Such participation requires effective techniques for gathering profile information from remote, resource-constrained devices. Further, these techniques must be unobtrusive and transparent to the user; profiles must be gathered using minimal computation, communication, and power. Toward this end, we present a flexible hardware-software scheme for efficient remote profiling. We rely on the extraction of meta information from executing programs in the form of phases, and then use this information to guide intelligent online sampling and to manage the communication of those samples. Our results indicate that phase-based remote profiling can reduce the communication, computation, and energy consumption overheads by 50-75% over random and periodic sampling.