
Architecture of the Proposed Cloud Application

Platform Monitor

Hiranya Jayathilaka, Wei-Tsung Lin, Chandra Krintz, and Rich Wolski
Computer Science Dept., UC Santa Barbara

Collaborators: Michael Xie and Ying Xiong
Huawei Technologies

January 2016

1 Introduction

Over the last decade Platform-as-a-Service (PaaS) has become a popular
approach for deploying applications in the cloud. Many organizations, aca-
demic institutions, and hobbyists make use of public and/or private PaaS
clouds to deploy their applications. PaaS clouds provide a high level of
abstraction to the application developer that effectively hides all the infra-
structure-level details such as physical resource allocation (CPU, memory,
disk etc), operating system, and network configuration. This enables ap-
plication developers to focus solely on the programming aspects of their
applications, without having to be concerned about deployment issues.

PaaS clouds execute web-accessible (HTTP/s) applications, to which
they provide high levels of scalability, availability, and execution manage-
ment. PaaS clouds provide scalability by automatically allocating resources
for applications on the fly (auto scaling), and provide availability through the
execution of multiple instances of the application and/or the PaaS services
they employ for their functionality. Consequently, viable PaaS technologies
as well as PaaS-enabled applications continue to increase rapidly in number.

This rapid growth in PaaS technology has intensified the need for new
techniques to monitor applications deployed in a PaaS cloud. Application
developers and users wish to monitor the availability of the deployed appli-
cations, track application performance, and detect application and system
anomalies as they occur. To obtain this level of deep operational insight into

1



PaaS-deployed applications, the PaaS clouds must be equipped with pow-
erful instrumentation, data gathering and analysis capabilities that span
the entire stack of the PaaS cloud. Moreover, PaaS clouds must provide
comprehensive data visualization and notification mechanisms. However,
most PaaS technologies available today either do not provide any appli-
cation monitoring support, or only provide primitive monitoring features
such as application-level logging. Hence, they are not capable of performing
powerful predictive analyses or anomaly detection, which require much more
fine-grained, low-level and full stack data collection and analytics.

To address this limitation, we present the design of a comprehensive ap-
plication platform monitor (APM) that can be easily integrated with a wide
variety of PaaS technologies. The proposed APM is not an external system
that monitors a PaaS cloud from the outside (as most APM systems today).
Rather, it integrates with the PaaS cloud from within thereby extending and
augmenting the existing components of the PaaS cloud to provide compre-
hensive full stack monitoring, analytics and visualization capabilities. We
believe that this design decision is a key differentiator over existing PaaS and
cloud application monitoring systems because (i) it is able to take advantage
of the scaling, efficiency, deployment, fault tolerance, security, and control
features that the PaaS offers, (ii) while providing low overhead end-to-end
monitoring and analysis of cloud applications.

This document details the architecture of the proposed APM, and how
it integrates with a typical PaaS cloud. We describe individual components
of the APM, their functions and how they interact with each other. Where
appropriate, we also detail the concrete technologies (tools and products)
that we plan to use to implement various components of the APM, and
provide our rationale and intuition behind choosing these technologies.

We start by describing the layered system organization typically seen in
PaaS clouds. Then we describe the APM architecture, and show how it fits
into the PaaS.

2 PaaS System Organization

Figure 1 shows the key system layers of a typical PaaS cloud. Arrows indi-
cate the flow of data and control in response to application requests.

At the lowest level of a PaaS cloud is an infrastructure that consists of
the necessary compute, storage and networking resources. How this infras-
tructure is set up may vary from a simple cluster of physical machines to
a comprehensive Infrastructure-as-a-Service (IaaS) solution. In large scale

2



Figure 1: PaaS system organization.

PaaS clouds, this layer typically consists of many virtual machines and/or
containers with the ability to acquire more resources on the fly.

On top of the infrastructure layer lies the PaaS kernel. This is a col-
lection of managed, scalable services that high-level application developers
can compose into their applications. The provided services may include
database services, caching services, queuing services and much more. Some
PaaS clouds provide a managed set of APIs (an SDK) for the application
developer to access these fundamental services. In that case all interactions
between the applications and the PaaS kernel must take place through the
cloud provider specified APIs (e.g. Google App Engine).

One level above the PaaS kernel we find the application servers that
are used to deploy and run applications. Application servers provide the
necessary integration (linkage) between application code and the underlying
PaaS kernel, while sandboxing application code for secure, multi-tenant op-
eration. On top of the application servers layer resides the fronted and load
balancing layer. This layer is responsible for receiving all application re-
quests, filtering them and routing them to an appropriate application server
instance for further execution. As the fronted server, it is the entry point
for PaaS-deployed applications for all application clients.

3



Figure 2: Key functions of the APM.

3 Cloud APM Architecture

3.1 Key Functions

Like most system monitoring solutions, the proposed cloud APM must serve
four major functions: Data collection, storage, processing (analytics) and
visualization. Figure 2 shows the logical organization of these functions in
the APM, and various tasks that fall under each of them. Figure 3 shows a
physical deployment view of the said functions. Arrows indicate the flow of
information through the APM.

Data collection is performed by various sensors and agents that instru-
ment the applications and the core components of the PaaS cloud. While
sensors are very primitive in their capability to monitor a given component,
an agent may intelligently adapt to changing conditions, making decisions on
what information to capture and how often. Monitoring and instrumenta-
tion should be lightweight and as non-intrusive as possible so their existence
does not impose additional overhead on the applications.

Data storage components should be capable of dealing with potentially
very high volumes of data. The data must be organized and indexed to
facilitate efficient retrieval, and replicated to maintain reliability and high
availability.

Data processing components should also be capable of processing large
volumes of data in near real-time, while supporting a wide range of data

4



Figure 3: Deployment view of the APM functions.

analytics features such as filters, projections and aggregations. They will
employ various statistical and perhaps even machine learning methods to
understand the data, detect anomalies and identify bottlenecks in the sys-
tem.

Data visualization layer mainly consists of graphical interfaces (dash-
boards) for displaying various metrics computed by the data processing
components. Additionally it may also have APIs to export the calculated
results and trigger alerts.

3.2 APM Architecture and Integration with PaaS

Figure 4 illustrates the overall architecture of the proposed APM, and how
it fits into the PaaS cloud stack. APM components are shown in grey, with
their interactions indicated by the black lines. The small grey boxes attached
to the PaaS components represent the sensors and agents used to instrument
the cloud platform for data collection purposes. Note that the APM collects
data from all layers in the PaaS stack (i.e. full stack monitoring).

From the front-end and load balancing layer we gather all information
related to incoming application requests. A big part of this is scraping
the HTTP server access logs, which indicate request timestamps, source
and destination addressing information, response time (latency) and other
HTTP message parameters. This information is readily available for har-

5



Figure 4: APM architecture.

vesting in most technologies used as front-end servers (e.g. Apache HTTPD,
Nginx). Additionally we may also collect information pertaining to active
connections, invalid access attempts and other errors.

From the application server layer we intend to collect basic applica-
tion logs as well as any other logs and metrics that can be easily collected
from the application runtime. This may include some process level met-
rics indicating the resource usage of the individual application instances. If
deeper insight into the application execution becomes necessary, more intru-
sive instrumentation can be introduced to the application server (perhaps
selectively or adaptively).

At the PaaS kernel layer we employ instrumentation to record infor-
mation regarding all kernel invocations made by the applications. This
instrumentation must be applied carefully as to not introduce a noticeable
overhead to the application execution. For each PaaS kernel invocation, we
can capture the following parameters.

• Source application making the kernel invocation

• Timestamp

• Target kernel service and operation

• Execution time of the invocation

• Request size, hash and other parameters

6



Collecting this PaaS kernel invocation details enables tracing the execution
of application requests, without the need for instrumenting application code,
which we believe is a feature unique to PaaS clouds.

Finally, at the lowest infrastructure level, we can collect information
related to virtual machines, containers and their resource usage. We can
also gather metrics on network usage by individual components which might
be useful in a number of traffic engineering use cases. Where appropriate
we can also scrape hypervisor and container manager logs to get an idea of
how resources are allocated and released over time.

To summarize, the types of services and resources that this APM will
be able to monitor include the following. Moreover, our design of the data
collection layer is abstract and thus easily extended to permit monitoring of
new services and PaaS components as they become available in the future.

• Cloud Infrastructure:

– CPU, memory, disk, network

– Linux containers, virtual machines

• PaaS Kernel (including PaaS cloud SDK)

– Task queues, security components (user/developer tracking and
authentication and authorization), enterprise service bus

– Data caches (memcache), datastores (key value, NoSQL), databases
(fixed schema, SQL).

• Application servers

– Per-language runtime systems

– Our APM will target the Java language

• Front-end components

– HTTP/s request serving

– Load balancing and rate limiting components

3.3 Cross-layer Data Correlation

Previous subsection details how the APM collects useful monitoring data at
each layer of the cloud stack. To make most out of the gathered data, and use
them to perform complex analyses, we must be able to correlate data records
collected at different layers of the PaaS. For example consider the execution

7



of a single application request. This single event results in following data
records at different layers of the cloud, which will be collected and stored
by the APM as separate entities.

• A front-end server access log entry

• An application server log entry

• Zero or more application log entries

• Zero or more PaaS kernel invocation records

We require a mechanism to tie these disparate records together, so the
data processing layer can easily aggregate the related information. For in-
stance, we must be able to retrieve via an aggregation query, all PaaS kernel
invocations made by a specific application request.

To facilitate this requirement we propose that front-end server tags all
incoming application requests with unique identifiers. This request identifier
can be attached to HTTP requests as a header which is visible to all com-
ponents internal to the PaaS cloud. All data collecting agents can then be
configured to record the request identifiers whenever recording an event. At
the data processing layer APM can aggregate the data by request identifiers
to efficiently group the related records.

4 Implementation

In this section we outline some of the technologies and tools that we have
chosen to implement the proposed APM architecture. After a thorough
evaluation of numerous existing system monitoring tools and platforms, we
have decided to implement our APM for PaaS clouds using ElasticSearch.
More specifically, ElasticSearch will operate as the primary data storage
component of the APM. ElasticSearch is ideal for storing large volumes of
structured and semi-structured data. It supports scalability and high avail-
ability via sharding and replication. Perhaps what makes ElasticSearch an
excellent choice for an APM is its comprehensive data indexing and query
support. Using the tried and tested Apache Lucene technology, Elastic-
Search continuously organizes and indexes data, making the information
available for fast retrieval and efficient querying. Additionally it also pro-
vides powerful data filtering and aggregation features, which can greatly
simplify the implementations of high-level data processing algorithms.

8



Figure 5: APM implementation based on ElasticSearch.

Data can be directly stored in ElasticSearch via its REST API. This
means most data collection agents can simply make HTTP calls to Elas-
ticSearch to add new records. ElasticSearch also supports batch processing
thereby enabling agents to locally buffer collected data, and store them in
batches to avoid making too many HTTP calls. For scraping server logs
and storing the extracted records in ElasticSearch, we can use the Logstash
tool. Logstash supports scraping a wide range of standard log formats (e.g.
Apache HTTPD access logs), and other custom log formats can be supported
via a simple configuration. It also integrates naturally with ElasticSearch.

For data visualization we are currently considering Kibana, a powerful
web-based dash boarding tool that is specifically designed to operate in
conjunction with ElasticSearch. Kibana provides a wide range of charting
and tabulation capabilities, with particularly strong support for temporal
data. Since ElasticSearch exposes all stored data via its REST API, it’s also
possible to bring other visualization tools into the mix easily.

Figure 5 shows the APM deployment view with ElasticSearch and other
related technologies in place. Most of the data processing features are pro-
vided by ElasticSearch itself, and other more complex data analytics can be
provided by a custom data processing system.

9



5 APM Use Cases

In this section we elaborate on some concrete use cases of the proposed APM.
In particular, we discuss how the APM can be used to predict performance
SLAs for web applications deployed in a PaaS cloud, as well as to detect
performance anomalies. These use cases rely on the data collected by the
APM, and some of its data processing and visualization capabilities. Where
appropriate we will extend the base design of the APM to incorporate new
components and tools required to implement the features discussed here.

5.1 Static Topology Discovery and SLA Prediction

Our goal is to give a prediction that can make it possible to determine
response time service level agreements (SLAs) with probabilities specified
by the cloud provider in a way that is scalable.

To allow PaaS administrators to determine what response time guar-
antees can be made regarding the deployed applications, we will take an
approach that combines static analysis of the hosted web applications and
runtime monitoring of the PaaS cloud. Also, since we want to provide the
prediction to PaaS users when they are deploying the applications, such
static analysis must be done before deploying or running an application on
the PaaS cloud.

A typical PaaS cloud exports many kinds of services, such as data stor-
age, caching and queuing (PaaS kernel services). Application developers
compose these services into their web applications. From experience, we
know that most applications hosted on PaaS spend majority of the execu-
tion time on PaaS service invocations, and they do not have many branches
and loops. Therefore, in our design we use static analysis to identify the
PaaS kernel service invocations that dominate the response time of web ap-
plications. By doing so we also detect the topology of applications – i.e. the
service dependencies.

Our APM design includes sensors/agents that monitor the performance
of PaaS kernel services over time. This information can be recorded pe-
riodically to form a set of time series. This historical performance data
can be aggregated and processed using a time series forecasting method-
ology to calculate statistical bounds on the response time of applications.
These forecast values can be used as the basis of a performance SLA. Also,
because service implementations and platform behavior under load change
over time, the predicted SLAs may become invalid after a period of time.
We will develop a statistical model to detect such SLA invalidations. When

10



Figure 6: Cloud Application Model.

such invalidations occur, the SLA prediction can be reinvoked to establish
new SLAs.

To build a system that predicts response time SLAs using only static
information, our design has three components:

• Static analysis tool

• Monitoring agent

• SLA predictor

5.1.1 Static Analysis Tool

This component analyzes the source code of the web application and extracts
a sequence of PaaS service invocations.

Figure 6 illustrates the typical PaaS development and deployment model.
Developers use the services exposed by the PaaS cloud (aka PaaS kernel ser-
vices or PaaS SDK) to implement their applications. Applications in turns
are exposed to end users via one or more web APIs. The end user could
be a client application external to the cloud, or another application run-
ning in the same cloud environment. The underlying PaaS kernel service

11



implementations are highly scalable, highly available (have SLAs associated
with them), and automatically managed by the platform. Developers up-
load their finished applications to the cloud for deployment. An uploaded
application typically consists of source code or some intermediate represen-
tation of it along with one or more deployment descriptors (configurations,
versioning information, crypto resources etc.)

When an application has been uploaded, the static analysis tool can
analyze the source code or the application’s intermediate representation
(e.g. Java bytecode). It performs a simple construction and inter-procedural
static analysis of the control flow graph (CFG). By performing a depth-first
traversal on the CFG it is possible to identify all possible paths of execu-
tion through the application code. This includes paths that occur due to
branching (if-else constructs, switch statements etc.), looping as well error
handling (try-catch constructs). For each identified path, the static analysis
tool extracts a sequence of PaaS service invocations. Since the applications
need to be exposed to users through HTTP/s, the static analysis tool can
begin the extraction by checking specific language classes or framework an-
notations, for example, Java’s servlet classes or the classes marked with the
JAX-RS Path annotation.

For each application the static analysis tool produces a list of annotated
PaaS service invocation sequences – one sequence per program path. It
then prunes this list to eliminate duplicates. Duplicates occur when an
application has multiple program paths with the same sequence of PaaS
service invocations. Ideally, we can identify the PaaS kernel service calls by
their namespace (in Java’s case, the package name).

Although loops are rare in this type of applications, when they occur,
they are used to iterate over a dataset returned from a database. The tool
estimates the loop bounds if specified in the PaaS kernel service API (e.g.
the maximum number of entities to return). Otherwise, we can ask users to
provide an estimation of the size of their dataset.

5.1.2 Monitoring Agent

This agent monitors and records the response time of individual PaaS ser-
vices within a running PaaS system.

It can be built as a native PaaS feature, or as an independent appli-
cation deployed on PaaS. To avoid unnecessary performance overhead on
other PaaS-hosted web applications, the monitoring agent runs in the back-
ground separate from them. The agent invokes services provided by PaaS
kernel periodically and records response times for each service. Also, the

12



agent periodically reclaims old measurement data to eliminate unnecessary
storage.

In our design, these agents can be implemented as ElasticSearch’s custom
agents. The collected data will be sent back to ElasticSearch and wait for
processing.

5.1.3 SLA predictor

The SLA predictor uses the outputs of other two components to predict an
upper bound on the response time of the services. To make SLA predictions,
we propose using Queue Bounds Estimation from Time Series (QBETS) [2],
a non-parametric time series analysis method that we developed in prior
work. We originally designed QBETS for predicting the scheduling delays
of batch queue systems used in high performance computing environments.
We adapt it for use “as-a-service” in PaaS systems to predict the execution
time of deployed applications.

A QBETS analysis requires three inputs:

1. A time series of data generated by a continuous experiment,

2. The percentile for which an upper bound should be predicted (p ∈
[1..99])

3. The upper confidence level of the prediction (c ∈ (0, 1))

QBETS uses this information to predict an upper bound for the p-th
percentile of the input time series. The predicted value has a probability of
0.01p of being greater than or equal to the next data point that will be added
to the time series by the continuous experiment. The upper confidence level
c serves as a conservative bound on the predictions. That is, predictions
made with an upper confidence level of c will overestimate the true percentile
with a probability of 1− c. This confidence guarantee is necessary because
QBETS does not determine the percentiles of the time series precisely, but
only estimates them.

To further clarify what QBETS does, assume a continuous experiment
that periodically measures the response time of a system. This results in a
time series of response time data. Suppose at time t, we run QBETS on the
time series data collected so far with p = 95 and c = 0.01. The prediction
returned by QBETS has a 95% chance of being greater than or equal to the
next response time value measured by our experiment after time t. Since
c = 0.01, the predicted value has a 99% chance of overestimating the true
95th percentile of the time series.

13



We find QBETS to be an ideal fit for our work due to several reasons.

• QBETS works with time series data. Since the response time of various
PaaS kernel services can be easily represented as time series, they are
highly amenable for QBETS analysis.

• QBETS makes predictions regarding the future outcomes of an ex-
periment by looking at the past outcomes – an idea that aligns with
our goal of predicting future application response times from historical
PaaS kernel service performance data.

• Response time SLAs of web applications should be specified with ex-
act correctness probabilities and confidence levels for them to be useful
to developers and PaaS administrators. QBETS meets these require-
ments.

• QBETS is simple, efficient and has been applied successfully to analyze
a wide range of time series data, including correlated and uncorrelated
data, in the past.

In our case, QBETS takes the response times for each PaaS kernel service
we record in ElasticSearch. Notice that this data is collected continuously by
the PaaS monitoring agent, so QBETS is able to automatically adapt to the
changing conditions of the cloud. Given the percentile for which an upper
bound should be predicted and the upper confidence level of the prediction,
QBETS can generate a conservative prediction.

Since an application may invoke multiple PaaS kernel services, the SLA
predictor also needs to align and aggregate multiple time series together
before engaging QBETS. For example, suppose an application makes 3 PaaS
kernel service invocations. The static analysis component would detect the
3 target kernel services invoked by the application. The SLA predictor
should then retrieve the response time data pertaining to those 3 PaaS
kernel services from ElasticSearch. This information would be retrieved as
3 separate time series. SLA predictor then aligns the time series data (by
timestamp), and aggregates them to form a single time series where each
data point is an approximation of the total time spent by the application on
invoking PaaS kernel services. This aggregate time series can be provided
as the input to QBETS to make the response time predictions.

Note that our static analysis tool produces multiple sequences of PaaS
service invocations for each analyzed application. Multiple sequences occur
due to the existence of branches, loops and error handling logic in the appli-
cation code. The SLA predictor can make predictions for each of the paths

14



Figure 7: APM architecture and components interaction.

identified by the static analysis tool. The largest predicted value can then
be used as the basis for a response time SLA, thus covering all paths of the
input applications.

The key assumption that makes our approach viable is that PaaS-hosted
web applications spend most of their execution time on invoking PaaS kernel
services. Previous studies [1] have shown this to be true, with applications
spending over 90% of their execution time on PaaS kernel service invocations.

5.1.4 Workflow

Figure 7 illustrates how the components interact with each other during
the prediction making process. The SLA prediction can be invoked when
a web application is deployed to the PaaS cloud or at any time during the
development process to give developers insight into the worst-case response
time of their applications.

When the prediction is invoked, it performs static analysis on all opera-
tions in the application. Next, it retrieves benchmarking data collected by
the monitoring agent for all PaaS service invocations. Finally, the QBETS
analysis is applied to the data with the desired percentile and confidence
value. After the predictions are made, we can use the largest value across
all application paths as the SLA prediction for a web application.

15



5.2 Performance Anomaly Detection

Numerous statistical models have been developed over time for detecting
performance anomalies in running applications. However, prior work has
mostly focused on simple stand-alone applications. Few efforts have ex-
tended this notion towards web applications, but web applications in PaaS
clouds, for the most part, is an uncharted territory. We intend to build
on prior work regarding detecting performance anomalies in web applica-
tions, and invent new mechanisms that can detect performance anomalies
of PaaS-deployed applications.

Such techniques must be able to detect a drop in performance level of
an application, and then determine if it occurred due to a change in the
workload, or some system-level issue. This requires correlating performance
data of an application (e.g. response time), with workload information (e.g.
number of users). If a performance drop occurred due to a system-level is-
sue, we must further analyze the performance data concerning PaaS kernel
services. Note that the proposed APM collects such low-level information
regarding the PaaS kernel service invocations by applications. This infor-
mation can be analyzed in relation to a detected performance anomaly to
identify where the bottleneck is.

APM can also keep track of the sequences of PaaS kernel services invoked
by a given application over time. Each unique sequence represents the exe-
cution of a different path through the application code. This information is
useful for identifying the nature of the workload handled by a given appli-
cation, and how it evolves with time. We can use novelty detection (a form
of anomaly detection) to identify the execution of new, previously unseen
paths, which by themselves may be a sign of an anomaly.

6 Conclusions

As PaaS increased in popularity and use, the need for technologies to monitor
and analyze the performance and behavior of deployed applications has also
grown. However, most PaaS clouds available today do not provide adequate
support for such analysis. Therefore, we propose an application platform
monitoring system that is able to take advantage of PaaS cloud features,
but that is portable across them.

To provide comprehensive full stack monitoring and analytics, the APM
we propose provides four major functions: data collecting, data storage, data
processing, and data visualization. We describe the necessary organization
of these functions, and illustrate how these functions work as a component in

16



the system. Also, by providing the architecture of typical PaaS and proposed
APM, we illustrate how these functions can be built as components that
make APM can be easily integrated with any PaaS.

After investigating popular application performance data collection and
analysis tools, we choose ElasticSearch for data management. ElasticSearch
provides powerful, easy to use indexing features and scalability. We also
choose to collect data via custom agents and Logstash. Logstash supports a
variety of standard log formants, and is easy to customize the configuration
to collect a variety of key data.

References

[1] Hiranya Jayathilaka, Chandra Krintz, and Rich Wolski. Response time
service level agreements for cloud-hosted web applications. In Proceed-
ings of the Sixth ACM Symposium on Cloud Computing, SoCC ’15, 2015.
http://www.cs.ucsb.edu/~ckrintz/papers/socc15.pdf.

[2] Daniel Nurmi, John Brevik, and Rich Wolski. QBETS: Queue Bounds
Estimation from Time Series. In International Conference on Job
Scheduling Strategies for Parallel Processing, 2008. http://www.cs.

ucsb.edu/~nurmi/nurmi_qbets.pdf.

17


