Authentication and Passwords

Christopher Kruegel
Spring 2023

UC Santa Barbara

Passwords

User Authentication

— Authentication is the process of proving identity within an

access control framework
— Trusted system checks credentials presented by users
- “Something you have, know, or are”
- Unguessable, unforgeable, revocable

— Passwords are the de facto single-factor credential

Passwords fail in numerous ways

Password Attacks

— Passwords can be guessed
— Passwords should have high entropy
- People are bad at choosing high-entropy passwords
— Machines can very quickly test password guesses

— Passwords must be protected at rest and in transit
- Developers are bad at ensuring these properties

Online Password Attacks

Attacker simply guesses passwords until a correct guess is made

— Authentication systems should limit rate and total number of
guesses

— Prevent, or make more difficult, automated interactions

— Apply same principles to any secrets (complete mediation)
e.g., password recovery mechanisms

Password Strength

. log. N
H =log, N~ = Llog, N = Llog 5

— Entropy (H) is the usual password quality metric

— N = number of possible symbols, L = lenght of password

— Measure of unpredictability or average information content
— How to increase password strength in terms of NV, L.?
— What assumptions underlie entropy as a strength metric?

Password Selection

Table 1: Humans are notoriously bad at generating memorable random strings [1]

Rank Password Change

1 123456 -

2 password -

3 12345678 +1

4 qwerty +2

5 12345 -2

6 123456789 NEW
7 letmein NEW
8 1234567 -

9 football -2

10 iloveyou NEW 6

Home Notifyme Domainsearch Who's been pwned Passwords API About Donate B

264 4,859,717,682 61,409 59,821,668

pwned websites pwned accounts pastes paste accounts

Top 10 breaches

& 711,477,622 Onliner Spambot
accounts ©

593,427,119 Exploit.In accounts @
457,962,538 Anti Public Combo List

There’s a lot of advice on how to select good passwords.

Most of it is bad.

ooo 1D00000000C WAS IT TROMBONE? NG,
UNCOMMON TROUBA
(NoN-GIBGERSH) | DOER DOR. AND ONE OF
Bt UNKNOWN THE Os WAS A ZERQ
WORD I \ A
— T AND THERE WAS
p SOME SYMBOL...
TrQub4dor &3 oo s/
T Sy 2 T R B
O s | || SERREET
o alel PUNCTUATION DIFFicULTY To GUESS: | | DIFFICULTY TO REMEMBER:
cnd i T 1T Ty T 0o
15 DL DVE OF A Rl CoMnow oRAVATS)
~YH BITS OF ENTROFY
[) [
correct horse ba’cterg stnple '
o h__T_ N DOoooooooooo
C _ 1 Dooo [| L ! [w]i
-\ h | J 2= 550 YEARS AT
~ Fal)R e 1000 GUESSES/sEC
COMMON WORDS DIFFICOTY To cuess: | | DIFFICOLTY T REMEVBER:
YOUVE ALREADY
HHRD MEMORIZED IT

THROUGH 20 YEARS OF EFFORT, WEVE SUCCESSFULLY TRAINED
EVERYONE TO USE PRSSWORDS THAT ARE HARD FOR HUMANS
To REMEMBER, BUT EASY FoR COMPUTERS Tb GUESS,

Password Strength Meters

If people can’t select good passwords, let’s help them

— Meter gives immediate feedback on how strong a password is

— Ideally, should give suggestions on how to improve candidate
passwords

— Requires a realistic model for what makes a password strong

10

qwER43(! TrBub4dour&3 correcthorsebatterystaple

zxcvbn weak @ oo @ Great!
Dropbox (old) Great! Great! o-so @
Citibank — S S

Bank of (not allowed) (not allowed) (not allowed)
America

| v Password is perfect!

Twitter o | v Password is pedect - | v Password is perfect]

Password Selection Guidelines

— Avoid common passwords

— Avoid personal information

— Use a large symbol alphabet and long strings
— Don't reuse passwords

— Use a password manager

12

Offline Password Attacks

Attacker captures password database and directly attacks it

— Obviously if passwords are in cleartext, the game is over
— Passwords are cryptographically hashed (not encrypted)
— Passwords checked by comparing hashes

7

hstored - H(pprovided>

14

Historical Password Hashing

$ man 3 crypt

— 25 iterations of DES on a zeroed vector
— First eight bytes of the password used as the key
— 12-bit salt to hinder dictionary attacks

What is wrong with this method?

15

N

— Key derivation function (KDF) produces a secret key from a
secret input using a pseudorandom function (PRF)

— Salt is a nonce intended to prevent precomputation attacks

— Key stretching adds salt and iterations to slow each KDF
application

— Key strengthening is similar but deletes the salt

17

Modern Password Hashing

$ man 3 crypt

— Modular crypt format: $scheme$rounds$salt$hash
— 103 - 108 iterations of SHA-2

— Full password is used

— Up to 16 bytes of salt

— See PBKDF2 [2]

Goals: Enlarge the search space, slow the guess rate
18

Modern Passsword Crackers are Fast

Hashcat Benchmark, 8x Nvidia GTX 1080, MD5

Speed.Dev.#1.: 24943.1 MH/s (97.53ms)
Speed.Dev.#2.: 24788.6 MH/s (96.69ms)
Speed.Dev.#3.: 25022.2 MH/s (97.76ms)
Speed.Dev.#4.: 25106.6 MH/s (97.42ms)
Speed.Dev.#5.: 25114.1 MH/s (97.42ms)
Speed.Dev.#6.: 24924.1 MH/s (97.30ms)
Speed.Dev.#7.: 25197.9 MH/s (97.30ms)
Speed.Dev.#8.: 25246.4 MH/s (97.00ms)
Speed.Dev.#*.: 200.3 GH/s

—

Wb O - -0

20

Memory-Hard Password Hashing

let block_size_factor = 8;

let block_size = 128 * block_size_factor;

let blocks = pbkdf2_hmac_sha256(passphrase, salt, 1, block_size * pf);
for i in 0..p { blocks[i] = ro_mix(blocks[i], 2"cost_factor); }

let expensive_salt = blocks.into_iter().join();

return pbkdf2_hmac_sha256(passphrase, expensive_salt, 1, key_length);

— scrypt [3] password-based key derivation function (PBKDF)

— Renders hardware-based attacks difficult by requiring large
amounts of memory

— Also see Argon?2 [4] 21

Password Search Strategies

— Precomputation

— Brute-force search

— Dictionary attacks

— Mutation rules

— Generative models

— Combinations of the above

22

Precomputation Attacks

Given a password space P, hash digest space D, and hash function
H : P+ D, precompute an inverse mapping 4’ : D — P
— Naive precomputation requires O (| P|n) bits
— Hash chains can be used to balance the time-space tradeoff
between run-time guessing and computing H’

23

Hash Chains

Precompute a list of password — hash digest mappings, but only store
the start and end values

— Hash chains define areduction R : D +— P
— Reductions are not inverse mappings!
— Instead, R cover the space of likely passwords

24

Computing Hash Chains

H R R H
Pio = Nio = Pi1 =N kem = Pik = Rk

— Chains are computed by selecting an initial password p, and
alternating applications of H, R up to length k
~ Chain i becomes (p; o, 1; 1)

25

Using Hash Chains

R R H
h; s = Dij~h; g1 =Dk = g
H R R H

Pio > hio—=pi1~hij1 =0 ;=N

~ To use given a hash h;, apply R, H until a chain end value
h; is found

- Then take p, (and recompute the chaintofind H (p;) = h; _,

Hash Chain Collisions

R("123456") = h,; = R("iloveyou”)

— Hash chains are prone to collisions = false positives

— Very difficult to make R collision resistant since it must map
into space of likely passwords

— Collisions cause chain merges that reduce coverage of P

— Merges = chains might not contain a password even if an end

value matches (Why?) 57

Rainbow Tables

— Rainbow tables reduce collision likelihood by using a reduction
family R = {R{, Ro, ..., R} }

— Instead of repeated applications of H, R, rainbow tables use
H R{,H,R,,...,H R, (Why?)

28

Rainbow Tables

— Rainbow tables reduce collision likelihood by using a reduction
family R = {R{, Ro, ..., R} }

— Instead of repeated applications of H, R, rainbow tables use
H R{,H,R,,...,H R, (Why?)

Collisions only occur between two chains if reduction functions
are aligned!

28

Hash Chain Caveats

— Tables must be built for each hash function and symbol
alphabet

— Salting and key stretching defeats efficiency gains

— Expensive to build

29

Brute-Force Search

// Try “aaacaaaa”, “aaaaacab”, “aaaaaaac”, ...

let initial_guess = "aaaaaaaa”;

for guess in password_space_iterator(initial_guess) {
if hash(guess) = target_hash {

println! ("H({guess}) = {target_hash}");
break;

30

Dictionary Attacks

// Just try every entry in some provided dictionary
for guess in read_lines(dict_path) {
if hash(guess) = target_hash {
println! ("H({guess}) = {target_hash}");
break;

31

Mutation Rules

// Example rule: Change all instances of ‘e’ to '3’
for guess in read_lines(dict_path) {
for rule in rules {
let mutated_guess = rule(guess);
if hash(guess) = target_hash {
println! ("H({guess}) = {target_hash}”);
break;

32

One-Time Passwords

let counter = floor((now() - epoch()) / interval);
let hotp = select_bytes(hmac_shal(secret, counter));
let totp = hotp(secret, time_counter) % 10°d
— A one-time password (OTP) is only valid for one authentication
attempt and cannot be replayed
— SMS codes

— Time-based One-Time Password algorithm (TOTP) [5]
— Mostly used as a second factor
33

Universal Second Factor (U2F) [6]

— Adds a second factor bound to a counterparty
— Requires use of a hardware module with trusted element
— Requires user interaction, but prevents phishing/MitM attacks

34

U2F Device Client Relying Party

[U2F device is enrolled for client at relying party]

h =handle, a = app_id, challenge

h, a; c = (challenge, origin, channel)

Resolve k_priv for

h, increment counter

counter, {a, ¢, counter}

counter, ¢, s

Resolve k_pub for
h, check s using

k_pub, verify origin,
channel, counter

References

[1]“100 Worst Passwords of 2017." [Online]. Available: https://www.teamsid.com/worst-passwords-2017-full-list/.
[Accessed: 25-Jan-2018].

[2] “PKCS #5: Password-Based Cryptography Specification Version 2.0,” Sep-2000. [Online]. Available:
https://tools.ietf.org/rfc/rfc2898.txt. [Accessed: 25-Jan-2018].

[3] “The scrypt Password-Based Key Derivation Function,” Aug-2016. [Online]. Available:
https://tools.ietf.org/rfc/rfc7914.txt. [Accessed: 25-Jan-2018].

[4], and, “The password hash Argon2, winner of PHC! [Online]. Available: https://github.com/P-H-C/phc-winner-argon2.
[Accessed: 28-Jan-2020].

[5] “TOTP: Time-Based One-Time Password Algorithm,” May-2011. [Online]. Available: https://tools.ietf.org/rfc/rfc6238.txt.
[Accessed: 25-Jan-2018].

36

https://www.teamsid.com/worst-passwords-2017-full-list/
https://tools.ietf.org/rfc/rfc2898.txt
https://tools.ietf.org/rfc/rfc7914.txt
https://github.com/P-H-C/phc-winner-argon2
https://tools.ietf.org/rfc/rfc6238.txt

References (cont.)

[6] “U2F v1.2 Specifications,” 11-Jul-2017. [Online]. Available: https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411.zip.
[Accessed: 25-Jan-2018].

37

https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411.zip

	Passwords

