
The Case for Dynamic Optimization
Improving Memory-Hierarchy Performance by Continuously Adapting
the Internal Storage Layout of Heap Objects at Run-Time

THOMAS KISTLER and MICHAEL FRANZ

University of California, Irvine

We present and evaluate a simple, yet efficient dynamic optimization technique that increases
memory-hierarchy performance for pointer-centric applications by up to 24% and reduces cache
misses by up to 35%. Based on temporal profiling information, our algorithm reorders individual
data members in dynamically allocated objects to increase spatial locality. Our optimization is
applicable to all type-safe programming languages that completely abstract from physical storage
layout; examples of such languages are Java and Oberon.

In our implementation, the optimization is fully automatic and operates at run-time on live
data structures, guided by dynamic profiling data. Whenever the results of profiling suggest
that a running program could benefit from data-member reordering, optimized versions of the
affected procedures are constructed on-the-fly in the background. As soon as it is safe to do so,
the dynamically generated code is substituted in place of the previously executing version and all
affected live data objects are simultaneously transformed to the new storage layout. The program
then continues its execution using the improved data arrangement, until profiling again suggests
that re-optimization would be beneficial. Hence, storage layouts in our system are continuously
adapted to reflect current access profiles.

Our results indicate that it is often worthwhile to re-optimize an already executing and opti-
mized program all over again when the user’s behavior changes. The main beneficiaries of such
re-optimizations are shared libraries, which at different times can be optimized in the context of
the currently dominant client application. In our experiments, we optimized a system library in

the context of four different usage patterns and then correlated each of these specialized libraries
across all four of the usage patterns. In some contexts, the specialized library performed 13%
better than libraries optimized for another access pattern, and also 7% better than the original
library that wasn’t optimized for any particular access pattern. Hence, in systems where such
re-optimizations can be executed rapidly, it becomes worthwhile to construct specialized versions
at run-time.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Optimiza-
tion; D.3.4 [Programming Languages]: Processors—Run-Time Environments

General Terms: Memory-Hierarchy Optimization, Dynamic Re-Optimization, Dynamic Data
Structures

1. INTRODUCTION

As the growth in raw processing power continues to outpace improvements in the
storage hierarchy, memory performance is increasingly becoming a limiting factor of
application speed. In recent years, compilers have begun to address this issue. For
example, techniques have been developed to mask memory latency by fetching data

Authors’ address: Department of Information and Computer Science, University of California at
Irvine, Irvine, CA 92697–3425. Part of this work is funded by the National Science Foundation
under grant CCR–97014000.

2 · T. Kistler and M. Franz

ahead of time [Mowry et al. 1992], and program transformations such as cache-
blocking, loop-skewing, and loop-tiling have been invented to increase data locality
[Wolf and Lam 1991]. All of these optimizations are particularly effective in the
domain of scientific computing, in which programs operate extensively on arrays.
Unfortunately, they fare considerably worse in application domains in which most
data structures are dynamically allocated and accessed via pointers. Applications
of the latter kind include object-oriented and component-based programs.

In this paper, we present an optimization technique that increases memory per-
formance specifically for pointer-centric applications. Our optimization is based on
determining the best internal storage layout for dynamically allocated data struc-
tures. It applies to programming languages that are fully type-safe, such as Java
[Gosling et al. 1996] and Oberon [Wirth 1988]. These languages do not attach a
semantic meaning to the declaration order of data members and do not expose the
actual physical layout to the programmer; as a consequence, choosing an internal
layout lies completely in the domain of the compiler.

Our technique strives to maximize spatial locality of individual data members
and hence is markedly different from traditional data-layout strategies that attempt
to minimize the total space requirements of compound data structures [Muchnick
1997]. The traditional strategy is based on the assumption that a smaller memory
footprint leads to faster applications, especially in garbage-collected environments.
However, our work suggests that this assumption is misleading. In some cases,
increasing an object’s size leads to a greater flexibility in placing data members,
and thereby facilitates better cache performance. Our algorithm also specifically
addresses the fact that there is a preferred bank-access ordering that needs to be
observed to obtain optimum performance from interleaved memory.

The algorithm we present in this paper automatically selects an ordering for
the data members of each pointer-based data structure. Our technique does not
involve programmers in the optimization process, but leaves them free to declare
data members in any order whatsoever. It thereby elegantly de-couples software-
engineering concerns from performance issues.

Our algorithm is based on a simple strategy that first partitions the individual
data members of a dynamically allocated data structure into aggregates that each
fit into a single cache line. In this process, data members whose individual accesses
are close together in time are assigned to the same cache line to maximize data lo-
cality. Then, after partitioning, the data members that have already been mapped
to a single cache line are ordered to minimize load latency in case of a cache miss.
During this ordering, a distinction is made between fields that are less likely to
cause cache misses and those that are more likely to do so; the latter are placed
at addresses mapped to the preferred bank of interleaved memory. The entire op-
timization process is guided by temporal profiling information that captures which
paths through the program are taken with what frequency.

In the following, we will use the terminology of the Java programming language
and refer to data members as “fields”. The remainder of this paper is organized
as follows: Section 2 through Section 4 discuss different aspects of the algorithm.
Section 5 describes our particular implementation context. Section 6 applies our
technique to several benchmarks. Section 7 discusses related work and Section 8
concludes the paper.

The Case for Dynamic Optimization · 3

2. AUTOMATED FIELD LAYOUT

Our primary objective is to increase data locality by identifying fields that are
frequently accessed within a certain time interval and co-locating them on the same
cache line. A secondary objective is to place individual fields on a single cache line
in a spatial order that minimizes the performance penalty to be paid in the case of
a cache miss. Two specific hardware characteristics of modern memory subsystems
cause the ordering of fields on a line to be relevant, namely memory interleaving
and cache line-fill buffer forwarding.

Interleaving has an influence because it partitions the memory into banks that
cannot be accessed equally efficiently. Modern memory controllers deliver data from
a single row of memory in bursts and use a fixed sequence in which they distribute
column addresses to the memory banks (two such banks in our example). There
is a preferred memory bank that always receives the first column address cycle. If
the read starts with a column address that is mapped to a different bank, then this
first cycle is wasted. Hence, in order to achieve optimum performance, fields that
have a high probability of causing a cache miss should come to lie at addresses that
are mapped to the preferred memory bank.

The second reason why the ordering of fields on a cache line has an influence
on performance is related to the way that the cache is filled from memory. On
most processors, the words on a cache line do not become simultaneously available
after a cache miss has been serviced from memory. Rather, the cache line is filled
in ascending memory address order, starting at the location that caused the cache
miss, and “wrapping around” at the end of the cache line to load the remaining
words. For example, consider a system in which the data bus is one word wide
and a cache line holds eight such words. Now imagine that a read from address
003 causes a cache miss, resulting in a cache line being filled with the data stored
in locations 000 through 007. The cache line would actually be filled in the order
003, 004, 005, 006, 007, 000, 001, 002; i.e., it would take at least seven additional
cycles from the time at which the contents of location 003 become available until
the contents of 002 become available also. On processors such as the PowerPC
604e [Motorola Inc. 1996] that forward the contents of the cache line-fill buffer to a
requesting load unit immediately upon availability, it can hence make a difference
whether the predominant memory access pattern is 003 followed by 002, or vice
versa.

For our algorithm, we assume that memory-access instructions are executed in-
order, even on processors that generally provide out-of-order execution. This seems
reasonable for current architectures. For example, if two load instructions are both
ready to execute, then the processor will issue them in order. Our optimization
applies only to subsequent loads of different fields of the same object. Hence,
presumably, the same base register would be used for addressing both fields, albeit
with different offsets. Consequently, the situation will never arise that an earlier
load needs to wait because its address calculation is not yet complete while a later
load for the same object can proceed. Note that this underlying assumption may no
longer be true if load value prediction [Gabbay 1996; Lipasti et al. 1996; Burtscher
and Zorn 1999] becomes commonplace at some point in the future. We also assume
that heap objects are aligned to a cache-line boundary. This is not unreasonably

4 · T. Kistler and M. Franz

difficult to accomplish and a reality in many existing systems.
In order to determine how to best partition the fields of an object into cache-

line sized aggregates and how then to further order the individual fields within
partitions, a cost model is required. An optimal cost model would reflect the
execution time penalty caused by a particular arrangement of fields. Unfortunately,
such an optimal model is very difficult to find in practice. We therefore fall back to
a simplified model that estimates the number of cache misses under the assumption
that the number of cache misses is proportional to an execution time penalty.

We compute this cost model based on a temporal relationship graph (TRG) that,
for a particular data object, captures information on how its fields are accessed.
Similar graphs have been used in a variety of contexts. In their work on cache-
conscious data structures, Chilimbi et al. [Chilimbi et al. 1999] use an “affinity
graph” to record field accesses within a certain interval, but without recording the
order in which these accesses occur. To aid procedure placement in the context of
instruction cache optimization, Gloy et al. [Gloy et al. 1997] use a directed graph
that also captures this finer-grained information. Our approach is more similar
to the latter than the former, in that we consider each pair of accesses individu-
ally rather than grouping them into clusters that are considered simultaneous. In
our model, vertices correspond to fields, and they are connected by edges whose
weights represent the degree of temporal dependency between the two connected
fields. More concretely, the weights reflect the number of times that the two fields
are accessed subsequently within a specific time interval. The weight is roughly
proportional to the benefit of co-locating both fields on the same cache line, as this
increases the probability that one field will already be in the cache as a result of
accessing the other1.

The TRG is created by collecting path profiling information and then stepping
through each program path returned by the profiler. A stack-like auxiliary data
structure of the most recently accessed fields is maintained to simulate the effects of
the cache. For every load or store instruction that references a field F in a dynamic
object O we push the pair (O,F) onto the stack and remove an earlier reference
to (O,F) from the stack. The stack is finite; when it reaches its limit, the oldest
(bottommost) element is removed to create room at the top. Next, we traverse
the stack top-down and search for pairs (O,F ′) that reference the identical object
O but a different field F ′. For every match, we increment the weight of the edge
between F and F ′. We so model the fact that field F is used following an access
to field F ′ (F does not necessarily have to directly follow F ′).

Unfortunately, the two main objectives of our algorithm—partitioning fields into
different cache lines and ordering fields within cache lines—require slightly different
temporal information and parameters. The first dissimilarity is the optimal stack
size. The stack size limits the number of fields concurrently under observation
and controls the recording of relationships: older objects are displaced from the
stack due to capacity constraints. For partitioning, an optimal algorithm records
relationships as long as both fields reside in the data cache. Intuitively, to accurately

1We assume a write-allocate, write-through cache in which a write to a memory location not in
the cache will bring the corresponding block into the cache. A write to a location already in the
cache will “write through” without stalling the processor.

The Case for Dynamic Optimization · 5

model the capacity constraints of the data cache, the optimal stack size should be
proportional to the size of the data cache. But for ordering, the stack size must be
no larger than the number of cycles required to load an entire cache line (i.e., eight
memory cycles in the example above). This is because accessing an additional field
within an already loaded cache line comes at no extra cost.

The second dissimilarity is the edge increment for two related fields on the stack.
For partitioning, an increment of one is sufficient. Accessing two fields located in
distinct cache lines requires loading both cache lines, independently of the number
of cycles between these two accesses. However, for ordering fields within cache lines,
we prefer an increment that is proportional to the number of cycles between the
accesses, i.e., proportional to the distance between the two pairs on the stack. The
reason for this is that accessing two fields in the same cache line within one cycle
might incur a larger execution penalty than accessing them within three cycles.

So how can these different requirements be integrated into one basic model?
Maintaining two different TRGs and two stacks with different sizes would be a
naive solution. A more refined solution maintains two separate weights per edge:
one for partitioning the graph and one for ordering fields within partitions. The
weights for graph partitioning are computed as described above, using a constant
edge increment of one. The weights for field ordering are computed using the same
stack and using edge increments that are proportional to the distance between the
two pairs on the stack. In the field ordering algorithm, we consider only items
within a certain distance from the top of the stack while traversing the stack top-
down. This is equivalent to using a smaller stack. We will subsequently call this
distance the look-ahead distance.

3. GRAPH PARTITIONING

The first phase of our optimization partitions the fields of a dynamic data structure
into aggregates of fields that fit into a single cache line. In technical terms, it
searches for a k-way graph partitioning of the temporal relationship graph G into
partitions P1, . . . , Pk, where k = dobjectsize/cachelinesizee, |Pi| ≤ cachelinesize ,
and the sum of all edges between the partitions is minimized. We solve the k-way
partitioning problem by recursive bisection, that is, we first obtain a 2-way partition
of the graph that splits the graph into two equally-sized parts. We then further
subdivide each part using 2-way partitioning (also called a graph bisection).

For bisecting the graph, we have adopted a variation of the Kernighan-Lin Graph
Bipartitioning Algorithm [Kernighan and Lin 1970; Dutt 1993] that can be imple-
mented efficiently. It works as follows: Given a graph G with n = 2m vertices, we
initially create two arbitrary partitions P1 and P2, with |P1| = |P2| = m. We then
start an iterative process that is called a pass. A pass can best be summarized as
trying to find two equally-sized subsets S1 ⊂ P1 and S2 ⊂ P2, such that swapping
S1 and S2 reduces the total cost of edges from P1 to P2. This is done by choosing
a pair of unmarked vertices (v1, v2) ∈ P1 × P2 that, by swapping vertices v1 and
v2, minimizes the total cost of edges from P1 to P2. Both vertex v1 and v2 are
then marked in P1 and in P2, respectively, but not actually swapped. This proce-
dure is repeated until all the vertices in P1 and P2 are marked. At this point we
have computed a sequence of pairs (v1,1, v2,1), . . . , (v1,i, v2,i), . . . , (v1,m, v2,m). For
every i, 1 ≤ i ≤ m, we compute the associated gain Gi for swapping vertex pairs

6 · T. Kistler and M. Franz

1 . . . i. We choose p such that gain Gp is maximal and exchange all vertex pairs
(v1,1, v2,1), . . . , (v1,p, v2,p) between partitions P1 and P2. A number of passes are
made until the maximal gain Gp is 0 and a local minimum is reached. Since this
local minimum is highly dependent on the choice of the initial partition, we repeat
this process for different randomly created initial partitions.

Finding an optimal k-way partition for large graphs is an NP-complete problem.
As such, there exists no known algorithm that solves the problem in polynomial
time. However, a wide variety of heuristics-based approaches have been published
in the last 30 years. One of the original papers by Kernighan and Lin describes a
very efficient algorithm for bipartitioning large graphs [Kernighan and Lin 1970].
Several refinements of this algorithm have been described since, among them the
improved version by Dutt [Dutt 1993], which our own implementation is based on.
There also exist more advanced algorithms based on multilevel partitioning schemes
[Karypis and Kumar 1999]. However, since our graphs are usually small in size, the
use of multilevel-partitioning algorithms does not seem justified.

The graph requires some minor adjustments prior to bisection. First of all, in
order to end up with k equally-sized partitions that each have the size of a cache
line, the original graph has to be expanded to the nearest cachelinesize · 2k. We
do this by inserting additional fill vertices into the graph. The fill vertices are
connected to all other vertices in the graph with edges of weight zero.

Secondly, individual fields have different sizes, which prevents the algorithm from
swapping any two arbitrary vertices in the graph. In order to maintain equally-sized
partitions, the algorithm is allowed to swap only field combinations that leave the
size unchanged. Since we might also want to swap a field of type float with four
fields of type byte, we divide every field F of size s into a cluster of s vertices of
size one. These vertices are strongly connected by assigning infinite weights to the
edges between them. This prevents a division of the cluster into different partitions
but makes it possible to swap vertices arbitrarily.

Finally, the concept of structural type inheritance needs special attention. The
internal field layout of a derived type is constrained by the layout of its supertype.
However, in order to minimize memory consumption, some of the fields of a derived
type may be placed into the last partially used cache line of the supertype, rather
than placing them onto a new cache line. We simulate the last partially used cache
line by inserting an additional leader vertex into the graph. The size of this leader
vertex is the used fraction of the last cache line of the supertype (size(leader) =
size(supertype) mod cachelinesize). The partitioning algorithm always places the
leader at the beginning of the first cache line. Further, the leader vertex acts as a
placeholder for the constrained inherited field layout of the supertype.

We have experimented with two different variations of our partitioning algorithm
that differ in how the leader vertex is connected to other vertices in the graph. In the
first variant that we call latency-conscious, all edge weights between the leader and
other vertices are set to zero. This reduces the likelihood that any field of a derived
type is placed into the same partition as the leader and thereby potentially wastes
storage. However, it can increase cache locality if the temporal relationship among
the added fields of the derived type is greater than that between the added fields and
the inherited fields. In the second variant that we call memory-conscious, the leader
is treated as a normal vertex in the computation of edge weights. Consequently,

The Case for Dynamic Optimization · 7

D

E

80

140

0

10020

200

60 40

130

90

∞

∞

D

E

80

140

0

10020

200

60 40

130

90

∞

∞

∞

A0

B0

D

E

80

140

0

10020

200

60 40

130

90

∞

∞

∞

A1

B1

C0

C1

A0

B0

A1

B1

C0

C1

A0

B0

A1

B1

C0

C1

ε0

ε1

ε2

ε3

ε0

ε1

ε2

ε3

ε0

ε1

ε2

ε3

Step Swapping Gain of Swap- Total Gain
i (v1, v2) ping v1 with v2 of Steps 0..i

1. (C1, D) -690 -690

2. (C0, E) 910 220

3. (B1, ε0) -1000 -780

4. (B0, ε1) 770 -10

5. (A0, ε2) -990 -1000

6. (A1, ε3) 1000 0

Maximum gain (220) is achieved after two steps →
swap C1 with D and C0 with E.

New partition cost = 550-220 = 330.

Step Swapping Gain of Swap- Total Gain
i (v1, v2) ping v1 with v2 of Steps 0..i

1. (E, ε0) -120 -120

2. (D, ε1) -30 -150

3. (A0, ε2) -750 -900

4. (A1, ε3) 1000 100

5. (B0, C1) -1770 -1670

6. (B1, C0) 1670 0

Maximum gain (100) is achieved after four steps →

swap E with ε0, D with ε1, A0 with ε2, and A1 with ε3.

New partition cost = 330-100 = 230

Cost = 550

Cost = 330

Cost = 230

∞

Fill Vertices

Size Adjustment Vertices

class foo {
 A: short;
 B: short;
 C: short;
 D: byte;
 E: byte;
}

For the purpose of this illustration ∞ = 1000

Fig. 1. Graph Partitioning: A small data structure comprising of three shorts (2 bytes) and two
bytes (1 byte) is partitioned for an illustrative cache line size of six bytes. To make the total
number of bytes a multiple of the cache line size, four bytes of padding are added (Fill Vertices
ε0. . . ε3). The algorithm iterates until no further gain can be found. For a graph with N vertices,
each iteration comprises of N/2 steps. In each step, we apply the vertex swap that achieves
the maximum gain; the corresponding two vertices are then not considered again for subsequent
swaps. After executing all N/2 steps (i.e., swapping each vertex exactly once), we choose the step
configuration that resulted in the largest overall gain.

8 · T. Kistler and M. Franz

fields are more likely to be placed into the same cache line as the leader, which
reduces storage consumption.

Our results indicate that applications with a large load/store ratio are likely
to perform better with latency-conscious partitioning, whereas applications with
a small such ratio usually do better with memory-conscious partitioning. A large
load/store ratio suggests an “allocate once, reference often” type of program, for
which the benefit of reducing latency usually outweighs the advantage of reducing
memory consumption. In contrast, for applications that are characterized by a
smaller load/store ratio and that hence intersperse allocation and use more evenly,
reducing the memory footprint is more important, especially in a garbage-collected
environment. In our experience, the ratio of load instructions to store instructions
is a good classification instrument for choosing one of the two partitioning variants.

4. FIELD ORDERING

The second major component of our algorithm arranges fields within cache lines to
optimize access patterns for memory architectures offering interleaving and cache
line-fill buffer forwarding. Each cache line is subdivided into partitions equal to
the data bus width. We optimize for an architecture in which the assignment of
partitions to two memory banks alternates between a single preferred and a single
non-preferred bank, with the beginning of each cache line being mapped to the
preferred memory bank. Further characteristics of our target hardware are that it
is able to forward the contents of the cache line-fill buffer to a requesting load unit
immediately upon availability, and that it does not re-order load instructions that
are mapped to the same cache line.

Our algorithm exhaustively searches for the permutation that minimizes the load
latency cost C(P) associated with a particular permutation P . The cost function
C(P) for a given permutation of n fields P = (F1, F2, . . . , Fn) is given below:

C(P) =
n−1∑
i=1

n∑
j=i+1

wi,j(mici,j + flbfci,j) + wj,i(micj,i + flbfcj,i)

mici,j = oddbankpenalty ((Fi.adr div bankwidth) mod 2)
micj,i = oddbankpenalty ((Fj .adr div bankwidth) mod 2)

flbfci,j = (Fi.adr div buswidth)− (Fj .adr div buswidth)
flbfcj,i = (linesize div buswidth − flbfci,j) mod (linesize div buswidth)

In this formula, wi,j represents the weight of the edge between fields Fi and
Fj in the TRG. Fi.adr denotes the offset of field Fi relative to the beginning of
its cache line, mici,j represents the penalty for accessing the second non-preferred
memory bank first, and flbfci,j represents the number of intervening cycles between
the availability of field Fi and that of field Fj in the case of a cache miss. In the
example given on page 3, if i represents address 003 and j represents address 004,
then flbfci,j corresponds to one cycle and flbfcj,i to seven cycles.

Although not illustrated in the formula, we also require fields to be aligned prop-
erly. As an example, a double precision floating-point value that is not aligned to

The Case for Dynamic Optimization · 9

an 8-byte boundary results in a high cost value. Our algorithm uses an exhaustive
search technique that has exponential complexity. Nevertheless, runtime is not a
major problem in practice because the number of fields in a cache line is fairly
small. Moreover, we use a smart branch-and-bound variant of the algorithm that
is an order of magnitude more efficient than a naive implementation.

5. IMPLEMENTATION CONTEXT

We have implemented a version of the described algorithm and integrated it into
our dynamic code generation infrastructure [Kistler 1997; Franz 1997; Kistler and
Franz 1999]. This infrastructure consists of a system that continually profiles all
executing code, dynamically generates globally optimized versions of the same code
in the background and then hot-swaps the optimized code image in place of the
previously executing one. The architecture of this system is modular, allowing it
to be readily extended to support the data layout optimization described here.

Although we anticipate that future generations of out-of-order processors will
eventually provide hardware-profiling support for dynamic-optimization systems
[Dean et al. 1997], our current implementation uses local path profiling based on
dynamically inserted instrumentation code. Our choice of path profiling leads to a
comparatively small run-time overhead, but comes at the expense of only being able
to look at each procedure in isolation. Consequently, we cannot capture relations
between subsequent field accesses occurring in different procedures. The larger the
stack, the more such relations we miss because of the increased likelihood of field
accesses from different procedures being on the stack simultaneously. At first sight,
this is a serious disadvantage. Intuition would suggest that a larger stack captures
more interdependencies and is therefore better suited for our algorithm. Luckily,
however, our results indicate the contrary. When experimenting with different
heuristics (including capturing interprocedural field accesses), using a smaller stack
actually yielded better performance. It appears that path profiling is capable of
capturing most of the essential relations; hence it seems to be a good solution for
recording temporal relationships.

Further, as has been documented elsewhere [Kistler and Franz 1998; 1999], our
dynamic re-optimizer doesn’t simply haphazardly keep recompiling the whole sys-
tem. Instead, it uses a history of past profiling data (which periodically undergoes
an “aging” function) to constantly monitor for changes in the system’s behav-
ior. When a significant change in behavior is observed, the system attempts to
re-generate those parts of the system that actually warrant re-optimization (on a
procedure-by-procedure basis). In the case of certain optimizations, such as the
data-member layout optimization described here, it is not possible to predict in-
expensively whether a specific change will yield a significant speed-up or not—a
good prediction heuristic would require almost as much work as doing the actual
optimization itself. In these cases, optimization decisions are made based on static
program analysis and other available information.

With regard to the specific optimization described here, we compute a coarse-
grained estimate of the cache-miss penalty from the available profiling data and
current storage layout. The heuristic used to compute this estimate is pessimistic.
When the estimated cache-miss penalty becomes large and the optimizer determines
that the storage layout of some data type T could be improved by data-member

10 · T. Kistler and M. Franz

re-ordering, it automatically generates new versions of all the affected procedures.
A procedure is affected if its code contains at least one modified field-offset as a
literal. Hence, a procedure can be affected by a re-ordering of T ’s fields only if
it references at least one of the fields declared directly in T—fields inherited from
supertypes of T or added in subtypes of T need not be considered because their
offsets do not change if only T is optimized.

Precisely at the same time that the new versions of the affected procedures are
swapped into the executable state, all existing data structures that include instances
of T need to be translated to the new storage layout. The process of translating
live data structures into a new format has many similarities with garbage collection
and is in fact implemented as an extension to our garbage collector. Structure
translation must be precise; as a consequence, detailed pointer maps need to be
available for all the points in the program at which such a “hot-swap” would be
possible. Our current implementation limits the substitution of live code to certain
predefined system states; this is unproblematic in our particular implementation
since our system is centered around a main “event loop” in which such a state is
entered frequently enough. For a more general implementation, recent work by
Stichnoth et al. [Stichnoth et al. 1999] reports the encouraging finding that the
overhead of keeping detailed pointer maps for every instruction in the program
may be far smaller than previously assumed.

Our system supports the dynamic loading of additional program modules at
runtime, including modules that make use of, or declare extensions of, data types
whose fields have been re-ordered dynamically. Consequently, the existing state of
all re-ordering optimizations needs to be applied to each of these modules upon
loading. Since no data transformations need to be applied, dynamically adding a
module is actually simpler than replacing procedures of an already loaded one.

6. RESULTS

Data layout optimizations are intended to provide performance gains on applica-
tions with poor data locality and large working sets. As others have noted [Truong
et al. 1998], benchmarks such as SpecInt95 do not exhibit this behavior. Conse-
quently, to test our results, we have used a nonstandard suite of programs, all of
which make extensive use of dynamically allocated data structures. Our benchmark
suite includes our optimizing compiler as an example of a non-trivial program. This
optimizing compiler (for the programming language Oberon [Wirth 1988] and the
PowerPC target architecture) allocates large dynamic data structures that model
the program being compiled in a variant of static single assignment form [Bran-
dis 1995; Cytron et al. 1991]. For the compiler benchmark, we only give “ideal”
speedup results. Our optimizer processes code that is wholly type-safe and portable.
The compiler, on the other hand, uses several constructs that are not portable and
makes use of explicit type-casts. With some modifications, we were able to obtain
valid results for optimal storage layout, but at present, the compiler cannot be
continuously re-optimized.

The other benchmarks are TreeAdd and Bisort from the Olden benchmark suite
[Rogers et al. 1995], Jigsaw from the WPI benchmark suite [Finkel et al. 1992],
and BTrees and Texts from the Oberon System 3 [Wirth and Gutknecht 1992;
Gutknecht 1994; Gutknecht and Franz 1999]. These benchmarks represent a variety
of applications and programming styles but have in common that each of them

The Case for Dynamic Optimization · 11

Benchmark Program Size Number of Al- Number of Al- Average Object

(Lines of Code) located Objects located Bytes Size (bytes)

TreeAdd 512 200,001 6,400,032 32

Bisort 229 262,143 8,388,576 32

Jigsaw 317 22,501 1,800,032 80

BTrees 1,343 5,788 463,040 80

Texts 961 18,640 1,192,800 64

Compiler 23,621 1,173,369 66,512,064 57

Table I. Benchmark Characteristics

allocates many megabytes of data, executes billions of instructions, and represents
frequently used operations on dynamic data structures2. Table I summarizes some
important characteristics of our benchmark programs. Of particular interest in the
following will be Texts, which is a fundamental shared library of the Oberon System
and is simultaneously accessed by virtually every program running as part of any
Oberon session. As can be expected, the different clients of this shared library
use the various services offered by the library in different ways. An interesting
consequence that will be explored below is that the optimal internal structure for
the library’s data types depends on the predominant client currently using it.

Our benchmark results were obtained by executing the programs in question mul-
tiple times on a PowerPC 604e (32Kbyte, four-way set-associative first-level data
cache, 1Mbyte second-level cache, both caches are 32 bytes wide), utilizing the
PowerPC’s performance monitor. The performance monitor includes four 32-bit
hardware counters that record detailed events during execution, such as instruction
dispatches, instruction cycles, misses in the cache, and load/store miss latencies.
In order to obtain realistic performance data that is applicable to hardware con-
figurations commonplace today, the benchmarks were executed on a machine with
64 megabytes of physical memory, in contrast to many published results based on
more uncommon hardware configurations. Hence, our performance data implic-
itly include the cost of garbage collection, which in our system is implemented as
mark-and-sweep collector [Wirth and Gutknecht 1992]. The Oberon system has a
document-centric architecture and runs completely in a single address space, rather
than one address space per application.

Our first set of benchmarks (Table II and Figure 2) present an idealistic situation
in which we compare a program with no data-layout optimizations (field ordering
corresponds to programmer’s declarations) with the same program after automated
data-member reordering, without taking into account the cost of optimization and
profiling. A more realistic picture that accounts for these costs is then shown in
Figure 3. In our system, the very first instance of a program to be executed in
a user session is always created by a fast code-generating loader, from a machine-

2Although our system and these benchmarks are based on Oberon, we are not aware of any
particular characteristics of the Oberon language that inhibit a simple mapping into Java. We
expect that these results will apply to Java without restrictions. For obvious reasons, they cannot
be replicated in languages in which programmers make explicit decisions about storage layouts
and then use type-cast operations based on those decisions.

12 · T. Kistler and M. Franz

Benchmark Execution Time Speedup

Original Layout Optimized Layout

(Mio Cycles) (Mio Cycles)

TreeAdd 2,612 2,273 1.15

BTrees 8,582 4,381 1.96

Bisort 1,701 1,642 1.04

Jigsaw 1,954 1,508 1.30

Texts 2,504 1,479 1.69

Compiler 4,663 4,506 1.03

Table II. Ideal Performance Speedup

0%

20%

40%

60%

80%

100%

120%

140%

TreeAdd Bisort Jigsaw BTrees Texts Compiler

E
xe

cu
ti
on

 T
im

e
(R

el
at

iv
e

to
 O

ri
gi

n
al

 L
ay

ou
t) Original Layout

Optimized Layout

Fig. 2. Ideal Performance Speedup

independent software distribution format3. Because this is an interactive process (a
user is waiting for the program to start), and because an optimized version of the
same program will be available soon afterwards, the code generating loader performs
few optimizations. We call the resulting base-line executable the unoptimized code.

When the unoptimized code has started executing, the background re-optimizer
commences its task. It performs a series of static optimizations on critical pro-
cedures and instruments them with path profiling code. The performance of the
resulting executable is presented in Figure 3 under the heading original layout with
path profiling. Note that in the majority of benchmarks, performance is lowered

3Our particular implementation uses the Slim Binary representation [Franz and Kistler 1997],
but our solution does not depend on this fact. Our system could be adapted to use programs
represented as class files for the Java Virtual Machine, or even native code for some specific
processor. This would merely have an effect on the pre-processing effort required to extract
information relevant to the optimizer, such as control flow and data flow information.

The Case for Dynamic Optimization · 13

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

TreeAdd Bisort Jigsaw BTrees Texts

E
xe

cu
ti
on

 T
im

e
(R

el
at

iv
e

to
 U

n
op

ti
m

iz
ed

)

Unoptimized

Original Layout with Path Profiling

Original Layout without Path Profiling

Optimized Layout with Path Profiling

Optimized Layout without Path Profiling

Fig. 3. Profiling Costs: At load-time, the code-generating loader creates a first unoptimized version
of the application. At runtime, the background optimizer performs basic code optimizations and
instruments applications with path profiling—the original data layout is retained. If profiling
information suggests that a different memory layout might increase performance, the storage
layout of live data objects is modified.

due to the cost of profiling, which in these cases cannot be offset by static opti-
mizations. In order to show the cost of the instrumentation, we also present the
performance that this first optimized code image would have if there were no path
profiling code. In actuality, the system never removes the profiling code.

After a while, the system has gathered enough path profiling information to be
able to optimize the layouts of critical data structures. The resulting performance
is presented as optimized layout with path profiling. Again, these figures include
the overhead of profiling (but not the overhead of re-optimization itself), which is
why we add separate numbers for timings without this overhead. In actual use,
the profiling instrumentation is not removed because optimization is continuous:
the system will keep monitoring the profiling data for apparent changes in system
behavior, and if such a behavior is observed, will re-optimize the affected proce-
dures. Note that this doesn’t invalidate the original goals of optimization: as can
be seen in Figure 3, even with the profiling code left in, the optimized program is
still faster than the optimized initial program. Table III breaks down the various
costs associated with optimization by the different phases in the optimization cycle
at which they occur.

So is dynamic optimization of data layouts worth the considerable effort? In order
to answer this question, we first need to study how the “break-even” point is reached
in a system such as ours—that is, if it is ever reached at all. As Figure 4 illustrates,
the benefit of re-optimization is not simply the ratio between the resulting speedup
and the combined overheads of profiling and code re-generation. This is because
the speedup itself is achieved only after the re-optimization phase has completed:

14 · T. Kistler and M. Franz

Opportunity

Cost O0

Opportunity

Cost O1

Compilation

Cost C0

Compilation

Cost C1

 Execution

Speed S2

 Execution

Speed S1

 Execution

Speed S0

Fig. 4. Computing the break-even point

if the dynamic optimization completed halfway through execution, then only half
of its potential benefit could be realized. As shown in Figure 4, the first part of
this cost is related to the fact that profile information isn’t immediately available;
we cannot circumvent having to execute the unoptimized version of the program
for a while first to detect the hot spots in the program (O0). This period of time
is commonly referred to as “opportunity cost”. Once hot spots are detected, there
is a further price to pay for re-generating the code and inserting additional path
profiling instrumentation for these hot spots (C0). Again, we have to run the new
version of the program for a while until path profiling information becomes available
(O1). Finally, we have to pay the optimization costs for creating the temporal
relationship graph, computing the new memory layout, changing the layout of all
live objects, and generating code for the new memory layout (C1). Hopefully, i.e.
if the program’s overall runtime is sufficiently long, this cost is eventually recouped
because the resulting program is significantly faster than the original.

Also note that the cost for the first optimization cycle is higher than the cost for
subsequent optimization cycles. Since profiling instrumentation is never actually
removed, subsequent optimization cycles do not have to pay the price for finding
hot spots and inserting path profiling instrumentation any more (O0 and C0). In
addition, the opportunity cost O1 can partially be overlaid with the time it takes
for the previous optimization cycle to pay off.

The Case for Dynamic Optimization · 15

Hence, the “break-even” point of such a multi-phase optimization process can be
represented by the following generic formula:

break-even point =
Sn

n−1∑
i=0

(Ci +Oi)−
n−1∑
i=0

OiSi

Sn − 1

In the above formula, Oi denotes the opportunity cost at phase i (i.e., the time
required to detect hot spots in the program), Ci denotes the optimization costs at
phase i (i.e., the time required to optimize a hot spot), and Si denotes the execution
time ratio of the unoptimized unprofiled program over the current version of the
program at phase i.

Based on this formula, Table IV attempts to answer the question how long opti-
mized code needs to run so that the investment of optimization is fully recouped.
For example, assuming that the system requires one minute to collect enough pro-
filing information before it can start the optimization, optimizing the storage layout
of the Oberon shared text subsystem pays off after invoking text services for a total
of 3.3 minutes4.

This brings us to the second important insight that our work has yielded, namely
that continuous, rather than do-it-once, optimization yields an added benefit. This
is because a single piece of code is often put to several quite distinct uses over the
course of a single user session lasting several hours, while at each point in time the
user’s attention is usually focused on a relatively small number of current tasks. As
an example, in the Oberon system, the text library is shared by the Web browser,
by the program editor, and by the compiler. Clearly, the text editor that is used
to create new text documents and to modify existing ones places very different
demands on the texts library than the compiler, which only reads text documents,
and does so strictly sequentially. The Web browser uses the text system in a
different manner yet again, as it defines “rich” data types (such as pictures and
hyperlinks) that extend the data types inherited from basic texts, and which must
remain backward compatible with the basic services.

This raises the question how a library optimized for one particular client per-
forms when it is used with another one. To this effect, we performed a series of

4These break-even results assume that re-optimization occurs in the background on the same
processor that is executing user programs. As one of the authors has argued elsewhere [Franz
1997], this scenario may actually turn out to be unnecessarily pessimistic. It may very well be
cost-effective to delegate the task of re-optimization to an additional processor, so that the CPU
running the user’s application is not burdened by the re-optimization task. The reasoning is as
follows: users are willing to pay a considerable premium for cutting-edge performance; a processor
that is only half as fast as the current performance leader usually costs less than half as much
(witness the cost of an Intel Celeron vs. a Pentium III). Hence, it may be worthwhile to add a
cheap (slow) co-processor to a computer system whose sole task is to continuously fine-tune the
instruction stream executed by the much more expensive main processor on which the user’s tasks
are running.

An alternative argument in favor of disregarding re-optimization costs is that many future
computer systems will be multiprocessors. More often than not, some of the processors will be
sitting idle because the executing application is not fully parallelizeable. These idle processors
could be employed for re-optimization.

16 · T. Kistler and M. Franz

Benchmark Phase I Phase II Phase III Phase IV Phase V Total

TreeAdd 0.12 0.39 3.67 3.47 9.03 16.56

Bisort 0.10 1.33 1.27 2.80 1.72 7.12

Jigsaw 0.08 3.22 3.25 3.02 3.25 12.74

BTrees 0.86 19.05 19.49 12.47 18.91 69.92

Texts 0.60 5.42 5.85 16.02 8.37 35.66

Table III. Optimization Costs (in seconds): At load-time, Phase I generates the first “quick-
and-dirty” native version of the application; At runtime, Phase 2 applies standard optimizations
(conditional constant propagation, value numbering, loop invariant code motion, strength reduc-
tion, local instruction scheduling, hierarchical register allocation, and dead code elimination) to
the application and inserts instrumentation utilized later by the memory optimization; Phase III
reads the collected path profiling data and creates the TRG graph; Phase IV computes the new
memory layout and changes the layout of all live objects; Phase V generates code for the new
memory layout.

Break-even point (in seconds)

for various opportunity costs

Oi=60s Oi=120s Oi=180s

TreeAdd 430 561 692

Bisort ∞ ∞ ∞
Jigsaw 205 336 468

BTrees 276 404 533

Texts 198 316 433

Table IV. Break-even Point: Illustrates the time required for the optimization to pay off. If the
unoptimized program version ran longer than the break-even point, performing the data layout
technique first and then running the optimized program version would perform better.

The Case for Dynamic Optimization · 17

Benchmark

Data Layout Publishing Web-Browser Text Editor Compiler

Optimized For Application

Programmer’s
Layout

PP 2,540 3,066 1,852 1,606

NP 2,504 3,078 1,866 1,610

Publishing
Application

PP 1,474 1,704 1,122 977

NP 1,479 1,681 1,146 976

Web-Browser
PP 1,661 1,666 1,210 978

NP 1,667 1,705 1,212 980

Text Editor
PP 1,466 1,669 1,131 984

NP 1,473 1,684 1,143 990

Compiler
PP 1,682 1,684 1,223 982

NP 1,668 1,679 1,220 985

Table V. Optimizing the Texts benchmark for different predominant access patterns (all numbers
represent execution time in 106 cycles). The rows labeled PP include the overhead of path profiling
instrumentation, whereas the rows labeled NP do not contain profiling overhead.

experiments that are summarized in Table V. We took an “original” data-structure
layout in which the fields were arranged strictly in the order specified by the pro-
grammer in the source text with four layouts that were automatically obtained by
our optimizer for four different uses of the Texts library, and correlated their per-
formance across these four different usage scenarios. The rows labeled PP include
the overhead of path profiling instrumentation, whereas the rows labeled NP do
not include any profiling overhead. In order to simplify the comparison, the cost of
re-generating the code itself has been disregarded. This is because this cost varies
greatly depending on the order in which the layout of different types is modified.
The cost of the first optimization cycle differs from that of subsequent ones, because
the first cycle additionally needs to insert profiling code whereas subsequent cycles
do not.

As can be seen in Figure 5, there is clearly a difference in optimizing for different
text services. For example, the publishing application is 13% faster using a Texts
library that is custom-tailored for it rather than a library tailored for the compiler
or the Web browser. Similarly, the text editor is 7% faster with its custom-tailored
version of the library versus the compiler’s custom tailored version. These results
also confirm the expected result that dynamic compilation is superior to static
compilation, because it can adapt to multiple behavior patterns instead of just a
single one.

The reason why custom tailoring yields an additional benefit in this particular
case is that the text service supports not only plain sequences of characters, but also
enriched documents that have elements such as images, buttons, and hyperlinks
embedded within them. The fields that support these additional “floating text
elements” are accessed relatively frequently when dealing with Web pages and using
the publishing application. But source programs rarely contain any embedded
elements, and hence the program editor and the compiler access the corresponding
fields more infrequently than other clients of the text service. This results in two

18 · T. Kistler and M. Franz

0

500

1,000

1,500

2,000

2,500

3,000

3,500

Publishing Application Web-Browser Text Editor Compiler

E
xe

cu
ti
on

 T
im

e
(M

io
.
C
yc

le
s)

Unoptimized

Optimized for Publishing Application

Optimized for Web-Browser

Optimized for Text Editor

Optimized for Compiler

Fig. 5. Optimizing the Texts benchmark for different predominant access patterns.

very different usage scenarios, one in which the corresponding fields are placed with
other frequently accessed ones on the same cache line, and another in which they
are “demoted” in favor of other data members.

A similar case is shown in Table VI and Figure 6. This benchmark implements
a binary tree that also links all the nodes in the tree in a linear list. Such data
structures are often used in compilers for implementing symbol tables—the tree is
used to rapidly look up an identifier, whereas the linked list is needed to preserve
the declaration order of procedure parameters and the like. The first column in
Table VI depicts an application that accesses both the linked list and the binary
tree with the same likelihood. In contrast, the second and third column depict
applications that primarily access either the linked list (Pattern I) or the binary
tree (Pattern II). Again, for simplicity reasons, the cost of re-generating the code
is not included.

These results show that optimizing for different behaviors is well worth the effort.
If the data type is optimized for access to the binary tree, the benchmark that
primarily accesses the list runs 11% slower than if it were optimized for accessing
the list. Similarly, the benchmark that primarily accesses the tree runs 7% slower
if it is optimized towards the list rather than the tree.

7. RELATED WORK

Cache optimizations aim to reduce the gap between memory and processor speeds.
For example, data locality can be increased in scientific, array-based programs
by applying techniques such as loop-reversal, loop-tiling, loop-skewing, and cache-
blocking [Wolf and Lam 1991]. They change algorithmic behavior by reordering
the execution sequence of iterations and by changing the shape of a loop’s itera-
tion space and iteration depth. Rivera and Tseng’s algorithm [Rivera and Tseng
1998] inserts inter-variable and intra-variable padding to control the placement of

The Case for Dynamic Optimization · 19

Benchmark

Data Layout Mixed Access Primary Access Primary Access

Optimized For Pattern Pattern I Pattern II

Programmer’s Layout
PP 1,486 1,236 1,705

NP 1,485 1,236 1,704

Mixed Access Pattern
PP 1,486 1,236 1,705

NP 1,485 1,236 1,704

Access Pattern I
PP 1,486 1,236 1,705

NP 1,485 1,236 1,704

Access Pattern II
PP 1,487 1,371 1,593

NP 1,487 1,371 1,593

Table VI. Optimizing the TreeInsert benchmark for different predominant access patterns (all
numbers represent execution time in 106 cycles). The rows labeled PP include the overhead of
path profiling instrumentation, whereas the rows labeled NP do not contain profiling overhead.

0

500

1,000

1,500

2,000

Mixed Access Pattern Primary Access Pattern I Primary Access Pattern II

E
xe

cu
ti
on

 T
im

e
(M

io
.
C
yc

le
s)

Unoptimized
Optimized for Mixed Access Pattern
Optimized for Access Pattern I
Optimized for Access Pattern II

Fig. 6. Optimizing the TreeInsert benchmark for different predominant access patterns.

20 · T. Kistler and M. Franz

arrays in memory and to control the optimal row size of arrays. This technique
can be applied orthogonally to control-transforming optimizations. Previous work
has also studied the problem of data-prefetching in the context of array-based pro-
grams [Mowry et al. 1992]. Prefetching reduces memory latency by loading data
values ahead of time into the cache. This is particularly beneficial for array-based
programs that exhibit highly regular data access patterns.

Because of fundamental differences in program structure, most of these techniques
developed for scientific programming cannot be applied directly to pointer-based
applications that often exhibit much more complex access patterns. Also, the overall
size of dynamically allocated data structures can usually not be determined at
compile time. It is therefore not surprising that work on data prefetching [Luk
and Mowry 1996], automatic placement of data in memory [Calder et al. 1998;
Chilimbi and Larus 1998], and automatic data transformations in the context of
pointer-based applications is happening only recently. With the ever-increasing
memory hunger of pointer-based programs, further factors are becoming relevant
for data cache performance, such as the effects of memory allocators [Grunwald
et al. 1993; Seidl and Zorn 1997; Gay and Aiken 1998] and garbage collectors
[Reinhold 1994] in modern operating systems.

Truong et al. [Truong et al. 1998] have lately proposed a field reorganization
technique similar in spirit to ours. Quoting from their paper:

. . . the automatic detection of the most frequently used fields of a struc-
ture is beyond the possibility of current compiler technology. Therefore,
data layout must be done by the programmer . . .

Our work solves exactly this problem by fully automating the process. Unfortu-
nately, Truong’s paper simultaneously introduces another optimization and a new
storage allocator and does not report separate speedup results for each of the three
proposed techniques; hence our results are not immediately comparable with theirs.

More recently, Chilimbi et al. [Chilimbi et al. 1999] describe a cache-conscious
memory reorganization technique that has many similarities with ours: fields are
rearranged within dynamically allocated objects to assign temporally related fields
into the same cache-line. Their approach differs in that they do not record the finer-
grained ordering in which fields are accessed. Instead, they consider time intervals
of 100 milliseconds and regard accesses to fields that occur in the same interval as
being “simultaneous”. As a consequence, they are unable to perform field ordering
on a cache line. Their program transformation is also not fully automatic but
requires programmer intervention, and as a consequence, cannot provide continuous
re-optimization. It achieves speedups of 2–3% for an already-hand-optimized, I/O
bound C program with external layout constraints (Microsoft SQL server 7.0).

In another thrust of their work, Chilimbi et al. [Chilimbi and Larus 1998] have
also studied reordering the objects themselves in memory during a garbage collec-
tion cycle. This technique is is entirely complimentary to the work described in this
paper. Combinations of the two techniques are likely to bring benefits particularly
in large garbage-collected environments.

Continuous optimization has also been studied outside the scope of memory re-
organization. There have been several systems providing incremental (“staged”)
specialization of an already executing program at run-time [Engler et al. 1996;

The Case for Dynamic Optimization · 21

Lee and Leone 1996; Marlet et al. 1999; Grant et al. 1999], based on manual
annotation of the source program by a skilled programmer. In these approaches, a
static compiler constructs a dedicated run-time code-generator that is able to dy-
namically create variants of the program to be executed, specialized depending on
actual input data. In contrast to our background re-optimization engine, which is a
full-fledged optimizing compiler, these dedicated code generators are much simpler
and operate on the complexity level of macro expansion. They also have the prob-
lematic property that each possible optimization is enumerated explicitly for each
potential optimization site. This requires a careful consideration of the trade-off
between the size of the dedicated run-time code generator created for a particular
application, and the speedup that can possibly be achieved by using it.

A variety of techniques have been proposed to speed up execution (and message
dispatch in particular) of systems based on the “pure” object-oriented languages
Smalltalk and Self. The resulting dynamic compilation systems [Ungar and Smith
1987; Chambers et al. 1989; Hölzle et al. 1991; Chambers 1992; Hölzle 1994; Hölzle
and Ungar 1996] provide incremental code generation, but once a piece of code
has been optimized, it becomes static. Hence, no re-optimization is performed in
response to changes in user behavior. One of the central findings of this paper,
however, is that it is worthwhile to re-optimize an already executing program all
over again when the users behavior changes.

8. CONCLUSION

In this paper, we have proposed a technique for improving the storage layout
of dynamically allocated data structures. The technique can be implemented as
an orthogonal addition to commonly used optimization techniques such as data-
prefetching and optimal data placement. Our algorithm is based on a two-tiered
strategy that first assigns fields to cache lines and then optimizes the order of fields
within individual cache lines.

Our algorithm is an early representative of an emerging class of code optimiza-
tions that are applicable to programs that are already executing. As our results
show quite conclusively, re-optimizing an already running program in response to
changes in user behavior can give rise to real performance improvements.

ACKNOWLEDGEMENTS

We would like to thank Martin Burtscher, Peter Fröhlich, and Christian Stork who
provided many helpful comments on an earlier version of this paper.

REFERENCES

Brandis, M. 1995. Optimizing Compilers for Structured Programming Languages. Ph. D. thesis,

Institut für Computersysteme, ETH Zürich.

Burtscher, M. and Zorn, B. 1999. Exploring Last n Value Prediction. Technical Report CU-
CS-885-99 (April), University of Colorado at Boulder.

Calder, B., Krintz, C., John, S., and Austin, T. 1998. Cache-Conscious Data Placement.
In Proceedings of the 8th International Conference on Architectural Support for Programming
Languages and Operating Systems, San Jose, California, pp. 129–149.

Chambers, C. 1992. The Design and Implementation of the Self Compiler, an Optimizing
Compiler for Object-Oriented Programming Languages. Ph. D. thesis, Stanford University.

22 · T. Kistler and M. Franz

Chambers, C., Ungar, D., and Lee, E. 1989. An Efficient Implementation of SELF, a

Dynamically-Typed Object-Oriented Language Based on Prototypes. In Proceedings of the
Conference on Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA), Volume 24, New York, NY, pp. 49–70. ACM Press.

Chilimbi, T. M., Davidson, B., and Larus, J. R. 1999. Cache-Conscious Structure Definition.
In Proceedings of the ACM SIGPLAN’99 Conference on Programming Language Design and
Implementation (PLDI-99), Volume 34, 5 of ACM SIGPLAN Notices, New York, pp. 13–24.
ACM Press.

Chilimbi, T. M. and Larus, J. R. 1998. Using Generational Garbage Collection To Implement
Cache-Conscious Data Placement. In Proceedings of the First International Symposium on
Memory Management, Vancouver, pp. 37–48. ACM Press.

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, F. K. 1991. Effi-
ciently Computing Static Single Assignment Form and the Control Dependence Graph. ACM
Transactions on Programming Languages and Systems 13, 4 (Oct.), 451–490.

Dean, J., Hicks, J. E., Waldspurger, C. A., Weihl, W. E., and Chrysos, G. 1997. ProfileMe:
Hardware Support for Instruction-Level Profiling on Out-of-Order Processors. In Proceedings
of the 30th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-97),
Los Alamitos, pp. 292–302. IEEE Computer Society.

Dutt, S. 1993. New Faster Kernighan-Lin-Type ”Graph-Partitioning Algroithms”. In Proceedings
of the IEEE/ACM International Conference on CAD.

Engler, D. R., Hsieh, W. C., and Kaashoek, M. F. 1996. ‘C: A Language for High-Level,
Efficient, and Machine-Independent Dynaic Code Generation. In Conference Record of POPL
’96: The 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
St. Petersburg Beach, Florida, pp. 131–144.

Finkel, D., Kinicki, R., Lehmann, J., and CaraDonna, J. 1992. Comparisons Of Distributed
Operating System Performance Using The Wpi Benchmark Suite. Technical Report CS-TR-
92-2, Worcester Polytechnic Institute.

Franz, M. 1997. Run-Time Code Generation as a Central System Service. In Proceedings of the

Sixth Workshop on Hot Topics in Operating Systems (HotOS-VI), pp. 112–117. IEEE Computer
Society Press.

Franz, M. and Kistler, T. 1997. Slim Binaries. Communications of the ACM 40, 12 (Dec.), 87–
94. Also published as Technical Report TR 96–24, Department of Information and Computer
Science, University of California, Irvine, June 1996.

Gabbay, F. 1996. Speculative Execution Based on Value Prediction. Technical Report 1080
(Nov.), EE Department, Technion—Israel Institute of Technology.

Gay, D. and Aiken, A. 1998. Memory Management with Explicit Regions. In Proceedings of
the ACM SIGPLAN’98 Conference on Programming Language Design and Implementation
(PLDI), Montreal, Canada, pp. 313–323.

Gloy, N., Blackwell, T., Smith, M. D., and Calder, B. 1997. Procedure Placement Using
Temporal Ordering Information. In Proceedings of the 30th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-97), Los Alamitos, pp. 303–313. IEEE Computer
Society.

Gosling, J., Joy, B., and Steele, G. 1996. The Java Language Specification. Addison Wesley.

Grant, B., Philipose, M., Mock, M., Chambers, C., and Eggers, S. J. 1999. An Evaluatioin
of Staged Run-Time Optimization in DyC. In Proceedings of the ACM SIGPLAN’99 Confer-
ence on Programming Language Design and Implementation (PLDI-99), Volume 34, 5 of ACM
SIGPLAN Notices, New York, pp. 293–304. ACM Press.

Grunwald, D., Zorn, B. G., and Henderson, R. 1993. Improving the Cache Locality of Memory
Allocation. In Proceedings of the ACM SIGPLAN’93 Conference on Programming Language
Design and Implementation (PLDI), Albuquerque, New Mexico, pp. 177–186.

Gutknecht, J. 1994. Oberon System 3: Vision of a Future Software Technology. Software—
Concepts and Tools 15, 1, 26–33.

Gutknecht, J. and Franz, M. 1999. Oberon With Gadgets: A Simple Component Framework.
Object-Oriented Application Frameworks 2.

The Case for Dynamic Optimization · 23

Hölzle, U. 1994. Adaptive Optimization for SELF: Reconciling High Performance with Ex-

ploratory Programming. Ph. D. thesis, Department of Computer Science, Stanford University.

Hölzle, U., Chambers, C., and Ungar, D. 1991. Optimizing Dynamically-Typed Object-
Oriented Languages With Polymorphic Inline Caches. In ECOOP’91 European Conference
on Object-Oriented Programming, Springer Lecture Notes in Computer Science 512, Geneva,
Switzerland, pp. 21–38.

Hölzle, U. and Ungar, D. 1996. Reconciling Responsiveness with Performance in Pure Object-
Oriented Languages. ACM Transactions on Programming Languages and Systems 18, 4 (July),
355–400.

Karypis, G. and Kumar, V. 1999. A Fast and High Quality Multilevel Scheme for Partitioning
Irregular Graphs. SIAM Journal on Scientific Computing 20, 1 (Jan.), 359–392.

Kernighan, B. W. and Lin, S. 1970. An Efficient Heuristic Procedure for Partitioning Graphs.
The Bell System Technical Journal , 291–307.

Kistler, T. 1997. Dynamic Runtime Optimization. In Proceedings of the Joint Modular Lan-
guages Conference, JMLC’97, Springer Lecture Notes in Computer Science 1204, Linz, Austria,
pp. 53–66. Also published as Technical Report TR 96–54, Department of Information and Com-
puter Science, University of California, Irvine, November 1996.

Kistler, T. and Franz, M. 1998. Computing the Similarity of Profiling Data—Heuristics for
Guiding Adaptive Compilation. Technical Report TR 98–30 (Sept.), Department of Information
and Computer Science, University of California, Irvine.

Kistler, T. and Franz, M. 1999. Perpetual Adaptation of Software to Hardware: An Extensible
Architecture for Providing Code Optimization as a Central System Service. Technical Report
TR 99–12 (March), Department of Information and Computer Science, University of California,
Irvine.

Lee, P. and Leone, M. 1996. Optimizing ML with Run-Time Code Generation. In Proceedings of
the ACM SIGPLAN ’96 Conference on Programming Language Design and Implementation,
Philadelphia, Pennsylvania, pp. 137–148.

Lipasti, M. H., Wilkerson, C. B., and Shen, J. P. 1996. Value Locality and Load Value
Prediction. In Seventh International Conference on Architectural Support for Programming
Languages and Operating Systems, Cambridge, Massachusetts, pp. 138–147.

Luk, C.-K. and Mowry, T. C. 1996. Compiler-Based Prefetching for Recursive Data Structures.
In Seventh International Conference on Architectural Support for Programming Languages and
Operating Systems, Cambridge, Massachusetts, pp. 222–233. ACM Press.

Marlet, R., Consel, C., and Boinot, P. 1999. Efficient Incremental Run-Time Specialization
for Free. In Proceedings of the ACM SIGPLAN’99 Conference on Programming Language
Design and Implementation (PLDI-99), Volume 34, 5 of ACM SIGPLAN Notices, New York,
pp. 281–292. ACM Press.

Motorola Inc. 1996. PowerPC: Addendum to PowerPC 604 RISC Microprocessor User’s Man-
ual: PowerPC 604e Microprocessor Supplement and User’s Manual Errata.

Mowry, T. C., Lam, M. S., and Gupta, A. 1992. Design and Evaluation of a Compiler Algorithm
for Prefetching. In Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, Boston, Massachusetts, pp. 62–73. ACM Press.

Muchnick, S. S. 1997. Advanced Compiler Design Implementation. Morgan Kaufman.

Reinhold, M. B. 1994. Cache Performance of Garbage-Collected Programs. In Proceedings of
the ACM SIGPLAN’94 Conference on Programming Language Design and Implementation
(PLDI), Orlando, Florida, pp. 206–217.

Rivera, G. and Tseng, C.-W. 1998. Data Transformations for Eliminating Conflict Misses.
In Proceedings of the ACM SIGPLAN’98 Conference on Programming Language Design and
Implementation (PLDI), Montreal, Canada, pp. 38–49.

Rogers, A. M., Carlisle, M. C., Reppy, J. H., and Hendren, L. J. 1995. Supporting Dy-
namic Data Structures on Distributed-memory Machines. ACM Transactions on Programming
Languages and Systems 17, 2 (March), 233–263.

24 · T. Kistler and M. Franz

Seidl, M. L. and Zorn, B. 1997. Predicting References to Dynamically Allocated Objects. Tech-

nical Report CU-CS-826-97 (Jan.), Department of Computer Science, University of Colorado,
Boulder.

Stichnoth, J. M., Lueh, G.-Y., and Cierniak, M. 1999. Support for Garbage Collection at
Every Instruction in a Java Compiler. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI-99), Volume 34, 5 of ACM SIG-
PLAN Notices, New York, pp. 118–127. ACM Press.

Truong, D. N., Bodin, F., and Seznec, A. 1998. Improving Cache Behavior of Dynamically
Allocated Data Structures. In Proceedings of the 1998 International Conference on Parallel
Architectures and Compilation Techniques (PACT), Paris, France, pp. 322–329.

Ungar, D. and Smith, R. B. 1987. SELF: The Power of Simplicity. In Proceedings of OOPSLA’87,
Special Issue of ACM SIGPLAN Notices, 22(12):227–242, Orlando, Florida.

Wirth, N. 1988. The Programming Language Oberon. Software Practice and Experience 18, 7
(July), 671–690.

Wirth, N. and Gutknecht, J. 1992. Project Oberon. Addison-Wesley.

Wolf, M. E. and Lam, M. S. 1991. A Data Locality Optimizing Algorithm. In Proceedings
of the ACM SIGPLAN’91 Conference on Programming Language Design and Implementation
(PLDI), Toronto, Ontario Canada, pp. 30–44.

