

Using IoT to Turn Analytics Into Farm Implements

Chandra Krintz

& Rich Wolski Computer Science Department UC Santa Barbara

ASME IoT - June 2016

Recent Advances in Computing

- Technology pervades our lives
- Broadens participation
 - Very accessible

Recent Advances in Computing

- Technology pervades our lives •
- **Broadens** participation ullet
 - Very accessible

Recent Advances in Computing

- Technology pervades our lives •
- **Broadens** participation ullet
 - Very accessible
- Explosion in data collection lacksquare

dations for You in Kitchen & Dining

amazon

Gmail

Starred 1 Chats Sent Mail Drafts (1) All Mail

pam (11

Calific Re

Paige, me (3)

Caitlin Rora Nathan Wo

e. Nicola (3

1 - 16 of 16

me. I'll see you then, W

0:03 pr

9:59 p 9-58

9:57 p

9:55 pr

0.52

Add task e.g. TPS report 5n

Pick up the mil

- Sales:
 - What products you will buy and when you will buy them
- Marketing: ullet
 - **Opinion** shaping
- **Politics**: \bullet
 - Who will vote if contacted before the election and for whom

- Sales:
 - What products you will buy and when you will buy them
- Marketing: ullet
 - **Opinion** shaping
- Politics: \bullet
 - Who will vote if contacted before the election and for whom

Data analytics has *transformed* our economy ... and turned us into amazing consumers

...Can Analytics Turn Us Into Amazing Producers?

- To solve a very hard, impending problem: feeding the planet
 - Understanding is key to Food-Energy-Water management
 - Global: *500M people today are food-insecure
 - *15M US children going hungry tonight;
 - *9B people to feed by 2050

http://www.cdfa.ca.gov/statistics/

http://www.ers.usda.gov/topics/international-markets-trade/global-food-security.aspx Andrews-Speed et. al 2015

...Can Analytics Turn Us Into Amazing Producers?

- To solve a *very hard*, *impending* problem: **feeding the planet**
 - Understanding is key to Food-Energy-Water management
 - Global: *500M people today are food-insecure
 - *15M US children going hungry tonight;
 - *9B people to feed by 2050
- Vast amounts of **data** surrounding the crop lifecycle
 - Weather, historical records, sensors, images (NDVI/thermal)
- Yet, the data analytics boom has not yet come to Ag
 - Despite the need to increase efficiencies and productivity
 - Do more with less

http://www.cdfa.ca.gov/statistics/

http://www.ers.usda.gov/topics/international-markets-trade/global-food-security.aspx Andrews-Speed et. al 2015

Challenges

- Data Acquisition
 - Network connectivity is not ubiquitous
 - Must be fully automated => manual data entry error prone
 - Must be inexpensive at geographic scale
- Data Fusion
 - Sensors, Images, Geo-referencing
- Analytics
 - Inference and predictions are regional => one size does not fit all
- Ease of use
 - Must be simple to extract insights
- Privacy
 - Grower must control what data leaves the farm (if any)

How It Works Today

How It Works Today

How It Works Today

A New Model is Needed

- Open source edge computing system
 - Data acquisition, fusion, and analytics
 - Highly available and fault tolerant \rightarrow self maintaining
 - Full control over data sharing and public cloud/network use

- Open source edge computing system
 - Data acquisition, fusion, and analytics
- On-Farm Analytics Appliance - Highly available and fault tolerant \rightarrow self maintaining
 - Full control over data sharing and public cloud/network use

- Open source edge computing system
 - Data acquisition, fusion, and analytics
- On-Farm Analytics Appliance - Highly available and fault tolerant \rightarrow self maintaining
 - Full control over data sharing and public cloud/network use
- Combines and integrates
 - Cloud infrastructure (Amazon AWS API-compatible)
 - Cloud runtime (Google App Engine API-compatible)
 - Cloud services:
 - Storage (SQL, NoSQL, HDFS)
 - Analytics (Spark/Hadoop, ML, image processing, spatial tools, ...)
 - Visualization

- Open source edge computing system
 - Data acquisition, fusion, and analytics
- On-Farm Analytics Appliance - Highly available and fault tolerant \rightarrow self maintaining
 - Full control over data sharing and public cloud/network use
- Combines and integrates
 - Cloud infrastructure (Amazon AWS API-compatible)
 - Cloud runtime (Google App Engine API-compatible)
 - Cloud services:
 - Storage (SQL, NoSQL, HDFS)
 - Analytics (Spark/Hadoop, ML, image processing, spatial tools, ...)
 - Visualization

App Store model for decision support and visualization *apps*

Sensors

- Platform: microcontroller + low power radio
 - Battery or super cap for power storage
 - Solar panel recharges battery
 - Both analog and digital inputs (e.g. SDI-12)

Intercessors

- Platform: Micro PC + low power radio + WiFi
 - Gateway low power radio communications and WiFi
 - Data buffering
 - Power scheduling
 - Batteries + solar, or wired
- SmartFarm Prototype:

Analytics Appliance

- Platform: Microcloud
 - WiFi and Wired network, Distributed storage, 120 VAC
 - Eucalyptus + AppScale + Hadoop + Spark
 - Pub/Sub and web service hosting
 - HA and "Lights Out" administration

hedoop

SQL

Spar

SOL

UCSB

Analytics Appliance

- Platform: Microcloud
 - WiFi and Wired network, Distributed storage, 120 VAC
 - Eucalyptus + AppScale + Hadoop + Spark
 - Pub/Sub and (private) web service hosting
 - HA and "Lights Out" administration

Analytics Appliance

- Platform: Microcloud
 - WiFi and Wired network, Distributed storage, 120 VAC
 - Eucalyptus + AppScale + Hadoop + Spark
 - Pub/Sub and web service hosting
 - HA and "Lights Out" administration

Sedgwick Precision AG

Watermark Soil Moisture Sensing

- Sensors at NW and SE corners of the vineyard
- Measure at 1 ft, 2ft, and 3ft depth
- Measure soil temperature at 1ft

National Cooperative Soil Survey (SSURGO)

Animal (Camera) Trapping: populations, predators

Where's the Bear?! 000 000 cropped cropped new m Status: Occupied UCSB

Highly Collaborative Research

- Validating research through collaborations with start-ups
 - Innovation partnerships

Too Collaborative?

Thanks!

- Recent Student Researchers and Visitors!
 - Current: Stratos Dimopoulos, Nevena Golubovic, Hiranya Jayathilaka, Varun Kulkarni, Benji Lampel, Wei-Tsung Lin, Kevin Malta, Greg Parsons, Alex Pucher, Paz Zait-Givon

Collaborators

– Lab Co-Lead: Rich Wolski

http://www.cs.ucsb.edu/

 Linda Petzold (CSE/UCSB), Andreas Hellander (Uppsala U), Pow Wow Energy, CSU Fresno, Cal Poly SLO, William Sansum Diabetes Center

Support

- Google, IBM Research, Huawei, NSF, NIH, California Energy Commission

rich@cs.ucsb.edu ckrintz@cs.ucsb.edu

http://www.cs.ucsb.edu/~racelab

http://www.linkedin.com/in/chandrakrintz

