
CS 290
Host-based Security and Malware

Christopher Kruegel
chris@cs.ucsb.edu

Advanced
Memory Corruption Exploits

Advanced Memory Corruption Exploits

•  Windows shellcode

•  Kernel exploits and shellcode

CS 290: Host-based security and malware 3

CS 290: Host-based security and malware 4

Windows Shellcode
•  System calls are not the answer

–  Native API implemented in ntoskrnl.exe and exposed via ntdll.dll

–  Windows system call interface (int 0x2e or sysenter) changes

 between versions

–  Windows system call interface is limited and poorly documented

 (no standard network calls such as open, connect, …)

•  Using system calls in Windows shellcode is “bad practice”
–  instead, use library functions (Windows API)

–  first, decide which functions you need

–  then, find their (absolute) addresses

CS 290: Host-based security and malware 5

Library Functions

•  Which library functions can be used?

•  All Windows programs link against two libraries
–  ntdll.dll (Native API exports)
–  kernel32.dll (base services – processes, files, …)

•  kernel32.dll contains two important functions
–  LoadLibraryA(libraryname)
–  GetProcAddress(hmodule, functionname)

•  Enough to execute any function we need, but ...
 we have to find their correct addresses first

CS 290: Host-based security and malware 6

Finding Function Addresses

•  Addresses of library functions can be found with dumpbin
–  easy to do, but inflexible (non-portable)

–  problem is that function addresses can differ between

 Windows versions and service packs

Finding Function Addresses

CS 290: Host-based security and malware 7

Finding Function Addresses

CS 290: Host-based security and malware 8

Finding Function Addresses

CS 290: Host-based security and malware 9

Program sleeps for 5 seconds and then exits

CS 290: Host-based security and malware 10

Dynamic Addressing

Now, we want to find function addresses dynamically
–  two problems need to be solved

1.  Kernel32.dll is not always loaded at the same address
–  locate start address of kernel32.dll

2.  Addresses of functions inside kernel32.dll may vary
–  locate our two important functions in kernel32.dll

CS 290: Host-based security and malware 11

Locating kernel32

•  The operating system allocates a Process Environment Block
(PEB) structure for every running process
–  The PEB can always be found at fs:[0x30] in the process memory

•  The PEB structure contains three linked lists with info about
loaded modules that have been mapped into process space
–  One list is ordered by the initialization time

–  kernel32.dll is always the second module to be initialized

•  It is possible to extract the base address for kernel32.dll from PEB

CS 290: Host-based security and malware 12

Locating kernel32

CS 290: Host-based security and malware 13

Locating kernel32

•  Alternative ways (smaller in size)
–  find a pointer that points into kernel32

–  possible pointers
•  Unhandled Exception Handler default entry (top entry located at fs:[0])

•  via top of stack, referenced via Thread Control Block (TCB – fs:[0x18])

–  search pages backwards in memory until you find one that

 starts with ‘MZ’ (actually, 64KB steps sufficient)

Locating kernel32

CS 290: Host-based security and malware 14

CS 290: Host-based security and malware 15

Locating GetProcAddress

•  Use the image export directory of the DLL (.edata)
–  declares exported functions, using the following four tables:

 address table (relative virtual addresses – indexed by ordinal)

 name pointer table (pointer to strings)

 ordinal table (same order as name pointer table)

 name table (actual string data)

•  Algorithm to obtain address (RVA) for symbol “ExportName”
 i = Search_ExportNamePointerTable(ExportName);
 ordinal = ExportOrdinalTable [i];
 SymbolRVA = ExportAddressTable [ordinal - OrdinalBase];

CS 290: Host-based security and malware 16

Locating GetProcAddress

•  To resolve a symbol one must
–  search it in the name table (via name pointer table)

–  the corresponding entry in the ordinal table is function index

–  use index to retrieve the function virtual address from address table

•  Storing function names as strings in the shellcode is bad
–  takes too much space

–  solution:

 hash function names (and only store hashes in shellcode)

–  requires that shellcode comes with a hash function

Payloads

•  Once functions can be located …

–  (Reverse) Bindshell
 kernel32.dll: CreateProcessA
 ws2_32.dll: WSASocketA, connect, bind, listen, accept

–  Download / Execute
 kernel32.dll: CreateFile, CreateProcessA
 wininet.dll: InternetOpenUrlA and InternetReadFile

CS 290: Host-based security and malware 17

Advanced Memory Corruption Exploits

•  Windows shellcode

•  Kernel exploits and shellcode

CS 290: Host-based security and malware 18

Kernel Exploits

•  What types of kernel space vulnerabilities are there?
–  invalid (user) pointer dereference
–  kernel stack buffer overflows
–  heap (slab) overflows

 …

•  What is special about the payload?
–  locate other functions (making a system call is not an option)
–  stage standard (user mode) payload
–  recover to prevent kernel crash

•  In general, most kernel exploits require some special twist

CS 290: Host-based security and malware 19

Locating Functions

•  Quite similar to what we have just seen
–  need to find exported kernel functions

–  typically, functions are used by kernel modules / device drivers

–  scan memory for known byte signature

 ‘MZ’ at beginning of ntoskrnl.exe

 system call table signature (and known offsets into table)

CS 290: Host-based security and malware 20

Stager

•  Copy the ring0 or ring3 to a suitable location
–  currently loaded pages of a process

–  Windows SharedUserData

–  space between kernel stack and thread_info

–  unused entries in the IDT

–  Asynchronous Procedure Calls (APCs)

CS 290: Host-based security and malware 21

Stager

•  Problem
–  sometimes, exploit happens in interrupt context
–  no process associated with kernel code, cannot block or sleep

•  Install a hook that executes payload later (in desired context)
–  interrupt handler
–  system call handler
–  MSR (mode specific register) – used with sysenter
–  saved process return address
–  system call gate (in Windows: SharedUserData)

CS 290: Host-based security and malware 22

Recovery

•  If the system crashes after the stager has finished,
 we have not accomplished anything

–  need to recover from the exploit and leave system in a safe state

•  Recovery depends on the situation
–  restore registers (but we smashed the stack...)
–  enable interrupts or preemption
–  release spinlocks

•  Standard tricks
–  spin thread
–  throw exception (rarely possible)
–  restart thread
–  walk stack until valid frame is detected

CS 290: Host-based security and malware 23

Kernel NULL dereference

•  Kernel developers make mistakes too …
–  kernel code can access a NULL pointer, or it can
–  call a function through a NULL pointer

 (function pointers are quite common in kernel code)

•  Normally, this just “crashes” the kernel (oops)
–  can be viewed on console or with dmesg

•  However, a NULL pointer really points to address 0,
 which lies in lower (user) part of the address space

•  The reason is that the kernel doesn’t switch address spaces but
“reuses” the one of the process that invoked system call

CS 290: Host-based security and malware 24

Kernel NULL dereference

•  Exploit
–  map valid code to address 0 (first page)
–  trigger NULL pointer dereference
–  kernel will happily execute our code with kernel privileges

•  Payload
–  simply set privileges of current process to root

CS 290: Host-based security and malware 25

Kernel NULL dereference

•  CVE 2009-2692

CS 290: Host-based security and malware 26

Kernel NULL dereference

•  Possible defense
–  disallow mapping page to address 0

 /proc/sys/vm/mmap_min_addr

•  Can be bypassed
http://blog.cr0.org/2009/06/bypassing-linux-null-pointer.html

CS 290: Host-based security and malware 27

