CS 290
Host-based Security and Malware

Christopher Kruegel
chris@cs.ucsb.edu

Advanced
Memory Corruption Exploits

Advanced Memory Corruption Exploits

 Windows shellcode

« Kernel exploits and shellcode

System calls are not the answer
— Native APl implemented in ntoskrnl.exe and exposed via ntdll.dlI
— Windows system call interface (int Ox2e or sysenter) changes
between versions
— Windows system call interface is limited and poorly documented

(no standard network calls such as open, connect, ...)

Using system calls in Windows shellcode is “bad practice”
— instead, use library functions (Windows API)
— first, decide which functions you need

— then, find their (absolute) addresses

Which library functions can be used?

All Windows programs link against two libraries
- ntdl1l.d11 (Native API exports)
- kernel32.dl1 (base services — processes, files, ...)

kernel32.d11 contains two important functions
— LoadLibraryA (libraryname)

— GetProcAddress (hmodule, functionname)

Enough to execute any function we need, but ...
we have to find their correct addresses first

Finding Function Addresses

« Addresses of library functions can be found with dumpbin
— easy to do, but inflexible (non-portable)
— problem is that function addresses can differ between

Windows versions and service packs

\WINDOWS\system32 >dumpbhin /headers kernel32.dll
icrosoft (R)> COFF/PE Dumper Uersion 92.080.30729.01
opyright <(C)> Microsoft Corporation. All rights reserved.

Dump of file kernel32.dll
E signature found
File Type: DLL

FILE HEADER UALUES
14C machine (x86)>
4 numbher of sections
4802A12C time date stamp Mon Apr 14 G1:11:24 206068
B file pointer to symbhol table
A number of symbols
EA size of optional header
210E characteristics
Executable
Line numbers stripped
Symhols stripped
32 bhit word machine

DLL
OPTIONAL HEADER UALUES 7C800000 image base

B magic # (PE32)
?7.18 linker version
83200 size of code
702008 size of initialized data
A size of uninitialized data
B63E entry point (7C8BB63E>
1080 base of code

oUuuy Jase U aala

7C8000BA image bhase (7C88000BB to 7CB8FS5FFF)
L]

¢+ Visual Studio 2008 Command Promp

C:\WINDOWS\system32 >dumphin /exports kernel32.dll | more
Microsoft (R> COFF/PE Dumper Uersion 92.00.30729.061

Copyright (C)> Microsoft Corporation. All rights reserved.

Dump of file kernel32.dll
File Type: DLL
Section contains the following exports for KERNEL32.dll

ABRAAAA characteristics
480A25BE1 time date stamp Sun Apr 13 260:15:45 2008
A.80 version
1 ordinal hase
253 number of functions
253 number of names

ordinal hint RUA name

AABBA6GD4 ActivateActCtx

ABnR?2689 SetWaitableTimer
ABA666AA SetupComm

A0A72F84 ShowConsoleCursor
BBA366AE SignalObhjectAndWait

(ririririsTalelsl

ABRPR2446

Py -T-1-2- P WY

NI S R W s s pradss

A08039274A SuspendThread

888108782 SwitchToFiber

#80329AA SwitchToThread

#0801 0OBAC SystemTimeToFileTime

AAA2E?91 SystemTimeToTzSpecificLocalTlime

7C800000 image base
+ 00002446 offset

7C802446 fct address

Finding Function Addresses

#include "stdafx.h"
#include "Windows.h"
- int tmwain(int argc, TCHAR* argwv(])
{
_asm {
push S000
mov eax, O0x7C3802446
call eax
}
return 0;

Program sleeps for 5 seconds and then exits

Now, we want to find function addresses dynamically
— two problems need to be solved

1. Kernel32.dll is not always loaded at the same address
— locate start address of kernel32.dll|

2. Addresses of functions inside kernel32.dll may vary
— locate our two important functions in kernel32.dll

10

The operating system allocates a Process Environment Block
(PEB) structure for every running process

— The PEB can always be found at fs:[0x30] in the process memory

The PEB structure contains three linked lists with info about
loaded modules that have been mapped into process space

— One list is ordered by the initialization time

— kernel32.dll is always the second module to be initialized

It is possible to extract the base address for kernel32.dll from PEB

11

Locating kernel32

[unsigned int find kernel3z2 ()

{

_asm {
XOor
mov
mov
mowv
mowv
mowv

eax,
eax,
eax,
eax,
eax,
eax,

eax

fs: [0x30] F¥y
[eax + 0Ox0c] //
[eax + Ox1lec] //
[eax] F ¥
[eax + 0x8] |ff

start
start
startc
startc

of
of
of
of

PEE

PEE LDR DATA

first element (ntdll.dll)
second element (kKernel3zZ.dll)

hase address of kernel3iz.dll

12

Alternative ways (smaller in size)
— find a pointer that points into kernel32

— possible pointers
« Unhandled Exception Handler default entry (top entry located at fs:[0])
* via top of stack, referenced via Thread Control Block (TCB — fs:[0x18])

— search pages backwards in memory until you find one that
starts with ‘MZ’ (actually, 64KB steps sufficient)

13

Locating kernel32

Flunsigned int find kernel3z alti)

{

asm {

push esi

push ecx

XO0r ecx, ecx

mov esi, fs:[ecx]
not ecx

find kernel32 seh loop:
lodsd

mowv
crp
jne
mov

esi, eax

[eax], ecx

find kernel32 seh loop
eax, [eax + 0x04]

find_kernelSZ_base:

dec
Xor
crp
jne

pop
pop

eax
ax, ax

word ptr [eax], O0x5add
find kernel3Z2 base

ecx
esi

14

Use the image export directory of the DLL (.edata)

— declares exported functions, using the following four tables:
address table (relative virtual addresses — indexed by ordinal)
name pointer table (pointer to strings)
ordinal table (same order as name pointer table)

name table (actual string data)

Algorithm to obtain address (RVA) for symbol “ExportName”

1 = Search ExportNamePointerTable (ExportName) ;
ordinal = ExportOrdinalTable [1];
SymbolRVA = ExportAddressTable [ordinal - OrdinalBase];

15

To resolve a symbol one must
— search it in the name table (via name pointer table)
— the corresponding entry in the ordinal table is function index

— use index to retrieve the function virtual address from address table

Storing function names as strings in the shellcode is bad
— takes too much space
— solution:
hash function names (and only store hashes in shellcode)

— requires that shellcode comes with a hash function

16

Once functions can be located ...

— (Reverse) Bindshell
kernel32.dll: CreateProcessA
ws2_32.dIl: WSASocketA, connect, bind, listen, accept

— Download / Execute
kernel32.dll: CreateFile, CreateProcessA
wininet.dll: InternetOpenUrlA and InternetReadFile

17

Advanced Memory Corruption Exploits

« Kernel exploits and shellcode

18

What types of kernel space vulnerabilities are there?
— invalid (user) pointer dereference
— kernel stack buffer overflows
— heap (slab) overflows

What is special about the payload?
— locate other functions (making a system call is not an option)
— Stage standard (user mode) payload
— recover to prevent kernel crash

In general, most kernel exploits require some special twist

19

Quite similar to what we have just seen
— need to find exported kernel functions
— typically, functions are used by kernel modules / device drivers
— scan memory for known byte signature
‘MZ’ at beginning of ntoskrnl.exe

system call table signature (and known offsets into table)

20

« Copy the ring0 or ring3 to a suitable location

currently loaded pages of a process
Windows SharedUserData

space between kernel stack and thread_info
unused entries in the IDT

Asynchronous Procedure Calls (APCs)

21

Problem
— sometimes, exploit happens in interrupt context

no process associated with kernel code, cannot block or sleep

Install a hook that executes payload later (in desired context)

interrupt handler

system call handler

MSR (mode specific register) — used with sysenter
saved process return address

system call gate (in Windows: SharedUserData)

22

If the system crashes after the stager has finished,

we have not accomplished anything
— need to recover from the exploit and leave system in a safe state

Recovery depends on the situation
— restore registers (but we smashed the stack...)
— enable interrupts or preemption
— release spinlocks

Standard tricks
— spin thread
— throw exception (rarely possible)
— restart thread
— walk stack until valid frame is detected

Kernel developers make mistakes too ...
— kernel code can access a NULL pointer, or it can
— call a function through a NULL pointer
(function pointers are quite common in kernel code)

Normally, this just “crashes” the kernel (oops)
— can be viewed on console or with dmesg

However, a NULL pointer really points to address 0,
which lies in lower (user) part of the address space

The reason is that the kernel doesn’t switch address spaces but
“reuses” the one of the process that invoked system call

24

Kernel NULL dereference

Exploit
— map valid code to address 0 (first page)
— trigger NULL pointer dereference
— kernel will happily execute our code with kernel privileges

Payload
— simply set privileges of current process to root

25

Kernel NULL dereference

CVE 2009-2692

static ssize_t sock_sendpage(struct file *file, struct g

more)

{

int offset, size_t size, 1lc %* dih Y

struct socket *sock;
int flags;

sock = file->private_data;
flags = !(file->f_flags & O_NONBLOCK) ? © : MSG_DONTWAIT;
if (more)

flags |= MSG_MORE;

return sock->ops->sendpage(sock, page, offset, size, flags);

26

Kernel NULL dereference

Possible defense
— disallow mapping page to address 0

/proc/sys/vm/mmap min_ addr

Can be bypassed

http://blog.cr0.0rg/2009/06/bypassing-linux-null-pointer.html

27

