CS 290 Host-based Security and Malware

Christopher Kruegel chris@cs.ucsb.edu

Cryptography

Cryptography

• (One) definition of cryptography

Mathematical techniques related to aspects of information security such as

- confidentiality
 - keep content of information from all but authorized entities
- integrity
 - protect information from unauthorized alteration
- authentication
 - identification of data or communicating entities
- non-repudiation
 - prevent entity from denying previous commitments or actions

Taxonomy

- Unkeyed primitives
 - hash functions
 - random sequences
- Symmetric-key primitives
 - block ciphers
 - stream ciphers
 - signatures
 - pseudorandom sequences
- Public-key primitives
 - public-key ciphers
 - signatures

Symmetric-key Cryptography

- Consider an encryption scheme with key pair (e,d)
 - scheme is called a symmetric-key scheme
 if it is "relatively" easy to obtain d when e is know
 - often e = d
- Block cipher
 - break up plaintext into strings (blocks) of fixed length t
 - encrypt one block at a time
 - uses *substitution* and *transposition (permutation)* techniques
- Stream Cipher
 - special case of block cipher with block length t = 1
 - however, substitution technique can change for every block
 - key stream ($e_1, e_2, e_3, ...$)

Public-key Cryptography

- Consider an encryption scheme with key pair (e,d)
 - scheme is called a public-key scheme
 if it is computationally infeasible to determine d when e is known
- In public-key schemes, E_e is usually a *trapdoor one-way function* and d is the trapdoor
- One-way function
 - A function f: X → Y is called a trapdoor function, if f(x) is "easy" to compute for all x ∈ X, but for most y ∈ Y, it is infeasible to find a x such that f(x) = y.
 - calculating the exponentiation of an element a in a finite field [a^p (mod n)]
 - multiplication of two large prime numbers [n = p*q]

Public-key Cryptography

- Trapdoor one-way function
 - A trapdoor function f: X → Y with the additional property that given some additional information (called the trapdoor information) it becomes feasible for all y ∈ Y to find a x such that f(x) = y.
- No longer necessary to transfer a secret key over a secure channel
- Significant problem is binding of public key to a certain person (authentication)
 - otherwise, an attacker can substitute his own public key for the victim's key
- Key certificates are needed
 - public key infrastructure (PKI)
 - idea is to cryptographically bind a public key to a certain entity via certificates
 - certificates commonly issued by certification authorities (CAs)
 - chain of trust is traced to a root CA (whose public key must be known by all participants)

- Fundamental
 - all alphabets and the encryption/decryption functions are public knowledge
 - only the selection of the key pair remains secret
- System is breakable
 - if a third party can (without the knowledge of the key pair) systematically recover plaintext from corresponding ciphertext within some appropriate time frame
 - exhaustive key search must be made impossible
- Cryptanalysis
 - study of techniques to defeat cryptographic techniques

- Different model (power) of adversary assumed
 - Known-Ciphertext Attack (KCA)
 - you only know the ciphertext
 - requires you know something about the plaintext (e.g., it's English text, an MP3, C source code, ...)
 - this is the model for the Sunday cryptograms which use substitution
 - Known-Plaintext Attack (KPA)
 - you have some number of plaintext-ciphertext pairs, but you cannot choose which plaintexts you would like to see
 - Chosen-Plaintext Attack (CPA)
 - you get to submit plaintexts of your choice to an encryption oracle (black box) and receive the ciphertexts in return

- Known-Ciphertext Attack (KCA)
 - weak attack model
 - works only when weak ciphers are used (simple substitution algorithms)
- Attacker can use frequency analysis
 - assumption is that symbols (letters) do not appear with the same frequency in the plaintext
 - this assumption holds with high probability if natural language texts are encrypted
 - in the English language, most frequent letters are E T N R O A S (in this order)
- Attack
 - analyze frequency of symbols in ciphertext
 - assume that symbols with high frequency correspond to frequent letters
 - try to reconstruct plaintext

- Frequency analysis has to be adapted when poly-alphabetic substitution is used
 - in this case, the number of different permutations is most difficult part to find out
 - once the number N of different permutations is known, the ciphertext can be divided into N groups
 - apply frequency analysis individually for each group
- Example with 3 permutations (from the Vigenere cipher)

plaintext :	THISC	IPHER	ISCER	TAINL	YNOTS	ECURE
ciphertext:	WOSVJ	SSOOU	PCFLB	WHSQS	IQVDV	LMXYO

Group 1:	W,	V,	S,	U,	F,	W,	Q,	Q,	V,	Х		V(S),	W(T),	Q(N)
Group 2:	Ο,	J,	Ο,	P,	L,	Н,	s,	V,	L,	Y		О(Н)		
Group 3:	s,	J,	0,	С,	В,	s,	I,	D,	Μ,	0		S(I),	O(E)	

- Better ciphers require more advanced attack techniques
- Two well-known techniques against secret-key block ciphers are
 - linear cryptanalysis
 - developed 1993 by Matsui
 - differential cryptanalysis
 - discovered three times by NSA, IBM, and Biham and Shamir
- We use a simple four round SPN as example
 - 16 bit key, 16 bit block size
 - S-Box with the following mapping (4 bit input \rightarrow 4 bit output)

0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
Е	4	D	1	2	F	В	8	3	А	6	С	5	9	0	7

- Linear cryptanalysis
 - known plaintext attack
 - exploits high probability occurrences of linear relationships between plaintext, ciphertext, and key bits
 - linear with regards to bitwise operation modulo 2 (i.e., XOR)
 - expressions of form $X_{i1} \oplus X_{i2} \oplus X_{i3} \oplus ... \oplus X_{iu} \oplus Y_{j1} \oplus Y_{j2} \oplus ... \oplus Y_{jv} = 0$ $X_i = i$ -th bit of input plaintext [$X_1, X_2, ...$]

 Y_j = j-th bit of output ciphertext [$Y_1, Y_2, ...$]

- for a perfect cipher, such relationships hold with probability 1/2
- for vulnerable cipher, the probability p might be different from 1/2
- \rightarrow a bias |p 1/2| is introduced

- 2 steps
 - analyze the linear vulnerability of a single S-Box
 - connect the output of an S-Box to the input of the S-Box in the next round and "pile up" probability bias
- To analyze a single S-Box, check all possible linear approximations

0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
Ε	4	D	1	2	F	В	8	3	Α	6	С	5	9	0	7

X1	X2	X3	X4	Y1	Y2	Y3	Y4	X1 ⊕ X3 ⊕ X4 = Y2	X2 = Y2 ⊕ Y4
0	0	0	0	1	1	1	0	F	F
0	0	0	1	0	1	0	0	Т	F
0	0	1	0	1	1	0	1	Т	Т
0	0	1	1	0	0	0	1	Т	F
0	1	0	0	0	0	1	0	Т	F
0	1	0	1	1	1	1	1	Т	F
0	1	1	0	1	0	1	1	F	Т
0	1	1	1	1	0	0	0	Т	F
1	0	0	0	0	0	1	1	F	F
1	0	0	1	1	0	1	0	Т	Т
1	0	1	0	0	1	1	0	F	F
1	0	1	1	1	1	0	0	Т	F
1	1	0	0	0	1	0	1	Т	F
1	1	0	1	1	0	0	1	Т	Т
1	1	1	0	0	0	0	0	Т	F
1	1	1	1	0	1	1	1	Т	F

• Linear approximations with many true or many false entries are interesting

 $p(X1 \oplus X3 \oplus X4 = Y2) = 12/16 = 0.75$ [bias = 0.25] $p(X2 = Y2 \oplus Y4) = 4/16 = 0.25$ [bias = -0.25]

• How to connect probabilities between different rounds?

consider the following equations, when bias of X1 is b1, and bias of X2 is b2

 $p(X1 \oplus X2 = 0) = p(X1)*p(X2) + (1-p(X1))*(1-p(X2))$ = (1/2+b1)*(1/2+b2) + (1/2-b1)*(1/2-b2)= 1/2 + 2*b1*b2

• Now, we show how we can eliminate intermediate variables

 $p(X1 \oplus X2 = 0) = 1/2 + b1,2$ $p(X2 \oplus X3 = 0) = 1/2 + b2,3$ $p(X1 \oplus X3 = 0) = p([X1 \oplus X2] \oplus [X2 \oplus X3] = 0)$ $= p(X1 \oplus X3 = 0)$

= 1/2 + 2*b1,2 *b2,3

Let U_i(V_i) represent the 16-bit block of bits at the input (output) of the S-Box of round i. Then, let U_{i,k} denote the k-th bit of the i-th round of the cipher. Similarly, let K_i represent the key of round i.

• With probability 0.75 (and bias = 0.25), we have

V1,6 = U1,5 \oplus U1,7 \oplus U1,8

 $= (P5 \oplus K1,5) \oplus (P7 \oplus K1,7) \oplus (P8 \oplus K1,8)$

- For the second round, we obtain with probability 0.25 (bias = -0.25) V2,6 \oplus V2,8 = U2,6 \oplus K2,6
- Because U2,6 = V1,6, we can connect these two equations and get V2,6 ⊕ V2,8 = (P5 ⊕ K1,5) ⊕ (P7 ⊕ K1,7) ⊕ (P8 ⊕ K1,8) ⊕ K2,6 which can be rewritten as
 V2,6 ⊕ V2,8 ⊕ P5 ⊕ P7 ⊕ P8 ⊕ K1,7 ⊕ K1,8 ⊕ K2,6 = 0

This holds with a probability (see before) of 1/2 + 2*0.25*(-0.25) = 0.375

• We continue to eliminate intermediate variables in intermediate rounds to obtain

 $U4,6 \oplus U4,8 \oplus U4,14 \oplus U4,16 \oplus P5 \oplus P7 \oplus P8 \oplus \Sigma = 0$

where \sum is a constant factor (either 0 or 1 that depends on a number of key bits)

This equation holds with a probability of 15/32 (with a bias of -1/32).

Because \sum is fixed, we know the following linear approximation of the cipher that holds with probability 15/32 or 17/32 (depending on whether \sum is 0 or 1): U4,6 \oplus U4,8 \oplus U4,14 \oplus U4,16 \oplus P5 \oplus P7 \oplus P8 = 0

- Given an equation that relates the input to the last round of S-Boxes to the plaintext, how can we get the key?
- We attack parts of the key (called target subkey) of the last round, in particular those bits of the key that connect the output of our S-Boxes of interest with the ciphertext

Given the equation U4,6 \oplus U4,8 \oplus U4,14 \oplus U4,16 \oplus P5 \oplus P7 \oplus P8 = 0, we look at the 8 bits K5,5 - K5,8 and K5,13-K5,16

- Idea
 - for a large number of ciphertext and plaintext pairs, we first feed the ciphertext back into the active S-Boxes S₄₂ and S₄₄
 - because we do not know the target subkey, we have to repeat this feedback procedure for all possible 256 keys
 - for each subkey, we keep a count on how often the linear equation holds
 - when the wrong subkey is used
 - the equation will hold with probability 1/2 (similar to using random values)
 - when the correct subkey is used
 - the equation will hold with more or less often than 1/2 (depending on the bias)
 - → after all pairs of plaintext and ciphertext are checked, we take the subkey with the count that differs most from 1/2

Differential Cryptanalysis

- Similar in spirit to linear cryptanalysis
- Chosen plaintext attack
- Instead of linear relationships, sensitivity to modifications of the input are analyzed
 - when certain bits of the input are changed, how does the output change
 - for an ideal cipher, a single bit flip in the input makes all output bits change with a probability of 1/2
 - not always the case
 - probabilistic attack that targets the key of the last round

Conclusion

- Cryptographic schemes
 - symmetric-key cryptography
 - block ciphers
 - DES, SPN, Feistel networks
 - stream ciphers
 - public-key cryptography
 - RSA
- Cryptanalysis
 - frequency analysis
 - linear and differential cryptanalysis

tutorial on this topic available under http://www.engr.mun.ca/~howard/