CS 290
Host-based Security and Malware

Christopher Kruegel
chris@cs.ucsb.edu

Reverse Engineering

Reverse engineering
— process of analyzing a system
— understand its structure and functionality

— used in different domains (e.g., consumer electronics)

Software reverse engineering
— understand architecture (from source code)
— extract source code (from binary representation)
— change code functionality (of proprietary program)
— understand message exchange (of proprietary protocol)

Software Engineering

First generation

language 0010100011011101
0101010111100010

Assemble

Second

generation mov eax, ebx

language XOr eax, eax
Compile

Third

generation

int X;
language while (x<10)

Software Reverse Engineering

First generation

language 0010100011011101
0101010111100010

Disassemble

Second

generation mov eax, ebx

language XOr eax, eax
De-compile

Third

generation

int X;
language while (x<10)

Fully-automated disassemble/de-compilation of arbitrary
machine-code is theoretically an undecidable problem

Disassembling problems
— hard to distinguish code (instructions) from data

De-compilation problems
— structure is lost
« data types are lost, names and labels are lost
— no one-to-one mapping
« same code can be compiled into different (equivalent) assembler blocks

« assembler block can be the result of different pieces of code

Why Reverse Engineering

Software interoperability
— Samba (SMB Protocol)
— OpenOffice (MS Office document formats)

Emulation
— Wine (Windows API)
— React-OS (Windows OS]

Malware analysis
Program cracking

Compiler validation

Static Analysis

|dentify the file type and its characteristics
— architecture, OS, executable format...

Extract strings
— commands, password, protocol keywords...

|dentify libraries and imported symbols
— network calls, file system, crypto libraries

Disassemble

— program overview
— finding and understanding important functions
* by locating interesting imports, calls, strings...

Dynamic Analysis

« Memory dump
— extract code after decryption, find passwords...

« Library/system call/instruction trace
— determine the flow of execution
— interaction with OS

« Debugging running process

— inspect variables, data received by the network, complex
algorithms..

 Network sniffer
— find network activities
— understand the protocol

Static Techniques

Gathering program information

— get some rough idea about binary (file)

Linux util # file sil

sil: ELF 32-bit LSB executable, Intel 80386, version 1
(SYSV), for GNU/Linux 2.6.9, dynamically linked (uses s
hared libs), not stripped

— strings that the binary contains (strings)

Linux util # strings sil | head -n 5
/1ib/1d-1inux.so0.2

~Jv Register(Classes

~_gmon start

libc.so0.6

puts

10

Static Techniques

« Examining the program (ELF) header (e1fsh)

[ELF HEADER]
[Object sil, MAGIC 0x464C457F]

Intel 80386
Executable object
Little endian

Architecture
Object type
Data encoding

PHT foffset : 52
PHT entries number : 8
PHT entry size : 32
Entry point : 0x8048500
{PAX FLAGS = 0x0}

PAX PAGEEXEC Disabled
PAX MPROTECT Restricted

PAX RANDEXEC ot randomized

Program entry point

ELF Version
SHT strtab index
SHT foffset

SHT entries number :

SHT entry size
ELF header size
[start]

PAX EMULTRAMP
PAX RANDMMAP
PAX SEGMEXEC

1

25
4061
28
40
52

Not emulated
Randomized
Enabled

11

Static Techniques

. Used libraries Interesting “shared” library —
used for (fast) system calls

— easier when program is dynamically linked (1dd
Linux util _#£ 1ldd—si+
< linux-gate.so.l => (Oxffffe00Q)>
libc.so0. o == .50.06 (Oxb7e99000)

/1ib/1ld-1inux.s0.2 (Oxb7fcf000)

— more difficult when program is statically linked

Linux util # gcc -static -o sil-static simple.c
Linux util # 1ldd sil-static

not a dynamic executable
Linux util # file sil-static

sil-static: ELF 32-bit LSB executable, Intel 80386, version 1
(SYSV), for GNU/Linux 2.6.9, statically linked, not stripped

12

Static Techniques

Looking at 1inux-gate.so.1l

Linux util # cat /proc/self/maps | tail -n 1
ffffe0QO-FfffffOOO r-xp 0OCOCO000 00:00 O [vdso]
Linux util # dd if=/proc/self/mem of=1linux-gate.dso bs=4096 skip=1048574

count=1 2> /dev/null
Linux util # objdump -d linux-gate.dso | head -n 11

linux-gate.dso: file format elf32-1386
Disassembly of section .text:

ffffed00 < Kkernel vsyscall>:

ffffed00: 51 push %ecx
ffffed0l: 52 push %edx
ffffed02: 55 push %ebp
ffffed03: 89 e5 mov %esp,%ebp
ffffed05: 0f 34 sysenter

13

Static Techniques

» Used library functions

— again, easier when program is dynamically linked (nm -D)

Linux util # nm -D sil | tail -n8
U fprintf
U fwrite
U getopt
U opendir
08049bb4 B optind
U puts
U readdir
B

08049bb0 stderr

— more difficult when program is statically linked

Linux util # nm -D sil-static
nm: sil-static: No symbols
Linux util # 1ls -la sil*

-rwxr-xr-x 1 root chrig 8017 Yan 21 20:37
-rwXxr-xr-x 1 root chris 544850 Jan 21 20:58

Recognizing libraries in statically-linked programs

« Basicidea
— create a checksum (hash) for bytes in a library function

* Problems
— many library functions (some of which are very short)
— variable bytes — due to dynamic linking, load-time patching,
linker optimizations

« Solution
— more complex pattern file
— uses checksums that take into account variable parts
— implemented in IDA Pro as:
Fast Library Identification and Recognition Technology (FLIRT)

15

Program symbols

— used for debugging and linking

— function names (with start addresses)

— global variables

— use nm to display symbol information

— most symbols can be removed with strip

Function call trees
— draw a graph that shows which function calls which others
— get an idea of program structure

16

Static Techniques

Displaying program symbols

Linux util # nm sil | grep " T"

080488c7 T 1686.get pc thunk.bx
08048850 T libc csu fini
08048860 I 1libc csu init
08048904 T fini

08048420 T 1init

08048500 T start

080485cd | display directory
080486bhd T main

080485a4 | usage

Linux util # strip sil
Linux util # nm sil | grep " T"
nm: sil: no symbols

17

Disassembly
— process of translating binary stream into machine instructions

Different level of difficulty
— depending on ISA (instruction set architecture)

Instructions can have

— fixed length
« more efficient to decode for processor
» RISC processors (SPARC, MIPS)
— variable length
» use less space for common instructions
» CISC processors (Intel x86)

18

* Fixed length instructions
— easy to disassemble
— take each address that is multiple of instruction length as instruction start
— even if code contains data (or junk), all program instructions are found

« Variable length instructions
— more difficult to disassemble
— start addresses of instructions not known in advance

— different strategies
* linear sweep disassembler
* recursive traversal disassembler

— disassembler can be desynchronized with respect to actual code

Intel x86 Assembler Primer

Assembler Language
— human-readable form of machine instructions
— must understand the hardware architecture, memory model, and stack

AT&T syntax
- mnemonic source(s), destination
— standalone numerical constants are prefixed with a $
— hexadecimal numbers start with 0x
— registers are specified with %

 Registers
— local variables of processor

— six 32-bit general purpose registers

» can be used for calculations, temporary storage of values, ...
%eax, %ebx, %ecx, %edx, %esi, %edi

— several 32-bit special purpose registers

$esp - stack pointer
$ebp - frame pointer
eip - instruction pointer

« Important mnemonics (instructions)
mov data transfer
add/ sub arithmetic
cmp / test compare two values and set control flags

jel jne conditional jump depending on control flags (branch)
Jjmp unconditional jump

Intel x86 Assembler Primer

Status (EFLAGS) Register

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 O

Vv
olojofofofofofo|o|ofb 1|i1[&|MIRlo|}
P F

ID Flag (ID} ’
Virtual Interrupt Pending (VIP)
Virtual Interrupt Flag (VIF)

Alignment Check (AC)
Virtual-8086 Mode (VM)
Resume Flag (RF)
Nested Task (NT)

1/0O Privilege Level (IOPL)
Overflow Flag (OF)
Direction Flag (DF)
Interrupt Enable Flag (IF)
Trap Flag (TF)
Sign Flag (SF)
Zero Flag (ZF)
Auxiliary Carry Flag (AF)
Parity Flag (PF)

Carry Flag (CF)

olp|L|T|s(z|qlAlo|Pl1]C
FIFIFIFIF|F|O|F|O|F|TIF

rov0-

Indicates a Status Flag
Indicates a Control Flag
Indicates a System Flag

Reserved bit positions. DO NOT USE.
Always set to values previously read.

X000 QOOOOXXONXXXXX XXX

« Status (EFLAGS) Register

used for control flow decision

— set implicit by many operations (arithmetic, logic)

* Flags typically used for control flow

CF (carry flag)

» set when operation “carries out” most significant bit
ZF (zero flag)

« set when operation yields zero
SF (signed flag)

+ set when operation yields negative result
OF (overflow flag)

» set when operation causes 2’s complement overflow
PF (parity flag)

» set when the number of ones in result of operation is even

23

Intel x86 Assembler Primer

jmp label direct jump

jmp *operand 1 indirect jump

je label jz ZF equal/zero

jne label jnz ~ZF not equal/zero

js label SF negative

jns label ~SF non-negative

jg label jnle ~(SF * OF) & ~ZF greater than (signed)

jge label jnl (~SF * OF) greater or equal (signed)
jl label jnge SF * OF less than (signed)

jle label jng (SF * OF) | ZF less or equal (signed)

ja label jnbe ~CF & ~ZF above (unsigned)

jae label jnb ~CF above or equal (unsigned)
jb label jnae CF below (unsigned)

jbe label jna CF | ZF below or equal (unsigned)

24

When are flags set?
— implicit, as a side effect of many operations
— can use explicit compare / test operations

Compare
cmp b, a [note the order of operands]
— computes (a — b) but does not overwrite destination
— sets ZF (ifa==Db), SF (ifa < b) [and also OF and CF]

How is a branch operation implemented
— typically, two step process
first, a compare/test instruction
followed by the appropriate jump instruction

25

Program can access data stored in memory
— memory is just a linear (flat) array of memory cells (bytes)
— accessed in different ways (called addressing modes)

Most general fashion

— address: displacement ($base, %index, scale)

where the result address is displacement + %base + %index*scale

Simplified variants are also possible
— use only displacement = direct addressing
— use only single register - register addressing

26

Intel x86 Assembler Primer

 Stack

— managed by stack pointer (%esp) and frame pointer (%ebp)
— special commands (push, pop)

— used for
« function arguments
+ function return address
* local arguments

« Byte ordering
— important for multi-byte values (e.g., four byte long value)
— Intel uses little endian ordering
— how to represent 0x03020100 in memory?

0x040 0
0x041 1
0x042 2
0x043 3

Intel x86 Assembler Primer

.section .data
.section .text

.globl start

_start:
mov S1, %eax
movl $0, %ebx

int $0x80

28

Intel x86 Assembler Primer

So how do we create the application?
— we need to assemble and link the code
— this can be done by using the assembler as (or gcc)

Assemble

as exit.s —-o exit.o |

gcc —c -0 exit.o exit.s

Link
1d -0 exit exit.o |

gcc —nostartfiles -0 exit exit.o

29

Task: Find the maximum of a list of numbers

— Questions to ask:

* Where will the numbers be stored?

* How do we find the maximum number?

 How much storage do we need?

» Will registers be enough or is memory needed?

— Let us designate registers for the task at hand:

* %edi holds position in list
* %ebx will hold current highest
* %eax will hold current element examined

30

Intel x86 Assembler - Algorithm

Check if $eax is zero (i.e., termination sign)
— if yes, exit
— if not, increase current position $edi

Load next value in the list to $eax
— we need to think about what addressing mode to use here

Compare %eax (current value) with $ebx (highest value so far)
— if the current value is higher, replace %ebx

Repeat

31

Intel x86 Assembler - Code

.section .data

data items:

.section .text

.globl start

_start:
movl S0, %$edi
movl data items(, %edi, 4), %eax

movl Teax, %ebx

Intel x86 Assembler - Code

start loop:
cmpl S0, %eax
je loop exit
incl %edi
movl data items(, %edi, 4), %eax
cmpl %ebx, %Seax
jle start loop
movl %$eax, %ebx

Jmp start loop

loop exit:
movl S1, %eax

int $S0x80

Intel x86 Assembler Primer

« If statement

#include <stdio.h>

int main(int argc, char **argv)
{

int a;

if(a < 0) ¢{

printf ("A < 0\n");
}
else {

printf ("A >= 0\n");

.LCO:
.string "A < 0\n"
.LC1:
.string "A >= 0\n"
.globl main
.type main, @function
main:
[function prologue]
cmpl $0, -4 (%ebp) /* compute: a — 0 */
ins L2 /* Jump, if sign bit
not set: a >= 0 */
mov 1 $.LCO, (%esp)
call printf
Jmp .L3
L2
movl $.LC1, (%esp)
call printf
.L3:
leave
ret

34

Intel x86 Assembler Primer

e« While statement
#include <stdio.h>

int main(int argc, char **argv)
{

int 1i;

i=0;

while (i < 10)

{
printf ("%d\n", 1i);
i++;

.LCO:

main:

L2

L4

.L3:

.string "%d\n"

[function prologue]

movl

cmpl
jle
Jmp

movl
movl
movl
call
leal
incl

jmp

leave

ret

$0, -4 (%ebp)

$9, -4 (%ebp)
.14
.13

35

... after this x86 assembler digression, back to disassembling

* Linear sweep disassembler
— start at beginning of code (.text) section
— disassemble one instruction after the other
— assume that well-behaved compiler tightly packs instructions
— objdump -d uses this approach

* Recursive traversal disassembler
— aware of control flow
— start at program entry point (e.g., determined by ELF header)
— disassemble one instruction after the other, until branch or jump is found
— recursively follow both (or single) branch (or jump) targets
— not all code regions can be reached

« indirect calls and indirect jumps

* use a register to calculate target during run-time
— for these regions, linear sweep is used

— IDA Pro uses this approach

37

General information about process
- /proc file system
- /proc/<pid>/ for a process with pid <pid>
— interesting entries
« cmdline (show command line)
« environ (show environment)

« maps (Show memory map)
« fd (file descriptor to program image)

Interaction with the environment
— file system
— network

38

Dynamic Technigues

File system interaction
— 1lsof
— lists all open files associated with processes

Windows Registry
- regmon (Sysinternals)

Network interaction

— check for open ports
» processes that listen for requests or that have active connections
* netstat
+ also shows UNIX domain sockets used for IPC
— check for actual network traffic
e tcpdump

e ethereal

39

Dynamic Technigues

System calls

are at the boundary between user space and kernel
reveal much about a process’ operation
strace

powerful tool that can also

» follow child processes
» decode more complex system call arguments
+ show signals

works via the ptrace interface

Library functions

similar to system calls, but dynamically linked libraries

ltrace

40

Execute program in a controlled environment
— sandbox / debugger

Advantages
— can inspect actual program behavior and data values
— (at least one) target of indirect jumps (or calls) can be observed

Disadvantages
— may accidentally launch attacks
— anti-debugging mechanisms
— not all possible traces can be seen

41

Debugger

— breakpoints to pause execution
« when execution reaches a certain point (address)
« when specified memory is access or modified

— examine memory and CPU registers
— modify memory and execution path

Advanced features
— attach comments to code
— data structure and template naming

— track high level logic
« file descriptor tracking

— function fingerprinting

42

Debugger on x86 / Linux

use the ptrace interface

ptrace

allows a process (parent) to monitor another process (child)

whenever the child process receives a signal, the parent is notified

parent can then
« access and modify memory image (peek and poke commands)
« access and modify registers
 deliver signals

ptrace can also be used for system call monitoring

43

Breakpoints
— hardware breakpoints
— software breakpoints

Hardware breakpoints
— special debug registers (e.g., Intel x86)
— debug registers compared with PC at every instruction

Software breakpoints
— debugger inserts (overwrites) target address with an int 0x03 instruction
— interrupt causes signal SIGTRAP to be sent to process

— debugger
» gets control and restores original instruction
* single steps to next instruction
* re-inserts breakpoint

44

* Reverse engineering is difficult by itself

a lot of data to handle

low level information

creative process, experience very valuable
tools can only help so much

« Additional challenges

compiler code optimization
code obfuscation
anti-disassemble techniques
anti-debugging techniques

45

» Against static analysis (disassembler)

 Confusion attack

— targets linear sweep disassembler

— insert data (or junk) between instructions and

let control flow jump over this garbage

— disassembler gets desynchronized with true instructions

Jmp Labell 8048000:
.short 0x4711 8048002:

8048003:
Labell: 8048004 :

74 02
47
11 90 90 90 90 90

Je 8048004

inc sedi

adc %edx, 0x90909090 (%eax)
<Labell>

46

Anti-Disassembly

« Advanced confusion attack
— targets recursive traversal disassembler

— replace direct jumps (calls) by indirect ones (branch functions)
— force disassembler to revert to linear sweep, then use previous attack

47

Anti-Debugging

Against dynamic analysis (debugger)

— detect tracing
* a process can be traced only once

1f (ptrace(PTRACE TRACEME, 0, 1, 0) < 0)

exit (1) ;

— detect breakpoints
* look for int 0x03 instructions
1f ((*(unsigned *) ((unsigned)<addr>+3)

exit (1) ;

— checksum the code

& Oxff)==0xcc)

1f (checksum(text segment) != valid checksum)

exit (1) ;

48

Goals
— focused exploration
— deep understanding

Case study
— copy protection mechanism
— program expects name and serial number
— when serial number is incorrect, program exits
— otherwise, we are fine

Changes in the binary
— can be done with hexedit

49

Focused exploration

bypass check routines

locate the point where the failed check is reported

find the routine that checks the password

find the location where the results of this routine are used
slightly modify the jump instruction

Deep understanding

key generation

locate the checking routine

analyze the disassembly

run through a few different cases with the debugger

understand what check code does and develop code that creates
appropriate keys

50

Static analysis vs. dynamic analysis

« Static analysis

code is not executed
all possible branches can be examined (in theory)
quite fast

* Problems of static analysis

undecidable in general case, approximations necessary

binary code typically contains very little information
 functions, variables, type information, ...

disassembly difficult (particularly for Intel x86 architecture)
obfuscated code, packed code
self-modifying code

51

Dynamic analysis
— code is executed
— sees instructions that are actually executed

Problems of dynamic analysis
— single path (execution trace) is examined
— analysis environment possibly not invisible
— analysis environment possibly not comprehensive

Possible analysis environments
— instrument program

— instrument operating system

— instrument hardware

52

Instrument program

analysis operates in same address space as sample
manual analysis with debugger
Detours (Windows API hooking mechanism)

binary under analysis is modified
» breakpoints are inserted
 functions are rewritten
« debug registers are used
not invisible, malware can detect analysis

can cause significant manual effort

53

* Instrument operating system

analysis operates in OS where sample is run
Windows system call hooks

invisible to (user-mode) malware
can cause problems when malware runs in OS kernel
limited visibility of activity inside program

« cannot set function breakpoints

* Virtual machines

allow to quickly restore analysis environment
might be detectable (x86 virtualization problems)

54

Instrument hardware

provide virtual hardware (processor) where sample
can execute (sometimes including OS)

software emulation of executed instructions
analysis observes activity “from the outside”

completely transparent to sample (and guest OS)
operating system environment needs to be provided
limited environment could be detected, but faster
complete environment is comprehensive, but slower

Anubis uses this approach

95

Analysis observes activity “from the outside”
— how to relate instructions executed on processor
with activity inside the operating system and sample?

— must encode some knowledge about guest OS and processes
« we chose to target MS Windows on Intel x86 machines

— Qemu used as emulation environment

Questions
— how to identify which instructions belong to malware sample?
— what to analyze?
— how to implement analysis?

56

Executed instructions must be assigned to correct process

— make use of CR3 register
« control register used for virtual memory management
* holds physical address of the base of the page directory
 unique for each process
« ensures that virtual address spaces are disjoint

— reloaded at every context switch

Obtaining value of CR3 register
— use small component inside operating system
— extracts value from kernel task structure (EPROCESS)
— process started in suspended state

57

* Process interacts with operating system via system calls

needs OS for every interaction with environment
« file system, network, registry, ...

monitor system calls

unfortunately, on Windows, system calls largely undocumented
and can change without notice

developers are supposed to use Windows API, which

denotes a collection of stable, user-mode, shared libraries

of course, Windows API can be bypassed

- we monitor Windows API calls and NT kernel calls

58

File activity
— read, write, create, open, ...

Registry activity

Service activity
— start or stop of Windows services (via Service Manager)

Process activity
— start, terminate process, inter-process communication

Network activity
— API calls and packet logs

59

Windows API and kernel calls must be hooked without
interfering with the program (and its memory)

Can be implemented in straightforward fashion

— compare address of instruction executed with function start address
— Qemu allows to do this efficiently
— start addresses extracted from library export tables

Arbitrary addresses are possible

— analysis has fine-grain control

60

* |nformation about function invocation alone insufficient
— we also want to know about arguments

« Callback invoked when “breakpoint” reached
— allows us to extract argument values
— semantic gap again, Anubis only knows about physical
address space
— appropriate read functions require argument type information
(structure and size of arguments), similar to advanced debuggers
— would be tedious to write by hand, automatic support desirable

« (Callbacks are invoked on function call and function return

61

« Generate routines to extract argument values automatically
— provide values directly to callback routine
— requires knowledge about argument types

« Code generation component
— processes Windows header files (read type definitions)
— parameters may be in and out parameters (or both)

— parameters may be of unknown length
« zero-terminated strings
« arrays where second parameters specifies length

— headers files were manually augmented
— complex structures (with pointers) are traversed automatically

Problem
— not all argument values need to present in physical memory
— Anubis has only access to (emulated) physical memory
— argument values could be swapped out

— other problem are shared libraries that are not paged in
* e.g., due to lazy evaluation

Solution
— make process access virtual address(es)
— forces Windows to bring in memory (page fault handler)
— Anubis has to (transparently) inject such access into process

63

Modify control flow of target process
— necessary to bring in paged out memory content
— but also useful for calling arbitrary functions in context of target

Calling functions
— distinguish between open and create file (or registry key)
— distinguish between files and directories
— resolve unknown handles

Can be easily done with Qemu
— without modifying process’ code
— only problem is to push argument values onto process stack
— dual problem to reading arguments, generator can be reused

64

One obvious difference between machine and emulator
- time of execution

Time could be used to detect our system

— emulation allows to address these issues

— certain instructions can be dynamically modified to return
innocently looking results

— for example, RTC (real-time clock) - RTDSC instruction

65

