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Abstract

Reverse engineering of software is the process of recov-
ering higher-level structure and meaning from a lower-
level program representation. It can be used for legit-
imate purposes—e.g., to recover source code that has
been lost—but it is often used for nefarious purposes,
e.g., to search for security vulnerabilities in binaries or to
steal intellectual property. This paper addresses the prob-
lem of making it hard to reverse engineering binary pro-
grams by making it difficult to disassemble machine code
statically. Binaries are obfuscated by changing many
control transfers into signals (traps) and inserting dummy
control transfers and “junk” instructions after the signals.
The resulting code is still a correct program, but even
the best current disassemblers are unable to disassemble
40%–60% of the instructions in the program. Further-
more, the disassemblers have a mistaken understanding
of over half of the control flow edges. However, the ob-
fuscated program necessarily executes more slowly than
the original. Experimental results quantify the degree of
obfuscation, stealth of the code, and effects on execution
time and code size.

1 Introduction

Software is often distributed in binary form, without
source code. Many groups have developed technology
that enables one to reverse engineer binary programs
and thereby reconstruct the actions and structure of the
program. This is accomplished by disassembling ma-
chine code into assembly code and then possibly de-
compiling the assembly code into higher level repre-
sentations [5, 6, 13]. While reverse-engineering tech-
nology has many legitimate uses (in particular, an im-
portant application of binary-level reverse engineering
is to analyse malware in order to understand its behav-
ior [4, 16–18, 25, 27, 33]), it can also be used to dis-
cover vulnerabilities, make unauthorized modifications,
or steal intellectual property.

∗This work was supported in part by NSF Grants EIA-0080123,
CCR-0113633, and CNS-0410918.

Since the first step in reverse engineering a binary
is disassembly, many approaches to binary obfuscation
focus on disrupting this step. This is typically done
by identifying assumptions made by disassemblers, then
transforming the program systematically so as to violate
these assumptions without altering program functional-
ity. Two fundamental assumptions made by disassem-
blers are that (1) the address where each instruction be-
gins can be determined; and (2) control transfer instruc-
tions can be identified and their targets determined. The
first assumption is used to identify the actual instructions
to disassemble; most modern disassemblers use the sec-
ond assumption to determine which memory regions get
disassembled (see Section 2). In this context, this paper
makes the following contributions:

1. It shows how the second of these assumptions can
be violated, such that actual control transfers in the
program cannot be identified by a static disassem-
bler. This is done by replacing control transfer
instructions—jumps, calls, and returns—by “ordi-
nary” instructions whose execution raises traps at
runtime; these traps are then fielded by signal han-
dling code that carries out the appropriate control
transfer. The effect is to replace control transfer
instructions either with apparently innocuous arith-
metic or memory operations or with what appear to
be illegal instructions that suggest an erroneous dis-
assembly.

2. It shows how the code resulting from this first trans-
formation can be further obfuscated to additionally
violate the first assumption stated above. This is
done using a secondary transformation that inserts
(unreachable) code, containing fake control trans-
fers, after these trap-raising instructions, in order to
make it hard to find the beginning of the true next
instructions.

In earlier work, we showed how disassembly could be
disrupted by violating the first assumption [20]; this pa-
per extends that work by showing a different way to ob-
fuscate binaries by replacing control transfer instructions
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with apparently-innocuous non-control-transfer instruc-
tions. It is also very different from our earlier work on
intrusion detection [21], which proposed a way to hinder
certain kinds of mimicry attacks by obfuscating system
call instructions. That work sought simply to disguise the
instruction (‘int $0x80’ in Intel x86 processors) used by
applications to trap into the OS kernel; more importantly,
it required kernel modifications in order to to work. By
contrast, the work described in this paper applies to arbi-
trary control transfers in programs and requires no kernel
modifications. Taken together, these two differences lead
to significant differences between the two approaches in
terms of goals, techniques, and effects.

It is important to note that code obfuscation is merely
a technique: just as it can be used to protect software
against attackers, so too it can be used to hide malicious
content. The work presented here can therefore be seen
from two perspectives: as a “defense model” of a new
approach for protecting intellectual property, or as an
“attack model” of a new approach for hiding malicious
content. In either case, it goes well beyond current ap-
proaches to hiding the content of executable code. In
particular, the obfuscations cause the best existing dis-
assemblers to miss 40%–60% of the instructions in test
programs and to make mistakes on over half of the con-
trol flow edges.

The remainder of the paper is organized as follows.
Section 2 provides background information on static dis-
assembly algorithms. Section 3 describes the new tech-
niques for thwarting disassembly and explains how they
are implemented. Section 4 describes how we evaluate
the efficacy of our approach. Section 5 gives experimen-
tal results for programs in the SPECint-2000 benchmark
suite. Section 6 describes related work, and Section 7
contains concluding remarks.

2 Disassembly Algorithms

This section summarizes the operation of disassemblers
in order to provide the context needed to understand
how our obfuscation techniques work. Broadly speak-
ing, there are two approaches to disassembly: static and
dynamic, the difference between them being that the for-
mer examines the program without execution, while the
latter monitors the program’s execution (e.g., through a
debugger) as part of the disassembly process. Static dis-
assembly processes the entire input program all at once,
while dynamic disassembly only disassembles those in-
structions that were executed for the particular input that
was used. Moreover, with static disassembly it is eas-
ier to apply offline program analyses to reason about
semantic aspects of the program under consideration.
Finally, programs being disassembled statically are not

able to defend themselves against reverse engineering us-
ing anti-debugging techniques (see, for example, [2, 3]).
For these reasons, static disassembly is a popular choice
for low level reverse engineering. This paper focuses on
static disassembly: its goal is to render static disassem-
bly of programs sufficiently difficult and expensive as to
force attackers to resort to dynamic approaches (which,
in principle, can then be defended against).

There are two generally used techniques for static dis-
assembly: linear sweep and recursive traversal [26]. The
linear sweep algorithm begins disassembly at the input
program’s first executable location, and simply sweeps
through the entire text section disassembling each in-
struction as it is encountered. This method is used by
programs such as the GNU utility objdump [24] as well
as a number of link-time optimization tools [8, 23, 29].
The main weakness of linear sweep is that it is prone to
disassembly errors resulting from the misinterpretation
of data, such as jump tables, embedded in the instruction
stream.

The recursive traversal algorithm uses the control flow
instructions of the program being disassembled in or-
der to determine what to disassemble. It starts with
the program’s entry point, and disassembles the first ba-
sic block. When the algorithm encounters a control
flow instruction, it determines the possible successors of
that instruction—i.e., addresses where execution could
continue—and proceeds with disassembly at those ad-
dresses. Variations on this basic approach to disassem-
bly are used by a number of binary translation and opti-
mization systems [6, 28, 30]. The main virtue of recur-
sive traversal is that by following the control flow of a
program, it is able to “go around” and thus avoid disas-
sembly of data embedded in the text section. Its main
weakness is that it depends on being able to determine
the possible successors of each such instruction, which
is difficult for indirect jumps and calls. The algorithm
also depends on being able to find all the instructions
that affect control flow.

A recently proposed generalization of recursive traver-
sal is that of exhaustive disassembly [14,15], which is the
most sophisticated disassembly algorithm we are aware
of. This approach aims to work around certain kinds
of binary obfuscations by considering all possible disas-
semblies of each function. It examines the control trans-
fer instructions in these alternative disassemblies to iden-
tify basic block boundaries, then uses a variety of heuris-
tic and statistical reasoning to rule out alternatives that
are unlikely or impossible. Like the recursive traversal
algorithm it generalizes, the exhaustive algorithm thus
also relies fundamentally on identifying and analyzing
the behavior of control transfer instructions.
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3 Signal-Based Obfuscation

3.1 Overview

In order to confuse a disassembler, we have to disrupt its
notion of where the instructions are, what they are doing,
and what the control flow is. The choices we have for al-
tering the program are (1) changing instructions to others
that produce the same result, and (2) adding instructions
that do not have visible effects. Simple, local changes
will obviously not confuse a disassembler or a human.
More global and drastic changes are required.

The essential intuition of our approach can be illus-
trated via a simple example, given in Figure 1. The origi-
nal code fragment on the left-hand side of the figure con-
tains an unconditional jump to a location L; the jump
is preceded by Code-before and followed by Code-after.
This code is obfuscated by replacing the jump by code
that attempts to access an illegal memory location ` and
thereby generates a trap, which raises a signal. This is
fielded by a handler that uses the address of the instruc-
tion that caused the trap to determine the target address
L of the original jump instruction and to cause control to
branch to L. In addition, Bogus Code is inserted after the
trap point; this code appears to be reachable, but in fact it
is not. Judicious choice of bogus code can throw off the
disassembly even further.

This example illustrates a number of key aspects of
our approach that increases the difficulty of statically de-
obfuscating programs:

– A variety of different instructions and addresses can
be used to raise a signal at runtime. The example
uses a load from an illegal address, but we could
have used many other alternatives, e.g., a store to
a write-protected location, or a load from a read-
protected location. Indeed, on an architecture such
as the Intel x86, any instruction that can take a mem-
ory operand, including all the familiar arithmetic in-
structions, can be used for this purpose. Moreover,
the address ` used to generate the trap can be a legal
address, albeit one that does not (at runtime) permit
a particular kind of memory access. We can further
hamper static reverse engineering by using some-
thing like an mprotect() system call to (possibly
temporarily) change the protection of the address `
being used to generate the trap at runtime, so that it
is not statically obvious that attempting a particular
kind of memory access at address ` will raise a trap.

– The address ` used to generate the trap need not be
a determinate value. For example, suppose that, as
in typical 32-bit Linux systems, the top 1 GB of the
virtual address space (i.e., addresses 0xC0000000

to 0xFFFFFFFF) is reserved for the kernel, and is
inaccessible to user processes. Then, any value of `
in that address range will serve to generate the de-
sired trap. Such values can be computed by starting
with an arbitrary value and then using bit manipu-
lations to obtain a value in the appropriate range, as
shown below (one can imagine many variations on
this theme), where A and B are arbitrary legal mem-
ory locations:

r0 := contents of A
r1 := contents of B
r1 := r1 | 0xC0 /* r1’s low byte ≥ 0xC0 */
r1 := r1 << 24 /* r1 ≥ 0xC0000000 */
r0 := r0 | r1

The actual runtime contents of memory locations
A and B are unimportant here: the value computed
into r0—which may be different on different execu-
tions of this code—will nevertheless always point
into protected kernel address space, causing mem-
ory accesses through r0 to generate a trap. Such
indeterminacy can further complicate the task of re-
verse engineering the obfuscated code. Note that
such indeterminate address computations can also
be applied to generate an arbitrary address within a
page (or pages) protected using mprotect() as
discussed above.

– A variety of different traps can be used. For exam-
ple, in addition to the memory access traps men-
tioned above, we can use arithmetic exceptions,
e.g., divide-by-zero. In fact, the “instruction” gen-
erating a trap need not be a legal instruction at all—
i.e., we can use a byte pattern that does not cor-
respond to any legal instruction to effect a control
transfer via an illegal instruction trap. Such ille-
gal byte sequences—which in general are indistin-
guishable from data legitimately embedded in the
instruction stream—can be very effective in confus-
ing disassemblers.

– The location following the trap-generating instruc-
tion is unreachable, but this is not evident from
standard control flow analyses. We can exploit this
by inserting additional “bogus” code after the trap-
generating instruction to further confuse disassem-
bly. Section 3.2 discusses this in more detail.

We could conceivably obfuscate every jump, call, or
return in the source code. However, this would cause the
program to execute much more slowly because of signal-
processing overhead. We allow the user to specify a hot-
code threshold, and we only obfuscate control transfers
that are not in hot parts of the original program (see Sec-
tion 5 for details). Even so, we are able to obfuscate
about a third of the instructions in hot code blocks.
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Code-before
jmp L
Code-after

. . .
L: . . .

=⇒
obfuscation

Code-before

r :=
{

compute a value `
/* ` is an illegal address */

r := load *r /* trap – Segmentation fault */
Bogus Code /* unreachable */
Code-after

. . .
L: . . .

Figure 1: A Simple Example of our Approach to Obfuscation

Before obfuscating a program, we first instrument the
program to gather edge profiles, and then we run the
instrumented version on a training input. The obfusca-
tion process itself has several steps. First, using the pro-
file data and hot-cold threshold, determine which con-
trol transfers should be obfuscated and modify each such
instruction as shown in Figure 1. Second, insert bogus
code at unreachable code locations such as after trap-
generating instructions. Third, intersperse signal han-
dling and restore (return from signal) code with the orig-
inal program code. Fourth, compute the new memory
layout, construct a table of mappings from trap instruc-
tions to target addresses, and patch the restore code to use
this table via a perfect hash function. Finally, assemble a
new, obfuscated binary.

3.2 Program Obfuscations

Within our obfuscator, the original program is repre-
sented as an interprocedural control-flow graph (ICFG).
The nodes are basic blocks of machine instructions; the
edges represent the control flow in the program.

Obfuscating Control Transfers

After some initialization actions, our obfuscator makes
one pass through the original program to flip conditional
branches—i.e., reverse the sense of the branch condi-
tion and insert an explicit unconditional jump after it to
maintain the program’s semantics. This transformation
has the effect of increasing the set of candidate locations
where our obfuscation can be applied. Our obfuscator
then makes a second pass through the program to find
and modify all control transfer instructions that are to be
obfuscated.

To obfuscate a control transfer instruction, we insert
Setup code that prepares for raising a signal and then
Trap code that causes a signal. The Setup code (1) al-
locates space on the stack for use by the signal handler
to store the address of the trap instruction, and (2) sets
a flag that indicate to the signal handler that the com-
ing signal is from obfuscated code, not the original pro-

gram itself. To set a flag, we use a pre-allocated array
(initialized to zero), and the Setup code moves a random
non-zero value into a randomly chosen element of the ar-
ray. Jump, return, and call instructions are obfuscated in
nearly identical ways; the only essential difference is the
amount of stack space that we need to allocate in order to
effect the intended control transfer. The Trap code gen-
erates a trap, which in turn raises a signal. In order not
to interfere with signal handlers that might be installed
in the original program, we only raise signals for which
the default action is to dump core and terminate the pro-
gram. In particular we use illegal instruction (SIGILL),
floating point exception (SIGFPE), and segmentation vi-
olation (SIGSEGV).

To determine which kind of trap to raise—and to avoid
the need to save and later restore program registers—we
first do liveness analysis to determine which registers are
live at the trap point and which are available for us to
use. If no register is available, we randomly generate an
illegal instruction from among several possible choices.
Otherwise, we generate code to load a zero into a free
register r, then either dereference r (to cause a segmen-
tation fault), or divide by r (to cause a floating point ex-
ception). Since indirect loads are far more frequent than
divides in real programs, most of the time we choose the
former.

If we simply moved a zero into a register each time
that we wanted to trigger a floating point exception or
segmentation fault, there would be dozens of such in-
structions that would be a signature for our obfuscation.
To avoid this, we generate a sequence of instructions by
using multiple, randomly chosen rewriting rules that per-
form value-preserving transformations on the registers
that are free at each obfuscation point. Appendix A de-
scribes how we randomize the computation of values.

Inserting Bogus Code

After obfuscating a control transfer instruction, we next
insert bogus code—a conditional branch and some junk
bytes—to further confuse disassemblers. This is shown
in Figure 2. Since the trap instruction has the effect of
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jmp Addr

Code−before

Code−after

(b) Obfuscated code

Setup code

conditional branch

Code−before

Code−after

trap instruction

junk bytes
unreachable

Addr

}
(a) Original code

Figure 2: Bogus code insertion

an unconditional control transfer, the conditional branch
immediately following the trap is “bogus code” that will
not be reachable in the obfuscated program, and hence
it will not be executed. The purpose of adding this in-
struction is to confuse the control flow analysis of the
program by misleading the disassembler into identify-
ing a spurious edge in the control flow graph; the con-
trol flow edge so introduced can also lead to further dis-
assembly errors at the target of this control transfer. A
secondary benefit of such bogus conditional branches is
that they help improve the stealthiness of the obfuscation,
since otherwise the disassembly would produce what ap-
peared to be long sequences of straight-line code without
any branches, which would not resemble code commonly
encountered in practice. We randomly select an uncon-
ditional branch—based on how frequently the different
kinds occur in normal programs—and use a random PC-
relative displacement.

The junk bytes are a proper prefix of a legal instruc-
tion. The goal is to cause a disassembler to consume the
first few bytes of Code-after when it completes the in-
struction that starts with the junk bytes. This will ideally
cause it to continue to misidentify the true instruction
boundaries for at least a while.1 We determine the prefix
length n that maximizes the disassembly error for subse-
quent instructions (n depends only on the instructions in
Code-after), and insert the first n bytes of an instruction
chosen randomly from a number of different alternatives.

Building the Mapping Table

After obfuscating control flow and inserting bogus code,
our obfuscator computes a memory layout for the obfus-
cated program and determines final memory addresses.

1This technique only works on variable-instruction-length architec-
tures such as the IA-32. Moreover, disassemblers tend to resynchronize
relatively quickly, so that on average they are confused for only three or
four instructions before again finding the true instruction boundaries.

Among these are the addresses of all the trap instruc-
tions that have been inserted. The obfuscator then goes
through the control flow graph and gathers the informa-
tion it needs to build a table that maps trap locations to
original targets.

Suppose that N control transfer instructions have been
obfuscated. Then there are N rows in the mapping table,
one for each trap point. Each row contains a flag that in-
dicates the type of transfer that was replaced, and zero,
one, or two target addresses, depending on the value of
the flag. To make it hard to reverse engineer the contents
and use of this table, we use two techniques. First, we
generate a perfect hash function that maps the N trap ad-
dresses to distinct integers from 0 to N −1 [12], and we
use this function to get indices into the mapping table;
this machine code is quite inscrutable and hence hard to
reverse engineer. Second, to make it hard to discover the
target addresses in the mapping table, in place of each
target address T we store a value XT that is the XOR of
T and the corresponding trap address S.

3.3 Signal Handling

When an instruction raises a signal, the processor stores
its address S on the stack, then traps into the kernel. Fig-
ure 3(a) shows the components and control transfers that
normally occur when a program raises a signal at address
S and has installed a signal handler that returns back
to the program at the same address. (If no handler has
been installed, the kernel takes the default action for the
signal.) Figure 3(b) shows the components and control
transfers that occur in our implementation. The essential
differences are that we return control to a different target
address T , and we do so by causing the kernel to transfer
control to our restore code rather than back to the trap
address. We allow obfuscated programs to install their
own signal handlers, as described below.
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Kernel trap handler

User’s signal handlerS: Trap instruction

Kernel restore function

S: Trap instruction

Kernel trap handler

Kernel restore function

Our signal handler

Our restore function

T: Target instruction

(a) Normal signal handling (b) Our signal handling path

Figure 3: Signal Handling: Normal and Obfuscated Cases

Handler and Restore Code Actions

We trigger the path shown in Figure 3(b) when a signal
is raised from a trap location that we inserted in the bi-
nary. However, other instructions in the original program
might raise the illegal instruction, floating point excep-
tion, or segmentation fault signals. To tell the difference,
we use a global array that is initialized to zero. In the
Setup code before each of the traps we insert in the pro-
gram, we set a random element of this array to a non-zero
value. In our signal handler, we loop through this array to
see if any value is nonzero (and we then reset it to zero).

In the normal case where our signal handler is pro-
cessing one of the traps we inserted in the program, it
overwrites the kernel restore function’s return address
with the address of our restoration code. That code (1)
invokes the perfect hash function on the trap address S
(which was put in the stack space allocated by our signal
handler), (2) looks up the original target address, (3) re-
sets the stack frame as appropriate for the type of control
transfer and (4) transfers control (via a return instruction)
to the original target address.

To make it harder for an attacker to find and reverse
engineer the signal handler, we disperse our handler and
restore code over the program, i.e., we split the code into
multiple basic blocks and interleave these in with the
original program code. We also make multiple slightly
different copies of each code block so that we are not
always using the same locations each time we handle a
signal. As will be shown in Section 5, we are able to
obfuscate many hot instructions as a side effect of ob-
fuscating cold code. These include some of the code we
introduce to handle signals.

Interaction With Other Signals

We allow the original program to install signal handlers
and dynamically to change signal handling semantics.
By analyzing the binary, we determine whether it in-

stalls signal handlers: this is done by checking to see
whether there are any calls to system library routines
(e.g., signal()) that install signal handlers. We trans-
form the code to intercept these calls at runtime and
record, in a table, the signals that are being handled and
the address of the corresponding signal handler. When
our signal handler determines that a signal did not get
raised by one of our obfuscations (by examining the ar-
ray of flags), it consults this table. If the user installed
a handler, we call that handler then return to the original
program. Otherwise, we take the default action for that
kind of signal.

Although in general we are able to handle interactions
between signal handling in our code and the original pro-
gram, we discovered one instance of a race condition. In
particular, one of the SPECint-95 benchmark programs,
m88ksim, installs a handler for SIGINT, the interrupt sig-
nal. If we obfuscate that program, run the code, and in-
terrupt the program while it happens to be in our han-
dler, the program will cause a segmentation fault and
crash. To solve this type of problem, our signal han-
dler needs to delay the processing of other signals that
might be raised. (On Unix this can be done by having
the signal handler call the sigprocmask function, or
by using sigaction when we (re)install the handler.)
Once our trap processing code gets back to the restore
code block of the obfuscated program, it can safely be
interrupted because it is through manipulating kernel ad-
dresses. However, our current implementation does not
yet block other signals.

An even worse problem would occur in a multi-
threaded program, because multiple traps could occur
and have to be handled at the same time. Signal han-
dling is not thread safe in general in Unix systems, so
our obfuscation method cannot be used in an arbitrary
multithreaded program. However, this is a limitation of
Unix, not our method.
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3.4 Attack Scenarios

Recall that our goal is to make static disassembly diffi-
cult enough to force any adversary to resort to dynamic
techniques. Here we discuss why we believe our scheme
is able to attain this goal.

We assume that our approach is known to the adver-
sary. As discussed in Section 3.2, the specifics of the ob-
fuscation as applied to a particular program—the setup
code, the kind of trap used for any particular control
transfer, the code sequence used to generate traps, as
well as the bogus control transfers inserted after the trap
instruction—are chosen randomly. This makes it difficult
for an adversary to identify the location of trap instruc-
tions and bogus control transfers simply by inspecting
the obfuscated code.

Since locating the obfuscation code by simple inspec-
tion is not feasible, the only other possibility to consider,
for statically identifying the obfuscation instructions, is
static analysis. This is difficult for two reasons. The first
is the sheer number of candidates: for example, in prin-
ciple any memory operation can raise an exception and is
therefore potentially a candidate for analysis. Secondly,
the problem of statically determining the values of the
operands of such candidate instructions is difficult, both
theoretically [22] and in practice, especially because, as
discussed in Section 3.1, such operands need not be fixed
constant values. Furthermore, if a byte sequence is en-
countered in the disassembly that does not encode a legal
instruction (and therefore cannot be subjected to static
analysis), it can be either a part of the obfuscation (i.e.,
is “executed” and causes a trap), or it can be data embed-
ded in the instruction stream: determining which of these
is the case is in general an undecidable problem.

4 Evaluation

We measure the efficacy of obfuscation in two ways: by
the extent of incorrect disassembly of the input, and by
the extent of errors in control flow analysis of the dis-
assembled input. These quantities are related, in the
sense that an incorrect disassembly of a control trans-
fer instruction will result in a corresponding error in the
control flow graph obtained for the program. However,
it is possible, in principle, to have a perfect disassem-
bly and yet have errors in control flow analysis because
control transfer instructions have been disguised as in-
nocuous arithmetic instructions or bogus control trans-
fers have been inserted.

4.1 Evaluating Disassembly Errors

We measure the extent of disassembly errors using a
measure we call the confusion factor for the instructions,
basic blocks, and functions. Intuitively, the confusion
factor measures the fraction of program units (instruc-
tions, basic blocks, or functions) in the obfuscated code
that were incorrectly identified by a disassembler. More
formally, let A be the set of all actual instruction ad-
dresses, i.e., those that would be encountered when the
program is executed, and let P be the set of all perceived
instruction addresses, i.e., those addresses produced by
a static disassembly. Then A−P is the set of addresses
that are not correctly identified as instruction addresses
by the disassembler. We define the confusion factor CF
to be the fraction of instruction addresses that the disas-
sembler fails to identify correctly:2

CF = |A−P|/|A|.

Confusion factors for functions and basic blocks are cal-
culated analogously: a basic block or function is counted
as being “incorrectly disassembled” if any of the instruc-
tions in it is incorrectly disassembled. The reason for
computing confusion factors for basic blocks and func-
tions as well as for instructions is to determine whether
the errors in disassembling instructions are clustered in a
small region of the code, or whether they are distributed
over significant portions of the program.

4.2 Evaluating Control Flow Errors

Two kinds of errors can occur when comparing the con-
trol flow structure of the disassembled program Pdisasm

with that of the original program Porig. First, Pdisasm may
contain some edge that does not appear in Porig, i.e., the
disassembler may mistakenly find a control flow edge
where the original program did not have one. Second,
Pdisasm may not contain some edge that appears in Porig,
i.e., the disassembler may fail to find an edge that was
present in the original program. We term the first kind of
error overestimation errors (written ∆over) and the second
kind underestimation errors (written ∆under), and express
them relative to the number of edges in the original pro-
gram. Let Eorig be the set of control flow edges in the
original program and Edisasm the set of control flow edges
identified by the disassembler, then:

∆over = |Edisasm −Eorig|/|Eorig|
∆under = |Eorig −Edisasm|/|Eorig|

2We also considered taking into account the set P−A of addresses
that are erroneously identified as instruction addresses by the disas-
sembler, but we rejected this approach because it “double counts” the
effects of disassembly errors.
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Even if we assume a perfect “attack disassembler” that
does not incur any disassembly errors, its output will
nevertheless contain control flow errors arising from two
sources. First, it will fail to identify control transfers that
have been transformed to trap-raising instructions. Sec-
ond, it will erroneously identify bogus control transfers
introduced by the obfuscator. We can use this to bound
the control flow errors even for a perfect disassembly.
Suppose that ntrap control flow edges are lost from a pro-
gram due to control transfer instructions being converted
to traps, and nbogus bogus control flow edges are added
by the obfuscator. Then, a lower bound on underestima-
tion errors, min ∆under, is obtained when the only con-
trol transfers that the attack disassembler fails to find are
those that were lost due to conversion to trap instructions:
min ∆under = ntrap/Eorig. An upper bound on overesti-
mation errors, max ∆over, is obtained when every bogus
conditional branch inserted by the obfuscator is reported
by the disassembler: max ∆over = nbogus/Eorig.

5 Experimental Results

We evaluated the efficacy of our techniques using eleven
programs from the SPECint-2000 benchmark suite.3 Our
experiments were run on an otherwise unloaded 2.4 GHz
Pentium IV system with 1 GB of main memory running
RedHat Linux (Fedora Core 3). The programs were com-
piled with gcc version 3.4.4 at optimization level -O3.
The programs were profiled using the SPEC training in-
puts and these profiles were used to identify any hot spots
during our transformations. The final performance of
the transformed programs was then evaluated using the
SPEC reference inputs. Each execution time reported
was derived by running seven trials, removing the high-
est and lowest times from the sampling, and averaging
the remaining five.

We experimented with three different “attack disas-
semblers” to evaluate our techniques: GNU objdump
[24]; IDA Pro [11], a commercially available disassem-
bly tool that is generally regarded to be among the best
disassemblers available;4 and an exhaustive disassem-
bler by Kruegel et al. that was engineered to handle
obfuscated binaries [15]. Objdump uses a straightfor-
ward linear sweep algorithm, while IDA Pro uses recur-
sive traversal. The exhaustive disassembler of Kruegel
et al. takes into account the possibility that the input bi-
nary may be obfuscated by not making any assumptions
about instruction boundaries. Instead, it considers alter-
native disassemblies starting at every byte in the code
region of the program, then examines these alternatives

3We did not use the eon programs from this benchmark suite be-
cause we were not able to build it.

4We used IDA Pro version 4.3 for the results reported here.

using a variety of statistical and heuristic analyses to dis-
card those that are unlikely or impossible. Kruegel et al.
report that this approach yields significantly better dis-
assemblies on obfuscated inputs than other existing dis-
assemblers [15]; to our knowledge, the exhaustive disas-
sembler is the most sophisticated disassembler currently
available.

In order to maintain a reasonable balance between
the extent of obfuscation and the concomitant runtime
overhead, we obfuscated only the “cold code” in the
program—where a basic block is considered “cold” if,
according to the execution profiles used, it is not exe-
cuted. We evaluated a number of different combinations
of obfuscations. The data presented below correspond to
the combination that gave the highest confusion factors
without excessive performance overhead: flip branches
to increase the number of unconditional jumps in the
code (see Section 3.2); convert all unconditional control
transfers (jumps, calls, and function returns) in cold code
to traps; insert bogus code after traps; and insert junk
bytes after jmp, ret, and halt instructions.

Disassembly Error

The extent of disassembly error, as measured by confu-
sion factors (Section 4.1) is shown in Figure 4(a). The
results differ depending on the attack disassembler, but
the results for each disassembler are remarkably consis-
tent across the benchmark programs. Because we have
focused primarily on disguising control transfer instruc-
tions by transforming them into signal-raising instruc-
tions, it does not come as a surprise that the straightfor-
ward linear sweep algorithm used by the objdump dis-
assembler has the least confusion at 43% of the instruc-
tions on average. However, these are spread across 68%
of the basic blocks and 90% of the functions. The other
disassemblers are confused to a much greater extent—
55% for the exhaustive disassembler and 57% for IDA
Pro, on average—but these are more somewhat more
clustered as they cover only about 60% of the basic
blocks and slightly fewer functions (89% and 85%, re-
spectively).

Overall, the instruction confusion factors show that
a significant portion of each binary is disassembled in-
correctly; the basic block and function confusion factors
show that the errors in disassembly are distributed over
most of the program. Taken together, these data show
that our techniques are effective even against state-of-
the-art disassembly tools.

We have also measured the relative confusion factors
for hot and cold instructions, i.e., those in hot versus cold
basic blocks. For objdump, the confusion factors are
nearly identical at 42% of the hot instructions and 44% of
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the cold instructions (again on average). The exhaustive
disassembler was confused by fewer of the hot instruc-
tions (35%) but more of the cold instructions (59%). IDA
Pro did the best on hot instructions at 28% confusion, on
average, but worst on cold instructions at 62% confusion.
It is not surprising that Kruegel and IDA Pro did better
with hot code, because we did not obfuscate it except to
insert junk after hot unconditional jumps, and junk by
itself should not confuse an exhaustive or recursive de-
scent disassembler. Then again, these disassemblers still
failed to disassemble about a third of the hot code.

As an aside, we had thought that interleaving hot and
cold basic blocks would cause more of the obfuscations
in cold code to cause disassembly errors to “spill over”
into succeeding hot code and increase the confusion
there. This turns out to be the case for objdump, which
is especially confused by junk byte insertion. However,
IDA Pro and the exhaustive disassembler are still able to
find most hot code blocks. In fact, such interleaving in-
troduces additional unconditional jumps in the code, e.g.,
from one hot block to the next one, jumping around the
intervening cold code. The exhaustive disassembler and
IDA Pro are able to find these jumps and use them to im-
prove disassembly, resulting in less confusion when hot
and cold code are interleaved. Morever, programs run
more slowly when hot and cold blocks are interleaved
due to poorer cache utilization.

Control Flow Obfuscation

Figure 4(b) shows the effect of our transformations in ob-
fuscating the control flow graph of the program. The sec-
ond column gives, for each program, the actual number
of control flow edges in the original program. These are
counted as follows: each conditional branch gives rise to
two control flow edges; each unconditional branch (di-
rect or indirect) gives rise to a single edge; and each func-
tion call gives two control flow edges—one correspond-
ing to a “call edge” to the callee’s entry point, the other
to a “return edge” from the callee back to the caller. Col-
umn 3 gives the number of control flow edges removed
due to the conversion of control flow instructions to traps,
while column 4 gives the number of bogus control flow
edges added by the obfuscator. Columns 5 and 6 give,
respectively, an upper bound on the overestimation error
and a lower bound on the underestimation error. The re-
maining columns give, for each attack disassembler, the
extent to which it incurs errors in constructing the control
flow graph of the program, as discussed in Section 4.2.

It can be seen from Figure 4(b) that none of the three
attack disassemblers tested fares very well at construct-
ing the control flow graph of the program. Objdump
fails to find over 63% of the control flow edges in the

EXECUTION TIME (SECS)
PROGRAM Original Obfuscated Slowdown

(T0) (T1) (T1/T0)

bzip2 283.011 377.620 1.334
crafty 140.741 1222.992 1.584
gap 146.367 152.673 1.043
gcc 151.624 247.552 1.633
gzip 210.036 209.502 0.997
mcf 425.971 427.132 1.003
parser 301.079 302.040 1.003
perlbmk 220.851 461.828 2.091
twolf 569.163 586.259 1.030
vortex 235.649 240.648 1.021
vpr 319.475 328.563 1.028
GEOM. MEAN 1.210

Figure 5: Effect of Obfuscation on Execution Speed

original program; at the same time, it reports over 71%
spurious edges (relative to the number of original edges
in the program) that are not actually present in the pro-
gram. The exhaustive disassembler fails to find over 60%
of the edges in the original program, and reports over
27% spurious edges. IDA Pro fails to find over 63% of
the control flow edges in the original program and reports
over 41% spurious edges. Again the results for each dis-
assembler are very consistent across the benchmark pro-
grams.

Also significant are the error bounds reported in
columns 5 and 6 of Figure 4(b). These numbers indi-
cate that, even if we suppose perfect disassembly, the re-
sult would incur up to 85.5% overestimation error and at
least 28.93% underestimation error.

Execution Speed

Figure 5 shows the effect of obfuscation on execution
speed. For some programs—such as gap, gzip, mcf,
parser, twolf, vortex, and vpr—the execution characteris-
tics on profiling input(s) closely match those on the refer-
ence input, so there is essentially no slowdown. (In fact,
gzip ran faster after obfuscation; we believe this is due to
a combination of cache effects and experimental errors
resulting from clock granularity.) For other programs—
such as crafty, gcc and perlbmk—the profiling inputs are
not as good predictors of the runtime characteristics of
the program on the reference inputs, and this results in
significant slowdowns: a factor of 1.6 for crafty and gcc
and 2.1 for perlbmk. The mean slowdown seen for all
eleven benchmarks is 21%.

We also measured the effect on execution speed of ob-
fuscating a portion of the hot code blocks. Let θ spec-
ify the fraction of the total number of instructions ex-
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PROGRAM OBJDUMP EXHAUSTIVE IDA PRO
Instrs Blocks Func Instrs Blocks Funcs Instrs Blocks Funcs

bzip2 44.19 69.62 89.59 55.57 60.29 89.33 59.88 62.94 85.99
crafty 41.09 68.70 90.26 55.94 61.04 87.92 54.22 59.26 84.71
gap 42.98 66.78 90.19 52.64 56.13 87.04 55.70 57.92 83.77
gcc 46.32 68.67 89.26 55.89 58.24 87.58 54.67 55.49 82.28
gzip 44.26 69.56 90.25 53.61 58.91 87.13 61.65 63.45 85.18
mcf 44.85 69.91 89.20 57.32 60.53 87.80 58.68 61.27 84.85
parser 44.28 68.83 91.70 55.19 59.40 88.87 57.85 61.27 85.06
perlbmk 45.34 69.08 89.80 55.62 58.82 90.09 55.16 56.14 85.89
twolf 41.90 68.32 89.03 56.29 61.63 88.80 57.77 61.74 84.77
vortex 39.80 69.40 93.28 58.05 65.77 93.10 55.96 64.04 90.98
vpr 42.31 68.19 86.67 54.20 59.91 87.49 59.01 63.27 82.16
GEOM. MEAN: 43.35 68.82 89.92 55.46 60.02 88.63 57.28 60.55 85.03

(a) Disassembly Errors (Confusion Factor, %)

PROGRAM Eorig ntrap nbogus max min OBJDUMP EXHAUSTIVE IDA PRO
∆over ∆under ∆over ∆under ∆over ∆under ∆over ∆under

bzip2 47933 13933 42236 88.11 29.07 72.60 64.82 28.31 61.40 40.44 65.66
crafty 59507 17243 50868 85.48 28.98 72.26 62.17 25.28 60.71 43.12 62.20
gap 98793 26603 82374 83.38 26.93 69.94 60.90 25.35 57.20 41.49 60.84
gcc 237491 67818 193570 81.51 28.56 67.18 63.98 25.41 58.36 41.93 59.32
gzip 48467 13931 42722 88.15 28.74 72.56 64.56 29.64 59.64 38.34 66.09
mcf 43376 12329 38220 88.11 28.42 72.57 65.32 26.13 61.46 42.79 63.74
parser 59823 16688 50858 85.01 27.90 70.65 63.94 27.77 59.78 40.87 63.46
perlbmk 116711 33748 100298 85.94 28.92 70.67 64.75 26.99 59.31 43.27 59.66
twolf 62210 18061 52916 85.06 29.03 71.90 62.27 28.55 61.48 40.85 63.94
vortex 97242 32507 81734 84.05 33.43 72.37 63.29 30.28 65.25 41.62 66.18
vpr 55187 15811 47414 85.92 28.65 71.76 61.92 27.92 59.76 38.60 65.56
GEOM. MEAN: 85.50 28.93 71.30 63.43 27.37 60.36 41.18 63.28

(b) Control Flow Errors (%)

Key: Eorig: edges in original program max ∆over: upper bound on overestimation errors
ntrap: control flow edges lost due to trap conversion min ∆under: lower bound on underestimation errors
nbogus: bogus control flow edges added

Figure 4: Efficacy of obfuscation

ecuted at runtime that should be accounted for by hot
basic blocks. (The execution times in Figure 5 are for
θ = 1.0, i.e., all basic blocks with an execution count
greater than 0 are consider hot.) If we run our obfus-
cator with θ = 0.999—which means that, in addition to
cold basic blocks, we obfuscate the hot basic blocks that
account for just a tenth of a percent of the dynamic ex-
ecution count—then the mean slowdown for the eleven
benchmarks increases to 2.38. For smaller values of θ,
the situation is far worse: at θ = 0.99 the mean slow-
down is 6.79, and at θ= 0.9 the mean slowdown climbs
to 43.39. The confusion factor increases somewhat when
θ is decreased, but even at θ= 0.9 the increase in confu-
sion is less than 10% relative to the confusion at θ= 1.0.

Program Size

Figure 6 shows the impact of obfuscation on the size of
the text and initialized data sections. It can be seen that
the size of the text section increases by factors ranging
from 1.90 (crafty) to almost 2.1 (vortex), with a mean
increase of a factor of 2.01. The relative growth in the
size of the initialized data section is considerably larger,
ranging from a factor of about 10 (crafty) to a factor of
over 58 (twolf), with a mean growth of a factor of 26.46.
The growth in the size of the initialized data is due to the
addition of the mapping tables used to compute the type
of each branch as well as its target address. However,
this large relative growth in the data section size is due
mainly to the fact that the initial size of this section is
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TEXT SECTION (KB) INITIALIZED DATA SECTION (KB) COMBINED: TEXT+DATA (KB)
PROGRAM Original Obfusc. Change Original Obfusc. Change Original Obfusc. Change

(T0) (T1) (T1/T0) (D0) (D1) (D1/D0) (C0) (C1) (C1/C0)
bzip2 343.6 694.2 2.02 6.4 145.4 22.64 350.0 840.0 2.40
crafty 474.5 903.1 1.90 19.7 192.4 9.78 494.2 1,095.5 2.22
gap 690.9 1,351.6 1.96 6.8 273.1 39.95 697.8 1,624.7 2.33
gcc 1,494.4 3,051.8 2.04 21.9 675.5 30.88 1,516.3 3,727.3 2.46
gzip 344.9 699.8 2.03 5.8 145.0 24.94 350.7 844.8 2.41
mcf 301.6 618.8 2.05 3.3 128.2 39.03 304.9 747.0 2.45
parser 402.6 833.1 2.07 5.7 180.0 31.32 408.3 1,013.f 2.48
perlbmk 808.6 1,612.2 1.99 32.8 359.0 10.95 841.4 1,971.3 2.34
twolf 472.f 930.9 1.97 3.3 192.2 58.46 475.7 1,123.2 2.36
vortex 725.3 1,513.5 2.09 19.8 340.7 17.23 745.1 1,854.2 2.49
vpr 407.1 800.7 1.97 3.4 165.5 48.45 410.5 966.2 2.35
GEOM. MEAN 2.01 26.46 2.39

Figure 6: Effect of Obfuscation on Text and Data Section Sizes

not very large. When we consider the total increase in
memory requirements due to our technique, obtained as
the sum of the text and initialized data sections, we see
that it ranges from a factor of 2.22 (crafty) to about 2.5
(parser and vortex), with a mean growth of a factor of
about 2.4.

The increase in the size of the text section arises from
three sources. The first of these is the code required to
set up and raise the trap for each obfuscated control trans-
fer instruction. The second is the junk bytes and bogus
conditional branch inserted after a trap instruction. Fi-
nally, there is the signal handler and restore code. In our
current implementation, the first two of these sources—
the setup code for a trap and bogus code inserted after
a trap—introduces on average an additional 30 bytes of
memory for each obfuscated control transfer instruction.
This accounts for over 95% of the total increase in the
text section size. Each obfuscated control transfer also
adds three memory words (12 bytes) to the initialized
data section, accounting for the increase in the size of
this section.

Stealth

The stealth of an obfuscation refers to the difficulty of
distinguishing code introduced by an obfuscator from the
original program code. We estimate the stealth of our ob-
fuscations by comparing the distributions of (i) opcodes
and (ii) opcode pairs from adjacent instructions. The
points of comparison are the original program, the ob-
fuscated program (for which we know the actual instruc-
tions), and the instructions observed by the different at-
tack disassemblers we tested. The idea is to see whether
the obfuscation process introduces any atypical instruc-
tion sequence signatures that could be used to identify
the obfuscation code statically.

Figure 7 shows the distribution of individual opcodes.
Because of the large number of opcodes in the x86 archi-
tecture, we have grouped the commonly used opcodes
into 27 sets—moves, conditional jumps, and so on—and
also added sets for illegal instructions and all other in-
structions. The 29 different sets of opcodes are given
along the x-axis (“jc” denotes conditional jumps), while
the y-axis shows the percentage of instructions in any
program accounted for by that opcode. The y-axis uses a
logarithmic scale to in order to magnify the data ranges
for small percentage values. Each data point was ob-
tained by computing the opcode distribution for each of
the SPECint-2000 benchmarks in our test suite: the orig-
inal binary, the distribution in the obfuscated program
obtained from the obfuscator, and the distributions for
the disassemblies produced by each of the attack disas-
semblers. We then used these data to compute the arith-
metic mean, minimum, and maximum values of instruc-
tion percentages for that opcode across all of our test
programs. For each opcode, the dark line in Figure 7
shows the mean instruction percentage for each opcode,
together with the range of its values. This line is then
followed immediately to the right by a set of lighter lines
that show the values for the obfuscated programs as well
as those in the disassemblies obtained from the attack
disassemblers.

Figure 7 illustrates that, in most cases, the mean value
of each opcode’s range in the obfuscated code is within
the range of values in the unobfuscated benchmark code.
Calls, returns, and jumps are somewhat less frequent for
the obvious reason that we obfuscated many of those in-
structions. Conditional jumps are somewhat more fre-
quent because we added these to bogus code. On bal-
ance, however, there are no obvious outliers that an at-
tacker could use to use as a signature for where obfusca-
tions occur.
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Figure 7: Obfucation Stealth I: Distribution of Individual Opcodes

Figure 8 shows the distribution of pairs of adjacent op-
codes, not including pairs involving illegal opcodes. Due
to space constraints, we show the data for just one attack
disassembler, IDA Pro; the data are generally similar for
the other attack disassemblers. Figure 8(a) shows the ac-
tual distribution of opcode pairs in the obfuscated code,
while Figure 8(b) shows the distribution for the disas-
sembly obtained from IDA Pro. To reduce visual clutter
in these figures, we plot the ranges of values for each
opcode pair in the unobfuscated code (the dark band run-
ning down the graph), but only the mean values for the
obfuscated code.

There are two broad conclusions to be drawn from Fig-
ure 8. First, as can be seen from Figure 8(a), the actual
distribution of adjacent opcode pairs in the obfuscated
code is, by and large, reasonably close to that of the orig-
inal code; however, there are a few opcode pairs, very of-
ten involving conditional jumps, that occur with dispro-
portionate frequency. The selection of obfuscation code
to eliminate such atypical situations is an area of future
work. The second conclusion is that, as indicated by Fig-
ure 8(b), the opcode-pairs in the obfuscated code are sig-
nificantly more random than in the unobfuscated code,
partly because of disassembly errors caused by “junk
bytes” inserted by our obfuscator. The outliers in this
figure might serve as starting points for an attacker, but
there are dozens of such points, they correspond to thou-
sands of actual opcode pairs in the program, and there is
no obvious pattern.

In summary, the individual opcodes and pairs of adja-
cent opcodes have approximately similar distributions in
both unobfuscated and obfuscated programs. Thus, our
obfuscation method is on balance quite stealthy.

6 Related Work

The earliest work on the topic of binary obfuscation that
we are aware of is by Cohen, who proposes overlapping
adjacent instructions to fool a disassembler [7]. We are
not aware of any actual implementations of this proposal,
and our own experiments with this idea proved to be dis-
appointing. More recently, we described an approach to
make binaries harder to disassemble using a combination
of two techniques: the judicious insertion of “junk bytes”
to throw off disassembly; and the use of a device called
“branch functions” to make it harder to identify branch
targets [20]. These techniques proved effective at thwart-
ing most disassemblers, including the commercial IDA
Pro system. Conceptually, this paper can be seen as ex-
tending this work by disguising control transfer instruc-
tions and inserting misleading control transfers. More re-
cently, we described a way to use signals to disguise the
instruction used to make system calls (‘int $0x80’ in In-
tel x86 processors), with the goal of preventing injected
malware code from finding and executing system calls;
this work required kernel modifications. By contrast, the
work described in this paper is applicable to arbitrary
control transfers in programs and does not require any
changes to the kernel. These two differences lead to sig-
nificant differences between the two approaches in terms
of goals, techniques, and effects.

There has been some recent work by Kapoor [14] and
Kruegel et al. [15] focusing on disassembly techniques
aimed specifically at obfuscated binaries. They work
around the possibility of “junk bytes” inserted in the in-
struction stream by producing an exhaustive disassem-
bly for each function, i.e., where a recursive disassem-
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Figure 8: Obfucation Stealth II: Distribution of Opcode Pairs

bly is produced starting at every byte in the code for that
function. This results in a set of alternative disassem-
blies, not all of which are viable. The disassembler then
uses a variety of heuristic and statistical reasoning to rule
out alternatives that are unlikely or impossible. To our
knowledge, these exhaustive disassemblers are the most
sophisticated disassemblers currently available. One of
the “attack disassemblers” used for our experiments is
an implementation of Kruegel et al.’s exhaustive disas-
sembler.

There is a considerable body of work on code obfus-
cation that focuses on making it harder for an attacker
to decompile a program and extract high level semantic
information from it [9, 10, 31, 32]. Typically, these au-
thors rely on the use of computationally difficult static
analysis problems—e.g., involving complex Boolean ex-
pressions, pointers, or indirect control flow—to make it
harder to construct a precise control flow graph for a pro-
gram. Our work is orthogonal to these proposals, and
complementary to them. We aim to make a program
harder to disassemble correctly, and to thereby sow un-
certainty in an attacker’s mind about which portions of a
disassembled program have been correctly disassembled
and which parts may contain disassembly errors. If the
program has already been obfuscated using any of these
higher-level obfuscation techniques, our techniques add
an additional layer of protection that makes it even harder
to decipher the actual structure of the program.

Even greater security may be obtained by maintain-
ing the software in encrypted form and decrypting it as
needed during execution, as suggested by Aucsmith [1];

or by using specialized hardware, as discussed by Lie et
al. [19]. Such approaches have the disadvantages of high
performance overhead (in the case of runtime decryption
in the absence of specialized hardware support) or a loss
of flexibility because the software can no longer be run
on stock hardware.

7 Conclusions

This paper has described a new approach to obfuscating
executable binary programs and evaluated its effective-
ness on programs in the SPECint-2000 benchmark suite.
Our goals are to make it hard for disassemblers (and hu-
mans) to find the real instructions in a binary and to give
them a mistaken notion of the actual control flow in the
program. To accomplish these goals, we replace many
control transfer instructions by traps that cause signals,
inject signal handling code that actually effects the orig-
inal transfers of control, and insert bogus code that fur-
ther confuses disassemblers. We also use randomization
to vary the code we insert so it does not stand out.

These obfuscations confuse even the best disassem-
blers. On average, the GNU objdump program [24]
misunderstands over 43% of the original instructions,
over-reports the control flow edges by 71%, and misses
63% of the original control flow edges. The IDA Pro
system [11], which is considered the best commercial
disassembler, fails to disassemble 57% of the original in-
structions, over-reports control flow edges by 41%, and
under-reports control flow edges by 85%. A recent dis-
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assembler [15] that has been designed to deal with ob-
fuscated programs fails to disassemble over 55% of the
instructions, over-reports control flow edges by 27%, and
under-reports control flow edges by over 60%.

These results indicate that we successfully make it
hard to disassemble programs, even when we only ob-
fuscate code that is in cold code blocks. If we obfuscate
more of the code, we can confuse disassemblers even
more. However, our obfuscation method slows down
program execution, so there is a tradeoff between the de-
gree of obfuscation and execution time. When we ob-
fuscate only cold code blocks, the average slow-down is
21%, and this result is skewed by three benchmarks for
which the training input is not a very good predictor for
execution on the reference input. On many programs,
the slowdown is negligible. An interesting possibility—
which we have not explored but could easily add to our
obfuscator—would be selectively to obfuscate some of
the hot code, e.g., that which the creator of the code es-
pecially wants to conceal.
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Appendix — Randomizing the Com-
putation of Values

The essential idea is to carry out multiple, random, value-
preserving rewritings of the syntax tree for an expression.
We start with a simple expression, e.g., an integer con-
stant or a variable, and repeatedly rewrite it, using value-
preserving transformation rules, to produce an equivalent
expression (i.e., one that will always evaluate to the same
value).

Figure 9 gives a non-exhaustive list of example rewrite
rules. In the rules, we use ‘x’ and ‘y’ to denote variables,
i.e., the values of registers or memory locations; ‘k,’ ‘m’,
and ‘n’ to denote integer constants; and a to denote some-
thing that is either a variable or a constant. Note that
equivalences that hold for integers may not hold at the
machine level, e.g., (x + 1)− 1 need not evaluate to x.
Thus, in general we cannot use associative and distribu-
tive laws for rewriting.

The expression being rewritten is maintained as a syn-
tax tree. Initially, the tree consists of a single node,
namely, the variable or constant being rewritten. Each
node of the tree has an associated label indicating what
kind of value is being computed (zero, nonzero, arbitrary,
etc.). The rewriting proceeds as follows. We first choose
a positive random value as the number of rewriting steps.
Each rewriting step consists of the following:

1. Randomly choose a leaf node X of the tree.

2. Randomly choose a rewrite rule R ≡ Y −→ E from
the set of rules corresponding to the label of the cho-
sen leaf node.

3. Modify the syntax tree by adding the appropriate in-
stance of E (i.e., with all occurrences of Y replaced
by X) as child nodes of X and update the set of leaf
nodes appropriately.
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Zero: 0 −→ 0 + 0
0 −→ a ˆ a
0 −→ 0 & a
0 −→ k ? 0 : a k 6= 0; arbitrary a

Nonzero k: k −→ ˜ 0
k −→ m {rotl, rotr} n m 6= 0, and any n

(rotr = rotate right; rotl = rotate left)
k −→ k << n n = w−m, where m is the position of the

least significant ‘1’ bit in k, and w is the machine
word size in bits.

k −→ m ˆ n m 6= n

Arbitrary x: x −→ 0 + x
x −→ x * 1
x −→ 0 ? y : x y is any value
x −→ m ? x : y y is any value; m 6= 0

Figure 9: A (non-exhaustive) list of rewriting rules (Operators are as in the C language)

The rewritten expression may contain “free variables,”
i.e., variables that are not initialized to any value. The
value of the overall expression does not depend on the
actual value taken on by such a free variable, so any value
will do. In our implementation, we simply use the con-
tents of any arbitrary register or legal memory location
for such variables.

Once the rewritten expression has been generated,
we generate code for it via a straightforward post-order
traversal of the final syntax tree.
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