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User Authentication

— Authentication is the process of proving identity within an

access control framework
— Trusted system checks credentials presented by users
- “Something you have, know, or are”
- Unguessable, unforgeable, revocable

— Passwords are the de facto single-factor credential

Passwords fail in numerous ways



Password Attacks

— Passwords can be guessed
— Passwords should have high entropy
- People are bad at choosing high-entropy passwords
— Machines can very quickly test password guesses

— Passwords must be protected at rest and in transit
- Developers are bad at ensuring these properties



Online Password Attacks

Attacker simply guesses passwords until a correct guess is made

— Authentication systems should limit rate and total number of
guesses

— Prevent, or make more difficult, automated interactions

— Apply same principles to any secrets (complete mediation)
e.g., password recovery mechanisms



Password Strength

. log. N
H =log, N~ = Llog, N = Llog 5

— Entropy (H) is the usual password quality metric

— N = number of possible symbols, L = lenght of password

— Measure of unpredictability or average information content
— How to increase password strength in terms of NV, L.?
— What assumptions underlie entropy as a strength metric?



Password Selection

Table 1: Humans are notoriously bad at generating memorable random strings [1]

Rank Password Change

1 123456 -

2 password -

3 12345678 +1

4 qwerty +2

5 12345 -2

6 123456789 NEW
7 letmein NEW
8 1234567 -

9 football -2

10 iloveyou NEW 6
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There’s a lot of advice on how to select good passwords.

Most of it is bad.
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Password Strength Meters

If people can’t select good passwords, let’s help them

— Meter gives immediate feedback on how strong a password is

— Ideally, should give suggestions on how to improve candidate
passwords

— Requires a realistic model for what makes a password strong
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Password Selection Guidelines

— Avoid common passwords

— Avoid personal information

— Use a large symbol alphabet and long strings
— Don't reuse passwords

— Use a password manager
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Offline Password Attacks

Attacker captures password database and directly attacks it

— Obviously if passwords are in cleartext, the game is over
— Passwords are cryptographically hashed (not encrypted)
— Passwords checked by comparing hashes

7
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Historical Password Hashing

$ man 3 crypt

— 25 iterations of DES on a zeroed vector
— First eight bytes of the password used as the key
— 12-bit salt to hinder dictionary attacks

What is wrong with this method?
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— Key derivation function (KDF) produces a secret key from a
secret input using a pseudorandom function (PRF)

— Salt is a nonce intended to prevent precomputation attacks

— Key stretching adds salt and iterations to slow each KDF
application

— Key strengthening is similar but deletes the salt
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Modern Password Hashing

$ man 3 crypt

— Modular crypt format: $scheme$rounds$salt$hash
— 103 - 108 iterations of SHA-2

— Full password is used

— Up to 16 bytes of salt

— See PBKDF2 [2]

Goals: Enlarge the search space, slow the guess rate
18






Modern Passsword Crackers are Fast

Hashcat Benchmark, 8x Nvidia GTX 1080, MD5

Speed.Dev.#1.: 24943.1 MH/s (97.53ms)
Speed.Dev.#2.: 24788.6 MH/s (96.69ms)
Speed.Dev.#3.: 25022.2 MH/s (97.76ms)
Speed.Dev.#4.: 25106.6 MH/s (97.42ms)
Speed.Dev.#5.: 25114.1 MH/s (97.42ms)
Speed.Dev.#6.: 24924.1 MH/s (97.30ms)
Speed.Dev.#7.: 25197.9 MH/s (97.30ms)
Speed.Dev.#8.: 25246.4 MH/s (97.00ms)
Speed.Dev.#*.: 200.3 GH/s

—

Wb O - -0
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Memory-Hard Password Hashing

let block_size_factor = 8;

let block_size = 128 * block_size_factor;

let blocks = pbkdf2_hmac_sha256(passphrase, salt, 1, block_size * pf);
for i in 0..p { blocks[i] = ro_mix(blocks[i], 2"cost_factor); }

let expensive_salt = blocks.into_iter().join();

return pbkdf2_hmac_sha256(passphrase, expensive_salt, 1, key_length);

— scrypt [3] password-based key derivation function (PBKDF)

— Renders hardware-based attacks difficult by requiring large
amounts of memory

— Also see Argon?2 [4] 21



Password Search Strategies

— Precomputation

— Brute-force search

— Dictionary attacks

— Mutation rules

— Generative models

— Combinations of the above
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Precomputation Attacks

Given a password space P, hash digest space D, and hash function
H : P+ D, precompute an inverse mapping 4’ : D — P
— Naive precomputation requires O (| P|n) bits
— Hash chains can be used to balance the time-space tradeoff
between run-time guessing and computing H’
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Hash Chains

Precompute a list of password — hash digest mappings, but only store
the start and end values

— Hash chains define areduction R : D +— P
— Reductions are not inverse mappings!
— Instead, R cover the space of likely passwords
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Computing Hash Chains

H R R H
Pio = Nio = Pi1 =N kem = Pik = Rk

— Chains are computed by selecting an initial password p, and
alternating applications of H, R up to length k
~ Chain i becomes (p; o, 1; 1)
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Using Hash Chains

R R H
h; s = Dij~h; g1 =Dk = g
H R R H

Pio > hio—=pi1~hij1 =0 ;=N

~ To use given a hash h;, apply R, H until a chain end value
h;  is found

- Then take p, ( and recompute the chaintofind H (p; ) = h; _,



Hash Chain Collisions

R("123456") = h,; = R("iloveyou”)

— Hash chains are prone to collisions = false positives

— Very difficult to make R collision resistant since it must map
into space of likely passwords

— Collisions cause chain merges that reduce coverage of P

— Merges = chains might not contain a password even if an end

value matches (Why?) 57



Rainbow Tables

— Rainbow tables reduce collision likelihood by using a reduction
family R = {R{, Ro, ..., R} }

— Instead of repeated applications of H, R, rainbow tables use
H R{,H,R,,...,H R, (Why?)

28



Rainbow Tables

— Rainbow tables reduce collision likelihood by using a reduction
family R = {R{, Ro, ..., R} }

— Instead of repeated applications of H, R, rainbow tables use
H R{,H,R,,...,H R, (Why?)

Collisions only occur between two chains if reduction functions
are aligned!
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Hash Chain Caveats

— Tables must be built for each hash function and symbol
alphabet

— Salting and key stretching defeats efficiency gains

— Expensive to build
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Brute-Force Search

// Try “aaacaaaa”, “aaaaacab”, “aaaaaaac”, ...

let initial_guess = "aaaaaaaa”;

for guess in password_space_iterator(initial_guess) {
if hash(guess) = target_hash {

println! ("H({guess}) = {target_hash}");
break;
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Dictionary Attacks

// Just try every entry in some provided dictionary
for guess in read_lines(dict_path) {
if hash(guess) = target_hash {
println! ("H({guess}) = {target_hash}");
break;
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Mutation Rules

// Example rule: Change all instances of ‘e’ to '3’
for guess in read_lines(dict_path) {
for rule in rules {
let mutated_guess = rule(guess);
if hash(guess) = target_hash {
println! ("H({guess}) = {target_hash}”);
break;
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One-Time Passwords

let counter = floor((now() - epoch()) / interval);
let hotp = select_bytes(hmac_shal(secret, counter));
let totp = hotp(secret, time_counter) % 10°d
— A one-time password (OTP) is only valid for one authentication
attempt and cannot be replayed
— SMS codes

— Time-based One-Time Password algorithm (TOTP) [5]
— Mostly used as a second factor
33



Universal Second Factor (U2F) [6]

— Adds a second factor bound to a counterparty
— Requires use of a hardware module with trusted element
— Requires user interaction, but prevents phishing/MitM attacks
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U2F Device Client Relying Party

[ U2F device is enrolled for client at relying party ]

h =handle, a = app_id, challenge

h, a; c = (challenge, origin, channel)

Resolve k_priv for

h, increment counter

counter, {a, ¢, counter}

counter, ¢, s

Resolve k_pub for
h, check s using

k_pub, verify origin,
channel, counter
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