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Abstract

End-users of high-performancecomputing resources
havecometo expectthat consistentlevelsof performance
bedeliveredto their applications.Theadvancementof the
ComputationalGrid enablestheseamlessuseof a multitude
of computingresourcesby theseusers. Thecombinationof
thesedevelopmentshasgenerateda needfor users to moni-
tor theend-to-endperformanceavailableto anapplication.
In addition, whenperformancedegrades,users shouldbe
alertedsothatdynamicresourceselectiondecisionscanbe
adjustedasnecessary.

With this work, wepresentthe NwsAlarm,a Java-based
utility that enablesusers to monitor performancelevels
of any resource beingmonitored by the NetworkWeather
Service. TheNwsAlarmrequiresno specialprivilegesfor
acquisitionof this information and only that a user click
on a web-page link for invocation. More importantly,
the NwsAlarmallows administrators (or any user of the
NwsAlarm)to register and set expectedperformancelev-
els. Whenperformancelevels fall belowthesethresholds,
administrators are immediatelynotified via email. The
NwsAlarmusespredictionof performancemeasurementsto
filter false alarm values. We exemplifythe importanceof
and accuracy achievedby the NwsAlarmwith real exam-
ples of performancedegradation causedby routing table
changesand lossof serviceon the Abilene, Internet-2re-
search networkusedfor experimentationwith evolvingGrid
software technology. On average,

���
% fewer falsealarms

are raisedby theNwsAlarmthan if raw measurementsare
used.

1 Introduction

As high-performancenetwork connectivity proliferates,
end-usershave cometo expect deliverednetwork perfor-
mance(and not just trunk capacity) to keep pace. In
�
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addition, better end-to-endperformancemakes it possi-
ble to consider the use of distributed computing plat-
forms for applicationsthat previously requiredexpensive,
large-scale,and dedicatedmachines. The Computational
Grid [11, 3] is a new andsuccessfullyevolving distributed
computingmetaphorfor the seamlessanddynamicacqui-
sition of resourcesfrom a heterogeneous,federatedre-
sourcepool. In addition, “peer-to-peer” computingsys-
temssucha thosedevelopedby Entropia[8], ParaBon[19],
andSETI@Home[20] areattemptingto harnessunusedbut
ubiquitouscomputercapacityvia the burgeoninginternet-
work of high-performanceconnectivity.

Theserecentadvancesplacea premiumon theability to
monitortheperformancedeliverableto theapplicationend-
to-end. Usersneedto ensurethat the resources,for which
they arepayingbut which they do not own, meetexpected
performancelevels.Systemandnetwork administratorsre-
sponsiblefor appeasingthis performance-hungryuser-base
mustbe ableto detectand,if possibleanticipate,deficient
performanceattheapplicationlevel. Theproblemof perfor-
mancemonitoringis furthercomplicatedby resourcefeder-
ation. Often, administrative policy prohibitspublic access
to low-level performanceinformation for security and/or
proprietaryreasons.Even if low-level informationis pub-
lished,however, it is oftendifficult to translateit into amea-
sureof performancedeliveredto theuser.

In this paper, we describea performancealarmsystem
basedon the NetworkWeatherService(NWS) [25]. The
NWS is a user-level performancemonitoringandforecast-
ing systemdesignedto measureend-to-endresourceperfor-
mancein ComputationalGrid settings. It supportsa vari-
ety of performancesensors(availableCPUcapacity, avail-
able core memory, end-to-endTCP/IP bandwidthand la-
tency, etc.)andoperatescompletelywithoutprivilegeduser
access.Using the NWS asa backboneinfrastructure,we
have developeda Java-basedtool for visualizingcontinu-
ously generatedNWS readings,andautomaticallytrigger-
ing an email alarmwhenobserved performancefalls out-
sidea specifiedrange.Thesystemdraws heavily uponthe
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adaptive statisticalforecastingtechniquesthat are part of
theNWS[24] andtheir Java appletimplementation[15].

Our results show that the NWS alarm system
(NwsAlarm) canaccuratelydetectproblemssuchasrout-
ing misconfigurationby dynamicallyanalyzingend-to-end
network performance.It doesthisthroughits useof theJava
implementationof theNWSforecasters.We illustratethese
resultswith examplesfrom theAbilene[1] experimentalre-
searchnetwork — a network facility deployed, in part, to
supportComputationalGrid research.While we focuson
network performancein this paper, our systemalsoworks
for available CPU and memory, and will acceptreadings
from any otherNWSsensorsthatareconfigured.

In the next section,we briefly describethe infrastruc-
turesfrom which the NwsAlarm wasdevelopedwe detail
theimplementationof theNwsAlarmitself. In Section3 we
provide the experimentalmethodologyusedfor this study.
Section5, 6, and7 containourempiricalresults,therelated
work, andourconclusions,respectively.

2 NwsAlarm Implementation

The NwsAlarm monitorsperformancelevels, predictsfu-
ture performancelevels,displaysthe datagraphically, and
reports “performancefaults” (occasionswhen predicted
performancedoesnot matchexpectedlevels) to adminis-
tratorswhen they occur. To enablethis functionality, the
NwsAlarm extendsthe Network WeatherService[24] and
theJavaNws[15].

2.1 The Network Weather Service

TheNetwork WeatherService(NWS) is a distributed,gen-
eralizedsystemfor producingshort-termperformancefore-
castsbasedon historical performancemeasurement.The
goal of the systemis to characterizeand forecastdynam-
ically the performancedeliverableto the applicationlevel
from a setof network andcomputationalresources.Such
forecastshave beenused successfullyto implement dy-
namicschedulingagentsfor Grid applications[21, 4], and
to choosebetweenreplicatedwebpages[2].

The NWS takesperiodicmeasurementsof the currently
deliverable performance(in the presenceof contention)
from eachresourceandusesnumericalmodelsto generate
forecastsof future performancelevels dynamically. Fore-
castdatais continuallyupdatedanddistributedso that re-
sourceallocationand schedulingdecisionsmay be made
at run time basedon expected levels of deliverableper-
formance. The NWS forecastsprovide difficult to obtain,
statisticalestimatesof availableservicequality from each
resourceof interest,as well as the degreeto which those
estimatesarelikely to beaccurate[23].

SincetheNWS measuresandforecastsperformancede-
liverableto the applicationlevel, it is implementedusing
thesamecommunicationandcomputationmechanismsthat
applicationsuse resulting in forecaststhat accuratelyre-
flect the trueperformanceanapplicationcanexpectto ob-
tain. Separateimplementationsof the NWS have been
developedusing sockets and for the Globus/Nexus [10]
and Legion [12] metacomputingenvironments, each of
whichprovidesasoftwareinfrastructurethatsupportshigh-
performancedistributedandparallelcomputing.

2.2 The JavaNws

The JavaNws is a Java implementationof a subsetof the
NWS toolkit thatprovidesmeasurementandpredictionfor
network resources. The JavaNws measuresthe TCP/IP
socket performance(bandwidthand round-trip time) be-
tweentheuser’sdesktopandthewebserverfrom whichthe
JavaNwsappletwasdownloaded.Predictedperformanceis
computedfrom themeasurementsby theappletandbothare
visualizedin real-time. The JavaNwsenablesusersto cir-
cumventtheneedto explicitly installandmaintainanNWS
network monitoringprocessandany special-purposevisu-
alizationsoftware;NWSmeasurementandforecastdataare
deliveredto the usersweb browser in real-time. Previous
work with the NWS andJava-basedapplicationsindicates
thatbasingtransferdecisionsonNWSforecastdatacandra-
maticallyimproveexecutionperformance[9, 22].

2.3 The NwsAlarm

LikeJavaNws,theNwsAlarmis writtenin Javaandrequires
noinstallationor specialprivilegesfor executionandaccess
to the vast amountof performancedatacollectedby the
NWS. A Java-languageimplementationis importantsince
it enablessecurity, portability, and instant invocation on
the user’s desktopusing the appletexecutionmodel. The
NwsAlarmenablesvisualizationof performancefor anyre-
sourcecurrently monitoredby the NWS (CPU, memory,
networking) as well as the network performancebetween
thewebserver andthedesktop.In addition,administrators
canusetheNwsAlarmto setperformancethresholdsandto
sendalarmsarewhenexpectedperformancelevelsdegrade.

The NwsAlarm consistsof two parts: The applet that
executeson the user’s desktopandthe server programlo-
catedat themachinefrom which theappletis downloaded.
UponNwsAlarminvocation,theserver program,startedas
abackgroundprocess,requestsandacquiresthelist of avail-
ablehostsfrom anNWSnameserver. This list is transfered
to the NwsAlarm appleton the user’s desktopand is dis-
playedasa treeof choicesasshown in Figure1. A user
canselectany host,any availableresource(CPU,memory,
network performance,etc.) associatedwith that host,and
thedestinationhostif thenetwork resourceis chosen.The
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Figure 1: The NwsAlarm console. The consoleprovides
userswith a click-able tree menuof machinesfor which
NWS resourcedatais configured.Thelist canberefreshed
to acquiredynamicallyaddedresources.For eachmachine,
a list of resourcetypes is given (network bandwidthand
round-triptime, CPUavailability andload,memoryusage,
etc).By selectingbandwidthor round-triptime,a list of the
availabledestinationsis given. In addition,network perfor-
mancebetweenthedesktopandthe server from which the
NwsAlarm appletis downloadedis availablefor selection
(“desktop”). The measurementdataandpredictedperfor-
manceof the resourceselectedis displayedin graphform
onceselected.

list canberefreshedby theuseratany timeto acquireanew
list updatedwith any, dynamicallyadded,resources.

The selectionmadeby the useris communicatedby the
NwsAlarmappletto theserver programwhich obtainsand
returnsthe associatedmeasurementfrom the NWS name
server. If the selectionis the desktop,thena seriesof ex-
perimentsare performedto measurethe connectivity be-
tween the desktopand server, just as in JavaNws [15].
For any selection,the resulting measurementis given to
the NwsAlarm forecasters(a Java implementationof the
NWS forecasters)to predict future performanceof the re-
source. The measurementsand predictionsare then dis-
playedgraphicallyfor theuserasin Figure2.

Figure 2: NwsAlarm performancevisualization. When a
usermakesa resourceselectionfrom theconsole,themea-
surementdata(light or pink points) andpredictedperfor-
mance(dark or blue points) is displayed. The y-axis is a
rangeof measurementvaluesin the units associatedwith
the resourcetype (herethe resourceis bandwidthand the
units areMb/s) andx-axis is time. Summarydatais pro-
videdto theright of thegraph.

2.4 NwsAlarm: Degradation Detection

The NwsAlarm also provides userswith a mechanismto
alert administratorsof degradationin performance. The
administratorsets performancethresholdsand registers
his/heremail addresswith the NwsAlarm. When perfor-
mancedropsbelow athreshold,theadministratoris notified
via email.

Two typesof performancethresholdsareavailablein the
NwsAlarm. The first is a performancevaluethat mustbe
maintained;if a measurementis lessthanthe givenvalue,
it is considereda degradation. The administratorcan in-
dicate the numberof suchevents that must occur before
he/sheis alerted.Thesecondtypeof thresholdis thenum-
ber of communicationerrorsbetweenthe desktopand the
server and the server and the NWS nameserver. If the
numberof errorsexceedsthe given thresholdthe adminis-
tratorwill benotified.Sucherrorsoccurif eithertheserver
from which the NwsAlarm appletwasdownloadedor the
nameserver becomesunavailabledueto network partition,
othercatastrophicfailure, or transfertimeout. For the re-
mainderof thispaper, wefocusonnetwork resources,how-
ever, any resourcetheNWScanaccesscanbemonitoredby
NwsAlarm.

3 Experimental Methodology

For the resultsdescribedin this paper, we gathereddata
betweena machineat the University of Tennessee(UT)
and th University of California, SanDiego (UCSD). The
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predominantnetwork technologybetweenthesetwo hosts
is Abilene [1]. Abilene is an advancedbackbonenet-
work that supportsthe developmentand deployment of
the new applicationsbeingdevelopedwithin the Internet2
community. Abilene connectsregional network aggrega-
tion points,calledgigaPoPs,to supportthe work of Inter-
net2universitiesasthey developadvancedInternetapplica-
tions. It is characterizedby high-bandwidthsandrelatively
highround-triptimesinducedby largegeographicdistance.
WhenAbilene fails or routing tableschange,the link can
degradeto theuseof thecommoncarrierbetweenthehosts.

Measurementsof link performanceweremadefrom May
7th,1999throughSeptember25th,2000.WeusedtheNWS
to collect the data � The measurementsweremadeat ap-
proximately30 secondintervals. We collectedboth band-
width andround-triptimevalues.

In addition to thesemeasurements,we logged tracer-
oute [14] databetweenthe two machinesat 1-hour inter-
vals. Tracerouteis a UNIX utility thatusestheIP protocol
to provide a traceof the network route betweentwo ma-
chines.This datais usedin our resultssection(Section5)
to confirm that performancefaultsdetectedby NwsAlarm
correspondto incorrectlyinitialized routingtables.

4 Degradation Discovery Using Pre-
diction

Sinceend-to-endnetwork performanceis highly variable
from one moment to the next, we must ensurethat the
NwsAlarm is able to distinguishbetweenrandomfluctua-
tionsandtrueperformancetrendsso thatalarmsareraised
accurately. Network performance,in particular, is highly
variablefrom one momentto the next. If an alarm were
triggeredevery time a low performancemeasurementoc-
curs,many falsealarmswill begenerated.To enableaccu-
ratealarmdetection,the NwsAlarm compares“predicted”
performancedatathresholdssetby theNwsAlarmuser. The
thresholdsrepresentthe performanceexpectationthat the
userhasfor the monitoredresources.The forecastsrep-
resentthe expectedperformancefor the resourcebasedon
pasthistory. Therole of forecastingin this settingis to re-
move the randomnoisefrom the measurementhistory to
reveal the “true” performancesignal. A fault is definedto
bewhenthis truesignalfallsoutsidethespecifiedrange.

Theuseof predictedvaluesis thekey differencebetween
thissystemandall others.PredictionenablestheNwsAlarm
to identify eventsthatareimperceptibleif the tracedatais
graphedandobservedvisually. In this sectionwe provide
two cases,the first in which fault occurrencesareobvious
�
Our prior work shows that thereis little, if any, significantdifference

betweenmeasurementsgatheredusing Java and thosegeneratedby a C
program[16].

andasecondin which they arenot,to motivatethefunction
of theNwsAlarm.

A commoneventthatcausesdisruptionsin network per-
formanceis a routing table change. Often, it is diffi-
cult for local network administratorsandbackboneservice
providers to keeprouting tablessynchronized.When the
routing tablesareincorrectlyset,connectivity maybe dis-
ruptedentirely. This type of fault is easyfor local admin-
istratorsto detectsinceuserswill begin calling thehapless
administratorsalmostimmediatelyto discussthe network
outageandto constructively suggestpossiblecoursesof ac-
tion. However, it is alsopossiblefor theroutingtablesto be
setincorrectlycausingnetwork traffic to take a functioning
but heavily congestedpath. In this case,connectivity qual-
ity is degraded,but sinceusersexpecta certainamountof
performancevariation(which is difficult to quantify) they
maynot reportsuchproblemsto theoverworkednetwork-
ing staff.

An exampleof this secondtypeof routingtableproblem
is illustratedin thefollowing outputgeneratedby thetracer-
outeutility.

Wed May 10 00:30:09 EST 2000
1 R5HM01V277.NS.UTK.EDU (128.169.92.1) 0.937 ms 0.745 ms 0.804 ms
2 192.168.101.3 (192.168.101.3) 2.296 ms 1.366 ms 1.588 ms
3 UTK-GATECH.NS.UTK.EDU (128.169.50.246) 33.318 ms 33.190 ms 32.945 ms
4 atla.abilene.sox.net (199.77.193.2) 33.475 ms 33.017 ms 34.511 ms
5 hous-atla.abilene.ucaid.edu (198.32.8.33) 46.454 ms 45.876 ms 45.739 ms
6 losa-hous.abilene.ucaid.edu (198.32.8.21) 77.904 ms 77.352 ms 77.955 ms
7 USC--

abilene.ATM.calren2.net (198.32.248.85) 78.006 ms 78.311 ms 77.959 ms
8 UCSD--USC.POS.calren2.net (198.32.248.34) 81.943 ms 81.173 ms 81.286 ms
9 sdsc2--

UCSD.ATM.calren2.net (198.32.248.65) 83.004 ms 87.349 ms 93.498 ms
10 cse-rs.ucsd.edu (132.239.254.45) 83.513 ms 83.264 ms 83.408 ms
11 conundrum.ucsd.edu (132.239.55.213) 91.528 ms * 91.058 ms

Wed May 10 01:30:17 EST 2000
1 R5HM01V277.NS.UTK.EDU (128.169.92.1) 0.783 ms 0.801 ms 0.681 ms
2 192.168.101.3 (192.168.101.3) 1.612 ms 1.794 ms 1.471 ms
3 R7SM99.NS.UTK.EDU (128.169.54.8) 1.988 ms 2.281 ms 1.977 ms
4 205.171.49.165 (205.171.49.165) 20.043 ms 20.200 ms 20.449 ms
5 atl-core-02.inet.qwest.net (205.171.21.45) 20.042 ms 20.600 ms 20.267 ms
6 wdc-core-03.inet.qwest.net (205.171.5.241) 30.911 ms 31.092 ms 30.964 ms
7 wdc-core-01.inet.qwest.net (205.171.24.10) 30.988 ms 31.422 ms 30.979 ms
8 chi-core-02.inet.qwest.net (205.171.5.227) 54.913 ms 56.092 ms 55.025 ms
9 chi-core-03.inet.qwest.net (205.171.20.30) 55.234 ms 55.718 ms 55.063 ms

10 chi-brdr-01.inet.qwest.net (205.171.20.66) 55.479 ms 55.740 ms 55.463 ms
11 s2-0-1.chi-bb1.cerf.net (134.24.103.153) 71.576 ms 71.121 ms 72.423 ms
. . .
17 pos1-0-0-155M.san-
bb1.cerf.net (134.24.29.190) 143.320 ms 141.121 ms 140.459 ms
18 sdsc-gw.san-bb1.cerf.net (134.24.12.26) 189.463 ms 367.079 ms 149.953 ms
19 bigmama.ucsd.edu (192.12.207.5) 122.431 ms 130.265 ms 121.961 ms
20 cse-rs.ucsd.edu (132.239.254.45) 105.015 ms 112.668 ms 103.970 ms
21 conundrum.ucsd.edu (132.239.55.213) 104.508 ms * 133.320 ms

This tracewasgeneratedby a pairof systemsthatarein-
tendedto routepacketsbetweenthemselvesoverAbileneat
all times. Abilene providesmoreconsistentperformance,
lesscontention,and,ascanbeseenfrom theoutput,fewer
hopsin many cases.A lossof Abilene servicecanimpact
theend-to-endperformanceexperiencedby users.If anad-
ministratoris aware of the loss of servicehe/shemay be
ablecorrectthe problembeforeusersare inconvenienced.
TheNwsAlarmis designedto beusedin thissettingto alert
administratorsandusersimpactedby a changein network
performance.

Figure 3(a) shows a two hour tracein which a routing
tablechangeoccurs. Bandwidth(in Mb/s) wasmeasured
betweentwo hosts, one at the University of Tennessee,
Knoxville, the other at the University of California, San
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Figure3: Sub-tracefrom 5-monthAbilene bandwidthtracedata. The datais a 2-hour traceFriday, June9 startingat
approximatelyat 5:00am.(a) containsmeasurementvaluesonly, (b) containsmeasurementandpredictedvalues,and(c)
containsjust the predictedvalues.Two vertical lines indicatinga routing tablechangein the associatedtraceroutedata
from thesameperiodarealsoincluded.Horizontalthresholdlinesindicatedthebandwidthbelow which theroutingtable
changecanbedetected.In this case,it is obviousfrom themeasurementdatawhenthechangetakesplace.However, we
show that this is rarely the case.Usingprediction,with theNwsAlarm(predictedvalues),fewer falsealarmsareraised
anda tighterthresholdcanbeset.Falsealarmsoccurwhenthevaluedropsbelow thethresholdwhile theAbilenelink is
in usein this scenario.
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Figure4: Sub-tracefrom 5-monthAbilene bandwidthtracedata. The pair is a 24-hourtraceFriday, June1 startingat
approximatelymidnight. The left graphcontainsmeasurementandpredictedvalues,and the right only the predicted
values.Two verticallinesindicatingaroutingtablechangein theassociatedtraceroutedatafrom thesameperiodarealso
included. A horizontalthresholdline indicatethe bandwidthbelow which the routing tablechangeshouldbe detected.
It is difficult usinga humaneye andmeasurementvaluesto determinewhenthe changeoccurs. The NwsAlarm using
prediction,however, caneffectively andaccuratelyraisealarmsonly whenthecommoncarrier(QWest)is in use.

Diego. They-axisfor this andall othergraphsin this paper
is time and the x-axis is bandwidthin Mb/s. (a) contains
measurementvaluesonly, (b) containsmeasurement(dark)
andpredicted(light) values,and(c) containspredictedval-
uesonly, for clarity. Two vertical lines indicatinga routing
tablechangein theassociatedtraceroutedatafrom thesame
periodare also included. Horizontal thresholdlines indi-
catedthe bandwidthbelow which the routing tablechange
canbe detected.In this case,it is obvious from the mea-
surementdatawhenthechangetakesplace.

Themeasurementdataaloneindicatesthatapproximately
midway through the trace there is a loss in performance
on the link. Traceroutedata collectedfor the samepe-
riod confirmsthat the routing tablechangedfrom Abilene
to commoncarrier (QWest in this case). The routing ta-
ble changesare indicatedby two vertical lines within the
graphwith the textual link type (Abilene or commoncar-
rier (QWest))givenin eachsectionof theresultingdivided
graph.Usinga thresholdof 0.3Mb/s(horizontalredline on
thegraph)weareableto visually identify theoccurrenceof
the event. That is, whenthe bandwidthmeasurementsfall
below 0.3Mb/s,they indicate,in this scenario,that a rout-
ing tablechangeoccurred.TheNwsAlarm,usingpredicted
valuesalsodiscoverstheroutingtablechangeandis ableto
do sousinganeventighterthresholdof 0.5Mb/s.

However, considerthedatashown in Figure4. This 24-
hoursub-traceof bandwidthdatais betweenthesamepair
of hostsduring different time period. In the left graph,
both measurements(dark) andpredicted(light) valuesare

shown. Theright graphcontainsonly thepredictedvalues.
In this example,it is very difficult to detectvisually when
theroutingtableswerecorrectlyinitialized,andwhenthey
wereseterroneouslyusingonly measurementdata.

TheNwsAlarm(prediction)values,however, effectively
andaccuratelyindicatewhenchangesoccur. Accuracy is
determinedby thenumberof alarmsthatarefalselysent;in
this case,whena valueis below thresholdandtheAbilene
network is in use.Raisingmany falsealarmsmakesit diffi-
cult for administratorsto efficiently distinguishwhenprob-
lemsactuallyoccur. The right graphexemplifiestheaccu-
racy of theNwsAlarm: thepredictedvaluesonly fall below
thresholdwhenthecommoncarrieris in use.In particular,
the 0.3Mb/sthresholdvaluethat worked for measurement
datain Figure 3 is ineffective asa thresholdin this latter
example. The reverseis not true, however. In both cases,
usinga 0.5Mb/sthresholdandthe NWS forecasts(instead
of themeasurements)accuratelydetectstheroutingfaults.

It shouldbepointedout thattraceroutedataalonecanbe
usedto discover suchfaults. Thereareseveral advantages
to usingend-to-endmeasurementstakenat the application
level over lower-level mechanismssuchastraceroute.First
tracerouteis a setuidprogramwhich makesit inappropri-
atefor many securitysettings.Indeed,accessto low-level
monitoringfeaturesis oftencarefullycontrolledandis dif-
ficult to manage.Application-level performance,however,
mustbemeasurableor applicationswill not function.More
importantly, however, the NwsAlarm methodologyis gen-
eral. In thecaseof network faults,we cancall upontracer-
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outeto verify the efficacy of the system,but tracerouteit-
self might prove a betterchoicein somesettings. For re-
sourceswithout analogouslow-level measurementutilities
(i.e. non-pagedrealmemoryon Unix systems)NwsAlarm
is alsoapplicable(althoughits accuracy is moredifficult to
verify). It is our conjecturethatsincetheperformancefault
detectionmethodologywedescribein thispaperis effective
in caseswhereit canbeverified,it will alsobeeffective in
thecaseswhereit can’t.

5 NwsAlarm Validation

The NwsAlarm is able to identify accuratelyevents that
causechangesin expectedperformancelevels. It doesthis
by monitoringchangesin forecastedvaluesasopposedto
raw datameasurements.In thissection,weverify thisaccu-
racy bycomparingthenumberof falsealarmsthatareraised
whenmeasurementdataaloneis comparedagainstperfor-
mancethresholds,andwhenforecastdatais usedinstead.

In our first examplewe monitoredthe bandwidthon an
ISDN link betweenbetweenthe University of Tennessee
andthehomeof a local userin Knoxville, Tennessee.This
datais displayedin Figure5. We show both the measure-
mentand the forecasteddatataken at 10 secondintervals
andcollectedoveraperiodof 5 hours.Theleft graphshows
boththemeasurement(dark)andforecasted(light) datato-
gether. Theright graphcontainsonly theforecastedvalues
(from the left graph) for clarity. In addition, eachgraph
containsan NwsAlarm thresholdline (in red for colored
version)at �	� 
 Mb/s. This indicatesan arbitrary threshold
setby an administrator. For the measurementdatacase,a
measuredvaluebelow this thresholdcausesanalarmto be
triggered.Similarly, for the forecastcase,analarmis trig-
geredwhentheforecastvaluefallsbelow �	� 
 Mb/s.

Duringthemeasurementperiod,four largetransferswere
madecausinga reductionin availablebandwidth. In addi-
tion, the network failed in the 3rd and4th hours(as indi-
catedon eachgraph).TheNwsAlarmwasusedto indicate
whenfailuresor low bandwidthavailability occurred.The
total numberof alarmsthatshouldhave besentin this sce-
nariois 136.Usingmeasurementsto evaluatethresholdlim-
its cause32 alarmsto befalselysent;usingtheNwsAlarm
predictedvalues,only 2 falsealarmsweresent.Unlike our
otherexamples,the NwsAlarm is usedin this scenarioto
distinguisheventsthathavenootherlow-levelmeasurement
facility, namely, thelossof bandwidthdueto contention.If
the link wasintendedto be freeof othertraffic, thealarms
wouldhavebeenindicativeof eithera routingproblem(i.e.
othertraffic waserroneouslybeingroutedover the link) or
a securitybreech.

TheNwsAlarmcanalsobeusedto alertadministratorsto
lossin Abileneservice,asdescribedin theprevioussection.
If Abilene becomesunavailable,eitherdueto catastrophic

Table 1: Comparisonof false alarm count using NWS-
predicted values and raw measurementdata in the
NwsAlarm. Useof predictedvaluesenablemoreaccurate
errordetection.

Predictions Raw Measurements
Sub-trace FalseAlarms FalseAlarms
Figure6a 0 298
Figure6b 112 477
Figure7a 0 250
Figure7b 13 494

Avg 31 380

failure or routing table misconfiguration,users,expecting
thequalityof serviceAbileneprovides,canbealertedusing
theNwsAlarm.

To empirically evaluatethe accuracy of the NwsAlarm
in this situation,we presentfour different tracesof Abi-
lene data from the link betweenthe University of Ten-
nessee,Knoxville, and the University of California, San
Diego (UCSD) in Figures6 and7. Bandwidthvaluesare
shown in Mb/s (y-axis) at approximately30 secondinter-
vals.Thelengthof thetracesvariesfor eachpairof graphs,
but is given along the x-axis. Two graphsare shown for
eachtraceperiod.

Theleft graphof eachpairagainshowsthemeasurement
(dark) andpredicted(light) data. The right graphshelp to
distinguishthe two seriesby providing only the predicted
data. A NwsAlarm thresholdvalueof �	��� Mb/s wasused
in this studyandis indicatedby thehorizontal(red)line on
eachgraph.Eachtimeavalueis below thethresholdline, it
indicatesthatanalarmhasbeensentto anadministratorof
thelink. Toverify thattheNwsAlarmaccuratelydetermines
routing tablechanges,we have imposedtwo vertical lines
on eachgraphindicatingwhensucheventsoccurredin our
traceroutedataloggedover thesameperiod.

The goal of the NwsAlarm in this scenariois to send
an alarmonly whenthe Abilene servicedegradesto com-
mon carrier. Commoncarrier is indicatedon the graphs
as “QWest”. OnceAbilene servicehasresumed,no fur-
theralarmsshouldbesent.Obviously, if raw measurements
areusedto determinewhen to sendan alarm,many false
alarmsoccur. Using the NwsAlarm resultsin far fewer
falsealarms.Thesecountsareshown in Table5. On aver-
age,92%fewer falsealarmsaresentusingNwsAlarmwith
NWS-predictedvalues.
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Figure5: 5-hourISDN bandwidthtracedata.Theleft graphshowsboththemeasurements(dark-coloredseries)andNWS
predictedvalues(light-coloredseries)takenat 30 secondintervals. The right graphshows only thepredictedvaluesfor
clarity. Thex-axis is time andthey-axis is bandwidthin Mb/s. Threelargetransfersoccurredduring the traceandtwo
network failures.TheNwsAlarmis usedto identify theseevents.A horizontalline is shown at �	� 
 Mb/s, this valueis the
NwsAlarmthresholdvalue.Alarmsaresentwhenpredictedvaluesfall below this threshold.Usingactualmeasurements
to sendalarmscauseinaccurate,falsealarms.

6 Related Work

Much researchhasgoneinto themeasurementandpredic-
tion of resourceperformance. For network performance
specifically, theauthorsin [6] describecharacteristicsand
theoreticalpredictability but do no on-line analysisas is
providedby theNwsAlarm. Carteret.al. performdynamic
probing of networks with bprobe[5], andusebasicfore-
castingtechniquesto predictshortterm performance.The
predictionutilities of NWS-basedtools are more sophis-
ticatedthan thoseusedin bprobe,althoughit is possible
that even simple forecastingtechniqueswill be effective.
Bprobe,however, is not designedto detectandsignalper-
formancefaultsin thewayNwsAlarmdoes.

In [7], Downey describesthe effectivenessand limita-
tions of using pathchar[13], a tool for measurementof
bandwidth,round-triptime, averagequeuelength,andloss
rate,to predictInternetlink characteristics.Pathcharis im-
plementedusingICMP echoand/orport-unreachablepack-
ets and requiresuper-userprivileges. While the tool and
Downey’s analysisof its useareexceptional,hepointsout
that in many wide areasettings(suchasAbilene)pathchar
mayyield erroneousreadings.In particular, thepredictions
it makesfor application-deliverablebandwidthperformance
canbe substantiallyin error. Sincethe NWS usesend-to-
endmeasurements,it doesnot suffer from theseinaccura-
cies.An advantageof pathchar, however, is thatit doesnot
require“hardcollaboration”,but theNWSdoes.

Dinda et.al. articulatethe predictability of CPU load
in [18]. The NwsAlarm can also predict CPU load and

availability using the sameforecastersas thoseusedfor
network performanceprediction. NWS-basedtools differ
in that the forecastersare computationallyless intensive
while offeringsimilaraccuracy. In [17], theauthorsuseraw
transfertime andCPU load of mirroredWorld Wide Web
serversto determinewhich server sitesshouldbe selected
at any given time. This work differs from the NwsAlarm
for the samereasonsnotedabove. The NwsAlarm canbe
usedto visualizeraw andpredicteddatabetweena user’s
desktopandany server, mirroredor otherwise,atwhich the
NwsAlarmis installed.Thisway, userscandynamicallyde-
terminewhichserver(if mirrored)to useandchangehis/her
decisionwhenalertedby theNwsAlarm.

7 Conclusion

Knowledgeof end-to-endperformancedeliverableto anap-
plication enablesusersto make informed decisionsabout
theuseof availableresources.Toolsareneededto aidusers
by measuringandvisualizingavailableperformanceandby
alertinguserswhenexpectedperformancedegrades.In this
paper, we presenta tool, the NwsAlarm, which displays
this availableperformance(CPU,memory, or network per-
formance),reportsshort-termperformanceforecasts,and
alertsusersto unexpecteddegradations.Administratorsof
Grid-computinginfrastructurescanusethe latter to main-
tain expectedperformancelevels or to inform userswhen
they areunableto doso.

We illustratethe utility of the systemby demonstrating
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Figure 6: Sub-tracesfrom 5-monthAbilene bandwidthtracedata. Pair (a) is from a 31-hourtracestartingJune1 at
approximately5:30am;(b) from a83-hourtracestartingAugust11atapproximately12:38pm.Theleft graphshowsboth
themeasurements(dark-coloredseries)andNWSpredictedvalues(light-coloredseries)takenat30secondintervals.The
right graphshows only the predictedvaluesfor clarity. The x-axis is time and the y-axis is bandwidthin Mb/s. The
NwsAlarm wasusedto determinewhenAbilene connectivity degradedto commoncarrier (QWest) andwhenservice
resumed.A horizontalline is shown at �	��� Mb/s, this valueis the NwsAlarm thresholdvalue. Alarms aresentwhen
predictedvaluesfall below this threshold.Using actualmeasurementsto sendalarmscauseinaccurate,falsealarmsas
indicatedby thedata.NwsAlarmaccuratelyindicateslossandrestorationof Abileneservice.
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Figure7: Sub-tracesfrom 5-monthAbilene bandwidthtracedata. Pair (a) is from a 22-hourtracestartingMay 24 at
approximately3:21am;(b) from a 83-hourtracestartingMay 26 at approximately3:55am. The left graphshows both
the measurements(dark-coloredseries)andNWS predictedvalues(light-coloredseries). The right graphshows only
the predictedvaluesfor clarity. The x-axis is time andthe y-axis is bandwidthin Mb/s. The NwsAlarm wasusedto
determinewhenAbileneconnectivity degradedto commoncarrier(QWest)andwhenserviceresumed.A horizontalline
is shown at �
� � Mb/s, this value is the NwsAlarm thresholdvalue. Alarms aresentwhenpredictedvaluesfall below
this threshold. Using actualmeasurementsto sendalarmscauseinaccurate,falsealarmsasis apparentfrom the data.
NwsAlarmaccuratelyindicateslossandrestorationof Abileneservice.
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how it is able to detecterroneousrouting table configu-
rationsby dynamicallyanalyzingend-to-endperformance
measurements.By comparingforecaststo user-specified
thresholds,the NwsAlarm accuratelyidentifiesperiodsof
time during which the routing tablesarecorrectlyconfig-
ured betweena pair of hosts,and periodswhen they are
misconfiguredcausinga performancedegradation. In ad-
dition, the systemcorrectlydetectslink contentionand,of
course,link outage.

To investigatethe efficacy of forecasting,we compare
thenumberof falseperformancealarmsthataregenerated
whenraw measurementdatais usedasa trigger, andwhen
NWS forecastsareusedto trigger andalarm. On average,���

% fewer alarmsareraisedby theNwsAlarmthanif raw
bandwidthmeasurementsare usedto detectperformance
changes.Sincethe forecastingtechniqueseffectively filter
randomfluctuationsfrom the performancetracesthey are
able to reducethe numberof falsealarmsthat arecaused
by typical randomvariation. The NwsAlarm is fully im-
plementedandin useatvariousweb-sitesacrosstheUnited
States.It canbe downloadedin appletform andexecuted
from �
������������������� ����� � �"!#� $&%��'��(')�*�),+���� .

References

[1] Abilene. http://www.ucaid.edu/abilene .

[2] D. Andresenand T. McCune. Towards a hierar-
chical schedulingsystemfor distributedwww server
clusters. In Proc. of the SeventhIEEE International
Symposiumon High PerformanceDistributedCom-
puting(HPDC7)(to appear), Chicago,Illinois, July
1998.IEEE ComputerSociety.

[3] F. Berman,A. Chien, Keith Cooper, JackDongarra,
Ian Foster, Lennart JohnssonDennis Gannon,Ken
Kennedy, CarlKesselman,DanReed,LindaTorczon,,
andRichWolski. Thegradsproject:Softwaresupport
for high-level grid applicationdevelopment. Tech-
nical ReportRice COMPTR00-355,Rice University,
February2000.

[4] F. Berman, R. Wolski, S. Figueira, J. Schopf, and
G Shao. Application level schedulingon distributed
heterogeneousnetworks.In Proceedingsof Supercom-
puting1996, 1996.

[5] R. Carter and M. Crovella. Dynamic server se-
lection using bandwidth probing in wide-areanet-
works. Technical Report TR-96-007, Boston
University, 1996. available from http://cs-
www.bu.edu/students/
grads/carter/papers.html .

[6] M. CrovellaandA. Bestavros.Self-similarityin world
wide web traffic: Evidenceand possiblecauses. In

Proceedingsof the1996ACM SigmetricsConference
on MeasurementandModelingof ComputerSystems,
1996.

[7] A. Downey. Using pathcharto estimateinternetlink
characteristics.In SIGCOMM’99, 1996.

[8] Entropia.http://www.entropia.com .

[9] M. Faerman, A. Su, R. Wolski, and F. Berman.
Adaptive performancepredictionfor distributeddata-
intensive applications. In Proceedingsof SC99,
November1999.

[10] I. Foster, C Kesselman,andS.Tuecke. Thenexusap-
proachto integratingmultithreadingandcommunica-
tion. Journal of Parallel andDistributedComputing,
1997. to appear.

[11] Ian FosterandCarl Kesselman.TheGrid: Blueprint
for a New ComputingInfrastructure. MorganKauf-
mannPublishers,Inc., 1998.

[12] Andrew S. Grimshaw, William A. Wulf, JamesC.
French,Alfred C. Weaver, andPaul F. Reynolds. Le-
gion: Thenext logical steptowrd a nationwidevirtual
computer. TechnicalReportCS-94-21,Universityof
Virginia,1994.

[13] V. Jacobson.Pathchar:A tool to infer characteristics
of internetpaths.

[14] V. Jacobson. Traceroute: A tool for printing the
routepacketstake to a network host. availablefrom
ftp.ee.lbl.gov/nrg.html .

[15] C. Krintz and R. Wolski. JavaNws: The Network
WeatherServicefor the desktop. In Proceedingsof
ACM JavaGrande2000, June2000.

[16] C. Krintz andR. Wolski. Using javanwsto compare
c andjava tcp-socket performance.In TheJournal of
ConcurrencyandComputation:PracticeandExperi-
ence, dec2000.

[17] A. Myers,P. Dinda,andH. Zhang.Performancechar-
acteristicsof mirror serverson the internet. In Pro-
ceedingsof Infocom’99, March1999.

[18] D. O’Hallaron P. Dinda. An evaluation of linear
modelsfor host load prediction. In Proceedingsof
the Eighth IEEE International Symposiumon High
PerformanceDistributedComputingHPDC8, August
1999.

[19] ParaBon.http://www.parabon.com .

[20] Seti At Home.
http://setiathome.ssl.berkeley.edu .

11



[21] N. SpringandR. Wolski. Application level schedul-
ing: Genesequencelibrary comparison.In Proceed-
ings of ACM InternationalConferenceon Supercom-
puting1998, July1998.

[22] A. Su, F. Berman,R. Wolski, andM. Strout. Using
AppLeSto schedulea distributedvisualizationtoolon
thecomputationalgrid. InternationalJournalof High
PerformanceComputingApplications, 13,1999.

[23] R. Wolski. Dynamically forecastingnetwork per-
formanceto supportdynamic schedulingusing the
network weatherservice. In Proc. 6th IEEE Symp.
on High PerformanceDistributedComputing, August
1997. to appear.

[24] R. Wolski. Dynamically forecasting network
performance using the network weather service.
Cluster Computing, 1998. also available from
http://www.cs.utk.edu/˜rich/publications/.

[25] R. Wolski, N. Spring, and J. Hayes. The net-
work weatherservice:A distributedresourceperfor-
manceforecastingservicefor metacomputing. Fu-
ture Generation Computer Systems, 1999. avail-
able from http://www.cs.utk.edu/˜rich/
publications/nws-arch.ps.gz .

12


