""" D @
L4 i
“hoa- u[m
[ea
TTTTTTTTTTTTTTTTTTTT

/_J. BEAWEBLOGIC JROCKIT™:
.8 JAVAFORTHE ENTERPRISE

EEEEEEEEEEEEEEEEEEE

COPYRIGHT

11

Copyright © 2003 BEA Systems, Inc. All Rights Reserved.
December 2003

RESTRICTED RIGHTS LEGEND

This document may not, in whole or in part, be photocopied, reproduced, translated, or reduced
to any electronic medium or machine readable form without prior consent, in writing, from
BEA Systems, Inc. Information in this document is subject to change without notice and does
not represent a commitment on the part of BEA Systems, Inc.

TRADEMARKS

BEA, Tuxedo, and WebLogic are registered trademarks and BEA WebLogic Enterprise Platform,
BEA WebLogic Server, BEA WebLogic Integration, BEA WebLogic Portal, BEA WebLogic
Platform, BEA WebLogic Express, BEA WebLogic Workshop, BEA Liquid Data for WebLogic,
BEA WebLogic JRockit, and BEA WebLogic Java Adapter for Mainframe are trademarks of
BEA Systems, Inc.

Intel® Xeon™ and Intel® Itanium® 2 are trademarks of Intel Corporation.
J2SE, J2EE, and Enterprise JavaBeans are trademarks of Sun Microsystems, Inc.
All other company and product names may be the subject of intellectual property rights reserved

by third parties.

CWP0671E1203-1A

BEA WHITE PAPER — BEA WEBLOGIC JROCKIT: JAVA FORTHE ENTERPRISE

CONTENTS

Introduction 1
BEA WebLogic JR ockit: Performance, Manageability, Simplicity 1
Architecture of the BEA WebLogic JRockit JVM o o 3
The Simple Path to Enterprise Application Development and Deployment 4
Boosting Developer Productivity 4
Runtime Efficiency Through Progressive Optimization 5
“Zero-Overhead” Monitoring.ttt 5
Dynamic Optimizing Code Generator ittt 6
Efficient Thread Management 7
Adaptive Memory Management for Scalability and Reliability. 8
Adaptive Heap Managementttt 8
Adaptive Garbage Collection 9
Optimizing Memory Management for Client and Server Environments 12
Managing for Enterprise Performance, Scalability, and Reliability 14
BEA WebLogic JRockit Monitoring and Management APIs 14
BEA WebLogic JRockit Management Console 15
BEA WebLogic JRockit Runtime Analyzer 16
BEA WebLogic JRockit Performance and Scalability. o L 17
Bottom Line: Simply Superior Enterprise Java L. 18
Availability 19
About BEA 19

BEA WHITE PAPER — BEA WEBLOGIC JROCKIT: JAVA FORTHE ENTERPRISE III

INTRODUCTION

Today’s developers have seen an explosion of large-scale system development beyond the con-
fines of the back-office and mainframe systems of three decades ago. The Java programming
language has been a key factor in the creation of large-scale enterprise systems. It has evolved
from a “write once, run anywhere” client-side language to the language of choice for large-scale
enterprise applications. Java “building blocks” have helped to reduce application development

time and complexity.

But now growing numbers of users and increasingly complex business requirements are pushing
Java applications to their limits, and companies often have to spend large amounts of development
time and resources achieving and maintaining performance, scalability, and reliability in their
enterprise Java applications. Adding to these costs is the fact that many Java Virtual Machines
(JVMs) are optimized by hardware vendors for their own proprietary architectures, so basic
performance can come at a high price in hardware investments. To satisty user, business, and
financial requirements, developers need a simple, cost-effective way to ensure application perfor-

mance, reliability, and scalability on low-cost, standards-based platforms.

BEAWEBLOGIC JROCKIT:
PERFORMANCE, MANAGEABILITY, SIMPLICITY

BEA WebLogic JRockit™ is the only Java VM designed specifically to simplify the task of
developing and managing Java applications for large-scale enterprise-wide environments. With
BEA WebLogic JRockit, developers do not need to know JVM internals to create performant,
scalable, reliable applications. BEA WebLogic JRockit speeds application development through
fast startup performance. It provides out-of-the-box application performance and scalability
through progressive optimization features that enable the JVM to automatically deliver the best
possible application performance without requiring a lot of manual configuration or tuning.
Unique manageability features give developers the real-time visibility and control to ensure top
application performance and health while delivering industrial-strength system stability and
reliability under heavy user and transaction loads. And BEA WebLogic JRockit is the only
JVM designed for top performance with open standards-based Intel platforms, which allows it
to deliver the best price/performance and lowest total cost of ownership (TCO) for enterprise
Java applications.

BEA WHITE PAPER — BEAWEBLOGIC JROCKIT: JAVA FORTHE ENTERPRISE 1

BEA WEBLOGIC JROCKIT BOOSTS PERFORMANCE,
RELIABILITY, AND DEVELOPER PRODUCTIVITY

Simplified Development and
Top Performance

* Development Optimization

* Progressive Optimization

* Thread Management

* Adaptive Memory
Management

Unique Manageability

e Management APIs

* JRockit Management Console

* JRockit Runtime Analyzer

Industry-leading Performance on
Standards-based Intel Architecture

BEA WebLogic JRockit provides continuous, automatic
performance improvement and scalability from development

through initial deployment and day-to-day operations.

Minimizes application start-up time to speed up iterative

development and testing.

Zero-overhead monitoring identifies areas for potential
performance improvement, and dynamic code optimization

continually improves runtime performance.

Specialized locking techniques improve performance for
multi-threaded enterprise applications.

Adaptive memory management adjusts heap sizes and
garbage collection techniques to meet changing application

requirements.

Gives developers and system administrators the visibility and
control to ensure industrial-strength performance and
reliability for enterprise applications.

Allows applications and third-party tools to manage JVM
and application behavior at runtime without having to

instrument bytecode.

Gives developers and system managers the visibility to
monitor application behavior and to identify and resolve
issues before they affect reliability or performance.

Provides detailed runtime information for problem diagnosis
and performance improvement, without compromising run-

time performance.

Proven superior performance on 32-bit and 64-bit Intel
architectures lowers TCO of enterprise systems and offers
greater flexibility in OS and hardware choices.

2

BEA WHITE PAPER — BEA WEBLOGIC JROCKIT: JAVA FORTHE ENTERPRISE

ARCHITECTURE OF THE BEA WEBLOGIC
JROCKIT JVM

Every subsystem of the BEA WebLogic JRockit JVM is designed to deliver superior perfor-
mance, simplicity, and manageability for applications in large-scale, enterprise-wide deployments.

* The code-generation subsystem performs progressive optimization throughout the life of
the application.

* Thread management is optimized to minimize synchronization between threads.

* Memory management is designed for efficient memory usage and application throughput
throughout a running application.

* The Java model maintains an up-to-date view of system metadata. The BEA WebLogic
JRockit JVM uses highly optimized algorithms to efficiently manage classes, fields and
methods, as well as classloading and string handling for Java applications. The Java model
also does a number of optimizations to ensure the efficiency of accessing various instance

members using Java reflection.

e The I/0 subsystem is well tuned and optimized for common Java file and network
[70 activities.

* External management and monitoring APIs help developers fine-tune performance
and ensure system health, and they offer extensibility through the integration of
third-party tools.

FIGURE 1. Z o W " Y
. . . emor
BEA WebLogic JRockit Architecture 10 Subsystem Managem‘ént
@
0w c
Q 'g File and Network I/O Garbage Collection
g = Heap Sizing
- C5 \. J
L O
0 =2 N
“-:‘ o, : Threads Java Model
c
: © % Management Class Loading/Unloading
8 £3 Locks Verification
E 2. Synchronization Reflection
Ea 4
g oy \ J L J
X B< | - =
w o Code Generation
= JIT Compiler
L)L Optimizing Compiler)

BEA WHITE PAPER — BEA WEBLOGIC JROCKIT: JAVA FORTHE ENTERPRISE 3

THE SIMPLE PATHTO ENTERPRISE APPLICATION
DEVELOPMENT AND DEPLOYMENT

Developers can spend a lot of time and effort trying to understand and optimize runtime behavior
of enterprise applications, but the JVM ultimately determines the runtime performance and has
the ability to affect the application’s behavior in real time. It can also give the developer insights
and optimization choices that would not be apparent with traditional profiling tools.

The BEA WebLogic JRockit JVM eliminates much of the time and effort and many of the
stumbling blocks that developers have faced in achieving Java application performance. BEA
WebLogic JRockit is the only JVM designed to allow developers to realize optimal application
performance and scalability without tuning a single configuration parameter. It does this through
progressive optimization and adaptive memory management, approaches whereby the JVM automati-
cally adapts its own behavior based on the operating conditions of the application itself and the
underlying environment — client versus server systems, concurrent users and memory require-
ments, and variations in the system resources such as available memory and CPUs — to deliver
optimal performance, scalability, and reliability throughout the life of the application.

BOOSTING DEVELOPER PRODUCTIVITY

Application development involves iterative redeployment of an application as developers create,
debug, and improve their code. Aside from development tools, one of the most significant factors
that can contribute to developer productivity is the amount of time it takes to build, deploy, and
start the application.

Some JVMs minimize start-up time by interpreting Java code at runtime, even though compiled
code executes much faster. BEA WebLogic JRockit balances startup time with runtime perfor-
mance by compiling each method “just in time” (JIT) the first time it is used and then caching
that compiled method onto the disk for subsequent automatic reuse. Thereafter, subsequent
deployments or restarts of the application can automatically retrieve the compiled code from disk,
shortening start-up time and boosting overall performance. Achieving optimal application
performance is typically a large part of Java development eftorts. So by helping to deliver both
fast runtime performance through JIT compilation of all methods and fast startup time through
code-caching of compiled methods, BEA WebLogic JRockit dramatically improves overall
developer productivity. Code-caching has been introduced as an experimental feature and will
continue to be enhanced. As shown in Figure 2, the BEA WebLogic JRockit JVM compiles and
caches each method the first time it is encountered.

4 BEAWHITE PAPER — BEA WEBLOGIC JROCKIT: JAVA FORTHE ENTERPRISE

FIGURE 2. 100% JIT compiled code

JIT Compilation of
Methods Over Time

90%

80%

70%

60%

50%

40%

30%

20%

10%

Cumulative % of Methods

Time

RUNTIME EFFICIENCY THROUGH PROGRESSIVE OPTIMIZATION

The BEA WebLogic JRockit JVM combines the speed of compiled code with the benetits of
adaptive performance technology through progressive optimization, a process of continual perfor-
mance improvement from initial deployment through the life of the application. The JVM
compiles each method the first time it is encountered, generating machine code with platform-
specific optimizations such as a special fast register allocation unique to the IA64 architecture.
The JVM then monitors the application as it executes and identifies the methods where the
application spends the most time for more aggressive optimization. This approach eliminates

many performance bottlenecks early in the life of a running application.

“ZERO-OVERHEAD” MONITORING

The BEA WebLogic JRockit dynamic runtime environment uses a sophisticated, low-overhead
sampling-based technique to identify areas for optimization. A “sampler thread” wakes at periodic
intervals and checks the status of several application threads. It identifies what each thread is
executing and notes some execution history. The information is tracked, and methods where the
application spends most of its time are earmarked for optimization. Overhead for monitoring is
typically only 1-2%.

Early in deployment of an application, BEA WebLogic JRockit monitors execution to identify
areas for code optimization. As the runtime performance increases and stabilizes, the JVM moni-
tors less and less frequently, further minimizing overhead and, thereby, maximizing performance.

BEA WHITE PAPER — BEA WEBLOGIC JROCKIT: JAVA FORTHE ENTERPRISE 5

If methods are added or changed or if changing application usage causes the application to spend
more time in different methods, BEA WebLogic JRockit optimizes those methods further and

monitors again until performance stabilizes.

DYNAMIC OPTIMIZING CODE GENERATOR

BEA WebLogic JRockit’s dynamic optimizing compiler uses a number of techniques to increase

the performance of frequently used methods. Some Java developers believe that JIT compilation

cannot optimize Java effectively because of the “openness” of Java features such as dynamic type-
casting and virtual method invocations. However, JRockit’s progressive optimization overcomes
this issue. Methods are JIT-compiled and efficient code is generated the first time they are called.
Then runtime monitoring and dynamic optimization are used to further increase performance

based on collected runtime information.

The most-used methods are recompiled with aggressive optimizations and replaced dynamically.
Since method sizes tend to be small and scope is very important to the code scheduler, method
inlining is used to prepare the code for further optimization. While this can be problematic in
Java because of runtime identification of some calls, BEA WebLogic JR ockit uses well-tuned

heuristics to ensure that inlining provides substantial performance increases.

As shown in Figure 3, an application will typically spend 99% of its execution time in about 10%
of its methods. The BEA WebLogic JRockit JVM monitors execution time in each method and
targets most-used methods for aggressive optimization. Even if runtime behavior changes over the
lite of the application, the JVM will identity new methods needing optimization and dynamically

optimize them to continuously improve performance.

FIGURE 3.

Progressive Optimization of

Methods Over Time

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

Cumulative % of Methods

Optimized code

Time

6

BEA WHITE PAPER — BEA WEBLOGIC JROCKIT: JAVA FORTHE ENTERPRISE

Dynamic code optimization not only increases performance over time, it can also optimize
performance for different usage patterns. For example, an application system may have difterent
needs throughout the day or the month as usage patterns change. The dynamic optimization
approach ensures that methods suddenly turning into performance bottlenecks at later stages also
will be optimized.

Object allocation in BEA WebLogic JRockit is also the responsibility of the code generator.
Allocation is thread-local for small objects, meaning that each allocating Java thread has a dedi-
cated area in which to allocate objects. Hence, no time is wasted on synchronization (waiting for
locks). For optimized code, small object allocation is inlined. Large object allocation is typically
used only for arrays of large or indeterminable size.

EFFICIENT THREAD MANAGEMENT

The thread management part of BEA WebLogic JRockit is responsible for locks as well as the
implementation of wait-primitives. The locks are used to implement the synchronized-keyword
in Java. There are two kinds of locks in BEA WebLogic JRockit: thin locks and fat locks.

Thin locks are used where there has never been contention. Locking and unlocking of thin locks
1s an extremely fast operation. For single-CPU systems, locking is further optimized by reducing
the extra locking primitives required on multiprocessor systems.

If contention on a thin lock is longer than x (where x is a sub-millisecond variable that is hard-
ware-dependent), then the thin lock becomes a fat lock. Locking and unlocking of fat locks is
slower than for thin locks, but still very fast. On multiprocessor systems, BEA WebLogic JRockit
uses a special spin-lock facility that improves the performance of fat locks by spinning for a little
while before going to sleep on a locked lock. This can eliminate thousands of CPU cycles worth
of unnecessary sleep time, because the thread holding the lock, which may be running on an-

other CPU, will typically release the lock during that initial spin cycle.

BEA WHITE PAPER — BEA WEBLOGIC JROCKIT: JAVA FORTHE ENTERPRISE 7

ADAPTIVE MEMORY MANAGEMENT FOR SCALABILITY
AND RELIABILITY

Memory management in Java can result in big performance problems, especially with the high
user and transaction loads found in enterprise environments. But it also offers tremendous oppor-
tunity for performance optimizations. BEA WebLogic JRockit uses a number of mechanisms to
automatically increase performance, scalability, and reliability by adapting memory management

to suit application behavior and the runtime environment.

ADAPTIVE HEAP MANAGEMENT

The issue of heap management is particularly critical in enterprise environments where users
typically run multiple application instances simultaneously on the same system. Depending on
how the JVM defines its heap size, at some point new instances of the JVM may have insufficient

memory to maintain acceptable performance.

The BEA WebLogic JRockit JVM is specially designed to maintain application performance while
accounting for overall system memory usage. Each BEA WebLogic JRockit JVM monitors its own
memory utilization and dynamically increases or decreases the size of its own heap depending on
the needs of'its own application. For example, a sales processing application might need more
memory during business hours, so it would increase its heap at those times and relinquish heap
during non-business hours. However, an e-commerce application might capture additional memory

during usage spikes at certain times of day, then release it during off-peak times.

As illustrated in Figure 4, the BEA WebLogic JRockit JVM automatically adapts heap size to

meet changing conditions and application requirements.

""" Application memory usage

FIGURE 4. Unused memory

Too little memory
Current heap size
Size of contraction
Size of expansion

Adaptive Heap Management

Memory

Time

8 BEA WHITE PAPER — BEAWEBLOGIC JROCKIT: JAVA FORTHE ENTERPRISE

ADAPTIVE GARBAGE COLLECTION

Garbage collection (the reclaiming of memory no longer referenced by objects) is a critical factor
in Java application performance. Efficient use of memory increases performance and application
scalability. On the other hand, the wrong garbage collection approach can be intrusive on
application execution and seriously detract from overall system performance and reliability under
load. Some applications require the highest possible application throughput and can tolerate
periodic garbage collection pauses, while others need consistency and can sacrifice some through-

put in order to minimize pause times.

BEA WebLogic JRockit’s memory management system offers a selection of garbage collection
strategies tailored for different types of applications and environments, as well as an adaptive mode
that uses runtime analysis to dynamically adjust the garbage collection strategy to best fit the
performance and behavioral requirements of the application.

The BEA WebLogic JRockit garbage collection system uses the following approaches in various
combinations to create runtime efficiency during garbage collection:

Patrallel garbage collection optimizes throughput by taking advantage of multi-CPU
machines to speed up garbage collection. The application is paused temporarily while all the
available CPUs are used by the garbage collector to quickly reclaim memory from “dead”
(unreferenced) objects.

Generational garbage collection keeps recently allocated objects in a “nursery” until they
have survived a certain length of time. The garbage collector periodically sweeps the
nursery, removing dead objects and promoting live objects out of the nursery into the long-
lived object space. This approach increases the number of pauses due to garbage collection,
but the average pause time and, often, the total pause time is significantly reduced because
the most frequent garbage collection activities are performed for a memory area smaller than
the entire Java heap.

Single-spaced (non-generational) garbage collection configures the Java heap into a single,
contiguous space for the allocation of all objects This approach results in fewer, but longer
garbage collection pauses than with generational garbage collection because the entire Java

heap has to be traversed to evacuate the dead objects during every garbage collection cycle.

Concurrent garbage collection performs memory reclamation in a background process,
resulting in slightly reduced application throughput. However, the number of garbage
collections is much reduced, resulting in fewer and shorter pause times because, unlike the
parallel garbage collector which stops all application threads during the collection cycle, the
concurrent garbage collector conducts part of the collection in the background and does not
block the application threads for the entire collection cycle. Concurrent garbage collectors
can collect garbage in the background on one or more CPUs while the application contin-
ues to run on other CPUs.

BEA WHITE PAPER — BEA WEBLOGIC JROCKIT: JAVA FORTHE ENTERPRISE 9

The variety of approaches provides the most efficient garbage collection for a range of applica-
tions and environments. For example, as shown in Figure 5, with an increasing workload, the
parallel garbage collection strategy delivers a higher application throughput compared to a
concurrent strategy. However, the parallel strategy also results in higher pause times because
there are more dead objects to be collected while the application is suspended during the garbage
collection process.

If an application has plenty of heap available and needs to minimize pause times, concurrent
garbage collection is a good choice. Figure 5 shows how concurrent garbage collectors keep
pause times to a minimum. Concurrent garbage collectors are well-suited to handle very large
heaps because, in contrast to the parallel mode, the pause time does not grow with the heap size,
but rather depends more on the amount of live data in the heap. Concurrent garbage collectors
are also very good for batch-oriented, single-threaded applications running on multi-CPU
machines, because they can collect garbage in the background on one or more CPUs while the
application continues to run on the other CPUs, thus minimizing the number of garbage collec-
tions and the associated pause times. In this situation, garbage collection becomes virtually
overhead free for the application.

As the workload increases, parallel garbage collection increases throughput, but also increases
pause times. On the other hand, concurrent garbage collection minimizes pause times, but

throughput is somewhat less than with parallel garbage collection.

FIGURE 5.

Parallel vs. Concurrent Garbage Collection

Throughput Pausetimes

60000

N
a
o

50000

N
=3
o

40000

a
o

30000

20000
10000

Increasing load Increasing Load

o
=3

Pausetime (ms)

Throughp ut (o ps/sec)
o
g

o

Paralle!
Concurrent

10 BEA WHITE PAPER — BEA WEBLOGIC JROCKIT: JAVA FORTHE ENTERPRISE

FIGURE 6. Single-spaced garbage collection

Single-Spaced vs. 200 .

Generational Garbage Collection

Heap usage in Mb
o
o
0]
o
=]
SW U] swp} ashned

20 s 20 a5 10 15 50 55 60 B85 70 i) s0

Generational garbage collection

Heap usage in Mb
SW U 8wl 8sned

10 15 20 25 20 i o] A0 A5 50 55 &0 65 70

Time in seconds since JRockit start

Single-spaced (non-generational) concurrent garbage collection is good for applications that
create a lot of long-lived objects, because garbage collection can run infrequently and in the
background. Figure 6 shows how single-spaced garbage collection minimizes the number of

pauses for an application where heap usage is fairly predictable.

For applications with a lot of short-lived objects, Figure 6 shows how the generational mode
results in very frequent garbage collection, but also helps keep heap usage within bounds while
keeping pause times as short as possible.

In the graphs in Figure 6, red lines represent memory usage and blue lines represent garbage
collection pause times. Generational garbage collection results in fewer whole-heap collections.
Generational garbage collection is useful for applications that use a lot of short-lived data.
Single-spaced (non-generational) garbage collection should be used for applications with a lot
of long-lived objects.

Choosing the best garbage collection for a given application can be complex, since the
application behavior can change over time while the application is running. BEA WebLogic
JRockit eliminates this complexity by allowing the developer or system administrator to select
adaptive garbage collection mode. In fact, BEA WebLogic JRockit is the only JVM with a
selt-adapting garbage collector that actually switches garbage collection strategies during runtime,
automatically choosing the garbage collection algorithm best suited to the current running
application. The developer specifies the behavior that is most important for the particular
application — minimal pause times or highest throughput — and the adaptive garbage collector
automatically configures itself to deliver those characteristics. If the application currently (or

BEA WHITE PAPER — BEA WEBLOGIC JROCKIT: JAVA FORTHE ENTERPRISE 11

FIGURE 7. Prioritize minimal pause time

: P
- T -

13:48:50 13:50:00 13:50:10 13:50:20 13:50:30 13:50:40 13:50:50 13:51:00 13:51:10 13:51:1
Prioritize i throughput, don't mind pause times

- //

Adaptive Garbage Collection

Heap usage %

Heap usage %
o
3

30

13:55:30 13:55:40 13:55:50 13:58:00 13:58:10 13:58:20 13:58:30 13:58:40 13:58:50 13:57
Time

temporarily) needs a nursery, the adaptive garbage collector will identify the need and create a
nursery. If garbage collection pauses become too long for the application, the adaptive garbage

collector will adjust the garbage collection algorithm to prevent long pauses.

In the upper graph of Figure 7, the garbage collection system adapts its algorithm to achieve
minimum pause times for the running application, switching between a single-spaced strategy and
a generational heap with a nursery. In the lower graph where maximum throughput is desired,
the garbage collection system shifts from a generational heap with a nursery to a single-spaced

algorithm that would deliver the best throughput.

This unique feature of the BEA WebLogic JRockit JVM simplifies the developer’s task and
allows applications to achieve an optimal balance between the smallest possible pause times and
the highest possible throughput (ability to reclaim used memory). Developers no longer have to
spend large amounts of time and effort configuring and tuning the JVM to achieve the desired

levels of performance.

OPTIMIZING MEMORY MANAGEMENT FOR CLIENT AND SERVER ENVIRONMENTS

In order to achieve optimal application performance, it is important that the application starts out
with the right amount of memory. Too small a heap will result in out-of-memory errors. Too
large a heap could result in long garbage collection pauses or slow overall system performance

because other applications are starved for memory.

12 BEA WHITE PAPER — BEAWEBLOGIC JROCKIT: JAVA FORTHE ENTERPRISE

BEA WebLogic JRockit allows the developer to set initial memory allocation for optimal perfor-
mance in client development or server environments. By default, BEA WebLogic JRockit
configures its heap size and nursery size for a server environment, automatically sizing the heap
and nursery according to the number of CPUs in the system and the total system RAM. If the
developer or system administrator starts the JVM with the “-client” option, BEA WebLogic
JRockit configures its heap size and nursery size optimally for a Java applet in a browser or a
single-user Swing application running on a single-CPU PC with a minimum system memory of
128 MB. So in client development mode, the JVM starts with a smaller heap and a pause-time

sensitive to a garbage collector.

BEA WHITE PAPER — BEA WEBLOGIC JROCKIT: JAVA FOR THE ENTERPRISE 13

MANAGING FOR ENTERPRISE PERFORMANCE,
SCALABILITY,AND RELIABILITY

The JVM has the front-row seat on application behavior at runtime, but the Java developer has
the business perspective and the ultimate responsibility for application performance. With BEA
WebLogic JRockit’s unique performance management tools, the JVM is no longer a “black box”.
The BEA WebLogic JR ockit Management Console, Runtime Analyzer, and Monitoring and
Management APIs give developers and system administrators an unparalleled level of real-time
visibility and control, enabling them to tune application performance and ensure system health

through changing usage patterns and business conditions.

BEA WEBLOGIC JROCKIT MONITORING AND
MANAGEMENT APIS

BEA WebLogic JRockit provides a unique capability to monitor and manage the JVM and Java
application activity at runtime without introducing a noticeable overhead affecting performance
and operation. The BEA WebLogic JR ockit Monitoring and Management APIs give applications
and multiple external application management tools a consistent and non-contentious means to
interface with the JVM and gather runtime information on the application without having to

instrument the application byte code.

Monitoring APIs
These APIs allow for manual and/or programmatic data collection during runtime. Among other

capabilities, the Monitoring APIs provide data collection for:

* Monitoring and diagnosis of method-level application operating conditions. The APIs

measure frequency and time spent in monitored methods. They also monitor for exceptions.
* Monitoring JVM operating conditions such as garbage collection mode and heap utilization
* Monitoring operating system and hardware operating conditions such as memory avail-

ability and CPU utilization

Management APIs

The Management APIs allow applications or external tools to manually or programmatically
modity the runtime characteristics of the application or JVM. Among other capabilities, the
Management APIs provide the ability to:

* Modity JVM operating conditions such as heap size, GC parameters, and CPU binding
without having to restart the JVM

* Modity application methods such as forceCompilation
* Monitor garbage collection events to identify trends towards overly long GC times

* Gather complete information about threads and frames

14 BEA WHITE PAPER — BEA WEBLOGIC JROCKIT: JAVA FORTHE ENTERPRISE

BEA WEBLOGIC JROCKIT MANAGEMENT CONSOLE

The BEA WebLogic JRockit Management Console (JMC) uses the underlying BEA WebLogic
JRockit Monitoring and Management API infrastructure, to give developers and system adminis-
trators real-time visibility and control over the inner workings and behaviors of multiple JVM
instances over a network. BEA WebLogic JRockit is the only JVM to provide this level of
manageability and application visibility. Specifically, it provides up-to-date information on CPU
utilization, GC pause times, heap utilization, the number and state of threads, and other runtime
behavior such as time spent in individual methods. Thread stack dumps can also be captured
through the console. The BEA WebLogic JRockit Management Console gives hands-on control
over runtime behavior such as garbage collection parameters. Rule-based alerts and notification of
exceptions and boundary conditions such as excessive heap utilization help developers and system
administrators to identify and understand application behavior problems and correct them before

they cause catastrophic failure.

The BEA WebLogic JR ockit Management Console gives visibility and control over JVM and
application behavior at runtime as shown in Figure 8.
Among other capabilities, the BEA WebLogic JR ockit Management Console also provides:

e Persistent storage of monitored data for oft-line analysis

e The ability to programmatically trigger invocation of Java classes from external applica-
tions based on notification rules set within the console

FIGURE 8.

BEA WebLogic JRockit

Management Console

o Toe 1 i
13 0l0] =]

73%
Used memory % Used heap % CPU Load

Heap usage Fange

-

s e

/Mw M

Time
N CPU usage =
 Sacaros

Liecinp®)
65883838

© euses

EE \//\/\/\WJ‘/\/\/W\\/W/V\/\/\WWW -

0}
8 5 8

BEA WHITE PAPER — BEA WEBLOGIC JROCKIT: JAVA FOR THE ENTERPRISE 15

BEA WEBLOGIC JROCKIT RUNTIME ANALYZER

The BEA WebLogic JRockit Runtime Analyzer takes advantage of BEA WebLogic JRockit’s
built-in monitoring framework to help developers view and analyze the behavior of applications
in production environments. In an offline environment, developers can use the information
collected by BEA WebLogic JRockit to analyze an application’s runtime behavior and diagnose
potential performance-related conditions.

Figure 9 illustrates how the BEA WebLogic JRockit Runtime Analyzer helps developers view
and analyze an application’s runtime behavior.

FIGURE 9.
BEA WebLogic JRockit Runtime Analyzer

470_pausetime xml.zip

136 - Voung collection
57 - Young collection
133 - Young collection
133 - Young collection
140 - Young collection
141 - Young collection
142 - Young collection
143 - Young collection
144 - Young collsction

149 - Voung collection
50 - Voung collection
51 - Young collection
52 - oung collection
53 - oung collection
54 - oung collection
55 - oung collection
56 - oung collsction
57 - Yo ction

- Young colection
65 - Od colection
66 - oung collection
67 - Young collection
68 - Young collsction
63 - Young collection
70 - Young collection

75 - Voung collection
76 - Voung collection
77 - Young collection
78 - oung collection
73 - Young collection
80 - Young collection
1 - Young collsction
82 - Young collection

16 BEA WHITE PAPER — BEA WEBLOGIC JROCKIT: JAVA FOR THE ENTERPRISE

BEA WEBLOGIC JROCKIT PERFORMANCE
AND SCALABILITY

The BEA WebLogic JRockit JVM leads the industry in performance and scalability. Its progressive
optimization provides continuous performance improvements, while adaptive memory management
ensures top runtime efficiency and deployment simplicity. Built-in monitoring allows the JVM to
maximize its own performance, and runtime management tools enable the developer to fine-tune

performance through changing business conditions and application workloads.

In addition to these features, BEA WebLogic JRockit is optimized for performance on systems

®

built from industry-standard Intel-based servers, from 32-bit Intel® Xeon™ processor-based
systems to servers using the latest 64-bit Intel® Itanium® 2 processors. BEA WebLogic JRockit is
the fastest JVM on the market for IA32 platforms, and the only viable JVM for IA64 platforms.
Because the architecture is developed and certified to 100% of the Java 2 Standard Edition (J2SE)
specifications, it provides greater flexibility to choose hardware, OS, and middleware vendors.
This standards-based optimization allows companies to quickly scale their enterprise application

infrastructure while reducing component and operating costs.

® ®

When applications are deployed on Intel® Itanium® 2 processor-based platforms with a high
performing Java Virtual Machine such as BEA WebLogic JRockit, the Java programming
language becomes the ultimate deployment platform for large-scale, server-side, enterprise-class
applications. These applications, which typically require large data sets, derive substantial benefit
from 64-bit computing by taking advantage of the large amounts of available memory to reduce
time-consuming disk swapping. BEA WebLogic JRockit’s ability to utilize the larger memory
space on IA64 platforms also helps companies to cost-effectively scale their enterprise applications

to meet future requirements.

BEA WebLogic JRockit continues to demonstrate superior application performance and

price/performance as measured through standardized benchmarks.

SPECjbb2000

SPECjbb2000 is an industry standard benchmark for evaluating the performance of server-side
JVMs. The Standard Performance Evaluation Corporation (SPEC) has created the benchmark to
measure scalability of JVMs on multi-CPU servers. BEA WebLogic JRockit is designed to scale
linearly across multiple CPUs, and has been shown to outperform other JVMs in CPU scalability
on this benchmark. More information about the benchmark can be found at SPEC’s Web site

(http:/ /www.spec.org).

BEA WHITE PAPER — BEA WEBLOGIC JROCKIT: JAVA FORTHE ENTERPRISE 17

SPECjAppServer2002

SPECjAppServer2002 is an Enterprise JavaBeans™ benchmark designed to measure the scalability
and performance of J2EE™ application servers and containers. Since all J2EE servers run on top of
a JVM, the JVM is implicitly benchmarked along with the application server. BEA WebLogic
JRockit demonstrates exceptional performance and scalability on large servers. For more informa-
tion on the benchmark, refer to the SPEC Web site (http://www.spec.org).

BOTTOM LINE:
SIMPLY SUPERIOR ENTERPRISE JAVA

18

BEA WebLogic JRockit is simply the best JVM for enterprise applications. It gives Java developers a
straightforward and simple way to achieve performance from the start of development through the
lifetime of a Java application. Its unique features, including progressive optimization, adaptive
performance technology and runtime manageability, ensure the speed, transaction capacity,
scalability, and reliability required for enterprise Java applications, while optimizations on industry-
standard platforms reduce enterprise system costs. With BEA WebLogic JRockit, developers spend
less time figuring out how to make the application perform and more time helping the business

to perform.

BEA WHITE PAPER — BEAWEBLOGIC JROCKIT: JAVA FORTHE ENTERPRISE

AVAILABILITY

The BEA WebLogic JRockit JVM is included as part of BEA WebLogic Enterprise Plattorm™
and BEA WebLogic Server™. In addition, it is available for download at http://commerce.bea.com/
index.jsp for the following environments on Intel Architecture platforms:

e Microsoft Windows (IA32 and 1A64)
* Red Hat Enterprise Linux (IA32 and [A64)
e SuSE Linux ES (IA32 and 1A64)

For current platform support, please refer to http://edocs.bea.com.

ABOUT BEA

BEA Systems, Inc. (Nasdaq: BEAS) is the world’s leading application infrastructure software
company, providing the enterprise software foundation for more than 15,000 customers around the
world, including the majority of the Fortune Global 500. BEA and its WebLogic® and Tuxedo®
brands are among the most trusted names in business. Headquartered in San Jose, Calif.,, BEA has
77 offices in 31 countries and is on the Web at www.bea.com.

BEA WHITE PAPER — BEA WEBLOGIC JROCKIT: JAVA FOR THE ENTERPRISE 19

%%,

" ¥
z hea
[

BEA SYSTEMS, INC.

2315 North First Street

San Jose, CA 95131 U.S.A.
Telephone: +1.408.570.8000
Facsimile: +1.408.570.8901
www.bea.com

CWP0671E1203-1A

	BEA WEBLOGIC JROCKIT ™ : JAVA FOR THE ENTERPRISE
	COPYRIGHT
	CONTENTS
	INTRODUCTION
	BEA WEBLOGIC JROCKIT: PERFORMANCE,MANAGEABILITY,SIMPLICITY
	ARCHITECTURE OF THE BEA WEBLOGIC JROCKIT JVM
	THE SIMPLE PATH TO ENTERPRISE APPLICATION DEVELOPMENT AND DEPLOYMENT
	BOOSTING DEVELOPER PRODUCTIVITY
	RUNTIME EFFICIENCY THROUGH PROGRESSIVE OPTIMIZATION
	“ZERO-OVERHEAD ” MONITORING
	DYNAMIC OPTIMIZING CODE GENERATOR

	EFFICIENT THREAD MANAGEMENT
	ADAPTIVE MEMORY MANAGEMENT FOR SCALABILITY AND RELIABILITY
	ADAPTIVE HEAP MANAGEMENT
	ADAPTIVE GARBAGE COLLECTION
	OPTIMIZING MEMORY MANAGEMENT FOR CLIENT AND SERVER ENVIRONMENTS

	MANAGING FOR ENTERPRISE PERFORMANCE, SCALABILITY,AND RELIABILITY
	BEA WEBLOGIC JROCKIT MONITORING AND MANAGEMENT APIS
	BEA WEBLOGIC JROCKIT MANAGEMENT CONSOLE
	BEA WEBLOGIC JROCKIT RUNTIME ANALYZER

	BEA WEBLOGIC JROCKIT PERFORMANCE AND SCALABILITY
	BOTTOM LINE: SIMPLY SUPERIOR ENTERPRISE JAVA
	AVAILABILITY
	ABOUT BEA

