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ABSTRACT
In this paper, we describe a novel execution environment that can
dynamically switch between garbage collection (GC) systems. As
such, it enables application-specific GC selection. In addition, the
system can switch between different GC systems while the program
is executing. Our system is novel in that it is able to switch between
a wide range of diverse collection systems. To empirically evalu-
ate our system, we implemented annotation-guided GC selection
and we show its efficacy for a wide range of benchmarks and heap
sizes. In addition, we implemented a simple heuristic that automat-
ically identifies when to switch collectors when program execution
behavior warrants it. Our system introduces an average overhead
of 4% for both annotation-guided and automatic switching. Per-
haps more importantly however, we significantly improve perfor-
mance over selecting the wrong collection system (by 19% using
annotation-guided selection and by 16% using automatic switch-
ing, on average).

1. INTRODUCTION
Garbage collection is a mechanism for automatic reclamation of

dynamically allocated memory. It simplifies the program devel-
opment cycle by eliminating the burden of explicit memory de-
allocation. However, garbage collection imposes a performance
overhead since it must identify and reuse memory that is no longer
accessible by the program, while the program is executing.

The performance of heap allocation and collection techniques
has been the focus of much research [10, 11, 9, 16, 1, 12, 30, 6].
The goal of most of this prior work has been to provide general-
purpose mechanisms that enable high-performance execution across
all applications. However, other prior research [5, 14, 31, 27], has
shown that the efficacy of a memory management system (the al-
locator and the garbage collector) is dependent upon application
behavior and available resources. That is, no single collection sys-
tem enables the best performance for all applications and all heap
sizes. Our empirical experimentation confirms these findings. Over
a wide-range of heap sizes and the 10 benchmarks studied, we
found that every collector enabled the best performance at least
once; including a mark-and-sweep and non-generational copying
collector, two collectors that are commonly thought of as imple-

menting obsolete technology. As such, we believe that to achieve
the best performance, the collection and allocation algorithms used
should be specific to both application behavior and heap size.

Existing execution environments enable application- and heap-
specific garbage collection, through the use of different configura-
tions (via separate builds or command-line options) of the execu-
tion environment. However, such systems do not lend themselves
well to next-generation, high-performance server systems in which
a single execution environment executes continuously while multi-
ple applications and code components are uploaded by users [20,
15, 25] For these systems, a single collector and allocator must be
used for a wide range of available heap sizes and applications, e.g.,
e-commerce, agent-based, distributed, collaborative, etc. As such,
it may not be possible to achieve high-performance in all cases and
selection of the wrong GC system may result in significant perfor-
mance degradation.

In this work, we present the design, implementation, and eval-
uation of a dynamic GC switching system for JikesRVM, a per-
formance-oriented, server-based, Java virtual machine [2] from the
IBM T.J. Watson Research Center. Our switching system facili-
tates the use of the garbage collector and memory allocator that
will enable the best performance for the executing application and
the underlying resource availability. The system we present is ex-
tensible and general; it can switch between many different types of
collectors, e.g., semi-space, mark-and-sweep, copying-marksweep,
and many variants of generational collection.

To evaluate our system, we implemented two mechanisms: anno-
tation-guided GC selection, and automatic switching. For the for-
mer, we identified the best-performing GC for a range of heap sizes
for each program, across inputs. We then annotated the programs to
identify the collection system to use given different resource con-
straints. Upon dynamic loading of each application the VM uses
the annotation to switch to the appropriate GC given the current
maximum available heap size. To implement automatic switching,
we employ a simple heuristic that uses maximum heap size and a
heap residency threshold to switch during program execution.

Our results show that the cost of switching is equivalent to a
garbage collection. In addition, the overhead that our system im-
poses on application execution performance is 4% on average, for
the programs studied. Perhaps more importantly, our system signif-
icantly reduces the negative impact of selecting the wrong collector
(by 19% using annotation-guided selection and over 16% using au-
tomatic switching, on average).

This paper makes the following contributions:
� It provides a JVM implementation that is able to dynamically

switch between a diverse set of garbage collection systems,
� It shows how dynamic switching can be successfully guided
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Figure 1: Application performance for different GC systems
and heap sizes (lower is better).

by offline, cross-input, as well as online, program and under-
lying resource characteristics,

� It provides an empirical evaluation of the efficacy of dy-
namic, application-specific GC selection.

In the following section, we motivate our work and present an
overview of our dynamic GC switching framework. Section 3 de-
scribes the different approaches we employ to dynamically switch
between collectors. Section 4 presents and discusses our experi-
mental results. Section 5 discusses some related work and Section 6
presents our conclusions.

2. APPLICATION-SPECIFIC GC
The next-generation of high-performance server systems must

enable continuous availability and high-performance to gain wide-
spread use and acceptance. Due to the portability, flexibility, and
security features enabled by the Java programming language and its
execution environments, a number of high-end server systems now
employ Java as the implementation language for application and
execution servers [20, 15, 25]. These systems run a single virtual
machine (VM) image continuously so that applications and code
components can be uploaded and executed as needed by customers
(for customization, collaboration, distributed execution, etc.).

Given this model (single VM and continuous execution) and ex-
isting JVM technology, a single, general-purpose collector and al-
location policy must be used for all applications. However, many
researchers have shown that there is no single combination of a
collector and an allocator that enables the best performance for all
applications on all hardware and given all resource constraints [5,
14, 31]. Figure 1 confirms these findings. The graphs show perfor-
mance (lower is better) over heap size for the SPECjbb [28] and the
JavaGrande [21] benchmarks, executing within the JikesRVM [2].

Figure 1(a) shows that for SPECjbb, the semispace (SS) collec-
tor, performs best for all heap sizes larger than 200MB, the gener-
ational/semispace hybrid (GSS) performs best for heap sizes 120-
200MB, and the generational/mark-sweep hybrid (GMS) performs
best for heaps smaller than 120MB. In Figure 1(b), GMS is the best
for small sized heaps, SS performs well for heap sizes 40-53MB,
and GSS performs best for heap sizes larger than 53MB. We refer
to the point at which the best-performing GC system changes as the
switch point.

To exploit this execution behavior that is application-specific and
dependent upon the underlying resource availability, we extended
the JikesRVM adaptive optimization system for Java, to enable dy-
namic switching between GC systems. The goal of our work is
to improve performance of applications for which there exists GC
switch points, without imposing significant overhead.

2.1 The JikesRVM and the JMTk
The JikesRVM [2] is an open-source, dynamic and adaptive opti-

mization system for Java that was designed and continues to evolve
with the goal of enabling high-performance in server systems. The
JikesRVM (version 2.2.0+) implements the Java Memory Manage-
ment Toolkit (JMTk) that enables garbage collection and allocation
algorithms to be written and “plugged” into the JikesRVM. The
framework offers a high-level, uniform interface to the JikesRVM
that is used by all algorithm implementations. We refer to the com-
bination of an allocation policy and a collection technique as a
GC system. This corresponds to a Plan in the JMTk terminology.
The JMTk allows users to implement their own GC systems eas-
ily within the JikesRVM and to perform an empirical comparison
with other existing collectors and allocators. When a user builds a
configuration of the JikesRVM, she is able to select a particular GC
system for incorporation into the JikesRVM image.

Each GC system in the JikesRVM is implemented via a Plan
and Policy class. Each GC system is linked to a virtual mem-
ory resource (VM Resource) which binds the allocation region to
particular virtual address ranges. In addition, the system monitors
(polls) the remaining free memory space and initiates collection as
needed. Collection proceeds according to the associated policy. A
policy consists of a set of classes that implement the type of collec-
tor (mark-sweep, semispace, generational, etc.) and the allocator
(free-list, bump-pointer, etc.).

The four GC systems that we consider in this work are Semis-
pace (SS), Mark-sweep (MS), a Generational Semispace Hybrid
(GSS), and a Generational Mark-sweep Hybrid (GMS). These sys-
tems use stop-the-world collection and hence, require that all mu-
tators pause when garbage collection is in progress.

The SS system consists of a virtual memory resource that maps
the heap address range to a contiguous block of memory, and a
bump-pointer allocator that allocates memory in contiguous chunks
from the virtual memory resource. The virtual memory space is
divided into two half-spaces, equal in size: the from and to semis-
paces. Memory is allocated from only one semispace at any time,
and hence, the usable virtual address space is half of the total space.
During a collection, live objects are copied from the from-space to
the to-space. At the end of the collection, the roles of the semis-
paces are reversed. The SS system also includes a separate space
for allocation of large objects. Large objects are allocated by a
sequential first-fit free list allocator and collected using the mark-
sweep technique.

In the MS system, memory is allocated from the mark-sweep
space using free-list allocation, like that for large object allocation.
Collection is a two-phase process that consists of a mark phase in
which live objects are marked, and a sweep phase in which un-

2



VM_Processor
(Plan currentPlan;)

StopTheWorld

        Plan

     MS_Plan     SS_Plan Generational

 GENMS_Plan

StopTheWorld

VM_Processor

        Plan
{SS_Plan,MS_Plan,...}

(Selected at build time)

GenCopy_Plan

Figure 2: Original and New (Dynamic Switch-Enabled)
JikesRVM JMTk Class Hierarchy

marked space is reclaimed.
The GSS system makes use of well-known generational garbage

collection techniques [3, 29]. Young objects are allocated in a
variable-sized nursery space using bump-pointer allocation. Upon
a minor collection, the nursery is collected and the survivors are
copied to the mature space. The mature space is collected by per-
forming a semispace copying collection, following a minor collec-
tion, as needed. This process is referred to as a major collection.

The GMS system also employs a generational model: There is
a nursery which holds young objects and a mature space for the
old objects. However, the mature space is collected using a mark-
sweep algorithm and allocated using free-list allocation.

The MS and GMS systems do not use a large object space by
default. All GC systems include a immortal space that holds the
JikesRVM system classes. Immortal space is allocated using the
bump-pointer technique and this space is never collected.

We extended the JikesRVM to switch between SS, MS, GMS,
and GSS at runtime. In the following section, we describe our
switching framework.

2.2 Dynamic GC System Switching
The JikesRVM Plan class implements the allocation and col-

lection strategies; the source-code implementation for this class is
stored in a sub-directory that corresponds to each individual GC
system that is supported by the JikesRVM. For example, if a user
chooses to use the semispace collection system, she builds the ap-
propriate JikesRVM configuration that indicates this. The build
process copies the Plan class from the semispace sub-directory so
that it is used as the implementation for the Plan in the system. By
default, only one Plan class can exist in a JikesRVM image. The
only way to change Plans (to use a different garbage collector) is to
build another image using a different JikesRVM configuration.

Our extension to the JikesRVM requires that multiple GC sys-
tems be included in a single system image. To enable this, we
implemented a generic Plan class, from which all specific GC sys-
tem classes derive, e.g., SSPlan, MSPlan, GMSPlan, and GSSPlan.
Each of these plans are instantiated in a single image of our sys-
tem. Figure 2 shows the JikesRVM JMTk class hierarchy before
and after our extensions.

We inserted a global field called currentPlan into the class that
implements the GC system interface to the JikesRVM (VM Interfa-
ce). This field identifies the GC system that is currently in use. At
all times, an object instance of each GC system (a plan instance) is
available in our system. The current default allocator that is used,
depends on the current collection system. The Plan class invokes
a static allocation routine according to the GC system indicated by
currentPlan. When a switch occurs, the instance of the appropriate
collector becomes the global instance of the system.

The immortal space and large object space within our system

Immortal
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Figure 3: Address Space Layout in the Switching System

are shared across all GC systems. Since the extant versions of MS
and GMS do not implement a large object space by default, we ex-
tended both to do so. Objects larger than 16KB are allocated from
the large object space. To support multiple GC systems, we require
address ranges for all possible virtual memory resources to be re-
served. We try to make efficient use of the virtual address space
and to overlap as many address ranges as possible (Figure 3). Note
that these address ranges are mapped to physical memory lazily (as
it is needed), in 1 Megabyte chunks.

Switching between GC systems requires that all mutators be sus-
pended to preserve consistency of the virtual address space. Since
the JikesRVM collectors are all stop-the-world, the system imple-
ments the necessary functionality to pause and resume mutator thre-
ads. We extended this mechanism to implement switching.

Our implementation, however, does not require garbage collec-
tion to be performed for all switches. For example, a switch from
MS to GMS or SS to GSS only requires that future allocations come
from the nursery area. As such, we only need to perform general
bookkeeping to record the current plan. Similarly, when we switch
from a generational to a non-generational collector, we need only
perform a minor collection in most cases. After the switch, we sus-
pend collector threads and resume the mutators, as is done during
the post-processing of a normal collection.

Although the switching process is specific to the old and the new
GC systems (as we shall describe below), we provide an extensible
framework that facilitates easy implementation of switching from
any GC system to any other, existing or future, that is supported by
the JikesRVM JMTk.

Mark-sweep (MS) to Generational Mark-sweep (GMS). In our
implementation, MS and GMS share the same free-list resource
and virtual address space (the mark-sweep space for MS and the
mature space for GMS). The switch from the MS GC system to a
GMS system does not require a collection. We need only to update
the currentPlan field to point to the GMS system. Thus, there is
no additional cost involved with the switch other than stopping all
mutators, updating a field, and resuming the mutator threads.

Generational Mark-sweep to Mark-sweep. To switch from the
GMS GC system to the MS system, we perform a minor collection
so that all live objects from the nursery are copied to the mature
space. We then set the currentPlan field to point to the MS system.
Thus, at the end of the switch, the nursery is empty and the mature
space is now the MS system’s mark-sweep space.

Semispace (SS) to Mark-sweep or Generational Mark-sweep.

3



To switch from the SS to the MS GC system or to the GMS system,
we perform a semispace collection. However, instead of copying
survivors to the empty semispace, we copy them to the mark-sweep
space.

Mark-sweep or Generational Mark-sweep to Semispace. For
the MS to SS switch, as we mark live objects in the mark-sweep
space, we forward them to the semispace resource. However, this
switch is more complex than the ones previously described. The
use of object forwarding during a Mark-sweep collection requires
us to maintain multiple states per object. We detail this process and
its implementation in Section 2.3.

Switching from a GMS to a SS GC system is similar to the MS
to SS switch. We perform a major collection and copy survivors
from the nursery as well as live objects from the mature space to
the semispace.

Semispace to Generational Semispace (GSS). In our implemen-
tation, the two half-spaces of the SS GC system are shared with the
GSS GC system. The cost of switching from the SS GC system to
GSS is similar to the cost of switching from the MS GC system to
the GMS system. No garbage collection is required to effect the
switch.

Mark-sweep/Generational Mark-sweep to Generational Copy-
ing. To change from the MS or the GMS GC system to the GSS
system, we need to perform steps similar to the MS/GMS to SS
switch. In fact, we share the same code, and hence we were able
to implement this switch with minimum additional programming
overhead.

Generational Copying to Mark-sweep/Generational Mark-swe-
ep. This switch is similar to that of SS to MS or GMS. However,
we need to copy over objects from the nursery to the shared free-list
region, in addition to copying objects from the GSS mature space
to the shared region.

Unlike previous work, we are thus able to dynamically switch
between GC systems that use very different allocation and collec-
tion strategies. Although, for the results presented in this paper,
we switch GC systems only once during a run of an application,
our framework is completely general. Coupled with dynamic deci-
sion mechanisms, we can switch from any GC system to any other,
multiple times. We next describe details that are specific to our
implementation within the JikesRVM.

2.3 Implementation Details
We employed four primary implementation strategies to make

our system compatible with the existing JikesRVM infrastructure
and to make it as efficient as possible. They are, maintaining mul-
tiple states for forwarded objects in a mark-sweep collected space,
unmapping unused memory, inlining of allocation routines, and us-
ing a single, shared write barrier implementation.

As mentioned in the previous section, to switch from a GC sys-
tem that uses a mark-sweep space to a GC system that uses a con-
tiguous semispace, we need to maintain state for the mark-sweep
process as well as for the process of forwarding objects to the
semispace. In the JikesRVM, the mark-sweep collector requires
two bits in the object header: the mark bit to mark live objects and
the small object bit to indicate that the object is a small object. The
use of the small object bit is specific to the free-list implementation
in the JikesRVM. Since memory allocation requests are aligned on
a 4-byte boundary in the JikesRVM, the lowest two bits in an ob-
ject’s address are always 0. Hence, the mark bit and the small ob-
ject bit can be encoded as the lowest two bits in the object’s status

1 101

state: FORWARDED

1 1

state: BEING FORWARDED

01FORWARDING POINTER

UNUSEDUNUSED

SMALL OBJECT|MARKEDstate:SMALL OBJECTstate:

Copying

Mark Sweep  

FORWARDING POINTER

Figure 4: Examples of Bit Positions in the Object’s Status Word

word, which is stored in the object header.
The copying process uses two additional states. An object is

marked as being forwarded while it is being copied. After it is
copied, the object is marked as forwarded and a forwarding pointer
to the object’s new location is set in the old object’s header. The
being forwarded state is necessary to ensure synchronization be-
tween multiple collector threads. These two states are stored in
the status word of each object, along with the forwarding pointer.
Thus, the lowest two bits in the object’s status word have different
purposes depending on the collector that the JikesRVM is config-
ured with, while building the boot image. For example (Figure 4),
if the JikesRVM is built with the mark-sweep GC system, the value
0x2 indicates that the object is a small object. However, if instead,
the semispace collector is used, this state indicates that the object
has been forwarded to the to-space during a collection. Similarly,
if the lowest two bits are set, it signifies that the object is a small
object and has been marked live by the mark-sweep collector; the
same state indicates to a semispace collector thread that the object
is currently being forwarded by another thread.

Since we forward marked objects to the semispace, we need to
support all four distinct states, along with the space required for
the forwarding pointer. To account for the two additional bits re-
quired, we use a technique known as bit-stealing [7]. The object
header stores a pointer to its Type Information Block (TIB). In the
JikesRVM, TIBs store information about the object’s class (includ-
ing the virtual method table). A TIB is defined to be aligned on
a 4-byte boundary. Hence, we can use the two lower-most bits of
the word that points to the TIB, to mark the being forwarded and
forwarded states during the copying process.

The second feature we implemented is memory unmapping. The
reference JikesRVM implementation uses on-demand memory map-
ping of the virtual address space. To use physical memory effi-
ciently, we unmap the memory mapped space that we won’t use
when we switch to a new collection system.

A third mechanism that we use to improve the efficiency of our
system is the use of static methods to avoid dynamic dispatch where
possible. Allocation in our switching system occurs via a static rou-
tine, Plan.alloc in the Plan class. This routine performs a check on
an integer value representing the allocator to use (a switch...c-
ase). We maintain a global integer field called CURRENT DEFA-
ULT ALLOCATOR, which indicates the current default allocator to
use. Plan.alloc invokes the appropriate allocation routine based on
the value of CURRENT DEFAULT ALLOCATOR. Plan.alloc(...)
can be inlined into the program to reduce the overhead of func-
tion calls for allocation. The individual allocation methods are not
inlined into Plan.alloc since the particular method can change dy-
namically. The reference JikesRVM implementation contains only
a single plan and as such, all allocation routines can be inlined.

A second source of overhead, other than our inability to inline
each of the individual allocation routines, is a universal write bar-
rier, which is necessarily introduced by our system. Write barriers
are used to record pointers for generational collectors [8, 18] since
heap areas are independently collected. Cross-generation (old-to-

4



Program Annotated GC Selector
compress if (heapsize

�
50MB) GSS else GMS

db if (heapsize
�

30MB) SS else MS
jack GMS for all heap sizes
javac GSS for all heap sizes
jess GMS for all heap sizes
mpegaudio SS for all heap sizes
mtrt if (heapsize

�
40MB) GSS else GMS

JavaGrande if (heapsize
�

72MB) GSS else GMS
OptComp if (heapsize

�
118MB) SS else GMS

SPECjbb if (heapsize
�

150MB) SS else GMS

Table 1: Annotated garbage collection selection decisions for
each benchmark

young) pointers must be tracked so that they can be traced during
collection of the young (nursery) heap space. Since our system
can switch at any time to a generational garbage collector, we must
always insert write barriers. However, to make this process as ef-
ficient as possible, we use a single, shared write barrier for all GC
systems. In our system, the nursery always occupies the highest
virtual address range. Hence, we require only a single check to de-
termine if the young object reference is in the nursery. We evaluate
the impact of these overheads in Section 4 and discuss solutions for
reducing each.

3. GARBAGE COLLECTOR SELECTION
By implementing functionality to switch between collection sys-

tems while the JikesRVM is executing, we can now select the “best-
performing” collection system for each application that executes
using our system. To show the efficacy of this functionality, we
consider annotation-guided GC system selection and automatic se-
lection based on simple heuristics.

Annotation-Guided Selection
To enable annotation-guided GC selection, we analyzed applica-
tion performance off-line using the different JikesRVM GC sys-
tems. We considered a number of different heap sizes and pro-
gram inputs (SpecJVM98: input 10 and 100, SPECjbb: one and
two warehouses, JavaGrande: section3/AllSizeA and AllSizeB).
We extracted, for each heap size, the best performing GC system
across inputs. At each point, if the GCs selected were different
across inputs, we identified the GC that imposed the smallest per-
cent degradation. We then identified a cross-over threshold for each
program, i.e., the heap size below which the most-commonly se-
lected GC changes. In some cases, the GC never changes, i.e., there
is no switch-point. The annotated values are shown in Table 1.

We annotated programs with GC identifiers for a range of heap
sizes. We used a 4-byte annotation in each class file of an applica-
tion containing a main method. We inserted annotations into class
files using an annotation language and a highly compact encoding
that we developed in prior work [22]. Upon initiation of dynamic
loading of the first application class file, JikesRVM switches to the
collection system specified. If an annotated GC system is not avail-
able, the default JikesRVM collection system is used (currently,
GMS). Since the best-performing collection system may depend
on the underlying architecture (memory size, cache levels, cache
sizes, register count), we can also incorporate different architec-
tures as part of our profile collection and annotation. For this work,
we focus solely on the x86 architecture.

Automatic Switching
To automate the switching process, we monitor execution behavior
while the program is running to determine when to switch, by using
simple heuristics based on maximum heap size and heap residency
following GC. The empirical evaluation of our annotation-guided
system indicated that, across inputs, the best performing collector
is consistently GMS for small heaps and GSS for large heaps. If the
heap availability should change, e.g., to make room for concurrent
execution of other programs, our system can automatically switch
to GMS or GSS accordingly. Automatic switching avoids the need
for both off-line profiling and program annotation.

In addition to determining what GC system to switch to, we must
also identify when to switch. Some possible options include heap
residency thresholds, GC frequency thresholds, and allocation be-
havior. As an experiment, we implemented the above heuristic
(GMS/GSS switching with a 90MB heap size threshold) using a
heap residency threshold of 60%. As such, given any application,
our system waits until the live data following a collection exceeds
60% of the available heap size. At which point, the system checks
whether the maximum heap size is greater than 90MB, and if so,
switches to GSS. The system uses GMS as the initial, default GC
system. As such, no switching is needed if the maximum heap size
threshold is not exceeded. Use of a residency threshold enables
us to use two different collectors for different phases of program
lifetime: program startup and steady-state.

We acknowledge that this is a very simple implementation of
automatic GC selection. We include it as an example of how our
switching framework can be employed. We intend to study exten-
sively techniques for adaptive switching as part of future work.

4. EVALUATION
To empirically evaluate the efficacy of our framework , we per-

formed a series of experiments using a number of benchmark pro-
grams. We gathered results on a dedicated 2.4GHz x86-based single-
processor Xeon machine (with hyperthreading enabled) running
Debian Linux v2.4.18. We implemented our switching framework
within the JikesRVM version 2.2.0 with jlibraries R-2002-11-21-
19-57-19. We report performance results using the JikesRVM Fast
configuration in which all methods executed are optimized upon
initial invocation. We repeatedly executed the benchmarks through
a test harness and report the average of the last 5 of 10 runs; there-
fore, compilation is not included in our data (except for the Opt-
Compiler benchmark which exercises the JikesRVM compilation
system). The benchmarks we consider are the SpecJVM98 suite,
SPECjbb200, the JavaGrande suite, and the JikesRVM optimizing
compiler (first harness run of JikesRVM executing the SpecJVM98
javac benchmark).

4.1 Results
We first present results that show the efficacy of switching us-

ing annotation-guided GC selection. The results are shown in Fig-
ures 5 and 6 for a number of benchmarks. The x-axis is heap size in
megabytes and the y-axis is total time (in milliseconds) for program
execution. For SPECjbb, the y-axis is the inverse of the through-
put reported by the benchmark; we report this metric to maintain
visual consistency with the execution time data, i.e., lower num-
bers are better. As described in Section 3, we selected the best
performing GC system for a range of heap sizes by considering
multiple inputs offline: SpecJVM98 – input 10 and 100, SPECjbb
– one and two warehouses, JavaGrande – section3/AllSizeA and
section3/AllSizeB). We identified the best performing GC system
all inputs (see Table 1), for each heap size. For brevity, we present
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Figure 5: Performance Results. For each benchmark, data for the reference system is shown (SS, MS, GMS, GSS). In addition, the
data demarked with (+) shows the efficacy of annotation-guided GC system selection.

Overhead due to Universal Write Barriers
And Not Inlining Allocation Routines

Overhead
Benchmark Alloc Not Inlined Universal Write Barrier
compress -2.76% -0.23%
jess 3.47% 4.50%
db 2.82% 2.24%
javac -3.44% -2.31%
mpegaudio -6.45% -4.14%
mtrt 7.59% 0.35%
jack 6.65% 0.33%
OptComp *-51.59% *14.02%
JavaGrande 0.14% -0.43%
SPECjbb 0.83% 0.27%
Geo. Mean -6.25% 1.36%

Table 2: Overhead due to NOT inlining allocation routines (col-
umn two) and always adding write barriers (column three) for
the SpecJVM98 benchmarks. Values represent mean percent-
age difference in performance over all measured heap sizes.
The star (*) indicates that the results of the three different
switching system configurations are not directly comparable,
since the amount of code compiled differs: the switching sys-
tem does not inline allocation sites and it inlines write barrier
code. In all other cases, compilation overhead is not included.

results only for input 100 for SpecJVM98, a single warehouse for
SPECjbb, and input section3/AllSizeA for JavaGrande.

Each graph shows the performance of each GC system that we
studied: MS, SS, GSS, and GMS. In addition, each shows the per-
formance of our annotation-guided GC switching system. The re-
sults indicate that our framework is able to achieve performance
that is similar to the best performing collector by making use of the
annotated information. For cases in which there is no cross-over
between optimal collectors, e.g., jess, mpegaudio, javac, our sys-
tem maintains performance similar to that of the reference system.

The overhead introduced by our system is low for most bench-
marks. The main source of overhead results from the loss of in-
lining opportunities for allocation sites. Since our system must dy-
namically check the type of GC system in use prior to deciding
which allocation routine to invoke, we are unable to freely inline
such sites. Another source of overhead, is the presence of a univer-
sal write barrier, which is necessary, since our system provides the
ability to switch to a generational collection system, at any time.

Table 2 shows the mean percentage overhead due to not inlin-
ing allocation routines and always adding write barriers for the
SpecJVM98 benchmarks, across all measured heap sizes (starting
from the minimum to up to about 600MB). We ran these bench-
marks using our framework, without ever switching; we used the
SS collection system for all heap sizes (minimum to 200MB). We
then calculated the mean difference between the execution times
so obtained and the execution times using the same system (with
switching implemented, but without actually switching) with allo-
cation routines inlined (column 2) and without inlining the univer-
sal write-barrier (column 3).

The star (*) indicates that the performance of the switching sys-
tem configurations are not directly comparable since the amount of
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Figure 6: Performance Results, continued. For each benchmark, data for the reference system is shown (SS, MS, GMS, GSS). In
addition, the data demarked with (+) shows the efficacy of annotation-guided GC system selection.

code compiled differs: the switching system in column 2 does not
inline allocation sites and it inlines write barrier code in column
3. This is only the case for OptComp for which we are analyzing
compilation overhead; for all other cases, compilation overhead is
not included. The mean values without the OptComp benchmark
were 0.89% for column 2 and 0.04% for column 3.

The data indicates that our system does not impose significant
overhead. We show execution times for a range of heap sizes for a
representative set of benchmarks, in Figure 7 – to point out some
anomalies. Again, this data shows the performance of the switching
system when no switching is performed; it shows the impact of not
inlining allocation sites and having to inline write barriers – for a
non-generational semi-space collector.

The jess benchmark is representative of most others in the table
(jess, db, mtrt, jack, JavaGrande, SPECjbb). These benchmarks
actually show a performance degradation with inlining of alloca-
tion routines turned on for small heaps. This is due to the fact that

in tight heaps, there are many garbage collection cycles. Inlining
causes the code size to increase, which is detrimental to perfor-
mance in small heaps, since a copying collector like SS, copies
large code arrays between heap partitions. For large heap sizes,
there are no garbage collections, and the performance improvement
due to inlining, dominates.

Jack exhibits the worst overall overhead, due to missed inlining
opportunities for allocation sites. Inlining of allocation routines
seems to always help performance for jack. Javac is also impacted
by turning on inlining, however, in a way that is more similar to
jess than jack. Inlining of allocation routines with small heaps hurts
performance, since the average overhead due to disabled allocation
inlining is negative (in Table 2). These results indicate that we
should also consider inlining as a parameter to annotation-guided
and automatic GC switching.

The mpegaudio performance results are very anomalous and non-
intuitive. When we inline allocation sites, performance degrades –
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Figure 7: Execution times for some benchmarks with our GC switching system always running the SS collector (squares), allocation
routines inlined in the GC switching system (circles), and write barriers not inlined in the GC switching system (triangles), across
different heap sizes

Benchmark Compilation Times (sec)
input1 input2

Reference Switch Reference Switch
compress 1655.0 1302.0 1655.5 1306.5
jess 3572.0 2781.0 3595.5 2822.5
db 1906.0 1508.0 1891.0 1483.0
javac 6210.0 5671.0 6313.5 5877.0
mpegaudio 2349.5 2067.5 2346.5 2052.5
mtrt 2252.5 2008.0 2256.5 2011.0
jack 6347.0 4211.0 6343 4211.5
JavaGrande 2758.0 2631.5 2682.5 2628.0
SPECjbb 13014.0 8566.5 12978.0 8594.5

Table 3: Compilation overhead introduced by JikesRVM dy-
namic compilation and optimization.

and no compilation is being performed for these runs. We believe
that the degradation is caused by instruction cache misses due to
differences in code size. Mpegaudio allocates very little data and
no GCs occur even for the minimal heap size. We have verified that
disabling inlining does degrade performance for mpegaudio in the
clean (non-switching) JikesRVM v2.2.0 using the semispace col-
lector, as well as in more recent releases. This suggests that the
anomalous behavior is due to some reason that is inherent in the
nature of these benchmarks, and not a product of our framework.

For mpegaudio (and to a lesser extent, javac), removing write
barriers degrades performance. We do have a good explanation for
and are currently investigating this anomaly.

Not inlining allocation routines improves performance for small
heaps since less code remains resident for manipulation by the col-
lector. Our inability to inline can have another positive effect on
program performance. For some programs, e.g., the JikesRVM Op-

timizing compiler benchmark, our switching system enables better
performance than all reference collectors. This is due to reduced
compilation overhead. The optimizing compiler aggressively in-
lines methods, including those for allocation. As a result, a large
amount of time is spent repeatedly optimizing inlined code. This
can be seen in Table 3 which shows the time in milliseconds for
compilation in the reference system and our switching system. The
overhead of our system is significantly lower for such cases because
allocation sites cannot be inlined.

To reduce the overhead of our framework, we can specialize
methods according to the currently selected GC system. That is, we
can assume that the GC will never change, and as such, inline GC-
specific allocation routines. Similarly, we can avoid inlining write-
barriers if the current GC does not require them. However, when a
switch occurs, we must invalidate the specializations. This requires
simple recompilation for most methods. However, methods that
are on the runtime stack will require on-stack-replacement (OSR).
OSR enables replacing the stack frame of an invalidated method
with another (unspecialized version). As part of future work, we
plan to build upon existing work to enable both invalidation [17,
4] and on-stack-replacement [13, 17]. The trade-off of performing
specialization is recompilation overhead and unoptimized execu-
tion time. We plan to empirically evaluate these trade-offs as part
of future work.

To summarize our empirical evaluation of annotation-guided GC
switching, we next show how our system reduces performance hits
taken when the “wrong”, i.e., worst-performing collector, is cho-
sen. In addition, we show the average performance degradation
over optimal selection. The data in Table 4 shows the average dif-
ference between our GC switching system and the best perform-
ing system at each heap size (column 2) and between our system
and the worst performing system at each heap size (column 3). In
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Average Difference Between Best & Worst GC Systems
GCAnnot

Degradation Improvement
Benchmark over Best over Worst
compress 5.52% (378ms) 0.60% (80ms)
jess 9.22% (256ms) 38.87% (2220ms)
db 4.04% (745ms) 12.87% (2906ms)
javac 5.79% (380ms) 23.50% (2408ms)
mpegaudio 0.06% (1.2ms) 7.70% (518ms)
mtrt 12.71% (497ms) 17.40% (1421s)
jack 11.88% (476ms) 15.29% (865ms)
OptComp -7.85% (-1388ms) 43.02% (10687ms)
JavaGrande -7.19% (-5440ms) 17.84% (13916ms)
SPECjbb 3.63% (4.63 10 � /tput) 16.03% (26.45 10 � /tput)
Geo. Mean 3.56% 18.70%

Table 4: Average performance differences (absolute error) be-
tween the GC switching system and the reference system for
different heap sizes.

parentheses, we show the average absolute difference in millisec-
onds; for SPECjbb the value in parenthesis is the difference in in-
verse throughput. Note that the data in this table does not compare
our system against a single JikesRVM GC system; instead, we are
comparing our system against the best and worst-performing GC
system at every heap size. For example, for large heap sizes for the
SPECjbb benchmark, the SS system performs best. For small heap
sizes, GMS performs best. In this case, to compute percent degra-
dation, we take difference between execution times enabled by our
system and the SS system for large heap sizes, and our system and
the GMS system for small heap sizes.

In column two (Degradation over Best), some values are nega-
tive. In these cases, the performance of our switching system is
better than that of of all JikesRVM reference configurations across
heap sizes, on average, i.e., our system improves performance over
the best-performing GC system. This is due to the combined effect
of missed inlining of allocation sites and our use of static method
invocations that avoid the dynamic dispatch used in the reference
system. Our annotation-guided system degrades performance over
the best-performing GC system by 4% on average across bench-
marks. In addition, it improves performance by 19% over the worst-
performing GC system.

Automatic Switching
In addition to annotation-guided GC selection, we also implemented
automatic switching using a simple heuristic (based on 60% heap
residency). Table 5 shows the average performance difference be-
tween our switching framework making use of the automatic de-
cision heuristic (AutoSwitch) and the reference system. The table
uses the same format as we used previously for Table 4.

In some cases, e.g., mpegaudio, AutoSwitch performs better than
GCAnnot. This is due to differences in the time at which the switch-
ing occurs. In both cases, the initial GC is GMS. For GCAnnot,
we switch just prior to the start of execution; using AutoSwitch,
we switch at the first GC at which heap residency remains as 60%
following collection. For mpegaudio, GMS is more appropriate
for its initial startup phase, and GC is more appropriate during its
steady state. As such, AutoSwitch outperforms GCAnnot. Au-
toSwitch achieves an average improvement of over 16% over the
worst-performing GC system, across all benchmarks, and it im-
poses overhead that is under 5%. As an initial attempt, our simple
heuristic performs quite well for the benchmark programs that we

Average Difference Between Best & Worst GC Systems
Auto Switch

Degradation Improvement
Benchmark over Best over Worst
compress 7.84% (524ms) 0.97% (99ms)
jess 8.82% (245ms) 39.18% (2212ms)
db 12.80% (2358ms) 7.27% (1632ms)
javac 7.64% (484ms) 17.40% (2556ms)
mpegaudio -13.83% (-849ms) 20.63% (1374ms)
mtrt 15.48% (594ms) 1.38% (163ms)
jack 12.62% (499ms) 10.32% (528ms)
OptComp -11.89% (-1939ms) 45.80% (11376ms)
JavaGrande 5.60% (3406ms) 10.45% (81300ms)
SPECjbb 1.79% (2.29 10 � /tput) 18.41% (29.07 10 � /tput)
Geo. Mean 4.22% 16.37%

Table 5: Average performance differences (absolute error) be-
tween our switching framework with automatic switch decision
support and the reference system for different heap sizes.

studied.

5. RELATED WORK
Two areas of related work show that performance due to the the

GC employed varies across applications, and that switching collec-
tors dynamically can be effective. In [23, 24], the authors show
that performance can be improved by combining variants of the
same collector in a single system, e.g., mark-and-sweep and mark-
and-compact. In [26], the authors show that coupling compacting
collectors with different performance characteristics can be effec-
tive.

Other related work shows empirically that performance enabled
by garbage collection is application-dependent. For example, Fitz-
gerald and Tarditi [14] perform a detailed study comparing the rel-
ative performance of applications using several variants of genera-
tional and non-generational semispace copying collectors (the vari-
ations are due to different write barrier implementations). They
show that over a collection of 20 benchmarks, each collector vari-
ant sometimes provides the best performance. On the basis of these
measurements they argue for profile-directed selection of garbage
collectors. However, they do not consider variations in input, re-
quire different prebuilt binaries for each collector, and only ex-
amine semispace copying collectors. Other studies have identi-
fied similar opportunities [5, 31, 27]. IBM’s Persistent Reusable
JVM [19] attempts to split the heap into multiple parts grouped by
their expected lifetimes, employs heap-specific garbage collection
models and heap-expansion to avoid GCs. It supports command-
line GC policies to allow the user to choose between optimizing
throughput or average pause time. However, to our knowledge,
no extant research has defined a general, easily extensible frame-
work for switching between very diverse garbage collection sys-
tems, such as the one that we describe. In addition, our automatic
switching heuristic, albeit simple, requires no user intervention and
achieves considerable performance improvement.

6. CONCLUSION
Garbage collection plays an increasingly important role in next-

generation Internet computing and server software technologies.
However, the performance of collection systems is largely depen-
dent upon application execution behavior and resource availability.
In addition, the overhead introduced by selection of the “wrong”
collection system can be significant. To overcome these limitations,
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we have developed a framework that can automatically switch be-
tween garbage collection systems without having to restart and pos-
sibly rebuild the execution environment, as is required by extant
systems. Our system can switch between collection strategies while
the program is executing. As such, it enables application-specific
collection policies to be implemented that can also adapt to the
underlying resource availability. The overhead introduced by our
system is 4% for both annotation-guided and automatic switching
using a simple heuristic, on average. Our system significantly im-
proves performance (19% for annotation-guided and 16% for auto-
matic switching) over the worst-performing collection system, on
average.
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