
UC Santa Barbara

CS189A - Capstone

Christopher Kruegel
Department of Computer Science

UC Santa Barbara
http://www.cs.ucsb.edu/~chris/

UC Santa Barbara

Announcements

•  Next Project Deliverable: Software Requirements
Specifications (SRS) are due Wednesday, February 2nd

•  Here are two approaches for the SRS
–  Submit a set of use cases (properly organized, with table of

contents, page numbers)
–  Submit an SRS document following the IEEE standard outline (you

do not have to include all the sections, just include the sections that
relate to your project)

•  Each team is free to choose an option (or a combination of
them) that fits their project the best

UC Santa Barbara

Software Requirements

UC Santa Barbara

Software Requirements

•  Brooks in “No Silver Bullet” paper says:
 The hardest single part of building a software system is deciding precisely

what to build. No other part of the conceptual work is as difficult as
establishing the detailed technical requirements ... No other part of the work
so cripples the resulting system if done wrong. No other part is as difficult to
rectify later.

•  Developers of the early Ballistic Missile Defense System observed
[Alford, IEEE TSE, 1977]

 In nearly every software project that fails to meet performance and cost
goals, requirements inadequacies play a major and expensive role in project
failure

•  In mission-critical defense systems identifies requirements as a major
problem source in two thirds of the systems examined [US General
Accounting Office, 1992]

•  Other studies on projects in aerospace industry and NASA also found
requirements to be a critical software development problem

UC Santa Barbara

Requirements errors are costly to fix

Stage Relative Repair
Cost

Requirements 1-2

Design 5

Coding 10

Unit Test 20

System Test 50

Maintenance 200

Relative cost to repair a requirements error in different stages of software life-cycle
(cost increases exponentially)

UC Santa Barbara

Software Requirements Specification

•  Software Requirements Specification (SRS):
–  Specification of a particular software product in a specific

environment

•  Basic goal of the SRS document is to specify what the software
must do. To achieve this goal:
–  Understand precisely what is required of the software
–  Communicate the understanding of what is required to all the

parties involved in the development
–  Provide a means for controlling the production to ensure that the

final system satisfies the requirements (including managing the
effects of changes)

UC Santa Barbara

What shall be in SRS?

•  Functionality: What is the software supposed to do?
–  Example: The software product shall sort a set of integers in

ascending order. The software product shall write the sorted set of
integers to an output file in the ASCII format. In the output file each
integer shall be separated by a blank space.

•  External Interfaces: How does the software interact with
people, the system’s hardware (there may be a hardware
component within the system), other hardware and other
software?
–  Example: The software product shall read the set of integers from

an ASCII file.
•  We also have to specify the format of the input file and how the name of

the file will be given.

UC Santa Barbara

What shall be in SRS?

•  Performance: What is the speed, availability, response time,
recovery time of various software functions, etc.?
–  Example: For the input files with less than 1000 integers the

software product shall produce the output file within 2 seconds.

•  Design constraints imposed on an implementation: Are
there any required standards, implementation language
restrictions, resource limits, operating environment(s) etc.?
–  Example: The software product shall run on PCs that run Linux

operating system.
•  We should also specify which version of Linux, what type of PC

(constraints on processor, memory etc.)

UC Santa Barbara

Classification of Requirements

•  Requirements can be classified as:
–  Functional requirements: Requirements defining the behavior of

the system, fundamental process or transformation that the
software performs on inputs to produce outputs

–  Nonfunctional requirements: Requirements and constraints on
external interfaces, performance, dependability, maintainability,
reusability, security, etc.

–  Domain requirements: Requirements that come from the
application domain of the system and reflect characteristics of the
domain (can be functional or nonfunctional)

UC Santa Barbara

Who uses requirements?

•  What are the uses of software requirement specification?
–  For customers it is a specification of the product that will be

delivered, a contract

–  For managers it can be used as a basis for scheduling and
measuring progress

–  For the software designers it provides a specification of what to
design

–  For coders it defines the range of acceptable implementations
and the outputs that must be produced

–  For quality assurance personnel it is used for validation, test
planning, and verification

UC Santa Barbara

Essential difficulties in SRS

•  Comprehension: People do not know exactly what they want. They
may not have a precise and detailed understanding of what the output
must be for every possible input, how long each operation should take,
etc.

•  Communication: Software requirements are difficult to communicate
effectively. The fact that requirements specification has multiple
purposes and audiences makes this problem even more severe

•  Control: It is difficult to predict the cost of implementing different
requirements. Frequent changes to requirements make it difficult to
develop stable specifications

•  Inseparable concerns: Requirements must simultaneously address
concerns of developers and customers. There may be conflicting
constraints which may require trade-offs, compromises.

UC Santa Barbara

Eliciting Requirements

To elicit the requirements

•  Interviews with the customer

•  Use questionnaires if there are multiple users

•  Investigate the environment the product will be used
–  investigate the customer’s business

•  Scenarios: Walk through different scenarios of how the product
will be used by the customer
–  understandable to the customer
–  can uncover additional requirements

•  Rapid Prototyping: After an initial requirements analysis, build a
prototype. Focus on aspects of the software that will be visible
to the user such as input/output formats

UC Santa Barbara

Characteristics of a good SRS

•  Correct: Every requirement stated in SRS should be one that the
software shall meet. Correctness can be checked by customer or a
higher level specification (system specification)

•  Unambiguous: Every stated requirement in SRS should have only one
interpretation

–  Natural languages are inherently ambiguous, they should be used carefully
–  Use of formal languages can help, however they may be hard for the

customer to understand

•  Complete:
–  All significant requirements, whether relating to functionality, performance,

design constraints, attributes, or external interfaces should be included
–  Responses to all realizable classes of input data and situations should be

included (responses to both valid and invalid input)

UC Santa Barbara

Characteristics of a good SRS

•  Consistent: No subset of specified requirements should conflict.
Possible conflicts:

–  There may be logical or temporal conflicts between two specified actions
–  Different part of SRS may use different terms to refer to the same object

•  Verifiable: A requirement is verifiable if there exists some cost-
effective process with which a person or machine can check that the
software product meets the requirement

–  Your claims should be measurable
–  Avoid subjective phrases such as “works well” which are not possible to

measure/verify
–  A verifiable requirement: Output of the program shall be produced within 20

seconds of event X 60% of the time; and shall be produced within 30
seconds of event X 100 % of the time

UC Santa Barbara

Characteristics of a good SRS

•  Modifiable: The style and structure of SRS should make it possible to
change it easily, completely and consistently

–  No redundancy
–  Express each requirement separately (not intermixed)

•  Traceable: SRS should facilitate referencing of each requirement in
future development or enhancement documentation

–  Good indexing
•  Do not forget the page numbers!

UC Santa Barbara
Table of Contents
1. Introduction

1.1 Purpose
•  Purpose of the SRS
•  Intended audience of the SRS

1.2 Scope
•  List software products that will be produced
•  Summarize what software products will do
•  Describe the application of the software being specified, including relevant

benefits, objectives and goals
1.3 Definitions, acronyms, abbreviations

•  Definition of all terms, acronyms, abbreviations required to properly interpret
SRS

1.4 References
•  Provide a complete list of referenced documents

1.5 Overview
•  Describe what is in the reminder of the document
•  Explain how SRS is organized

An Example Outline for SRS
(Based on IEEE Recommended Practice)

UC Santa Barbara

2. Overall description
2.1 Product perspective

•  Identify the interface between the proposed software and existing
systems, including a diagram of major system components.

•  A block diagram showing major components of the larger system,
interconnections, and external interfaces can be helpful.

2.2 Product functions
•  Provide a summary of the major functions that the software will perform
•  The functions should be organized in a way that makes the list of

functions understandable to the customer or to anyone else reading
the document

•  Diagrams can be used to explain different functions and their
relationships

UC Santa Barbara

2.3 User characteristics
•  General characteristics of the intended user of the product, level of

expertise/training required to use the product
2.4 Constraints

•  List all the constraints that will limit the developers options, interfaces to
other applications, programming language requirements, hardware
limitations, etc.

2.5 Assumptions and dependencies
•  List the factors that affect the requirements in the SRS (assumptions on

which operating system is available etc.)

UC Santa Barbara

3.  Specific requirements (these are the detailed requirements)
•  This section of the SRS should contain the software requirements to a

level of detail sufficient to enable designers to design a system to satisfy
those requirements, and testers to test that the system satisfies those
requirements

3.1 External interface requirements
•  This section should specify various interfaces in detail: system

interfaces, user interfaces, hardware interfaces, software interfaces,
communications interfaces, etc.

•  A detailed description of all inputs and outputs from the software
system should be given:
–  Should include: source of input and destination of output; valid range,

accuracy and/or tolerance; units of measure; timing; screen formats/
organization; window formats/organization; data formats; command
formats, etc.

•  Should complement but not repeat the information given in Section 2

UC Santa Barbara

3.1.1 User interfaces
–  Screen formats, page or window layouts, error messages, etc. Some

sample screen dumps can be used here to explain the interface
3.1.2 Hardware interfaces

–  Interface between hardware and software product, which devices are
supported

3.1.3 Software interfaces
–  Specify use of other software products and interfaces with other application

systems
3.1.4 Communication interfaces

–  Interfaces to communications such as local network protocols, etc.

UC Santa Barbara

3.2 Functional requirements
•  Functional requirements should define all the fundamental actions that

the system must take place in the software in accepting and processing
the inputs and in processing and generating the outputs

•  Should include: validity checks on input; exact sequence of operations;
responses to abnormal situations; relationship of outputs to inputs

•  It can be organized in various ways, such as with respect to user
classes, features, stimulus or a combination of those.

•  Use-case diagrams, scenarios, activity diagrams can be used here
•  This section is very important. You need to organize use-cases

etc. very well so that they are comprehensible. You need to make
sure that your functional requirements are unambiguous,
complete and consistent.

UC Santa Barbara
3.3 Performance requirements

•  Speed, availability, response time, recovery time of various software
functions, etc.

•  Performance requirements should be specified in measurable terms.
For example: “95% of the transactions shall be processed in less than 1
second.” rather than “An operator shall not have to wait for the
transaction to complete

•  There can be a separate section identifying the capacity constraints (for
example amount of data that will be handled)

3.4 Design constraints
•  Required standards, implementation language restrictions, resource

limits, operating environment(s) etc.
3.5 Software system attributes

•  Attributes such as security, portability, reliability
3.6 Domain requirements

•  Explain the application domain and constraints on the application
domain

UC Santa Barbara

Specification Languages

•  Main issue: When you write code you write it in a programming
language
–  How do you write the requirements?
–  How do you write the design?

•  Specification languages
–  Used to specify the requirements or the design
–  As we have seen parts of SRS are necessarily in English (customer

has to understand). To bring some structure to the SRS you can
use semi-formal techniques such as use-case diagrams.

–  For design you can use UML class diagrams, sequence diagrams,
state diagrams, activity diagrams

–  Some specification languages (such as UML class diagrams are
supported with code generation tools)

UC Santa Barbara

Specification

•  Specifications can be
–  Informal

•  No formal syntax or semantics
–  for example in English

•  Informal specifications can be ambiguous and imprecise
–  Semiformal

•  Syntax is precise but does not have formal semantics
•  UML (Universal Modeling Language) class diagrams, sequence

diagrams
–  Formal

•  Both syntax and semantics are formal
•  Z, Statecharts, SDL (Specification and Design Language),

Message Sequence Charts (MSC), Petri nets, CSP, SCR,
RSML

UC Santa Barbara

Ambiguities in Informal Specifications

•  “The input can be typed or selected from the menu“
–  The input can be typed or selected from the menu or both
–  The input can be typed or selected from the menu but not both

•  “The number of songs selected should be less than 10”
–  Is it strictly less than?
–  Or, is it less than or equal?

•  “The user has to select the options A and B or C”
–  Is it “(A and B) or C”
–  Or, is it “A and (B or C)”

UC Santa Barbara

Use Cases

•  Use cases document the behavior of the system from the users’
point of view.
–  By user we mean anything external to the system

•  An actor is a role played by an outside entity that interacts
directly with the system
–  An actor can be a human, or a machine or program
–  Actors are shown as stick figures in use case diagrams

Customer

UC Santa Barbara

Use Cases

•  A use case describes the possible sequences of interactions among the
system and one or more actors in response to some initial stimulus by
one of the actors

–  Each way of using the system is called a use case
–  A use case is not a single scenario but rather a description of a set of

scenarios
–  For example: Creating an account
–  Individual use cases are shown as named ovals in use case diagrams

•  A use case involves a sequence of interactions between the initiator and
the system, possibly involving other actors.

•  In a use case, the system is considered as a black-box. We are only
interested in externally visible behavior

Creating

an account

UC Santa Barbara

Use Cases

•  To define a use case, group all transactions that are similar in
nature

•  A typical use case might include a main case, with alternatives
taken in various combinations and including all possible
exceptions that can arise in handling them
–  Use case for a bank: Performing a Transaction at the Counter

•  Subcases could include Making Deposits, Making Withdrawals, etc.,
together with exceptions such as Overdrawn or Account Closed

–  Apply for a Loan could be a separate use case since it is likely to
involve very different interactions

•  Description of a use case should include events exchanged
between objects and the operations performed by the system
that are visible to actors

UC Santa Barbara

Defining Use Cases

1.  Identify the boundary of the application, identify the objects outside the
boundary that interact with the system

2.  Classify the objects by the roles they play, each role defines an actor
3.  Each fundamentally different way an actor uses the system is a use

case
4.  Make up some specific scenarios for each use case (plug in

parameters if necessary)
5.  Determine the interaction sequences: identify the event that initiates

the use case, determine if there are preconditions that must be true
before the use case can begin, determine the conclusion

6.  Write a prose description of the use case
7.  Consider all the exceptions that can occur and how they affect the use

case
8.  Look for common fragments among different use cases and factor

them out into base cases and additions

UC Santa Barbara

Online HR System

Use case: Update Benefits
Actors: Employee, Employee Account Database, Healthcare Plan System,

Insurance Plan System
Precondition: Employee has logged on to the system and selected “update

benefits” option
Flow of Events:
Basic Path:

 1. System retrieves employee account from Employee Account Database
 2. System asks employee to select medical plan type; uses Update Medical Plan
 3. System asks employee to select dental plan type; uses Update Dental Plan
 ...

Alternative Paths:
 If health plan is not available in the Employee’s area the employee is informed
and asked to select another plan

UC Santa Barbara

Online HR System

Update

Medical Plan

Update

Dental Plan

Update Benefits

<<uses>>

<<extends>>(Benefits Options)

[employee requests

stock purchase option]

<<uses>>

Employee

Update

Insurance Plan

Select Stock

Purchase

Select Reimbursement

for Healthcare

<<uses>>

<<extends>> (Benefits Options)

[employee requests

reimbursement option]

Extension Points

Benefits Options: after

required enrollments

extension point name

extension location

UC Santa Barbara

Combining Use Cases

Assign Seat

Check in

for Flight

Check

Baggage

Upgrade

Seat

<<extends>>

<<extends>>

<<uses>>

Customer

Flight Attendant

actor

use case

UC Santa Barbara

Generalization in Use Case Diagrams

Customer

Individual

Customer

Corporate

Customer

Validate

User

Check

Password

Retinal

Scan

Indicates

generalization

