUPTION ATTACKS

92

UC Santa Barbara

Heap Overflows

• The heap is the area of memory that is dynamically
allocated through the “malloc” family functions

– malloc(), calloc(), realloc(), free()
– new(), delete()
– functions that return dynamically allocated memory, e.g., strdup()

• These functions request memory from the kernel by
invoking various syscalls (e.g., brk(), mmap()..)

• The heap grows towards higher memory addresses
• The allocation algorithm is OS/version-dependent

93

UC Santa Barbara

Same General Idea as with the Stack

• Memory management is done through in-band control
structures (metadata) also stored on the heap

– Usually contains data like pointers, size values, indexes into
arrays, …

– It’s usually stored right before the piece of data that has been
requested

• When two (or more) free pieces of memory are next to
each other, they are merged into one bigger piece of free
memory (to avoid fragmentation)

94

UC Santa Barbara

Heap Overflow Vulnerabilities

• First demonstrated by Solar Designer on 25 July 2000
– JPEG COM Marker Processing Vulnerability in Netscape Browsers

• General way to exploit heap overflow in order to execute
arbitrary code on the machine

– Main idea is to attack the memory management algorithm, taking
advantage of the mixing of data and control information on the
heap

• Evolved into a key vulnerability in systems software
– Microsoft reported that 53% of their security problems in 2017

were heap-related vulnerabilities

95

UC Santa Barbara

Integer Overflows

• Integer overflows are caused by unexpected results when comparing,
casting, and adding integers

• Integer overflow and underflow
– The result of an arithmetic operation lies outside the range of the

variable type
– Example:

short x = 0x7FFF; x++; /* x is now -32768 */
• Casting errors

– Casting signed to/from unsigned
– Casting to type of different size
– Example:

unsigned long l; short x = -2; l = x;
/* l is now 4294967294 */

96

UC Santa Barbara

Integer Overflows

int main(int argc, char *argv[])

{

char buf[512];
long max;

short len;

max = sizeof(buf);
len = strlen(argv[1]);

printf("max %ld len %d\n", max, len);

if (len < max) {
strcpy(buf, argv[1]);

}

}

97

UC Santa Barbara

Integer Overflows

$./integeroverflow `python -c 'print "A" * 32000’`

max 512 len 32000

$./integeroverflow `python -c 'print "A" * 33000’`

max 512 len -32536

Segmentation fault (core dumped)

98

UC Santa Barbara

Format String Vulnerabilities

int printf(const char *format, ...)

• The first parameter (format) is the format string
– It can contain normal text (copied in the output)
– It can contain placeholders for variables

• Identified by the character %
• The corresponding variables are passed as arguments

• Example:
• printf(“X = %d”,x);

99

UC Santa Barbara

The printf Function

• Different placeholders for different variable types
– %s string
– %d decimal number
– %f float number
– %c character
– %x number in hexadecimal form
–

• If the attacker can control the format string, she can
overwrite any location in memory

• All the members of the family are vulnerable:
fprintf, sprintf, vfprintf, vprintf, vsnprintf...

100

UC Santa Barbara

A Vulnerable Program

int main(int argc, char* argv[])
{

char buf[256];

snprintf(buf, 250, argv[1]);
printf("buffer: %s\n", buf);
return 0;

}

101

UC Santa Barbara

A Vulnerable Program

int main(int argc, char* argv[])
{

char buf[256];

snprintf(buf, 250, argv[1]);
printf("buffer: %s\n", buf);
return 0;

}

> ./format hello
buffer: hello

> ./format “hello |%x %x %x|”
buffer: hello |affff874 a7ff2d29 a7eb3aab|

102

UC Santa Barbara

An Interesting Placeholder

• %n: writes the number of bytes printed so far in the
address specified as parameter

%n gets an address from the stack (in the example
0x41414141) and writes the number of characters printed so
far to it, as if it was a pointer to an integer variable

> ./format "AAAA %x %x %x %x %x %x %x %x"
buffer: AAAA affff864 a7ff2d29 a7eb3aab 8048218
0 0 8048184 41414141

./format "AAAA %x %x %x %x %x %x %x %n"

103

