Where's The Bear? -- Automating Wildlife Image Processing Using IoT and Edge Cloud Systems

Andy Rosales Elias, Nevena Golubovic, Rich Wolski, and Chandra Krintz

Dept. of Computer Science UC Santa Barbara ckrintz@cs.ucsb.edu

IOTDI - Apr. 18-20, 2017

Wildlife Monitoring

- Evaluating diversity, species, and habitat health
- Extracting patterns in activity and behavior of animals
- Monitoring change in land use
- Avoiding dangerous human/animal encounters & overlap
 Educational experiences
- Citizen science

Digital Photography

Alternative to labor-intensive observation & tracking

- Cost effective and scalable
- Safe and non-invasive
- Increasingly autonomous
 - Motion triggered
 - IoT devices

Goal: Leverage IoT & cloud to improve wildlife monitoring

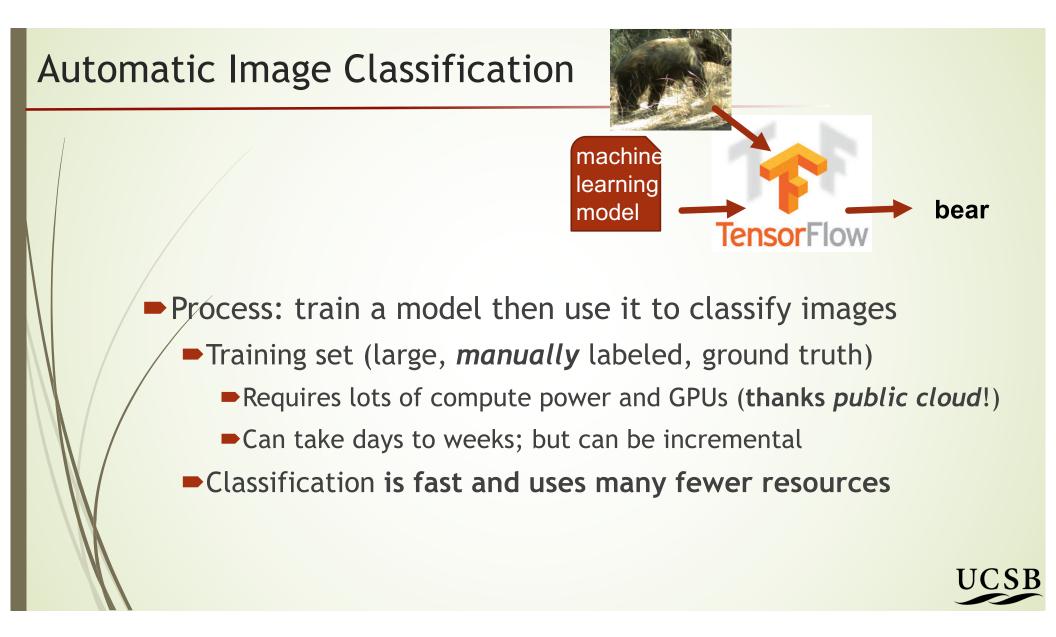
UCSB

Image Classification

- Enormous number of images (size and count)
 - Classification and identification once done by humans
 Now automated by data analysis tools in the cloud
 - Google Tensorflow, Caffe, Torch, Theano, CNTK...

Automatic Image Classification: Training

- Process: train a model then use it to classify images
 - Training set (large, manually labeled, ground truth)
 - Requires lots of compute power and GPUs (thanks public cloud!)
 - Can take days to weeks; but can be incremental



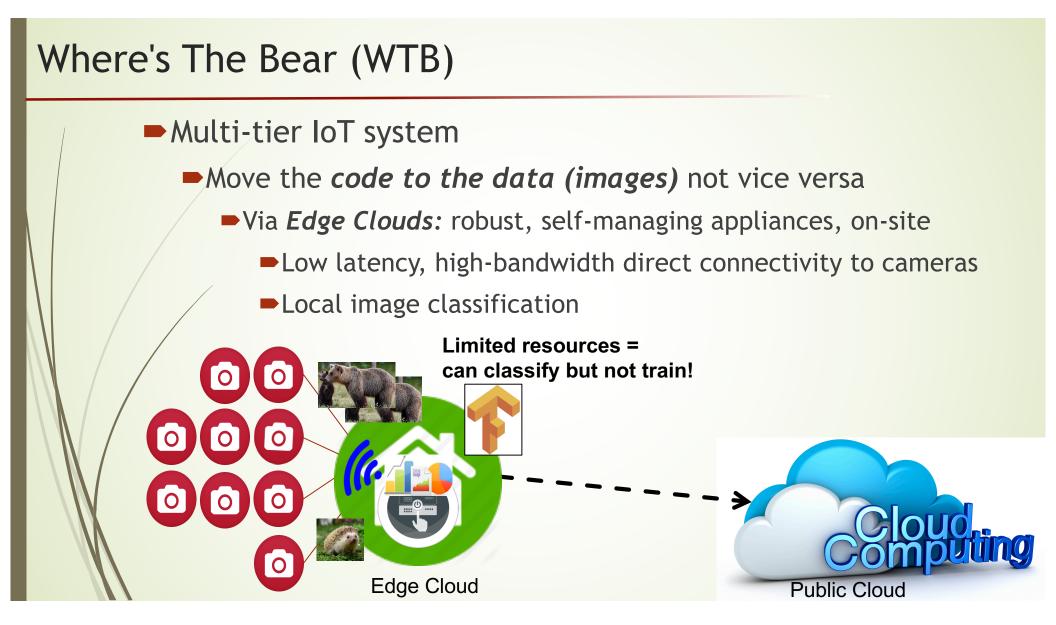
Challenges With IoT+Cloud for Wild Life Monitoring

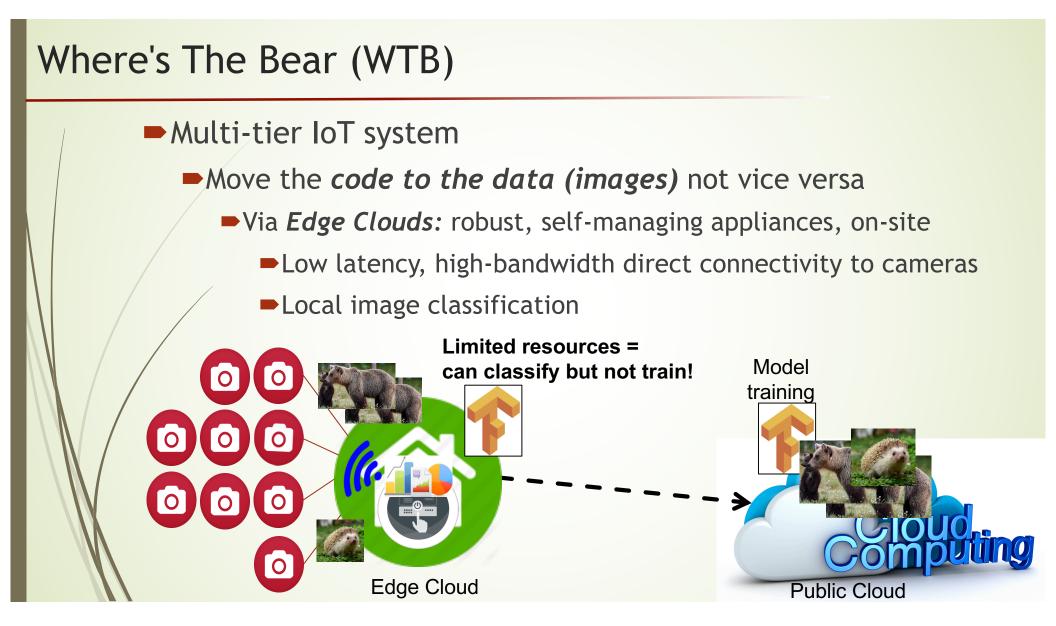
Enormous numbers of images (size and count) Cameras limited storage & processing power Automatic classification requires labeling by humans Images must be moved to where they are processed Low Bandwidth Network Intermittent connectivity Shared, costly High latency Public Cloud

Challenges With IoT+Cloud for Wild Life Monitoring

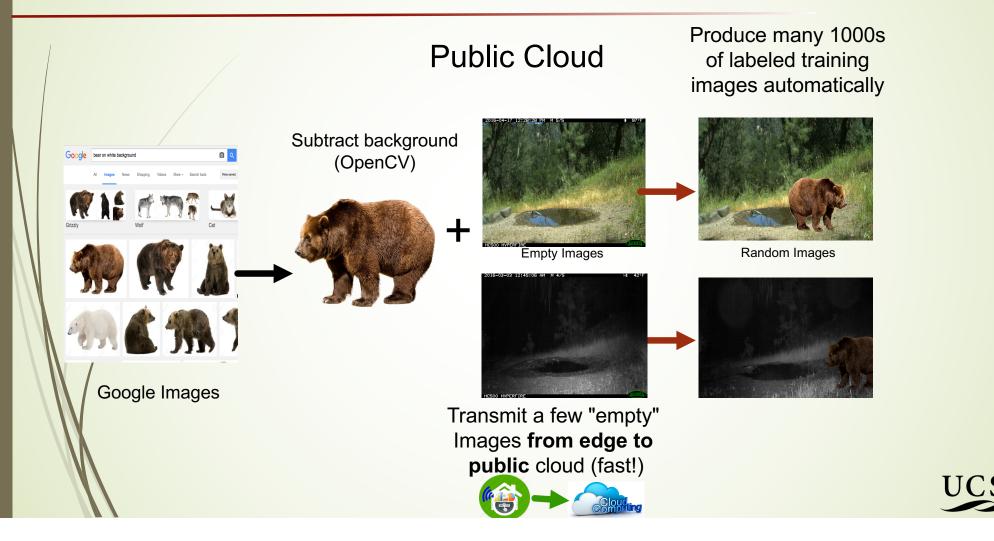
- Enormous numbers of images (size and count)
 - Cameras limited storage & processing power
- Automatic classification requires labeling by humans
 - Images must be moved to where they are processed
 - Extremely time consuming, tedious, and error prone Ecologists

Low bandwidth Network Intermittent connectivity Shared, costly High latency

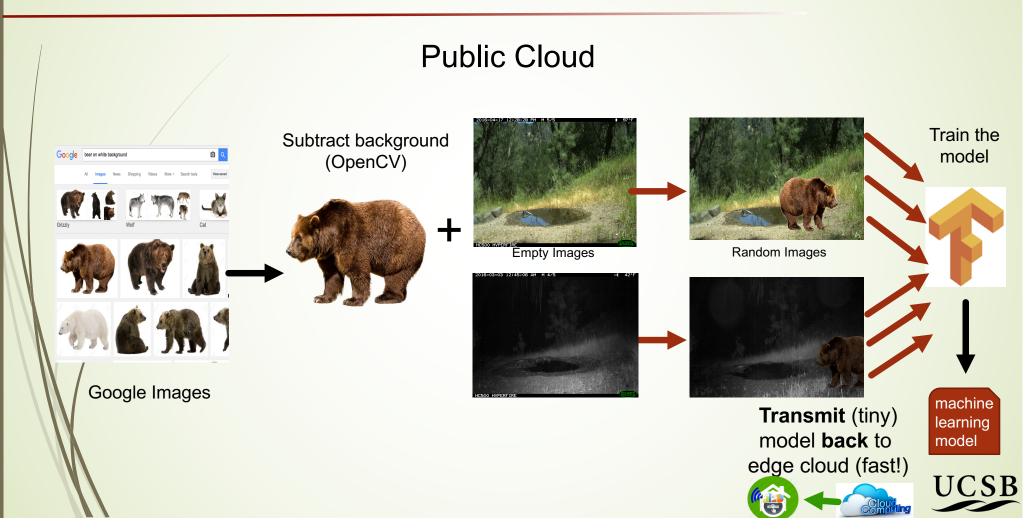




WTB: Build Model Using Public Cloud With "Fake" Images

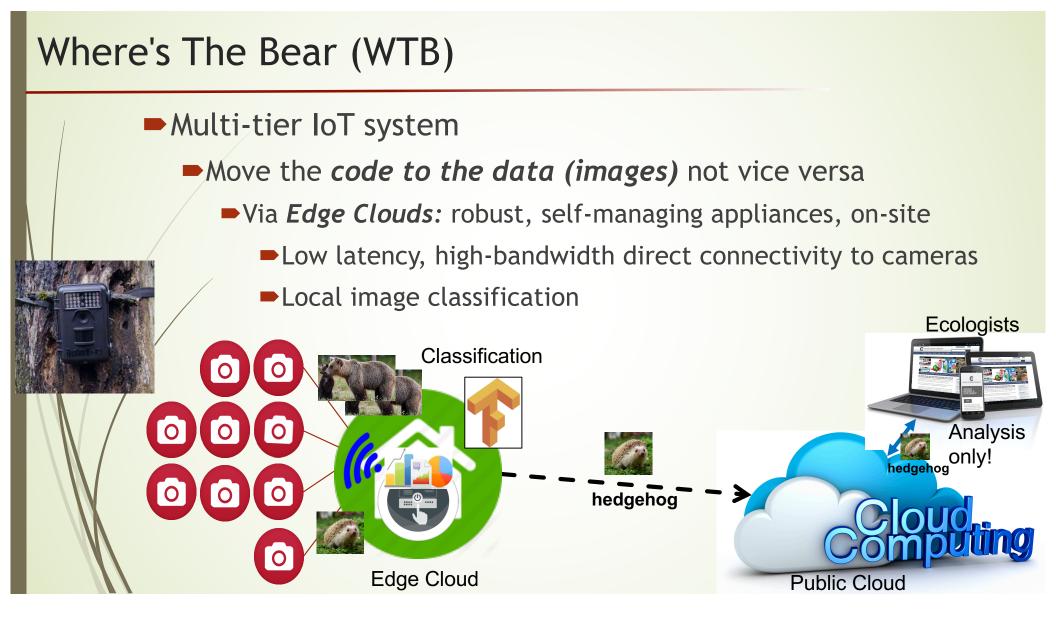


WTB: Build Model Using Public Cloud With "Fake" Images



Where's The Bear (WTB)

- Multi-tier IoT system
 - Move the code to the data (images) not vice versa
 - Via Edge Clouds: robust, self-managing appliances, on-site
 - Low latency, high-bandwidth direct connectivity to cameras
 - Local image classification using model trained in public cloud

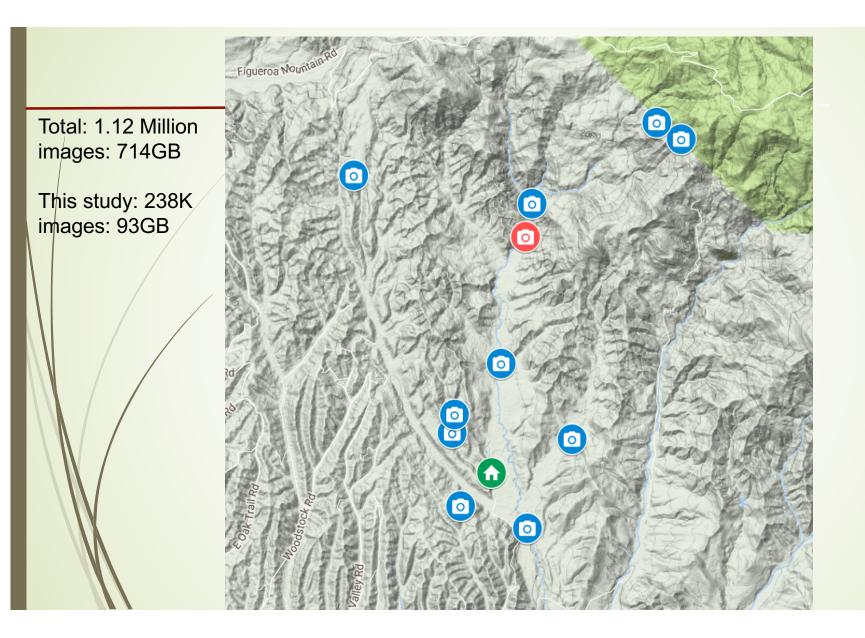




Deployment and Empirical Methodology

SEDGWICK RESERVE

UCSB



UCSB Sedgwick Reserve

> Motiontriggered Wildlife Camera Traps

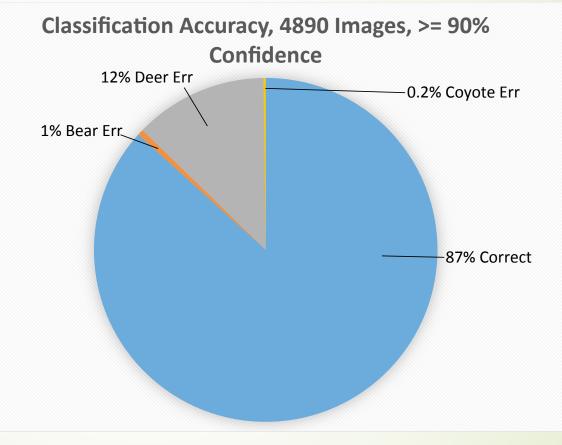
9 sq. miles

UCSB

Results: 4890 randomly selected images

Transmit only those of interest 1473 vs 4890 = 1.6hrs vs 5.3hrs

> Which also saves researcher time (1250 images/hr)



WTB Findings and Future Work

- For IoT, the cloud model alone does not work
 - App and deployment model must change to fit IoT
 - Can save significant network use (image transfer avoidance)
 - Can save significant researcher time (automatic classification)
 - While maintaining high accuracy
- Able to classify animals that only appear rarely
 - In insufficient numbers to train with
- Next steps
 - Small animals vs empty images, improving accuracy
 - Identifying features, counting
 - Making edge cloud robust to outage and faults

