CS 290 Host-based Security and Malware

Christopher Kruegel

chris@cs.ucsb.edu

Cryptography

Cryptography

- (One) definition of cryptography

Mathematical techniques related to aspects of information security such as

- confidentiality
- keep content of information from all but authorized entities
- integrity
- protect information from unauthorized alteration
- authentication
- identification of data or communicating entities
- non-repudiation
- prevent entity from denying previous commitments or actions

Taxonomy

- Unkeyed primitives
- hash functions
- random sequences
- Symmetric-key primitives
- block ciphers
- stream ciphers
- signatures
- pseudorandom sequences
- Public-key primitives
- public-key ciphers
- signatures

Symmetric-key Cryptography

- Consider an encryption scheme with key pair (e,d)
- scheme is called a symmetric-key scheme if it is "relatively" easy to obtain d when e is know
- often $e=d$
- Block cipher
- break up plaintext into strings (blocks) of fixed length t
- encrypt one block at a time
- uses substitution and transposition (permutation) techniques
- Stream Cipher
- special case of block cipher with block length $t=1$
- however, substitution technique can change for every block
- key stream $\left(\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \ldots\right)$

Public-key Cryptography

- Consider an encryption scheme with key pair (e,d)
- scheme is called a public-key scheme if it is computationally infeasible to determine d when e is known
- In public-key schemes, E_{e} is usually a trapdoor one-way function and d is the trapdoor
- One-way function
- A function $f: X \rightarrow Y$ is called a trapdoor function, if $f(x)$ is "easy" to compute for all $x \in X$, but for most $y \in Y$, it is infeasible to find a x such that $f(x)=y$.
- calculating the exponentiation of an element a in a finite field $\left[\mathrm{a}^{\mathrm{p}}(\bmod \mathrm{n})\right.$]
- multiplication of two large prime numbers [$n=p^{*} q$]

Public-key Cryptography

- Trapdoor one-way function
- A trapdoor function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ with the additional property that given some additional information (called the trapdoor information) it becomes feasible for all $y \in Y$ to find a x such that $f(x)=y$.
- No longer necessary to transfer a secret key over a secure channel
- Significant problem is binding of public key to a certain person (authentication)
- otherwise, an attacker can substitute his own public key for the victim's key
- Key certificates are needed
- public key infrastructure (PKI)
- idea is to cryptographically bind a public key to a certain entity via certificates
- certificates commonly issued by certification authorities (CAs)
- chain of trust is traced to a root CA (whose public key must be known by all participants)

Cryptanalysis

- Fundamental
- all alphabets and the encryption/decryption functions are public knowledge
- only the selection of the key pair remains secret
- System is breakable
- if a third party can (without the knowledge of the key pair) systematically recover plaintext from corresponding ciphertext within some appropriate time frame
- exhaustive key search must be made impossible
- Cryptanalysis
- study of techniques to defeat cryptographic techniques

Cryptanalysis

- Different model (power) of adversary assumed
- Known-Ciphertext Attack (KCA)
- you only know the ciphertext
- requires you know something about the plaintext (e.g., it's English text, an MP3, C source code, ...)
- this is the model for the Sunday cryptograms which use substitution
- Known-Plaintext Attack (KPA)
- you have some number of plaintext-ciphertext pairs, but you cannot choose which plaintexts you would like to see
- Chosen-Plaintext Attack (CPA)
- you get to submit plaintexts of your choice to an encryption oracle (black box) and receive the ciphertexts in return

Cryptanalysis

- Known-Ciphertext Attack (KCA)
- weak attack model
- works only when weak ciphers are used (simple substitution algorithms)
- Attacker can use frequency analysis
- assumption is that symbols (letters) do not appear with the same frequency in the plaintext
- this assumption holds with high probability if natural language texts are encrypted
- in the English language, most frequent letters are E T N R O A S (in this order)
- Attack
- analyze frequency of symbols in ciphertext
- assume that symbols with high frequency correspond to frequent letters
- try to reconstruct plaintext

Cryptanalysis

- Frequency analysis has to be adapted when poly-alphabetic substitution is used
- in this case, the number of different permutations is most difficult part to find out
- once the number N of different permutations is known, the ciphertext can be divided into N groups
- apply frequency analysis individually for each group
- Example with 3 permutations (from the Vigenere cipher)

plaintext:	THISC IPHER ISCER TAINL YNOTS ECURE
ciphertext:	WOSVJ SSOOU PCFLB WHSQS IQVDV LMXYO

| Group 1: W, $V, S, U, F, W, Q, Q, V, X$ | $V(S), W(T), ~ Q(N)$ |
| :--- | :--- | :--- |
| Group 2: $O, ~ J, ~ O, ~ P, ~ L, ~ H, ~ S, ~ V, ~ L, ~ Y ~$ | $O(H)$ |
| Group 3: $S, ~ J, ~ O, ~ C, ~ B, ~ S, ~ I, ~ D, ~ M, ~ O ~$ | $S(I), O(E)$ |

Cryptanalysis

- Better ciphers require more advanced attack techniques
- Two well-known techniques against secret-key block ciphers are
- linear cryptanalysis
- developed 1993 by Matsui
- differential cryptanalysis
- discovered three times by NSA, IBM, and Biham and Shamir
- We use a simple four round SPN as example
- 16 bit key, 16 bit block size
- S-Box with the following mapping (4 bit input $\rightarrow 4$ bit output)

0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
E	4	D	1	2	F	B	8	3	A	6	C	5	9	0	7

Cryptanalysis

Cryptanalysis

- Linear cryptanalysis
- known plaintext attack
- exploits high probability occurrences of linear relationships between plaintext, ciphertext, and key bits
- linear with regards to bitwise operation modulo 2 (i.e., XOR)
- expressions of form $X_{i 1} \oplus X_{i 2} \oplus X_{i 3} \oplus \ldots \oplus X_{i u} \oplus Y_{j 1} \oplus Y_{j 2} \oplus \ldots \oplus Y_{j v}=0$
$X_{i}=i$-th bit of input plaintext $\left[X_{1}, X_{2}, \ldots\right]$
$Y_{j}=j$-th bit of output ciphertext $\left[Y_{1}, Y_{2}, \ldots\right]$
- for a perfect cipher, such relationships hold with probability $1 / 2$
- for vulnerable cipher, the probability p might be different from 1/2
\rightarrow a bias $|p-1 / 2|$ is introduced

Linear Cryptanalysis

- 2 steps
- analyze the linear vulnerability of a single S-Box
- connect the output of an S-Box to the input of the S-Box in the next round and "pile up" probability bias
- To analyze a single S-Box, check all possible linear approximations $\left[X_{1}, X_{2}, X_{3}, X_{4}\right.$]

0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
E	4	D	1	2	F	B	8	3	A	6	C	5	9	0	7

$\left[Y_{1}, Y_{2}, Y_{3}, Y_{4}\right]$

Linear Cryptanalysis

X 1	X 2	X 3	X 4	Y 1	Y 2	Y 3	Y 4	$\mathrm{X} 1 \oplus \mathrm{X} 3 \oplus \mathrm{X} 4=\mathrm{Y} 2$	$\mathrm{X} 2=\mathrm{Y} 2 \oplus \mathrm{Y} 4$
0	0	0	0	1	1	1	0	F	F
0	0	0	1	0	1	0	0	T	F
0	0	1	0	1	1	0	1	T	T
0	0	1	1	0	0	0	1	T	F
0	1	0	0	0	0	1	0	T	F
0	1	0	1	1	1	1	1	T	F
0	1	1	0	1	0	1	1	F	T
0	1	1	1	1	0	0	0	F	F
1	0	0	0	0	0	1	1	F	
1	0	0	1	1	0	1	0	F	T
1	0	1	0	0	1	1	0	T	
1	0	1	1	1	1	0	0	T	F
1	1	0	0	0	1	0	1	T	F
1	1	0	1	1	0	0	1	T	
1	1	1	0	0	0	0	0	T	
1	1	1	1	0	1	1	1	T	

Linear Cryptanalysis

- Linear approximations with many true or many false entries are interesting

$$
\begin{aligned}
& p(X 1 \oplus X 3 \oplus X 4=Y 2)=12 / 16=0.75 \quad[\text { bias }=0.25] \\
& p(X 2=Y 2 \oplus Y 4)=4 / 16=0.25 \quad[\text { bias }=-0.25]
\end{aligned}
$$

- How to connect probabilities between different rounds?
consider the following equations, when bias of $X 1$ is $b 1$, and bias of $X 2$ is b2

$$
\begin{aligned}
p(X 1 \oplus X 2 & =0) \quad=p(X 1)^{*} p(X 2)+(1-p(X 1))^{*}(1-p(X 2)) \\
& =(1 / 2+b 1)^{*}(1 / 2+b 2)+(1 / 2-b 1)^{*}(1 / 2-b 2) \\
& =1 / 2+2^{*} b 1 * b 2
\end{aligned}
$$

Linear Cryptanalysis

- Now, we show how we can eliminate intermediate variables

$$
\begin{aligned}
& p(X 1 \oplus X 2=0)=1 / 2+b 1,2 \\
& p(X 2 \oplus X 3=0)=1 / 2+b 2,3 \\
& p(X 1 \oplus X 3=0)=p([X 1 \oplus X 2] \oplus[X 2 \oplus X 3]=0) \\
&=p(X 1 \oplus X 3=0) \\
&=1 / 2+2 * b 1,2 * b 2,3
\end{aligned}
$$

- Let $\mathrm{U}_{\mathrm{i}}\left(\mathrm{V}_{\mathrm{i}}\right)$ represent the 16-bit block of bits at the input (output) of the S-Box of round i. Then, let $U_{i, k}$ denote the k-th bit of the i-th round of the cipher. Similarly, let K_{i} represent the key of round i .

Linear Cryptanalysis

Linear Cryptanalysis

- With probability 0.75 (and bias $=0.25$), we have

$$
\begin{aligned}
& \mathrm{V} 1,6 \quad=\mathrm{U} 1,5 \oplus \mathrm{U} 1,7 \oplus \mathrm{U} 1,8 \\
& \quad=(\mathrm{P} 5 \oplus \mathrm{~K} 1,5) \oplus(\mathrm{P} 7 \oplus \mathrm{~K} 1,7) \oplus(\mathrm{P} 8 \oplus \mathrm{~K} 1,8)
\end{aligned}
$$

- For the second round, we obtain with probability 0.25 (bias $=-0.25$) $\mathrm{V} 2,6 \oplus \mathrm{~V} 2,8=\mathrm{U} 2,6 \oplus \mathrm{~K} 2,6$
- Because $\mathrm{U} 2,6=\mathrm{V} 1,6$, we can connect these two equations and get $\mathrm{V} 2,6 \oplus \mathrm{~V} 2,8=(\mathrm{P} 5 \oplus \mathrm{~K} 1,5) \oplus(\mathrm{P} 7 \oplus \mathrm{~K} 1,7) \oplus(\mathrm{P} 8 \oplus \mathrm{~K} 1,8) \oplus \mathrm{K} 2,6$ which can be rewritten as $\mathrm{V} 2,6 \oplus \mathrm{~V} 2,8 \oplus \mathrm{P} 5 \oplus \mathrm{P} 7 \oplus \mathrm{P} 8 \oplus \mathrm{~K} 1,7 \oplus \mathrm{~K} 1,8 \oplus \mathrm{~K} 2,6=0$

This holds with a probability (see before) of $1 / 2+2^{*} 0.25^{*}(-0.25)=0.375$

Linear Cryptanalysis

- We continue to eliminate intermediate variables in intermediate rounds to obtain
$\mathrm{U} 4,6 \oplus \mathrm{U} 4,8 \oplus \mathrm{U} 4,14 \oplus \mathrm{U} 4,16 \oplus \mathrm{P} 5 \oplus \mathrm{P} 7 \oplus \mathrm{P} 8 \oplus \Sigma=0$
where \sum is a constant factor (either 0 or 1 that depends on a number of key bits)

This equation holds with a probability of $15 / 32$ (with a bias of $-1 / 32$).

Because \sum is fixed, we know the following linear approximation of the cipher that holds with probability $15 / 32$ or $17 / 32$ (depending on whether \sum is 0 or 1):
$\mathrm{U} 4,6 \oplus \mathrm{U} 4,8 \oplus \mathrm{U} 4,14 \oplus \mathrm{U} 4,16 \oplus \mathrm{P} 5 \oplus \mathrm{P} 7 \oplus \mathrm{P} 8=0$

Linear Cryptanalysis

- Given an equation that relates the input to the last round of S-Boxes to the plaintext, how can we get the key?
- We attack parts of the key (called target subkey) of the last round, in particular those bits of the key that connect the output of our S-Boxes of interest with the ciphertext

Given the equation U4,6 $\oplus \mathrm{U} 4,8 \oplus \mathrm{U} 4,14 \oplus \mathrm{U} 4,16 \oplus \mathrm{P} 5 \oplus \mathrm{P} 7 \oplus \mathrm{P} 8=0$, we look at the 8 bits K5,5-K5,8 and K5,13-K5,16

Linear Cryptanalysis

- Idea
- for a large number of ciphertext and plaintext pairs, we first feed the ciphertext back into the active S-Boxes S_{42} and S_{44}
- because we do not know the target subkey, we have to repeat this feedback procedure for all possible 256 keys
- for each subkey, we keep a count on how often the linear equation holds
- when the wrong subkey is used
- the equation will hold with probability $1 / 2$ (similar to using random values)
- when the correct subkey is used
- the equation will hold with more or less often than $1 / 2$ (depending on the bias)
\rightarrow after all pairs of plaintext and ciphertext are checked, we take the subkey with the count that differs most from 1/2

Differential Cryptanalysis

- Similar in spirit to linear cryptanalysis
- Chosen plaintext attack
- Instead of linear relationships, sensitivity to modifications of the input are analyzed
- when certain bits of the input are changed, how does the output change
- for an ideal cipher, a single bit flip in the input makes all output bits change with a probability of $1 / 2$
- not always the case
- probabilistic attack that targets the key of the last round

Conclusion

- Cryptographic schemes
- symmetric-key cryptography
- block ciphers
- DES, SPN, Feistel networks
- stream ciphers
- public-key cryptography
- RSA
- Cryptanalysis
- frequency analysis
- linear and differential cryptanalysis
tutorial on this topic available under http://www.engr.mun.ca/~howard/

