
Authentication and Passwords

Christopher Kruegel

Spring 2023

UC Santa Barbara

Passwords

1

User Authentication

– Authentication is the process of proving identity within an
access control framework
– Trusted system checks credentials presented by users
– “Something you have, know, or are”
– Unguessable, unforgeable, revocable

– Passwords are the de facto single-factor credential

Passwords fail in numerousways

2

Password Attacks

– Passwords can be guessed
– Passwords should have high entropy
– People are bad at choosing high-entropy passwords
– Machines can very quickly test password guesses

– Passwords must be protected at rest and in transit
– Developers are bad at ensuring these properties

3

Online Password Attacks

Attacker simply guesses passwords until a correct guess is made

– Authentication systems should limit rate and total number of
guesses

– Prevent, or make more difficult, automated interactions
– Apply same principles to any secrets (complete mediation)

e.g., password recovery mechanisms

4

Password Strength

𝐻 = log2 𝑁𝐿 = 𝐿 log2 𝑁 = 𝐿log𝑖 𝑁
log𝑖 2

– Entropy (H) is the usual password quality metric
– N = number of possible symbols, L = lenght of password
– Measure of unpredictability or average information content

– How to increase password strength in terms of 𝑁, 𝐿?
– What assumptions underlie entropy as a strength metric?

5

Password Selection

Table 1: Humans are notoriously bad at generating memorable random strings [1]

Rank Password Change

1 123456 –
2 password –
3 12345678 +1
4 qwerty +2
5 12345 -2
6 123456789 NEW
7 letmein NEW
8 1234567 –
9 football -2
10 iloveyou NEW 6

There’s a lot of advice on how to select good passwords.

Most of it is bad.

Password Strength Meters

If people can’t select good passwords, let’s help them

– Meter gives immediate feedback on how strong a password is
– Ideally, should give suggestions on how to improve candidate

passwords
– Requires a realistic model for what makes a password strong

10

Password Selection Guidelines

– Avoid common passwords
– Avoid personal information
– Use a large symbol alphabet and long strings
– Don’t reuse passwords
– Use a passwordmanager

12

Offline Password Attacks

Attacker captures password database and directly attacks it

– Obviously if passwords are in cleartext, the game is over
– Passwords are cryptographically hashed (not encrypted)
– Passwords checked by comparing hashes

ℎstored
?= 𝐻(𝑝provided)

14

Historical Password Hashing

$ man 3 crypt
– 25 iterations of DES on a zeroed vector
– First eight bytes of the password used as the key
– 12-bit salt to hinder dictionary attacks

What is wrong with this method?

15

Key Derivation

– Key derivation function (KDF) produces a secret key from a
secret input using a pseudorandom function (PRF)

– Salt is a nonce intended to prevent precomputation attacks
– Key stretching adds salt and iterations to slow each KDF

application
– Key strengthening is similar but deletes the salt

17

Modern Password Hashing

$ man 3 crypt
– Modular crypt format: $scheme$rounds$salt$hash
– 103 – 108 iterations of SHA-2
– Full password is used
– Up to 16 bytes of salt
– See PBKDF2 [2]

Goals: Enlarge the search space, slow the guess rate
18

Modern Passsword Crackers are Fast

Hashcat Benchmark, 8x Nvidia GTX 1080, MD5
Speed.Dev.#1.: 24943.1 MH/s (97.53ms)
Speed.Dev.#2.: 24788.6 MH/s (96.69ms)
Speed.Dev.#3.: 25022.2 MH/s (97.76ms)
Speed.Dev.#4.: 25106.6 MH/s (97.42ms)
Speed.Dev.#5.: 25114.1 MH/s (97.42ms)
Speed.Dev.#6.: 24924.1 MH/s (97.30ms)
Speed.Dev.#7.: 25197.9 MH/s (97.30ms)
Speed.Dev.#8.: 25246.4 MH/s (97.00ms)
Speed.Dev.#*.: 200.3 GH/s

20

Memory-Hard Password Hashing

let block_size_factor = 8;
let block_size = 128 * block_size_factor;
let blocks = pbkdf2_hmac_sha256(passphrase, salt, 1, block_size * pf);
for i in 0..p { blocks[i] = ro_mix(blocks[i], 2ˆcost_factor); }
let expensive_salt = blocks.into_iter().join();
return pbkdf2_hmac_sha256(passphrase, expensive_salt, 1, key_length);

– scrypt [3] password-based key derivation function (PBKDF)
– Renders hardware-based attacks difficult by requiring large

amounts of memory
– Also see Argon2 [4] 21

Password Search Strategies

– Precomputation
– Brute-force search
– Dictionary attacks
– Mutation rules
– Generative models
– Combinations of the above

22

Precomputation Attacks

Given a password space 𝑃 , hash digest space 𝐷, and hash function
𝐻 ∶ 𝑃 ↦ 𝐷, precompute an inverse mapping 𝐻′ ∶ 𝐷 ↦ 𝑃
– Naïve precomputation requires Θ(|𝑃 |𝑛) bits
– Hash chains can be used to balance the time-space tradeoff

between run-time guessing and computing 𝐻′

23

Hash Chains

Precompute a list of password – hash digest mappings, but only store
the start and end values

– Hash chains define a reduction 𝑅 ∶ 𝐷 ↦ 𝑃
– Reductions are not inverse mappings!
– Instead, 𝑅 cover the space of likely passwords

24

Computing Hash Chains

𝑝𝑖,0
𝐻→ ℎ𝑖,0

𝑅→ 𝑝𝑖,1 ⇝ ℎ𝑖,𝑘−𝑚
𝑅→ 𝑝𝑖,𝑘

𝐻→ ℎ𝑖,𝑘

– Chains are computed by selecting an initial password 𝑝𝑖 and
alternating applications of 𝐻, 𝑅 up to length 𝑘

– Chain 𝑖 becomes (𝑝𝑖,0, ℎ𝑖,𝑘)

25

Using Hash Chains

ℎ𝑖,𝑗
𝑅→ 𝑝𝑖,𝑗 ⇝ ℎ𝑖,𝑘−1

𝑅→ 𝑝𝑖,𝑘
𝐻→ ℎ𝑖,𝑘

⇓
𝑝𝑖,0

𝐻→ ℎ𝑖,0
𝑅→ 𝑝𝑖,1 ⇝ ℎ𝑖,𝑗−1

𝑅→ 𝑝𝑖,𝑗
𝐻→ ℎ𝑖,𝑗

– To use given a hash ℎ𝑗, apply 𝑅, 𝐻 until a chain end value
ℎ𝑖,𝑘 is found

– Then take 𝑝𝑖,0 and recompute the chain to find 𝐻(𝑝𝑖,𝑘) = ℎ𝑗 26

Hash Chain Collisions

𝑅(”123456”) = ℎ𝑖 = 𝑅(”iloveyou”)
– Hash chains are prone to collisions ⇒ false positives
– Very difficult to make 𝑅 collision resistant since it must map

into space of likely passwords
– Collisions cause chain merges that reduce coverage of 𝑃
– Merges ⇒ chains might not contain a password even if an end

value matches (Why?)
27

Rainbow Tables

– Rainbow tables reduce collision likelihood by using a reduction
family 𝐑 = {𝑅1, 𝑅2, … , 𝑅𝑘}

– Instead of repeated applications of 𝐻, 𝑅, rainbow tables use
𝐻, 𝑅1, 𝐻, 𝑅2, … , 𝐻, 𝑅𝑘 (Why?)

Collisions only occur between two chains if reduction functions
are aligned!

28

Rainbow Tables

– Rainbow tables reduce collision likelihood by using a reduction
family 𝐑 = {𝑅1, 𝑅2, … , 𝑅𝑘}

– Instead of repeated applications of 𝐻, 𝑅, rainbow tables use
𝐻, 𝑅1, 𝐻, 𝑅2, … , 𝐻, 𝑅𝑘 (Why?)

Collisions only occur between two chains if reduction functions
are aligned!

28

Hash Chain Caveats

– Tables must be built for each hash function and symbol
alphabet

– Salting and key stretching defeats efficiency gains
– Expensive to build

29

Brute-Force Search

// Try ”aaaaaaaa”, ”aaaaaaab”, ”aaaaaaac”, ...
let initial_guess = ”aaaaaaaa”;
for guess in password_space_iterator(initial_guess) {

if hash(guess) ඩඪ target_hash {
println!(”H({guess}) = {target_hash}”);
break;

}
} 30

Dictionary Attacks

// Just try every entry in some provided dictionary
for guess in read_lines(dict_path) {

if hash(guess) ඩඪ target_hash {
println!(”H({guess}) = {target_hash}”);
break;

}
}

31

Mutation Rules

// Example rule: Change all instances of ’e’ to ’3’
for guess in read_lines(dict_path) {

for rule in rules {
let mutated_guess = rule(guess);
if hash(guess) ඩඪ target_hash {

println!(”H({guess}) = {target_hash}”);
break;

}
}

}
32

One-Time Passwords

let counter = floor((now() - epoch()) / interval);
let hotp = select_bytes(hmac_sha1(secret, counter));
let totp = hotp(secret, time_counter) % 10ˆd

– A one-time password (OTP) is only valid for one authentication
attempt and cannot be replayed

– SMS codes
– Time-based One-Time Password algorithm (TOTP) [5]

– Mostly used as a second factor
33

Universal Second Factor (U2F) [6]

– Adds a second factor bound to a counterparty
– Requires use of a hardware module with trusted element
– Requires user interaction, but prevents phishing/MitM attacks

34

References

[1] “100 Worst Passwords of 2017.” [Online]. Available: https://www.teamsid.com/worst-passwords-2017-full-list/.
[Accessed: 25-Jan-2018].

[2] “PKCS #5: Password-Based Cryptography Specification Version 2.0,” Sep-2000. [Online]. Available:
https://tools.ietf.org/rfc/rfc2898.txt. [Accessed: 25-Jan-2018].

[3] “The scrypt Password-Based Key Derivation Function,” Aug-2016. [Online]. Available:
https://tools.ietf.org/rfc/rfc7914.txt. [Accessed: 25-Jan-2018].

[4], and, “The password hash Argon2, winner of PHC.” [Online]. Available: https://github.com/P-H-C/phc-winner-argon2.
[Accessed: 28-Jan-2020].

[5] “TOTP: Time-Based One-Time Password Algorithm,” May-2011. [Online]. Available: https://tools.ietf.org/rfc/rfc6238.txt.
[Accessed: 25-Jan-2018].

36

https://www.teamsid.com/worst-passwords-2017-full-list/
https://tools.ietf.org/rfc/rfc2898.txt
https://tools.ietf.org/rfc/rfc7914.txt
https://github.com/P-H-C/phc-winner-argon2
https://tools.ietf.org/rfc/rfc6238.txt

References (cont.)

[6] “U2F v1.2 Specifications,” 11-Jul-2017. [Online]. Available: https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411.zip.
[Accessed: 25-Jan-2018].

37

https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411.zip

	Passwords

