Standard ECMA-335

December 2001

ECMA

Standardizing Information and Communication Systems

Common Language Infrastructure (CLI)
Partitions| to |V

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch

Standard ECMA-335

December 2001

ECMA

Standardizing Information and Communication Systems

Common Language Infrastructure (CLI)
Partitions| to IV

Partition | : Concepts and Architecture
Partition |1 : Metadata Definition and Semantics
Partition |11 : CLI Instruction Set

Partition IV : Profilesand Libraries

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
mb - Ecma-335-Part-1-1V.doc - 16.01.2002 16:02

Common Language Infrastructure (CL1)

Partition |:
Concepts and Architecture

5.1

5.2
5.2.1
5.2.2
5.2.3

6.1

6.2
6.2.1
6.2.2
6.2.3

6.3
6.3.1

7.1
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.3
7.3.1
7.3.2
7.3.3
7.4

Table of Contents

Scope

Conformance

References

Glossary

Overview of the Common Language Infrastructure
Relationship to Type Safety

Relationship to Managed Metadata-driven Execution
Managed Code

Managed Data

Summary

Common Language Specification (CLS)
Introduction

Views of CLS Compliance

CLS Framework

CLS Consumer

CLS Extender

CLS Compliance

Marking Items as CLS-Compliant

Common Type System
Relationship to Object-Oriented Programming
Values and Types

Value Types and Reference Types
Built-in Types

Classes, Interfaces and Objects
Boxing and Unboxing of Values
Identity and Equality of Values
Locations

Assignment Compatible Locations
Coercion

Casting

Type Members

19
19
20
20
21
21

22
22
22
22
22
23
23
24

25
27
27
27
27
28
29
29
30
30
30
31
31

7.4.1
7.4.2
7.4.3
7.4.4
7.5
7.5.1
7.5.2
7.5.3
7.6
7.6.1
7.7
7.8
7.9
7.9.1
7.9.2
7.9.3
7.9.4
7.9.5
7.9.6
7.9.7
7.9.8
7.9.9
7.9.10
7.9.11
7.10
7.10.1
7.10.2
7.10.3
7.10.4
7.11
7.11.1
7.11.2
7.11.3
7.11.4
7.11.5

8.1

Fields, Array Elements, and Values

Methods

Static Fields and Static Methods
Virtual Methods

Naming

Valid Names

Assemblies and Scoping

Visibility, Accessibility, and Security

Contracts

Sighatures

Assignment Compatibility
Type Safety and Verification
Type Definers

Array Types

Unmanaged Pointer Types
Delegates

Interface Type Definition
Class Type Definition
Object Type Definitions
Value Type Definition

Type Inheritance

Object Type Inheritance
Value Type Inheritance
Interface Type Inheritance
Member Inheritance

Field Inheritance

Method Inheritance

Property and Event Inheritance
Hiding, Overriding, and Layout
Member Definitions

Method Definitions

Field Definitions

Property Definitions

Event Definitions

Nested Type Definitions

CLI Metadata

Components and Assemblies

31
31
32
32
32
32
33
34
36
37
40
40
40
41
43
43
43
44
46
48
49
49
49
49
50
50
50
50
50
51
52
52
52
53
54

55
55

8.2
8.2.1
8.2.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

9.1
9.2
9.3
9.3.1
9.3.2
9.3.3
9.4
9.5
9.6

10

11

11.1
11.1.1
11.1.2
11.1.3
11.1.4
11.1.5
11.1.6

11.2

11.3
11.3.1
11.3.2

11.4
11.4.1
11.4.2

Accessing Metadata

Metadata Tokens

Member Signatures in Metadata
Unmanaged Code

Method Implementation Metadata
Class Layout

Assemblies: Name Scopes for Types
Metadata Extensibility

Globals, Imports, and Exports

Scoped Statics

Name and Type Rules for the Common Language Specification
Identifiers

Overloading

Operator Overloading

Unary Operators

Binary Operators

Conversion Operators

Naming Patterns

Exceptions

Custom Attributes

Collected CLS Rules

Virtual Execution System

Supported Data Types

Native Size: native int, native unsigned int, O and &
Handling of Short Integer Data Types
Handling of Floating Point Datatypes
CIL Instructions and Numeric Types
CIL Instructions and Pointer Types
Aggregate Data

Module Information

Machine State

The Global State

Method State

Control Flow

Method Calls

Exception Handling

55
55
56
56
56
56
57
58
59
59

60
60
60
61
61
62
63
63
64
64

66

69
69
70
71
71
74
75
76
79
79
79
80
83
84
87

11.5

11.6
11.6.1
11.6.2
11.6.3
11.6.4
11.6.5
11.6.6
11.6.7
11.6.8

11.7

12

- v -

Proxies and Remoting

Memory Model and Optimizations
The Memory Store

Alignment

Byte Ordering

Optimization

Locks and Threads

Atomic Reads and Writes
Volatile Reads and Writes

Other Memory Model Issues

Atomicity of Memory Accesses

I ndex

92
92
92
92
93
93
93
94
94
94
95

97

© 00 N ook wWN B

e
= O

Scope

This ECMA Standard defines the Common Language Infrastructure (CLI) in which applications written in
multiple high level languages may be executed in different system environments without the need to rewrite the
application to take into consideration the unique characteristics of those environments. This ECMA Standard
consists of several sectionsin order to facilitate understanding various components by describing those
components in their separate sections. These sections are;

Partition |: Architecture

Partition 11: Metadata Definition and Semantics
Partition I11: CIL Instruction Set

Partition 1V: Profiles and Libraries

Partition V: Annexes

el

POWOWOOW NOURAWN -

Conformance

A system claiming conformance to this ECMA Standard shall implement all the mandatory requirements of
this standard, and shall specify the profile (see Partition IV) that it implements. The minimal implementation is
the Kernel Profile (see Partition |V). A conforming implementation may also include additional functionality
that does not prevent running code written to rely solely on the profile as specified in this standard. For
example, it may provide additional classes, new methods on existing classes, or anew interface on a
standardized class, but it shall not add methods or properties to interfaces specified in this standard.

A compiler that generates Common Intermediate Language (CIL, see Partition |11) and claims conformance to
thisECMA Standard shall produce output files in the format specified in this standard and the CIL it generates
shall bevalid CIL as specified in this standard. Such a compiler may also claim that it generates verifiable
code, in which case the CIL it generates shall be verifiable as specified in this standard.

QW 00 ~NOoOUul &~ WN BB

References

|EC 60559:1989, Binary Floating-point Arithmetic for Microprocessor Systems (previously designated |IEC
559:1989)

ISO/IEC 10646 (al parts), Information technology — Universal Multiple-Octet Coded Character Set (UCS).

The Unicode Consortium. The Unicode Standard, Version 3.0, defined by: The Unicode Standard, Version 3.0
(Reading, MA, Addison-Wesley, 2000. ISBN 0-201-61633-5), and Unicode Technical Report #15: Unicode
Normalization Forms.

ISO/IEC 646:1991 Information technology -- SO 7-bit coded character set for information interchange

ISO/IEC 11578:1996 (E) Information technology - Open Systems Interconnection - Remote Procedure Call
(RPC), Annex A: Universal Unique Identifier

Federal Information Processing Standard (FIPS 180-1), Secure Hash Standard (SHA-1), 1995 April 7.

Extensible Markup Language (XML) 1.0 (Second Edition), 2000 October 6, http://www.w3.0org/TR/2000/REC-
xml-20001006

Network Working Group. RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1. R. Fielding, J. Gettys, J.
Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee. 1999 June, ftp:/ftp.isi.edu/in-notes/rfc2616.txt

Network Working Group. RFC 2617: HTTP Authentication: Basic and Digest Access Authentication. J.
Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, L. Stewart. 1999 June,
ftp://ftp.isi.edu/in-notes/rfc2617.txt

IETF (Internet Engineering Task Force). RFC 2396: Uniform Resource Identifiers (URI): Generic Syntax. T.
Berners-Lee, R. Fielding, L. Masinter. 1998 August, http://www.ietf.org/rfc/rfc2396.txt.

Network Working Group. RFC-1222: Advancing the NSFNET Routing Architecture. H-W Braun, Y. Rekhter.
1991 May, ftp://ftp.isi.edu/in-notes/rfc1222.txt

A OWON

Glossary

For the purpose of this ECMA Standard, the following definitions apply. They are collected here for ease of
reference, but the definition is presented in context elsewhere in the specification, as noted. Definitions
enclosed in square brackets [] were not extracted from the body of the standard.

The remainder of this section and its subsections contain only informative text

Term Description Pt | Ch Section
Abstract Only an abstract object typeis allowed to define method | | 7.9.6.2 Concreteness
contracts for which the type or the VES does not also
provide the implementation. Such method contracts are
called abstract methods
Accessibility | A type scopesall of its members, and it also specifies I 7.5.3.2 Accessihility of
of members | the accessibility rulesfor its members. Except where Members
noted, accessibility is decided based only on the
statically visible type of the member being referenced
and the type and assembly that is making the reference.
The CTS supports seven different rules for accessibility:
Compiler-Controlled; Private; Family; Assembly;
Family-and-Assembly; Family-or-Assembly; Public.
Aggregate Dataitems that have sub-components (arrays, structures, | | 11.1.6 Aggregate Data
data or object instances) but are passed by copying the value.
The sub-components can include references to managed
memory. Aggregate datais represented using avalue
type...
Application | A mechanism ... to isolate applications running in the I 115 Proxies and
domain same operating system process from one another. Remoting
Array The representation of avalue (except for those of built- I 74.1 Fields, Array
elements in types) can be subdivided into sub-values. These sub- Elements, and
values are either named, in which case they are called Values
fields, or they are accessed by an indexing expression, in
which case they are called array elements.
Argument [Vaue of an operand to a method call]
Array types | Typesthat describe values composed of array elements I 74.1 Fields, Array
arearray types. Elements, and
Vaues
Assembly An assembly isa configured set of loadable code I 7.5.2 Assemblies and
modules and other resources that together implement a Scoping
unit of functionality.
Assembly Type names are scoped by the assembly that contains I 7.5.2 Assemblies and
scope the implementation of thetype..... Thetype nameis said Scoping
to bein the assembly scope of the assembly that
implements the type.
Assignment | Assignment compatibility of avalue (described by a I 7.7 Assignment
compatibilit | type signature) to alocation (described by alocation Compatibility
y signature) is defined as follows: One of the types
supported by the exact type of the value is the same as
the type in the location signature.
Attributes Attributes of types and their members attach descriptive | I 5.9 Attributes and

infavmantian tn thaiv Aafinitian

LW N P

information to their definition. Metadata
Base Class This Library is part of the Kernel Profile. Itisasimple | IV | 5.1 Runtime
Library runtime library for amodern programming language. Infrastructure
Library
Binary Binary operators take two arguments, perform some I 9.3.2 Binary
operators operation and return avalue. They are represented as Operators
static methods on the class that defines the type of one of
their two operands or the return type.
Boolean A CLI Boolean type occupies one byte in memory. A bit | 111 | 1.1.2 Boolean Data
Data Type pattern of all zeroes denotes avalue of false. A bit Type
pattern with any bit set (analogous to a non-zero integer)
denotes avalue of true.
Box The box instruction is awidening (always typesafe) I 11.1.6.2.5 | Boxing and
operation that converts a value type instance to Unboxing
System.Object by making a copy of the instance and
embedding it in anewly allocated object.
Boxed type For every Vaue Type, the CTS defines a corresponding | | 724 Boxing and
Reference Type called the boxed type. Unboxing of
Values
Boxed value | Therepresentation of avalue of a boxed type (aboxed I 7124 Boxing and
value) is alocation where avalue of the Value Type Unboxing of
may be stored. Values
Built-in ..Datatypes [that] are an integral part of the CTSand are | | 7.2.2 Built-In Types
types supported directly by the Virtual Execution System
(VES).
By-ref The address of the datais passed from the caller tothe | | 11.4.15 Parameter
parameters | calee, and the type of the parameter istherefore a Passing
managed or unmanaged pointer.
By-value The value of an object is passed from the caller to the I 11.4.15 Parameter
parameters | calee Passing
Calling A calling convention specifies how a method expectsits | Il | 14.3 Calling
Convention | argumentsto be passed from the caller to the called Convention
method.
Casting Since a value can be of more than onetype, ause of the | | 7.3.3 Casting
value needs to clearly identify which of itstypesisbeing
used. Sincevaluesare read from locationsthat are
typed, the type of the value which is used is the type of
the location from which the value wasread. If a
different typeisto be used, the value is cast to one of its
other types. .
CiL [Common Intermediate Language]
Class A class contract specifies the representation of the I 7.6 Contracts
contract values of the classtype. Additionally, a class contract
specifies the other contracts that the class type supports,
e.g., which interfaces, methods, properties and events
shall be implemented.
Classtype A complete specification of the representation of the I 7.9.5 Class Type
values of the class type and all of the contracts (class, Definition

intavfana ranthad rnvanarbis and ~aiand) thod Ava

interface, method, property, and event) that are

supported by the class type.

CLI At the center of the Common Language I nfrastructure I 5 Overview of the
(CL1) isasingle type system, the Common Type System Common
(CTS), that is shared by compilers, tools, and the CLI Language
itself. It isthe model that defines the rules the CLI Infrastructure
follows when declaring, using, and managing types.

CLS The Common Language Specification (CLS) is a set of I 6 Common
conventions intended to promote language Language
interoperability. Specification

(CLS)

CLS A CLS consumer is alanguage or tool that is designed to | | 6 Common

(consumer) alow accessto al of the features supplied by CLS- Language
compliant frameworks (libraries), but not necessarily be Specification
able to produce them. (CLS)

CLS A CLS extender is alanguage or tool that isdesignedto | | 6 Common

(extender) alow programmers to both use and extend CLS- Language
compliant frameworks. Specification

(CLS)
CLS A library consisting of CLS-compliant code is herein I 6 Common
(framework) | referred to asa*framework”. Language
Specification
(CLS)

Codelabels | Code labelsare followed by acolon (“:”) and represent I |54 Labelsand Lists
the address of an instruction to be executed of Labels

Coercion Coercion takes avalue of aparticular typeand adesired | | 7.3.2 Coercion
type and attempts to create a value of the desired type
that has equivalent meaning to the original value.

Common The Common Language Specification (CLS) is a set of I 6 Common

L anguage conventions intended to promote language Language

Specification | interoperability. Specification

(CL9S) (CLS)

Common [1] The Common Type System (CTS) provides arich I 5 Overview of the

Type System | type system that supports the types and operations found Common

(CT9 in many programming languages. Language

Infrastructure

Compiler- Accessible only through use of a definition, not a I 7.5.3.2 Accessihility of

controlled reference, hence only accessible from within asingle Members

accessibility | compilation unit and under the control of the compiler.

Compound . Typesthat describe values composed of fields are I 74.1 Fields, Array

types compound types. Elements, and

Vaues

Computed The destination of amethod call may be either encoded | | 11.4.1.3 Computed

destinations | directly in the CIL instruction stream (the call and jmp Destinations
instructions) or computed (the callvirt, and calli
instructions).

Concrete An object type that is not marked abstract is by I 7.9.6.2 Concreteness
definition concr ete.

Conformanc | A system claiming conformance to this ECMA Standard | | 2 Conformance

~

chall ivanl Aannant all Hha maandatan s vaci i vamaante ~f thin

e shall implement all the mandatory requirements of this
standard, and shall specify the profile that it implements.
Contracts Contracts are named. They are the shared assumptions | | 7.6 Contracts
on aset of signatures ... between all implementers and
all users of the contract.
Conversion | Conversion operators are unary operations that allow I 9.3.3 Conversion
operators conversion from one type to another. The operator Operators
method shall be defined as a static method on either the
operand or return type.
Custom Custom attributes add user-defined annotations to the I |20 Custom
Attributes metadata. Custom attributes allow an instance of atype Attributes
to be stored with any element of the metadata.
Custom Custom modifiers, defined using modreq (“required I 7.1.1 modreq and
modifiers modifier”) and modopt (“optional modifier”), are similar modopt
to custom attributes ...except that modifiers are part of a
signature rather than attached to adeclaration. Each
modifer associates a type reference with an item in the
signature.
Datalabels | Datalabels specify the location of a piece of data I |54 Labelsand Lists
of Labels
Delegates Delegates are the object-oriented equivalent of function | | 7.9.3 Delegates
pointers. . Delegates are created by defining a class that
derives from the base type System.Delegate
Derived A derived type guarantees support for all of the type I 7.9.8 Type
Type contracts of its base type. A type derives directly from Inheritance
its specified base type(s), and indirectly from their base
type(s).
Enums An enum, short for enumeration, defines a set of I] 133 Enums
symbolsthat all have the same type.
Equality For value types, the equality operator is part of the I 7.25.2 Equality
definition of the exact type. Definitions of equality
should obey the following rules:
. Equality should be an equivalence
operator, as defined above.
. Identity should imply equality, as stated
earlier.
. If either (or both) operand is a boxed
value, equality should be computed by
. first unboxing any boxed operand(s), and
then
. applying the usual rules for equality on
the resulting values.
Equality of The values stored in the variables are equal if the I 7.2 I dentity and
values sequences of characters are the same. Equality of
Values
Evaluation Associated with each method state is an evaluation I 11.3.2.1 The Evaluation
stack stack... The evaluation stack is made up of dotsthat can Stack

hold any data type, including an unboxed instance of a

value type.
Event An event contract is specified with an event definition. I 7.6 Contracts
contract There is an extensible set of operations for managing a

named event, which includes three standard methods

(register interest in an event, revoke interest in an event,

fire the event). An event contract specifies method

contracts for al of the operations that shall be

implemented by any type that supports the event

contract.
Event The CTS supports events in precisely the same way that | | 7114 Event
definitions it supports properties... The conventional methods, Definitions

however, are different and include means for subscribing

and unsubscribing to events as well asfor firing the

event.
Exception Exception handling is supported in the CL1 through I 11.4.2 Exception
handling exception objects and protected blocks of code Handling
Extended This Library is not part of any Profile, but can be IV | 5.7 Extended Array
Array supplied as part of any CLI implementation. It provides Library
Library support for non-vector arrays.
Extended The Extended Numerics Library is not part of any IV | 56 Extended
Numerics Profile, but can be supplied as part of any CLI Numerics
Library implementation. It provides the support for floating- Library

point (System.Float, System.Double) and extended-

precision (System.Decimal) data types.
Family accessible to referents that support the same type, i.e.an | | 7.5.3.2 Accessibility of
accessibility | exact type and all of the types that inherit from it Members
Family-and- | Accessible only to referents that qualify for both Family | | 7.5.3.2 Accessihility of
assembly and Assembly access. Members
accessibilty
Family-or- accessible only to referents that qualify for either Family | | 7.5.3.2 Accessibility of
assembly or Assembly access. Members
accessibility
Field Field definitions name and alocation signature. I 7.11.2 Field
definitions Definitions
Field A derived object type inherits all of the non-static fields | | 7.10.1 Field
inheritance | of itsbase object type. Inheritance
Fields Fields are typed memory locations that storethe dataof | 11 15 Defining and

aprogram. Referencing

Fields

FileNames | A filenameislike any other name where“.” is Il |58 File Names

considered anormal constituent character. The specific

syntax for file names follows the specifications of the

underlying operating system
Finalizers A class definition that creates an object type may supply | | 7.9.6.7 Finalizers

an instance method to be called when an instance of the

classisno longer accessible.
Getter By convention, properties define a getter method (for I 7.11.3 Property
method accessing the current value of the property)... Definitions

Global In addition to types with static members, many I 9.8 Global Fields

Fields languages have the notion of data and methods that are and Methods
not part of atype at al. These are referred to as global
fields and methods.

Global In addition to types with static members, many I 9.8 Global Fields

Methods languages have the notion of data and methods that are and Methods
not part of atype at al. These are referred to as global
fields and methods.

Global state | The CLI manages multiple concurrent threads of control | | 11.3.1 The Global
... multiple managed heaps, and a shared memory State
address space.

GUID [A unique identification string used with remote
procedure calls.]

hide-by- Theintroduction of anamein agiven type hides al I |83 Hiding

name inherited members of the same kind (method or field)
with the same name.

hide-by- The introduction of aname in a given type hides any I |83 Hiding

name-and- inherited member of the same kind but with precisely the

sig same type (for fields) or signature (for methods,
properties, and events).

Hiding Hiding controls which method names inherited from a I |8 Visibility,
base type are available for compile-time name binding. Accessihility

and Hiding

Homes The home of adatavaueiswhereit is stored for I 11161 Homes for
possible reuse Values

Identifiers Identifiers are used to name entities Il |53 Identifiers

I dentity The identity operator is defined by the CTS as follows. I 7.25.1 I dentity

. If the values have different exact types,
then they are not identical.

. Otherwise, if their exact typeisaValue
Type, then they are identical if and only
if the bit sequences of the values are the
same, bit by bit.

Otherwise, if their exact typeis a Reference Type, then
they are identical if and only if the locations of the
values are the same.

I dentity of The values of the variables areidentical if thelocations | | 7.2.5 I dentity and

values of the sequences of characters are the same, i.e,, thereis Equality of
in fact only one string in memory. Values

Ilasm An assembler language for CIL i |2 Overview

Inheritance | When attached to atype ..[an inheritance demand] I 75.3.3 Security

demand requires that any type that wishesto inherit from this Permissions
type shall have the specified security permission. When
attached to anon-final virtual method it requires that any
type that wishes to override this method shall have the
specified permission.

Instance Instance methods are associated with an instance of a I 14.2 Static, Instance,

M ethods type: within the body of an instance method it is possible and Virtua

- 10 -

Methods to reference the particular instance on which the method Methods
is operating (viathe this pointer).
Instruction An instruction pointer (I P) points to the next CIL I 11.3.2 Method State
pointer (IP) | instruction to be executed by the CLI in the present
method.
Interface Interface contracts specify which other contracts the I 7.6 Contracts
contract interface supports, e.g. which interfaces, methods,
properties and events shall be implemented.
Interface An interface definition defines an interface type. An I 794 Interface Type
type interface type is a named group of methods, locations Definition
definition and other contracts that shall be implemented by any
object type that supports the interface contract of the
same name.
Interface Interface types may inherit from multiple interface I 7.9.11 Interface Type
type types, i.e. an interface contract may list other interface Inheritance
inheritance | contractsthat shall also be supported.
Interface Interface types describe a subset of the operations and I 7.2.3 Classes,
types none of the representation, and hence, cannot be an exact Interfaces and
type of any value. Objects
I nterfaces Interfaces...define a contract that other types may 11 Semantics of
implement. Interfaces
Kernel This profileis the minimal possible conforming vV | 31 The Kernel
Profile implementation of the CLI. Profile
Labels Provided as a programming convenience; they represent | 11 54 Labelsand Lists
anumber that is encoded in the metadata. The value of Labels
represented by alabel istypically an offset in bytes from
the beginning of the current method, although the
precise encoding differs depending on where in the
logical metadata structure or CIL stream the label
OCCurs.
Libraries To aprogrammer aLibrary is a self-consistent set of v |21 Libraries
types (classes, interfaces, and value types) that provide a
useful set of functionality.
Local Thelocal memory pooal is used to alocate objects whose | | 11.3.24 Loca Memory
memory type or size is not known at compile time and which the Pool
pool programmer does not wish to allocate in the managed
heap.
Local . A local signature specifies the contract on alocal I 7.6.1.3 Local
signatures variable allocated during the running of a method. Signatures
L ocation All locations are typed. This means that al locations I 7.6.1.2 Location
signatures have alocation signatur e, which defines constraints on Signatures
the location, its usage, and on the usage of the values
stored in the location.
L ocations Values are stored in locations. A location can hold a I 7.3 Locations
singlevalue at atime. All locations are typed. Thetype
of the location embodies the requirements that shall be
met by values that are stored in the location.
Machine One of the design goals of the CL1 isto hide the details | | 113 Machine State
state of amethod call frame from the CIL code generator.

Tha naanhina ~dbedba AAfinidAna vkl Aant thhnna AlAan A

-11 -

The machine state definitions ... reflect these design
choices, where machine state consists primarily of
global state and method state.

M anaged Managed code is ssmply code that provides enough I 521 Managed Code
code information to allow the CLI to provide a set of core
services, including
. Given an address inside the code for a
method, locate the metadata describing
the method
. Walk the stack
. Handle exceptions
. Store and retrieve security information
M anaged Managed data is datathat is allocated and released I 5.2.2 Managed Data
data automatically by the CLI, through a process called
garbage collection. Only managed code can access
managed data, but programs that are written in managed
code can access both managed and unmanaged data.
M anaged [The O and &] datatype represents an object reference I 11.1.1.2 Managed
pointer that is managed by the CLI Pointer Types:
types Oand &
M anaged Managed pointers (&) may point to afield of an object, I 13.4.2 Managed
Pointers afield of avalue type, an element of an array, or the Pointers
address where an element just past the end of an array
would be stored (for pointer indexes into managed
arrays).
Manifest An assembly isa set of one or more files deployed as a I |6 Assemblies,
unit. Manifests and
Modules
Marshalling | A Marshalling Descriptor islike asignature—it'sablob | |1 22.4 Marshaling
Descriptors | of binary data. It describes how afield or parameter Descriptors
(which, as usual, covers the method return, as parameter
number 0) should be marshalled when calling to or from
unmanaged coded via PInvoke dispatch or 1JW (“1t Just
Works") thunking.
Member Fields, array elements, and methods are called members | | 7.4 Type Members
of the type. Properties and events are also members of
the type.
Member Only object types may inherit implementations, hence I 7.10 Member
inheritance | only object types may inherit members Inheritance
Memory By “memory store” we mean the regular process I 11.6.1 The Memory
store memory that the CL| operates within. Conceptually, this Store
store issimply an array of bytes.
M etadata The CLI uses metadata to describe and reference the I 5 Overview of the

types defined by the Common Type System. Metadatais
stored (“persisted”) in away that is independent of any
particular programming language. Thus, metadata
provides a common interchange mechanism for use

Common
Language
Infrastructure

-12 -

between tools that manipul ate programs (compilers,
debuggers, etc.) as well as between these tools and the
Virtual Execution System

M etadata Thisis a4-byte value, that specifiesarow in ametadata | 11l | 1.9 Metadata
Token table, or a starting byte offset in the User String heap Tokens
Method A named method describes an operation that may be I 7.2.3 Classes,
performed on values of an exact type. Interfaces and
Objects
M ethod A method contract is specified with amethod definition. | | 7.6 Contracts
contract A method contract is a named operation that specifies
the contract between the implementation(s) of the
method and the callers of the method.
M ethod Method definitions are composed of a name, a method I 7111 Method
definitions signature, and optionally an implementation of the Definitions
method.
M ethod A derived object type inherits al of the instance and I 7.10.2 Method
inheritance | virtual methods of its base object type. It does not inherit Inheritance
constructors or static methods.
Method Variables of type method pointer shall storethe address | |1 135 Method
Pointers of the entry point to a method with compatible signature. Pointers
Method M ethod signatur es are composed of I 7.6.1.5 Method
signatures . . Signatures
. acalling convention,
. alist of zero or more parameter
signatures, one for each parameter of the
method,
. and a type signature for the result value
if oneis produced.
M ethod Method state describes the environment within whicha | | 11.3.2 Method State
state method executes. (In conventional compiler
terminology, it corresponds to a superset of the
information captured in the “invocation stack frame”).
methodIinfo | This.. holds the signature of the method, the types of its | | 11.3.2 Method State
handle local variables, and data about its exception handlers.
Module A single file containing executable content I 6 Assemblies,
Manifests and
Modules
Name ... the platform may use name-mangling rules that force | Il 14.5.2 Platform Invoke
Mangling the name as it appears to a managed program to differ
from the name as seen in the native implementation (this
is common, for example, when the native code is
generated by a C++ compiler).
Native Data | Someimplementations of the CLI will behostedontop | Il | 7.4 Native Data
Types of existing operating systems or runtime platforms that Types

specify data types required to perform certain functions.
The metadata allows interaction with these native data
types by specifying how the built-in and user-defined
types of the CLI are to be marshalled to and from native

- 13 -

datatypes.

Native size The native-size, or generic, types (I, U, O, and &) area Native Size:

types mechanism in the CLI for deferring the choice of a nativeint,
value'ssize. native unsigned

int, Oand &

Nested type | A nested type definition isidentical to atop-level type 7.11. Nested Type

definitions definition, with one exception: atop-level type hasa Definitions
visibility attribute, while the visibility of anested typeis
the same as the visihility of the enclosing type.

Nested types | A type (called anested type) can be amember of an 75.34 Nested Types
enclosing type.

Networ k This Library is part of the Compact Profile. It provides 53 Network

Library simple networking services including direct accessto Library
network ports aswell as HTTP support.

OOP [Object Oriented Programming]

Object type | The object type describes the physical structure of the 7.9.6 Object Type
instance and the operations that are allowed on it. Definitions

Object type | With the sole exception of System.Object, which does 7.9.9 Object Type

inheritance | not inherit from any other object type, all object types Inheritance
shall either explicitly or implicitly declare support for
(inherit from) exactly one other object type.

Objects Each object is self-typing, that is, itstype is explicitly 7 Common Type
stored in its representation. It has an identity that System
distinguishesit from all other objects, and it has slots
that store other entities (which may be either objects or
values). While the contents of its slots may be changed,
the identity of an object never changes.

Opaque Some languages provide multi-byte data structures 11.1.6.3 Opaque Classes

classes whose contents are manipulated directly by address
arithmetic and indirection operations. To support this
feature, the CLI allows value types to be created with a
specified size but no information about their data
members.

Overloading | Within asingle scope, a given name may refer to any Overloading
number of methods provided they differ in any of the
following: Number of parameters [and] Type of each
argument

Overriding ..Overriding deals with object layout and is applicable 7.104 Hiding,
only to instance fields and virtual methods. The CTS Overriding, and
provides two forms of member overriding, new slot and Layout
expect existing slot.

Par ameter [Name used within the body of a method to refer to the
corresponding argument of the method]

Parameter The CLI supports three kinds of parameter passing, al 11.4.15 Parameter

passing indicated in metadata as part of the signature of the Passing

method. Each parameter to amethod hasits own
passing convention (e.g., the first parameter may be
passed by-value while all others are passed by-ref).

- 14 -

Parameter Parameter signatures define constraints on how an I 7.6.1.4 Parameter

Signatures individual valueis passed as part of a method Signatures
invocation.

Pinned While amethod with apinned local variableis executing | I 7.1.2 Pinned
the VES shall not relocate the object to which the local
refers.

Plnvoke Methods defined in native code may be invoked using I 14.5.2 Platform Invoke
the platform invoke (also know as Pinvoke or p/invoke)
functionality of the CLI.

Pointer type | A pointer typeisacompiletime description of avalue | | 7.2.1 Value Types
whose representation is a machine address of alocation. and Reference

Types

Pointers Pointers may contain the address of afield (of an object | Il | 13.4 Pointer Types
or value type) or an element of an array.

Private Accessible only to referents in the implementation of the | | 7.5.3.2 Accessihility of

accessibility | exact type that defines the member. Members

Profiles A Profileissimply a set of Libraries, grouped together v | 22 Profiles
to form a consistent whole that provides afixed level of
functionality.

Properties . Propert[ies] define named groups of accessor method I 711 Member
definitions that implement the named event or property Definitions
behavior.

Property A property contract is specified with a property I 7.6 Contracts

contract definition. Thereisan extensible set of operations for
handling a named value, which includes a standard pair
for reading the value and changing the value. A
property contract specifies method contracts for the
subset of these operations that shall be implemented by
any type that supports the property contract.

Property A property definition defines a named value and the I 7.11.3 Property

definitions methods that access the value. A property definition Definitions
defines the accessing contracts on that value.

Public Accessibleto all referents I 75.3.2 Accessibility of

accessibility Members

Qualified ...Consider a compound type Poi nt that has afield I 75.2 Assemblies and

name named x. The name “field x” by itself does not uniquely Scoping
identify the named field, but the qualified name “field x
in type Poi nt " does.

Rank The rank of an array is the number of dimensions. I | 132 Arrays

Reference Any attempt to resolve a reference to the marked item I 75.3.3 Security

demand shall have specified security permission. Permissions

Reference Reference Types describe values that are represented as | | 7.2.1 Value Types

types the location of a sequence of bits. There are three kinds and Reference
of Reference Types: Types

Reflection This Library is part of the Compact Profile. It provides | IV | 54 Reflection

Library the ability to examine the structure of types, create Library

instances of types, and invoke methods on types, all

- 15 -

based on a description of the type.

Remating A remoting boundary existsif it is not possible to share | | 115 Proxies and
boundary the identity of an object directly across the boundary. Remoting
For example, if two objects exist on physically separate
machines that do not share a common address space,
then aremoting boundary will exist between them.
Return state | Thishandleisused to restore the method state on return | | 11.3.2 Method State
handle from the current method.
Runtime ThisLibrary is part of the Kernel Profile. It providesthe | IV | 5.1 Runtime
Infrastructu | services needed by acompiler to target the CLI and the Infrastructure
reLibrary facilities needed to dynamically load types from a Library
stream in the file format.
Scopes Names are collected into groupings called scopes. I 7.5.2 Assemblies and
Scoping
Sealed Specifies that atype shall not have subclasses I 9.14 Inheritance
Attributes
Sealed type | An object type declaresit shall not be used as abase I 7.9.9 Object Type
type (be inherited from) by declaring that it is a sealed Inheritance
type.
Security This descriptor is not directly accessible to managed I 11.3.2 Method State
descriptor code but is used by the CLI security system to record
security overrides (assert, per mit-only, and deny).
Security Access to membersis also controlled by security I 7.5.3.3 Security
permissions | demands that may be attached to an assembly, type, Permissions
method, property, or event.
Serializable | A field that ismarked serializableisto be seridizedas | | 7.11.2 Field
fields part of the persistent state of avalue of the type. Definitions
Setter By convention, properties define ...optionally a setter I 7.11.3 Property
method method (for modifying the current value of the Definitions
property).
Signatures Signatures are the part of a contract that can be checked | | 7.6.1 Signatures
and automatically enforced. Signatures are formed by
adding constraints to types and other signatures.
Simple A simple label is a specia name that represents an I 54 Labelsand Lists
labels address of Labels
Special There are three special members, all methods, that can I 9.5 Special
members be defined as part of atype: instance constructors, Members
instance finalizers, and type initializers.
Special Specia Types are those that are referenced from CIL, I 13 Semantics of
Types but for which no definition is supplied: the VES supplies Special TY pes
the definitions automatically based on information
available from the reference.
Standard There are two Standard Profiles. The smallest v | 3 The Standard
Profiles conforming implementation of the CLI isthe Kernel Profiles

Profile, while the Compact Profile contains additional
features useful for applications targeting a more
resource-rich set of devices.

- 16 -

Static fields

Types may declare locations that are associated with the
type rather than any particular value of the type. Such
locations are static fields of the type.

~
A
w

Static Fields
and Static
Methods

Static
methods

... Types may also declare methods that are associated
with the type rather than with values of the type. Such
methods are static methods of the type.

~
w

Static Fields
and Static
Methods

Super Calls

In some cases, it may be desirable to re-use code defined
in the base type. E.g., an overriding virtual method may
want to call its previous version. Thiskind of re-useis
called a super call, since the overridden method of the
base typeis called.

This

When they are invoked, instance and virtual methods are
passed the value on which thisinvocation isto operate
(known asthis or athis pointer).

~
N

Methods

Thunk

A (typically) small piece of code used to provide a
transition between two pieces of code where specia
handling isrequired

Try block

In the CLI, amethod may define arange of CIL
instructions that are said to be protected. Thisiscalled
the try block.

Exception
Handling

Type
definers

Type definers construct a new type from existing types.

Type Definers

Type
definition

Thetype definition:

. Defines a name for the type being
defined, i.e. the type name, and specifies
a scope in which that name will be found

. Defines a member scope in which the
names of the different kinds of members
(fields, methods, events, and properties)
are bound. The tuple of (member name,
member kind, and member signature) is
unique within a member scope of atype.

. Implicitly assigns the type to the
assembly scope of the assembly that
contains the type definition.

\,
(2}
N

Assemblies and
Scoping

Type
inheritance

Inheritance of types is another way of saying that the
derived type guarantees support for all of the type
contracts of the base type. In addition, the derived type
usually provides additional functionality or specialized
behavior.

\I
©
(o]

Type
Inheritance

Type
members

Object type definitions include member definitions for
al of the members of the type. Briefly, membersof a
type include fields into which values are stored, methods
that may be invoked, properties that are available, and
events that may be raised.

\I
~

Type Members

Type safety

An implementation that lives up to the enforceable part
of the contract (the named signatures) is said to be
typesafe.

‘.\'
o

Type Safety and
Verification

-17 -

Type Type signatures define the constraintson avalueand its | | 7.6.1.1 Type Signatures

signatures usage.

Typed A runtime representation of the data type is passed I 11415 Parameter

reference along with the address of the data, and the type of the Passing

parameters | parameter is therefore one specially supplied for this
purpose.

Types Types describe values. All places where values are I 7.2 Valuesand
stored, passed, or operated upon have atype, e.g. all Types
variables, parameters, evaluation stack locations, and
method results. The type defines the allowable values
and the allowable operations supported by the values of
thetype. All operators and functions have expected
types for each of the values accessed or used.

Unary Unary operators take one argument, perform some I 9.3.1 Unary

operators operation on it, and return the result. They are Operators
represented as static methods on the class that defines
the type of their one operand or their return type.

Unbox Unbox is anarrowing (runtime exception may be I 11.1.6.2.5 | Boxing and
generated) operation that converts a System.Obj ect Unboxing
(whose runtime type is avalue type) to avalue type
instance.

Unmanaged | [Code that does not require the runtime for execution.

Code This code may not use the common type system or other
features of the runtime. Traditional native code (before
the CL1) is considered unmanaged]

Unmanaged | Anunmanaged pointer type (also known simply asa I 7.9.2 Unmanaged

pointer “pointer type”) is defined by specifying alocation Pointer Types

types signature for the location the pointer references. Any
signature of a pointer type includes this location
signature.

Validation Validation refersto a set of tests that can be performed I |3 Validation and
on any fileto check that the file format, metadata, and Verification
CIL are self-consistent.

Valuetype Vaue Types, in their unboxed form, do not inherit from | | 7.9.10 Value Type

inheritance | any type. inheritance

Valuetypes | Incontrast to classes, value types (see Partition|) arenot | Il | 12 Semantics of
accessed by using areference but are stored directly in Value Types
the location of that type.

Values The representation of avalue (except for those of built- I 74.1 Fields, Array
in types) can be subdivided into sub-values. These sub- Elements, and
values are either named, in which case they are called Vaues
fields, or they are accessed by an indexing expression, in
which case they are called array elements.

Vararg vararg methods accept a variable number of arguments. | Il 1445 Vararg methods

M ethods

Variable The CLI works in conjunction with the class library to I 11.3.2.3 Variable

argument implement methods that accept argument lists of Argument Lists

lists unknown length and type (“ varargs methods”).

-18 -

Vectors Vectors are single-dimension arrays with a zero lower I Vectors
bound.

Verifiability | Memory safety is aproperty that ensures programs Il Verifiability
running in the same address space are correctly isolated
from one another ... Thus, it is desirable to test whether
programs are memory safe prior to running them.

Unfortunately, it is provably impossible to do thiswith
100% accuracy. Instead, the CLI can test a stronger
restriction, called verifiability.

Verification | Verification refersto acheck of both CIL anditsrelated | 1l | 3 Validation and
metadata to ensure that the CIL code sequences do not Verification
permit any access to memory outside the program’s
logical address space.

Version The version number of the assembly, specified as four I 6.2.1. Version

Number 32-bit integers Numbers

Virtual call ..A virtual method may be invoked by a special I 744 Virtual
mechanism (avirtual call) that chooses the Methods
implementation based on the dynamically detected type
of the instance used to make the virtual call rather than
the type statically known at compile time.

Virtual The CIL providesa*“virtual calling convention” that is I Virtual Calling

calling converted by an interpreter or JI'T compiler into anative Convention

convention calling convention.

Virtual The Virtual Execution System (VES) provides an I 5 Overview of the

execution environment for executing managed code. It provides Common

system direct support for a set of built-in data types, definesa Language
hypothetical machine with an associated machine model Infrastructure
and state, a set of control flow constructs, and an
exception handling model.

Virtual Virtual methods are associated with an instance of atype | Il Static, Instance,

methods in much the same way as for instance methods. and Virtua
However, unlike instance methods, it is possible to call a Methods
virtual method in such away that the implementation of
the method shall be chosen at runtime by the VES
depends upon the type of object used for the this pointer.

Visibility Attached only to top-level types, and thereareonlytwo | Il | 8.1 Visihility of
possibilities: visible to types within the same assembly, Top-Level
or visible to types regardless of assembly. Types and

Accessihility of
Nested Types

Widen If atype overrides an inherited method, it may widen, I]933 Accessihility
but it shall not narrow, the accessibility of that method. and Overriding

XML This Library is part of the Compact Profile. It provides | IV | 55 XML Library

Library asimple “pull-style” parser for XML. Itisdesigned for

resource-constrained devices, yet provides asimple user
model.

39

40
41
42

43

45
46
47

- 19 -

5 Overview of the Common Language Infrastructure

The Common Language Infrastructure (CL1) provides a specification for executable code and the execution

environment (the Virtual Execution System, or VES) in which it runs. Executable code is presented to the VES

as modules. A moduleisasingle file containing executable content in the format specified in Partition I1.
The remainder of this section and its subsections contain only informative text

At the center of the Common Language Infrastructure (CL1) is a single type system, the Common Type System

(CTS), that is shared by compilers, tools, and the CLI itself. It is the model that defines the rules the CLI

follows when declaring, using, and managing types. The CTS establishes a framework that enables cross-

language integration, type safety, and high performance code execution. This section describes the architecture
of CLI by describing the CTS.

The following four areas are covered in this section:

. The Common Type System. See Chapter 7. The Common Type System (CTS) provides arich
type system that supports the types and operations found in many programming languages. The
Common Type System is intended to support the complete implementation of a wide range of
programming languages.

. Metadata. See Chapter 8. The CLI uses metadata to describe and reference the types defined by
the Common Type System. Metadata is stored (“persisted”’) in away that is independent of any
particular programming language. Thus, metadata provides a common interchange mechanism for
use between tools that manipulate programs (compilers, debuggers, etc.) as well as between these
tools and the Virtual Execution System.

. The Common Language Specification. See Chapter 9. The Common Language Specification is
an agreement between language designers and framework (class library) designers. It specifies a
subset of the CTS Type System and a set of usage conventions. Languages provide their users the
greatest ability to access frameworks by implementing at least those parts of the CTS that are part
of the CLS. Similarly, frameworks will be most widely used if their publicly exposed aspects
(classes, interfaces, methods, fields, etc.) use only types that are part of the CLS and adhere to the
CLS conventions.

. The Virtual Execution System. See Chapter 11. The Virtual Execution System (VES)
implements and enforces the CTS model. The VES is responsible for loading and running
programs written for the CLI. It provides the services needed to execute managed code and data,
using the metadata to connect separately generated modules together at runtime (late binding).

Together, these aspects of the CLI form a unifying framework for designing, developing, deploying, and

executing distributed components and applications. The appropriate subset of the Common Type System is

available from each programming language that targets the CL 1. Language-based tools communicate with each
other and with the Virtual Execution System using metadata to define and reference the types used to construct
the application. The Virtual Execution System uses the metadata to create instances of the types as needed and
to provide data type information to other parts of the infrastructure (such as remoting services, assembly
downloading, security, €tc.).

5.1 Relationship to Type Safety

Type safety isusually discussed in terms of what it does, e.g. guaranteeing encapsul ation between different
objects, or in terms of what it prevents, e.g. memory corruption by writing where one shouldn’t. However, from
the point of view of the Common Type System, type safety guarantees that:

. References are what they say they are - Every reference is typed and the object or value
referenced also has a type, and they are assignment compatible (see Section 7.7).

. I dentities are who they say they are - There is no way to corrupt or spoof an object, and by
implication a user or security domain. The access to an object is through accessible functions and
fields. An object may still be designed in such a way that security is compromised. However, a

Ooo~NO OOR~rW NP

10

11
12
13

14
15

16

17
18

19
20

21
22
23
24

25
26
27
28

29
30
31

32
33

34
35
36
37
38
39
40

41

42
43

45
46

- 20 -

local analysis of the class, its methods, and the things it uses, as opposed to a global analysis of
all uses of aclass, is sufficient to assess the vulnerabilities.

Only appropriate operations can be invoked — The reference type defines the accessible
functions and fields. This includes limiting visibility based on where the referenceis, e.g.
protected fields only visible in subclasses.

The Common Type System promotes type safety e.g. everything istyped. Type safety can be optionally
enforced. The hard problem is determining if an implementation conforms to atypesafe declaration. Since the
declarations are carried along as metadata with the compiled form of the program, a compiler from the
Common Intermediate Language (CIL) to native code (see Section 7.8) can type-check the implementations.

5.2

Relationship to Managed Metadata-driven Execution

M etadata describes code by describing the types that the code defines and the types that it references externally.
The compiler produces the metadata when the code is produced. Enough information is stored in the metadata

to:

M anage code execution — not just load and execute, but also memory management and execution
state inspection.

Administer the code — Installation, resolution, and other services

Reference typesin the code — Importing into other languages and tools as well as scripting and
automation support.

The Common Type System assumes that the execution environment is metadata-driven. Using metadata allows
the CLI to support:

5.2.1

Multiple execution models - The metadata also allows the execution environment to deal with a
mixture of interpreted, JITted, native and legacy code and still present uniform services to tools
like debuggers or profilers, consistent exception handling and unwinding, reliable code access
security, and efficient memory management.

Auto support for services - Since the metadata is available at execution time, the execution
environment and the base libraries can automatically supply support for reflection, automation,
serialization, remote objects, and inter-operability with existing unmanaged native code with little
or no effort on the part of the programmer.

Better optimization — Using metadata references instead of physical offsets, layouts, and sizes
allows the CLI to optimize the physical layouts of members and dispatch tables. In addition, this
allows the generated code to be optimized to match the particular CPU or environment.

Reduced binding brittleness — Using metadata references reduces version-to-version brittleness
by replacing compile-time object layout with load-time layout and binding by name.

Flexible deployment resolution - Since we can have metadata for both the reference and the
definition of atype, more robust and flexible deployment and resolution mechanisms are possible.
Resolution means that by looking in the appropriate set of placesit is possible to find the
implementation that best satisfies these requirements for use in this context. There are five
elements of information in the foregoing: two items are made available via metadata
(requirements and context); the others come from application packaging and deployment (where
to look, how to find an implementation, and how to decide the best match).

Managed Code

Managed code is simply code that provides enough information to allow the CLI to provide a set of core
services, including

Given an address inside the code for a method, locate the metadata describing the method
Walk the stack

Handle exceptions

w N

o O

10
11
12
13
14
15
16

17

18
19
20
21

22

- 21 -

. Store and retrieve security information

This standard specifies a particular instruction set, the Common Intermediate Language (CIL, see Partition |11),
and afileformat (see Partition I1) for storing and transmitting managed code.

5.2.2 Managed Data

Managed data is datathat is allocated and released automatically by the CLI, through a process called
garbage collection.

5.2.3 Summary

The Common Type System is about integration between languages. using another language's objects as if they
were one' sown.

The objective of the CLI isto make it easier to write components and applications from any language. It does
this by defining a standard set of types, making all components fully self-describing, and providing a high
performance common execution environment. This ensures that all CL1 compliant system services and
components will be accessibleto all CLI aware languages and tools. In addition, this simplifies deployment of
components and applications that use them, all in away that allows compilers and other toolsto leverage the
high performance execution environment. The Common Type System covers, at a high level, the concepts and
interactions that make all of this possible.

The discussion is broken down into four areas:

. Type System — What types are and how to define them.

. M etadata — How types are described and how those descriptions are stored.

. Common Language Specification — Restrictions required for language interoperability.

. Virtual Execution System — How code is executed and types are instantiated, interact, and die.

End informative text

ooo~NOoOOR~,wW N

10

11
12
13
14
15
16

17

18

19
20
21
22
23
24
25

26

27
28
29
30
31

32
33

34
35

36
37
38

39
40
41

42
43

6.1

6.2

- 22 -

Common Language Specification (CLS)

Introduction

The Common Language Specification (CLS) is a set of rules intended to promote language interoperability.
These rules shall be followed in order to conform to the CLS. They are described in greater detail in
subsequent chapters and are summarized in Chapter 10. CL S conformance is a characteristic of typesthat are
generated for execution on a CLI implementation. Such types must conform to the CL1 specification, in
addition to the CLS rules. These additional rules apply only to typesthat are visible in assemblies other than
those in which they are defined, and to the members (fields, methods, properties, events, and nested types) that
are accessible outside the assembly (i.e. those that have an accessibility of public, family, or family-or -
assembly).

Note: A library consisting of CLS-compliant code is herein referred to asa“framework”. Compilers that
generate code for the CLI may be designed to make use of such libraries, but not to be able to produce or
extend such library code. These compilers are referred to as “ consumers’. Compilers that are designed to both
produce and extend frameworks are referred to as “extenders’. In the description of each CLS rule, additional
informative text is provided to assist the reader in understanding the rule’ simplication for each of these
situations.

Views of CLS Compliance

This section and its subsections contain only informative text

6.2.1

6.2.2

The CLSisaset of rulesthat apply to generated assemblies. Because the CLS is designed to support
interoperability for libraries and the high-level programming languages used to write them, it is often useful to
think of the CLS rules from the perspective of the high-level source code and tools, such as compilers, that are
used in the process of generating assemblies. For this reason, informative notes are added to the description of
CLSrulesto assist the reader in understanding the rule’ simplications for several different classes of tools and
users. The different viewpoints used in the description are called framework, consumer, and extender and are
described here.

CLS Framework

A library consisting of CLS-compliant codeis herein referred to as a*framework” . Frameworks (libraries) are
designed for use by awide range of programming languages and tools, including both CL S consumer and
extender languages. By adhering to the rules of the CL'S, authors of libraries ensure that the libraries will be
usable by alarger class of tools than if they chose not to adhere to the CLS rules. The following are some
additional guidelines that CL S-compliant frameworks should follow:

. Avoid the use of names commonly used as keywords in programming languages
. Should not expect users of the framework to be able to author nested types

. Should assume that implementations of methods of the same name and signature on different
interfaces are independent.

. Should not rely on initialization of value types to be performed automatically based on specified
initializer values.
CLS Consumer

A CLS consumer is alanguage or tool that is designed to allow accessto all of the features supplied by CLS-
compliant frameworks (libraries), but not necessarily be able to produce them. The following is a partial list of
things CLS consumer tools are expected to be able to do:

. Support calling any CLS-compliant method or delegate

. Have a mechanism for calling methods that have names that are keywords in the language

©o0o No o1 A W NP

e =
()

B
AWM

15

16
17
18
19

20
21

22
23
24

25
26
27
28
29
30
31

32

33

34
35
36

37
38
39
40
41

6.2.3

- 23 -

. Support calling distinct methods supported by a type that have the same name and signature, but
implement different interfaces

. Create an instance of any CLS-compliant type
. Read and modify any CL S-compliant field
. Access nested types

. Access any CLS-compliant property. This does not require any special support other than the
ability to call the getter and setter methods of the property.

. Access any CLS-compliant event. This does not require any special support other than the ability
to call methods defined for the event.

Thefollowing isalist of things CL S consumer tools need not support:
. Creation of new types or interfaces

. Initialization metadata (see Partition 11) on fields and parameters other than static literal fields.
Note that consumers may choose to use initialization metadata, but may also safely ignore such
metadata on anything other than static literal fields.

CL S Extender

A CLSextender is alanguage or tool that is designed to allow programmers to both use and extend CLS-
compliant frameworks. CL S extenders support a superset of the behavior supported by a CL S consumer, i.e.,
everything that appliesto a CL S consumer also appliesto CL S extenders. In addition to the requirements of a
consumer, extenders are expected to be able to:

. Define new CL S-compliant types that extend any (non-sealed) CL S-compliant base class
. Have some mechanism for defining types with names that are keywords in the language

. Provide independent implementations for all methods of all interfaces supported by atype. That
is, it is not sufficient for an extender to require a single code body to implement all interface
methods of the same name and signature.

. Implement any CL S-compliant interface

. Place any CLS-compliant custom attribute on all appropriate elements of metadata
Extenders need not support the following:

. Definition of new CLS-compliant interfaces

. Definition of nested types

The common language specification is designed to be large enough that it is properly expressive and small
enough that all languages can reasonably accommodate it.

End informative text

6.3

CLS Compliance

Astheserules areintroduced in detail, they are described in a common format. For an example, see the first
rule below. Thefirst paragraph specifiestheruleitself. Thisisthen followed by an informative description of
the implications of the rule from the three different viewpoints as described above.

The CL S defines language interoperability rules, which apply only to “externally visible” items. The CLS unit
of that language interoperability is the assembly— that is, within a single assembly there are no restrictions as to
the programming techniques that are used. Thus, the CLS rules apply only to items that are visible (see

clause 7.5.3) outside of their defining assembly and have public, family, or family-or-assembly accessibility
(seeclause 7.5.3.2).

O©oo~N OO0 A W NP

[l
(S

el
W N

14

15
16
17
18
19

20
21
22

23

24
25

26
27
28

29
30
31

32
33
34

35
36

37
38
39

- 24 -

CLSRulel: CLSrulesapply only to those parts of atype that are accessible or visible outside of the defining
assembly.

Note:
CL S (consumer): no impact.

CL S (extender): when checking CL S compliance at compile time, be sure to apply the rules only to
information that will be exposed outside the assembly.

CLS (framework): CLS rules do not apply to internal implementation within an assembly. A typeisCL S
compliant if all its publicly accessible parts (those classes, interfaces, methods, fields, properties, and events
that are available to code executing in another assembly) either

. have signatures composed only of CLS-compliant types, or

. are specifically marked as not CLS-compliant

Any construct that would make it impossible to rapidly verify code is excluded from the CLS. This allows all
CLS-compliant languages to produce verifiable code if they so choose.

Marking Items as CLS-Compliant

The CL S specifies how to mark externally visible parts of an assembly to indicate whether or not they comply
with the CL S requirements. Thisis done using the custom attribute mechanism (see Section 8.7 and

Partition I1). The class Syst em CLSConpl i ant At t ri but e (See Partition V) indicates which types and type
members are CLS-compliant. It also can be attached to an assembly, to specify the default value for all top-
level typesit contains.

The constructor for Syst em CLSConpl i ant At t ri but e takes a Boolean argument indicating whether the item
with which it is associated is or is hot CLS-compliant. This allows any item (assembly, type, or type member)
to be explicitly marked as CL S-compliant or not.

Therulesfor determining CLS compliance are:

. When an assembly does not carry an explicit Syst em CLSConpl i ant Attri but e, it shall be
assumed to carry System CLSConpl i antAttribute(false).

. By default, atype inherits the CL S-compliance attribute of its enclosing type (for nested types) or
acquires the value attached to its assembly (for top-level types). It may be marked as either CLS-
compliant or not CLS-Compliant by attaching the Syst em CLSConpl i ant Attribute attribute.

. By default, other members (methods, fields, properties and events) inherit the CL S-compliance of
their type. They may be marked as not CL S-compliant by attaching the attribute
System CLSConpliantAttribute(false).

CL S Rule 2: Members of non-CL S compliant types shall not be marked CL S-compliant.
Note:
CL S (consumer): May ignore any member that is not CL S-compliant using the above rules.

CL S (extender): Should encourage correct labeling of newly authored assemblies, classes, interfaces, and
methods. Compile-time enforcement of the CLS rules is strongly encouraged.

CLS (framework): Shall correctly label all publicly exposed members asto their CLS compliance. The rules
specified here may be used to minimize the number of markers required (for example, label the entire assembly
if all types and members are compliant or if there are only afew exceptions that need to be marked).

O~NOOOUTRhWN B

- 25 -

Common Type System

Types describe values and specify a contract (see Section 7.6) that all values of that type shall support. Because
the CTS supports Object-Oriented Programming (OOP) as well as functional and procedural programming
languages, it deals with two kinds of entities: Objects and Values. Values are simple bit patterns for things like
integers and floats; each value has a type that describes both the storage that it occupies and the meanings of
the bits in its representation, and also the operations that may be performed on that representation. Vaues are
intended for representing the corresponding simple types in programming languages like C, and also for
representing non-objects in languages like C++ and Java™.

Objects have rather more to them than do values. Each object is self-typing, that is, its type is explicitly stored
in its representation. It has an identity that distinguishesit from all other objects, and it has dots that store other
entities (which may be either objects or values). While the contents of its slots may be changed, the identity of
an object never changes.

There are several kinds of Objects and Values, as shown in the following diagram.

- 26 -

Figure 1. Type System

4 \
Type
\. /
Value Types Reference Types
(identity within app. domain)
Built-in Value Types User Defined Sdf-Describing Interface Pointer Built-In Reference Types
(special encodingin signature)
[——\
N\ 4 \
Integer Types Enums Name Equivalent Function String
=// =//
[r——\ V/ Y
Floati i j
oating Point Types 7 N\ | . Managed Object
Delegates (might bein heap)
N—__/ \ /
P —\
7 \
Typed References Boxed Value Types L Unmanaged
\. /
N——__/ N———___/
— A—
4 \
Boxed Enums
\ /
Structural Equivalent

19

20

21
22
23
24

25
26
27
28
29

30
31

32
33

34
35

36
37

38

39

40
41

42

7.1

- 27 -

Relationship to Object-Oriented Programming

This

section contains only informative text

Theterm typeis often used in the world of value-oriented programming to mean data representation. In the
object-oriented world it usually refers to behavior rather than to representation. In the CTS, typeis used to
mean both of these things: two entities have the same type if and only if they have both compatible
representations and behaviors. Thus, inthe CTS, if one typeis derived from a base type, then instances of the
derived type may be substituted for instances of the base type because both the representation and the behavior
are compatible.

In the CTS, unlike some OOP languages, two objects that have fundamentally different representations have
different types. Some OOP languages use a different notion of type. They consider two objects to have the
same typeif they respond in the same way to the same set of messages. This notion is captured in the CTS by
saying that the objects implement the same interface.

Similarly, some OOP languages (e.g. SmallTalk) consider message passing to be the fundamental model of
computation. In the CTS, this corresponds to calling virtual methods (see clause 7.4.4), where the signature of
the virtual method serves the role of the message.

The CTS itself does not directly capture the notion of “typeless programming.” That is, there is no way to call
anon-static method without knowing the type of the object. Nevertheless, typeless programming can be
implemented based on the facilities provided by the reflection package (see Partition IV) if it isimplemented.

End

informative text

7.2

7.2.1

7.2.2

Values and Types

Types describe values. All places where values are stored, passed, or operated upon have atype, e.g. al
variables, parameters, evaluation stack locations, and method results. The type defines the allowable values and
the allowable operations supported by the values of the type. All operators and functions have expected types
for each of the values accessed or used.

A value can be of more than one type. A value that supports many interfacesis an example of avaluethat is of
more than one type, asis avalue that inherits from another.
Value Types and Reference Types
There are two kinds of types: Value Types and Reference Types.
. Value Types - Value Types describe values that are represented as sequences of bits.

. Reference Types — Reference Types describe values that are represented as the location of a
sequence of hits. There are four kinds of Reference Types:

o} An object typeis areference type of a self-describing value (see clause 7.2.3). Some
object types (e.g. abstract classes) are only a partial description of avalue.

o} Aninterfacetypeis always a partial description of avalue, potentially supported by many
object types.

0 A pointer typeisacompile time description of a value whose representation is a machine
address of alocation.

0 Built-in types

Built-in Types

The following data types are an integral part of the CTS and are supported directly by the Virtual Execution
System (VES). They have specia encoding in the persisted metadata:

o~NO OOk WN

11
12
13
14

15
16
17
18
19

20
21
22
23
24

- 28 -

Table 1: Special Encoding

Namein CIL assembler | CLSType? | Namein classlibrary Description

(see Partition I1) (see Partition 1V)

bool Yes Syst em Bool ean True/false value

char Yes Syst em Char Unicode 16-bit char.

obj ect Yes System Obj ect Object or boxed value type
string Yes System String Unicode string

fl oat 32 Yes System Single IEC 60559:1989 32-hit float
fl oat 64 Yes Syst em Doubl e |EC 60559:1989 64-hit float
int8 No System SByte Signed 8-bit integer

int16 Yes System I nt 16 Signed 16-bit integer

i nt32 Yes System | nt 32 Signed 32-bit integer

i nt 64 Yes System | nt 64 Signed 64-bit integer
native int Yes System IntPtr Signed integer, native size
native unsigned int No System Ul nt Ptr Unsigned integer, native size
typedr ef No System TypedRef erence Pointer plus runtime type
unsi gned int8 Yes System Byte Unsigned 8-bit integer

unsi gned int 16 No System Ul nt 16 Unsigned 16-hit integer
unsi gned int 32 No System Ul nt 32 Unsigned 32-bit integer
unsi gned i nt 64 No System Ul nt 64 Unsigned 64-bit integer

Classes, Interfaces and Objects

Every value has an exact type that fully describesthe value. A type fully describes avalue if it completely

defines the value' s representation and the operations defined on the value.

For aValue Type, defining the representation entails describing the sequence of bits that make up the value's
representation. For a Reference Type, defining the representation entails describing the location and the
sequence of bits that make up the value' s representation.

A method describes an operation that may be performed on values of an exact type. Defining the set of
operations allowed on values of an exact type entails specifying named methods for each operation.

Some types are only a partial description, e.g. interface types. Interface types describe a subset of the
operations and none of the representation, and hence, cannot be an exact type of any value. Hence, while a
value has only one exact type, it may also be a value of many other types as well. Furthermore, since the exact
type fully describes the value, it also fully specifies al of the other types that a value of the exact type can have.

Whileit istrue that every value has an exact type, it is not always possible to determine the exact type by
inspecting the representation of the value. In particular, it is never possible to determine the exact type of a
value of aVaue Type. Consider two of the built-in Value Types, 32-bit signed and unsigned integers. While
each typeisafull specification of their respective values, i.e. an exact type, there is no way to derive that exact
type from avalue's particular 32-bit sequence.

For some values, called objects, it is always possible to determine the exact type from the value. Exact types of
objects are also called object types. Objects are values of Reference Types, but not all Reference Types
describe objects. Consider avalue that is a pointer to a 32-hit integer, akind of Reference Type. Thereisno
way to discover the type of the value by examining the pointer bits, henceit is not an object. Now consider the
built-in CTS Reference Type System.String (see Partition V). The exact type of avaue of thistype isaways

N

=
QW ook W

11
12
13

14
15

16
17

18
19
20

21

22
23

24
25
26

27
28

29
30

31

32
33
34
35

7.2.4

- 29 -

determinable by examining the value, hence values of type System.String are objects and System.String isan
object type.

Boxing and Unboxing of Values

For every Value Type, the CTS defines a corresponding Reference Type called the boxed type. Thereverseis
not true: Reference Types do not in general have a corresponding Value Type. The representation of avalue of
aboxed type (aboxed value) is alocation where avalue of the Value Type may be stored. A boxed typeisan
object type and a boxed value is an object.

All Vaue Types have an operation called box. Boxing avalue of any Vaue Type produces its boxed value, i.e.
avalue of the corresponding boxed type containing a bit copy of the original value. All boxed types have an
operation called unbox. Unboxing resultsin a managed pointer to the bit representation of the value.

Notice that interfaces and inheritance are defined only on Reference types. Thus, while aVaue Type definition
(see clause 7.9.7) can specify both interfaces that shall be implemented by the Value Type and the class
(Syst em Val ueType or Syst em Enum) from which it inherits, these apply only to boxed values.

CL S Rule 3: The CL S does not include boxed value types.
Note:

In lieu of boxed types, use Syst em Obj ect , Syst em Val ueType OF Syst em Enum as appropriate. (See
Partition 1V)

CL S (consumer): need not import boxed value types.
CL S (extender): need not provide syntax for defining or using boxed value types.
CLS (framework): shall not use boxed value typesin their publicly exposed aspects.

7.2.5

Identity and Equality of Values

There are two binary operators defined on all pairs of values, identity and equality, that return a Boolean
result. Both of these operators are mathematical equivalence operators, i.e. they are:

. Reflexive-a op aistrue.
. Symmetric- aop bistrueif andonly if b op a istrue.
. Transitive-if a op bistrueandb op c istrue thena op c istrue

In addition, identity alwaysimplies equality, but not the reverse, i.e., the equality operator need not be the same
as the identity operator aslong as two identical values are also equal values.

To understand the difference between these operations, consider three variables whose type is Syst em St ri ng,
where the arrow isintended to mean “is areference to”:

A —
Bl
cl

The values of the variables are identical if the locations of the sequences of characters are the same, i.e., there
isin fact only one string in memory. The values stored in the variables are equal if the sequences of characters
are the same. Thus, the values of variables A and B are identical, the values of variables A and C aswell asB
and C are not identical, and the values of all three of A, B, and C are equdl.

Here's some text

Here's some text

22

23
24
25

26
27
28
29
30

31

32
33
34
35

36

37
38
39
40
41

42
43

- 30 -

7.2.5.1 Identity

Theidentity operator is defined by the CTS as follows.
. If the values have different exact types, then they are not identical.

. Otherwise, if their exact typeis aValue Type, then they areidentical if and only if the bit
sequences of the values are the same, bit by bit.

. Otherwise, if their exact type is a Reference Type, then they are identical if and only if the
locations of the values are the same.

Identity isimplemented on Syst em bj ect viathe Ref er enceEqual s method.

7.2.5.2 Equality

7.3

7.3.1

7.3.2

For value types, the equality operator is part of the definition of the exact type. Definitions of equality should
obey the following rules:

. Equality should be an equivalence operator, as defined above.

. Identity should imply equality, as stated earlier.

. If either (or both) operand is a boxed value, equality should be computed by
0 first unboxing any boxed operand(s), and then
o] applying the usual rules for equality on the resulting values.

Equality isimplemented on Syst em bj ect viathe Equal s method.

Note: Although two floating point NaNs are defined by |EC 60559:1989 to aways compare as unequal, the

contract for Syst em bj ect . Equal s, requires that overrides must satisfy the requirements for an equivalence
operator. Therefore, Syst em Doubl e. Equal s and Syst em Si ngl e. Equal s return True when comparing two
NaNs, while the equality operator returns Falsein that case, as required by the standard.

L ocations

Values are stored in locations. A location can hold asingle value at atime. All locations are typed. The type of
the location embodies the requirements that shall be met by values that are stored in the location. Exampl es of
locations are local variables and parameters.

More importantly, the type of the location specifies the restrictions on usage of any value that is |oaded from
the location. For example, alocation can hold values of potentially many exact types aslong as all of the values
are assignment compatible with the type of the location (see below). All values loaded from alocation are
treated asif they are of the type of the location. Only operations valid for the type of the location may be
invoked even if the exact type of the value stored in the location is capable of additional operations.

Assignment Compatible Locations

A value may be stored in alocation only if one of the types of the value is assignment compatible with the
type of the location. A typeis always assignment compatible with itself. Assignment compatibility can often be
determined at compile time, in which case thereis no need for testing at run time. Assignment compatibility is
described in detail in Section 7.7.

Coercion

Sometimesit is desirable to take avalue of atype that is not assignment compatible with alocation and convert
the value to atype that is assignment compatible. This is accomplished through coer cion of the value. Coercion
takes avalue of aparticular type and a desired type and attempts to create a value of the desired type that has
equivalent meaning to the original value. Coercion can result in representation changes as well as type changes,
hence coercion does not necessarily preserve the identity of two objects.

There are two kinds of coercion: widening, which never loses information, and narrowing, in which
information may be lost. An example of awidening coercion would be coercing avalue that is a 32-bit signed

OO0k WNE

10
11
12
13

14
15
16

17

18
19
20
21
22

23

24
25
26
27
28
29

30
31

32

33
34
35

36
37

38
39
40

41
42
43

45
46

7.3.3

7.4

7.4.1

7.4.2

- 31 -

integer to avalue that is a 64-bit signed integer. An example of a narrowing coercion is the reverse: coercing a
64-bit signed integer to a 32-bit signed integer. Programming languages often implement widening coercions as
implicit conversions, whereas narrowing coercions usualy require an explicit conver sion.

Some widening coercion is built directly into the VES operations on the built-in types (see Section 11.1). All
other coercion shall be explicitly requested. For the built-in types, the CTS provides operations to perform
widening coercions with no runtime checks and narrowing coercions with runtime checks.

Casting

Since a value can be of more than one type, a use of the value needs to clearly identify which of itstypesis
being used. Since values are read from locations that are typed, the type of the value which is used is the type
of the location from which the value was read. If a different type isto be used, the valueis cast to one of its
other types. Casting is usually a compile time operation, but if the compiler cannot statically know that the
valueis of the target type, aruntime cast check is done. Unlike coercion, a cast never changes the actual type of
an object nor does it change the representation. Casting preserves the identity of objects.

For example, a runtime check may be needed when casting a value read from a location that is typed as holding
values of a particular interface. Since an interface is an incomplete description of the value, casting that value
to be of adifferent interface type will usually result in a runtime cast check.

Type Members

As stated above, the type defines the allowabl e values and the allowable operations supported by the values of
the type. If the allowable values of the type have a substructure, that substructure is described viafields or array
elements of thetype. If there are operations that are part of the type, those operations are described via methods
on the type. Fields, array elements, and methods are called member s of the type. Properties and events are also
members of the type.

Fields, Array Elements, and Values

The representation of avalue (except for those of built-in types) can be subdivided into sub-values. These sub-
values are either named, in which case they are called fields, or they are accessed by an indexing expression, in
which case they are called array elements. Types that describe values composed of array elements are array
types. Types that describe values composed of fields are compound types. A value cannot contain both fields
and array elements, although afield of a compound type may be an array type and an array element may be a
compound type.

Array elements and fields are typed, and these types never change. All of the array elements shall have the
same type. Each field of a compound type may have a different type.

Methods

A type may associate operations with the type or with each instance of the type. Such operations are called
methods. A method is named, and has a signature (see clause 7.6.1) that specifies the allowable types for al of
its arguments and for its return value, if any.

A method that is associated only with the type itself (as opposed to a particular instance of the type) iscalled a
static method (see clause 7.4.3).

A method that is associated with an instance of the type is either an instance method or avirtual method (see
clause 7.4.4). When they are invoked, instance and virtual methods are passed the instance on which this
invocation is to operate (known asthis or athis pointer).

The fundamental difference between an instance method and a virtual method is in how the implementation is
located. An instance method is invoked by specifying a class and the instance method within that class. The
object passed as this may be null (a special value indicating that no instance is being specified) or an instance
of any type that inherits (see clause 7.9.8) from the class that defines the method. A virtual method may also be
called in this manner. This occurs, for example, when an implementation of avirtual method wishesto call the
implementation supplied by its parent class. The CTS alows this to be null inside the body of avirtual method.

~N~No ok~ WDNBE

9
10
11
12
13

14
15
16

17

18
19
20
21
22
23
24

25

26
27
28
29

30

31
32
33
34

35
36
37
38
39
40
41
42

43

44
45

46
47

7.4.3

7.4.4

7.5

7.5.1

- 32 -

Rationale: Allowing a virtual method to be called with a non-virtual call eliminates the need for a “ call super”
instruction and allows version changes between virtual and non-virtual methods. It requires CIL generatorsto
insert explicit tests for a null pointer if they don't want the null this pointer to propagate to called methods.

A virtual or instance method may also be called by adifferent mechanism, avirtual call. Any type that inherits
from atype that defines a virtual method may provide its own implementation of that method (thisis known as
overriding, see clause 7.10.4). It is the exact type of the object (determined at runtime) that is used to decide
which of the implementations to invoke

Static Fields and Static Methods

Types may declare locations that are associated with the type rather than any particular value of the type. Such
locations are static fields of the type. As such, static fields declare alocation that is shared by all values of the
type. Just like non-static (instance) fields, a static field is typed and that type never changes. Static fields are
always restricted to a single application domain basis (see Section 11.5), but they may also be allocated on a
per-thread basis.

Similarly, types may also declare methods that are associated with the type rather than with values of the type.
Such methods are static methods of the type. Since an invocation of a static method does not have an
associated value on which the static method operates, there is no this pointer available within a static method.

Virtual Methods

An object type may declare any of its methods as virtual. Unlike other methods, each exact type that
implements the type may provide its own implementation of avirtual method. A virtual method may be
invoked through the ordinary method call mechanism that uses the static type, method name, and types of
parameters to choose an implementation, in which case the this pointer may be null. In addition, however, a
virtual method may be invoked by a special mechanism (avirtual call) that chooses the implementation based
on the dynamically detected type of the instance used to make the virtual call rather than the type statically
known at compile time. Virtual methods may be marked final (see clause 7.10.2).

Naming

Names are given to entities of the type system so that they can be referred to by other parts of the type system
or by the implementations of the types. Types, fields, methods, properties and events have names. With respect
to the type system values, locals, and parameters do not have names. An entity of the type systemisgiven a
single name, e.g. there is only one name for atype.

Valid Names

All comparisons are done on a byte-by-byte (i.e. case sensitive, loca e-independent, also known as code-point
comparison) basis. Where names are used to access built-in VES-supplied functionality (for example, the class
initialization method) there is always an accompanying indication on the definition so as not to build in any set
of reserved names.

CLSRule4: Assemblies shall follow Annex 7 of Technical Report 15 of the Unicode Standard 3.0 (ISBN 0-
201-61633-5) governing the set of characters permitted to start and be included in identifiers, available on-line
at http://www.unicode.org/unicode/reports/tr15/tr15-18.html. Identifiers shall be in the canonical format
defined by Unicode Normalization Form C. For CLS purposes, two identifiers are the same if their lowercase
mappings (as specified by the Unicode locale-insensitive, 1-1 lowercase mappings) are the same. That is, for
two identifiers to be considered different under the CLS they shall differ in more than ssimply their case.
However, in order to override an inherited definition the CLI requires the precise encoding of the original
declaration be used.

Note:

CL S (consumer): need not consume types that violate CLS rule 4, but shall have a mechanism to allow access
to named items that use one of its own keywords as the name.

CL S (extender): need not create types that violate CLS rule 4. Shall provide a mechanism for defining new
names that obey these rules but are the same as a keyword in the language.

N =

©ooo~N oouh~ W

11
12

13

14
15

16

17
18
19

20
21
22
23
24

25
26
27
28
29
30

31

32
33

34
35
36

37

38
39
40
41
42

43

45
46

- 33 -

CL S (framework): shall not export types that violate CLS rule 4. Should avoid the use of namesthat are
commonly used as keywords in programming languages (see Partition V. Annex D)

7.5.2

Assemblies and Scoping

Generally, names are not unique. Names are collected into groupings called scopes. Within a scope, a name
may refer to multiple entities as long as they are of different kinds (methods, fields, nested types, properties,
and events) or have different signatures.

CL S Rule5: All namesintroduced in a CL S-compliant scope shall be distinct independent of kind, except
where the names are identical and resolved via overloading. That is, while the CTS alows a single type to use
the same name for a method and afield, the CL S does not.

CL S Rule 6: Fields and nested types shall be distinct by identifier comparison alone, even though the CTS
allows distinct signatures to be distinguished. Methods, properties, and events that have the same name (by
identifier comparison) shall differ by more than just the return type, except as specified in CLS Rule 39.

Note:

CL S (consumer): need not consume types that violate these rules after ignoring any members that are marked
as not CLS-compliant.

CL S (extender): need not provide syntax for defining types that violate these rules.

CL S (framework): shall not mark types as CL S-compliant if they violate these rules unless they mark
sufficient offending items within the type as not CL S-compliant so that the remaining members do not conflict
with one another.

A named entity has its name in exactly one scope. Hence, to identify a named entity, both a scope and a name
need to be supplied. The scopeis said to qualify the name. Types provide a scope for the names in the type;
hence types qualify the namesin the type. For example, consider a compound type Poi nt that has afield
named x. The name “field x” by itself does not uniquely identify the named field, but the qualified name
“field x in type Poi nt " does.

Since types are named, the names of types are also grouped into scopes. To fully identify atype, the type name
shall be qualified by the scope that includes the type name. Type names are scoped by the assembly that
contains the implementation of the type. An assembly is a configured set of loadable code modules and other
resources that together implement a unit of functionality. The type nameis said to be in the assembly scope of
the assembly that implements the type. Assemblies themselves have names that form the basis of the

CTS naming hierarchy.

Thetype definition:

. Defines a name for the type being defined, i.e. the type name, and specifies a scope in which that
name will be found

. Defines amember scope in which the names of the different kinds of members (fields, methods,
events, and properties) are bound. The tuple of (member name, member kind, and member
signature) is unique within a member scope of atype.

. Implicitly assigns the type to the assembly scope of the assembly that contains the type definition.

The CTS supports an enum (also known as an enumer ation type), an alternate name for an existing type. For
purposes of matching signatures an enum shall not be the same as the underlying type. Instances of an enum,
however, shall be assignment compatible with the underlying type and vice versa. That is: no cast (see

clause 7.3.3) or coercion (see clause 7.3.2) is required to convert from the enum to the underlying type, nor are
they required from the underlying type to the enum. An enum is considerably more restricted than a true type:

. It shall have exactly one instance field, and the type of that field defines the underlying type of
the enumeration.

. It shall not have any methods of its own.

. It shall derive from Syst em Enum(see Partition V).

-34 -

1 . It shall not implement any interfaces of its own.

2 . It shall not have any properties or events of its own.

3 . It shall not have any static fields unless they are literal (see clause 7.6.1).

4 The underlying type shall be a built-in integer type. Enums shall derive from Syst em Enum hence they are

5 value types. Like dl value types, they shall be sealed (see clause 7.9.9).

6 CL S Rule 7: The underlying type of an enum shall be a built-in CLS integer type.

7 CL S Rule 8: There are two distinct kinds of enums, indicated by the presence or absence of the

8 System Fl agsAt t ri but e (See Partition |\V) custom attribute. One represents named integer values, the other

9 named bit flags that can be combined to generate an unnamed value. The value of an enum is not limited to the
10 specified values.
11 CLSRule9: Litera static fields (see clause 7.6.1) of an enum shall have the type of the enum itself.
12 Note:
13 CL S (consumer): Shall accept definition of enums that follow these rules, but need not distinguish flags from
14 named values.
15 CL S (extender): Same as consumer. Extender languages are encouraged to allow the authoring of enums, but
16 need not do so.
17 CLS (framework): shall not expose enums that violate these rules, and shall not assume that enums have only
18 the specified values (even for enums that are named values).

19 7.5.3 Visibility, Accessibility, and Security

20 To refer to anamed entity in a scope, both the scope and the name in the scope shall be visible (see

21 clause 7.5.3.1). Vigihility is determined by the relationship between the entity that contains the reference (the
22 refer ent) and the entity that contains the name being referenced. Consider the following pseudo-code:
23 class A

24 { int32 IntlnsideA

25

26 class B inherits fromA

27 { method X(int32, int32) returning Bool ean

28 { IntInsideA := 15;

29 }

30 }

31 If we consider the reference to the field I nt I nsi deA in class A

32 . We call class B the referent because it has a method that refers to that field,

33 . Wecall IntinsideA in class A thereferenced entity.

34 There are two fundamental questions that need to be answered in order to decide whether the referent is
35 allowed to access the referenced entity. Thefirst is whether the name of the referenced entity is visible to the
36 referent. If it isvisible, then there is a separate question of whether the referent is accessible (see

37 clause 7.5.3.2).

38 Access to amember of atypeis permitted only if al three of the following conditions are met:

39 1. Thetypeisvisible.

40 2. The member is accessible.

41 3. All relevant security demands (see clause 7.5.3.3) have been granted.

42 7.5.3.1 Visibility of Types

43 Only type names, not member names, have controlled visibility. Type names fall into one of the following three
44 categories

Dol A WNPE

10

11
12

13
14

15
16
17
18
19

20
21

22
23

24
25

26

27
28

29

30
31
32
33
34
35

36
37
38
39

40
41
42
43

45
46

7.5.3.2

- 35 -

Exported from the assembly in which they are defined. While atype may be marked to allow it
to be exported from the assembly, it is the configuration of the assembly that decides whether the
type name is made available.

Not exported outside the assembly in which they are defined.

Nested within another type. In this case, the type itself has the visibility of the type inside of
which it is nested (its enclosing type). See clause 7.5.3.4.

Accessibility of Members

A type scopes al of its members, and it also specifies the accessibility rules for its members. Except where
noted, accessibility is decided based only on the statically visible type of the member being referenced and the
type and assembly that is making the reference. The CTS supports seven different rules for accessibility:

Compiler-Controlled — accessible only through use of a definition, not a reference, hence only
accessible from within a single compilation unit and under the control of the compiler.

Private — accessible only to referents in the implementation of the exact type that defines the
member.

Family — accessible to referents that support the same type, i.e. an exact type and all of the types
that inherit from it. For verifiable code (see Section 7.8), there is an additional requirement that
may require a runtime check: the reference shall be made through an item whose exact type
supports the exact type of the referent. That is, the item whose member is being accessed shall
inherit from the type performing the access.

Assembly — accessible only to referents in the same assembly that contains the implementation of
the type.

Family-and-Assembly — accessible only to referents that qualify for both Family and Assembly
access.

Family-or-Assembly — accessible only to referents that qualify for either Family or Assembly
access.

Public — accessible to all referents.

In general, amember of atype can have any one of these accessibility rules assigned to it. There are two
exceptions, however:

1.
2.

Members defined by an interface shall be public.

When atype defines a virtual method that overrides an inherited definition, the accessibility shall
either be identical in the two definitions or the overriding definition shall permit more access than
the original definition. For example, it is possible to override an assembly virtual method with a
new implementation that is public virtual, but not with one that is family virtual. In the case of
overriding a definition derived from another assembly, it is not considered restricting access if the
base definition has Family-or-Assembly access and the override has only family access.

Rationale: Languagesincluding C++ allow this“ widening” of access. Restricting access would provide an
incorrect illusion of security since simply casting an object to the base class (which occursimplicitly on
method call) would allow the method to be called despite the restricted accessibility. To prevent overriding a
virtual method use final (see clause 7.10.2) rather than relying on limited accessibility.

Note:

CL S Rule 10: Accessibility shall not be changed when overriding inherited methods, except when overriding a
method inherited from a different assembly with accessibility Family-or-Assembly. In this case the override
shall have accessibility family.

CL S (consumer): need not accept types that widen access to inherited virtual methods.

CL S (extender): need not provide syntax to widen access to inherited virtual methods.

N =

=
QOWooN OOk, W

11
12

13
14
15
16
17

18

19
20
21
22
23
24
25
26
27

28

29
30
31

32
33
34
35

36
37
38
39
40
41
42

43
45

46
47

- 36 -

CL S (frameworks): shall not rely on the ability to widen access to a virtual method, either in the exposed
portion of the framework or by users of the framework.

7.5.3.3 Security Permissions

Access to membersis also controlled by security demands that may be attached to an assembly, type, method,
property, or event. Security demands are not part of atype contract (see Section 7.6), and hence are not
inherited. There are two kinds of demands:

. Aninheritance demand. When attached to a type it requires that any type that wishes to inherit
from this type shall have the specified security permission. When attached to a non-final virtual
method it requires that any type that wishes to override this method shall have the specified
permission. It shall not be attached to any other member.

. A reference demand. Any attempt to resolve areference to the marked item shall have specified
security permission.

Only one demand of each kind may be attached to any item. Attaching a security demand to an assembly
impliesthat it is attached to all types in the assembly unless another demand of the same kind is attached to the
type. Similarly, a demand attached to a type implies the same demand for all members of the type unless
another demand of the same kind is attached to the member. For additional information, see Declarative
Security in Partition |1, and the classesin the Syst em Securi t y hamespace in Partition | V.

7.5.3.4 Nested Types

7.6

A type (called a nested type) can be a member of an enclosing type. A nested type has the same visibility asthe
enclosing type and has an accessibility as would any other member of the enclosing type. This accessibility
determines which other types may make referencesto the nested type. That is, for a classto define afield or
array element of a nested type, have a method that takes a nested type as a parameter or returns one as value,
etc., the nested type shall be both visible and accessible to the referencing type. A nested type is part of the
enclosing type so its methods have access to all members of its enclosing type, as well asfamily accessto
members of the type from which it inherits (see clause 7.9.8). The names of nested types are scoped by their
enclosing type, not their assembly (only top-level types are scoped by their assembly). There is no requirement
that the names of nested types be unique within an assembly.

Contracts

Contracts are named. They are the shared assumptions on a set of signatur es (see clause 7.6.1) between all
implementers and all users of the contract. The signatures are the part of the contract that can be checked and
enforced.

Contracts are not types; rather they specify requirements on the implementation of types. Types state which
contracts they abide by, i.e. which contracts all implementations of the type shall support. An implementation
of atype can be verified to check that the enforceable parts of a contract, the named signatures, have been
implemented. The kinds of contracts are:

. Class contract — A class contract is specified with a class definition. Hence, a class definition
defines both the class contract and the class type. The name of the class contract and the name of
the class type are the same. A class contract specifies the representation of the values of the class
type. Additionally, a class contract specifies the other contracts that the class type supports, e.g.,
which interfaces, methods, properties and events shall be implemented. A class contract, and
hence the class type, can be supported by other class types as well. A class type that supports the
class contract of another class type is said to inherit from that class type.

. Interface contract — An interface contract is specified with an interface definition. Hence, an
interface definition defines both the interface contract and the interface type. The name of the
interface contract and the name of the interface type are the same. Many types can support an
interface contract. Like a class contract, interface contracts specify which other contracts the
interface supports, e.g. which interfaces, methods, properties and events shall be implemented.

o~NOOUOThA~,W NP

9
10
11
12
13
14
15

16
17
18
19
20
21
22

23

24
25
26
27

28
29
30
31

32

33
34
35
36

37
38
39
40

41
42
43

44

45
46
47

- 37 -

Note: An interface type can never fully describe the representation of avalue. Therefore an interface
type can never support a class contract, and hence can never be a class type or an exact type.

. Method contract — A method contract is specified with a method definition. A method contract
is a named operation that specifies the contract between the implementation(s) of the method and
the callers of the method. A method contract is always part of atype contract (class, value type,
or interface), and describes how a particular named operation is implemented. The method
contract specifies the contracts that each parameter to the method shall support and the contracts
that the return value shall support, if there is areturn value.

. Property contract — A property contract is specified with a property definition. Thereis an
extensible set of operations for handling a named value, which includes a standard pair for
reading the value and changing the value. A property contract specifies method contracts for the
subset of these operations that shall be implemented by any type that supports the property
contract. A type can support many property contracts, but any given property contract can be
supported by exactly one type. Hence, property definitions are a part of the type definition of the
type that supports the property.

. Event contract — An event contract is specified with an event definition. There is an extensible
set of operations for managing a named event, which includes three standard methods (register
interest in an event, revoke interest in an event, fire the event). An event contract specifies
method contracts for all of the operations that shall be implemented by any type that supports the
event contract. A type can support many event contracts, but any given event contract can be
supported by exactly one type. Hence, event definitions are a part of the type definition of the
type that supports the event.

Sighatures

Signatures are the part of a contract that can be checked and automatically enforced. Signatures are formed by
adding constraints to types and other signatures. A constraint is a limitation on the use of or allowed operations
on avalue or location. Example constraints would be whether alocation may be overwritten with a different
value or whether avalue may ever be changed.

All locations have signatures, as do al values. Assignment compatibility requires that the signature of the
value, including constraints, is compatible with the signature of the location, including constraints. There are
four fundamental kinds of signatures. type signatures, location signatures, parameter signatures, and method
signatures.

CLSRule11: All types appearing in a signature shall be CL S-compliant.

CL S Rule 12: The visibility and accessihility of types and members shall be such that types in the signature of
any member shall be visible and accessible whenever the member itself is visible and accessible. For example,
a public method that is visible outside its assembly shall not have an argument whose type is visible only
within the assembly.

Note:
CL S (consumer): need not accept types whose members violate these rules.
CL S (extender): need not provide syntax to violate these rules.

CLS (framework): shall not violate this rule in its exposed types and their members.

The following sections describe the various kinds of signatures. These descriptions are cumulative: the simplest
signature is atype signature; alocation signature is a type signature plus (optionally) some additional attributes;
and so forth.

7.6.1.1 Type Signatures

Type signatures define the constraints on avaue and its usage. A type, by itself, isavalid type signature. The
type signature of avalue cannot be determined by examining the value or even by knowing the class type of the
value. The type signature of avalue is derived from the location signature (see below) of the location from

- 38 -

which the value is loaded. Normally the type signature of avalueisthe type in the location signature from
which the valueis loaded.

Rationale: The distinction between a Type Sgnature and a Location Sgnature (below) is not currently useful.
It is made because certain constraints, such as“ constant,” are constraints on values not locations. Future
versions of this standard, or non-standard extensions, may introduce type constraints, thus making the
distinction meaningful.

O, wW NP

7 7.6.1.2 Location Signatures

8 All locations are typed. This meansthat all locations have alocation signatur e, which defines constraints on

9 the location, its usage, and on the usage of the values stored in the location. Any valid type signatureisavalid
10 location signature. Hence, alocation signature contains a type and may additionally contain the constant
11 constraint. The location signature may also contain location constraintsthat give further restrictions on the
12 uses of the location. The location constraints are:
13 . The init-only constraint promises (hence, requires) that once the location has been initialized, its
14 contents never change. Namely, the contents are initialized before any access, and after
15 initialization, no value may be stored in the location. The contents are always identical to the
16 initialized value (see clause 7.2.3). This constraint, while logically applicable to any location,
17 shall only be placed on fields (static or instance) of compound types.
18 . Theliteral constraint promises that the value of the location is actually a fixed value of a built-in
19 type. Thevalueis specified as part of the constraint. Compilers are required to replace all
20 references to the location with its value, and the VES therefore need not allocate space for the
21 location. This constraint, while logically applicable to any location, shall only be placed on static
22 fields of compound types. Fields that are so marked are not permitted to be referenced from CIL
23 (they shall be in-lined to their constant value at compile time), but are available using Reflection
24 and tools that directly deal with the metadata.
25 CLSRule13: Thevalue of aliteral static is specified through the use of field initialization metadata (see
26 Partition 11). A CLS compliant literal must have a value specified in field initialization metadata that is of
27 exactly the same type as the literal (or of the underlying type, if that literal is an enum).
28 Note:
29 CL S (consumer): must be able to read field initialization metadata for static literal fields and inline the value
30 specified when referenced. Consumers may assume that the type of the field initialization metadatais exactly
31 the same as the type of the literal field, i.e., aconsumer tool need not implement conversions of the values.
32 CL S (extender): must avoid producing field initialization metadata for static literal fields in which the type of
33 the field initialization metadata does not exactly match the type of the field.
34 CLS (framework): should avoid the use of syntax specifying avalue of aliteral that requires conversion of the
35 value. Note that compilers may do the conversion themselves before persisting the field initialization metadata
36 resulting in a CL S compliant framework, but frameworks are encouraged not to rely on such implicit
37 conversions.
38
39 Note: It might seem reasonable to provide a volatile constraint on alocation that would require that the value
40 stored in the location not be cached between accesses. Instead, CIL includes avolatile. prefix to certain
41 instructions to specify that the value neither be cached nor computed using an existing cache. Such a constraint
42 may be encoded using a custom attribute (see Section 8.7), although this standard does not specify such an
43 attribute.

4 7.6.1.3 Local Signatures

45 A local signature specifies the contract on alocal variable allocated during the running of a method. A local
46 signature contains afull location signature, plus it may specify one additional constraint:
47 The byref constraint states that the content of the corresponding location is a managed pointer. A managed

48 pointer may point to alocal variable, parameter, field of acompound type, or element of an array. However,

Ooo~NOoOOOThr WN P

PR R R
AWNRO

B R e
N o o

[l
© ™

N
o

21
22
23
24
25
26
27
28
29

30
31

32
33

34
35
36

37
38

39
40

41
42

43

-390 -

when acall crosses aremoting boundary (see Section 11.5) a conforming implementation may use a copy-
in/copy-out mechanism instead of a managed pointer. Thus programs shall not rely on the aliasing behavior of
true pointers.

In addition, there is one special local signature. The typed reference local variable signature states that the
local will contain both a managed pointer to alocation and a runtime representation of the type that may be
stored at that location. A typed reference signature is similar to a byref constraint, but while the byref specifies
the type as part of the byref constraint (and hence as part of the type description), a typed reference provides the
type information dynamically. A typed referenceisafull signature in itself and can not be combined with other
congtraints. In particular, it is not possible to specify abyref whose typeistyped reference.

The typed reference signature is actually represented as a built-in value type, like the integer and floating point
types. In the Base Class Library (see Partition 1V) the type is known as System.TypedRefer ence and in the
assembly language used in Partition 11 it is designated by the keyword typedr ef. This type shall only be used
for parameters and local variables. It shall not be boxed, nor shall it be used as the type of afield, element of an
array, return value, etc.

CL SRule 14: Typed references are not CL S-compliant.
Note:
CL S (consumer): there is no need to accept thistype.

CL S (extender): thereis no need to provide syntax to define this type or to extend interfaces or classes that use
thistype.

CLS (framework): this type shall not appear in exposed members.

7.6.1.4 Parameter Signatures

Parameter signatur es define constraints on how an individual valueis passed as part of a method invocation.
Parameter signatures are declared by method definitions. Any valid local signature isavalid parameter
signature.

7.6.1.5 Method Signatures

M ethod signatur es are composed of

. acalling convention,

. alist of zero or more parameter signatures, one for each parameter of the method,
. and a type signature for the result value if one is produced.

Method signatures are declared by method definitions. Only one constraint can be added to a method signature
in addition to those of parameter signatures:

. The varar gs constraint may be included to indicate that all arguments past this point are optional.
When it appears, the calling convention shall be one that supports variable argument lists.

Method signatures are used in two different ways. They are used as part of a method definition and asa
description of acalling site when calling through a function pointer. In this latter case, the method signature
indicates

. the calling convention (which may include platform-specific calling conventions)

. the type of all the argument values that are being passed,

. if needed, a varargs marker indicating where the fixed parameter list ends and the variable
parameter list begins

When used as part of a method definition, the varargs constraint is represented by the choice of calling
convention.

CL S Rule15: The varargs constraint is not part of the CLS, and the only calling convention supported by the
CL S is the standard managed calling convention.

~N~No oh WdN Bk

10
11

12

13
14

15

16
17
18
19

20
21
22
23
24

25
26
27
28
29
30

31
32
33
34
35
36
37

38

39
40
41
42

43

45
46

7.7

7.8

7.9

- 40 -

Note:

CL S (consumer): there is no need to accept methods with variable argument lists or unmanaged calling
convention.

CL S (extender): thereis no need to provide syntax to declare varargs methods or unmanaged calling
conventions.

CL S (framework): neither varargs methods nor methods with unmanaged calling conventions may be exposed
externally.

Assignment Compatibility

The constraints in the type signature and the location signature affect assignment compatibility of avalueto a
location. Assignment compatibility of avalue (described by a type signature) to alocation (described by a
location signature) is defined as follows:

One of the types supported by the exact type of the value is the same as the type in the location signature.

This allows, for example, an instance of a class that inherits from a base class (hence supports the base class's
type contract) to be stored into alocation whose typeis that of the base class.

Type Safety and Verification

Since types specify contracts, it isimportant to know whether a given implementation lives up to these
contracts. An implementation that lives up to the enforceable part of the contract (the named signatures) is said
to be typesafe. An important part of the contract deals with restrictions on the visibility and accessibility of
named items as well as the mapping of names to implementations and locations in memory.

Typesafe implementations only store values described by atype signature in alocation that is assignment
compatible with the location signature of the location (see clause 7.6.1). Typesafe implementations never apply
an operation to avalue that is not defined by the exact type of the value. Typesafe implementations only access
locations that are both visible and accessible to them. In atypesafe implementation, the exact type of avalue
cannot change.

Verification isamechanical process of examining an implementation and asserting that it is typesafe.
Verification is said to succeed if the process proves that an implementation is typesafe. Verification is said to
fail if that process does not prove the type safety of an implementation. Verification is necessarily conservative:
it may report failure for atypesafe implementation, but it never reports success for an implementation that is
not typesafe. For example, most verification processes report implementations that do pointer-based arithmetic
asfailing verification, even if the implementation is in fact typesafe.

There are many different processes that can be the basis of verification. The simplest possible process simply
saysthat all implementations are not typesafe. While correct and efficient thisis clearly not particularly useful.
By spending more resources (time and space) a process can correctly identify more typesafe implementations.
It has been proven, however, that no mechanical process can in finite time and with no errors correctly identify
all implementations as either typesafe or not typesafe. The choice of a particular verification processisthus a
matter of engineering, based on the resources available to make the decision and the importance of detecting
the typesafety of different programming constructs.

Type Definers

Type definers construct a new type from existing types. Implicit types (e.g., built-in types, arrays, and pointers
including function pointers) are defined when they are used. The mention of an implicit typein asignatureisin
and of itself acomplete definition of the type. Implicit types allow the VES to manufacture instances with a
standard set of members, interfaces, etc. Implicit types need not have user-supplied names.

All other types shall be explicitly defined using an explicit type definition. The explicit type definers are:
. interface definitions — used to define interface types
. class definitions — used to define:

o] object types

O WN -

10
11
12

13
14
15

16
17
18

19

20
21
22
23

24
25
26
27

28
29

30
31
32
33

34
35
36
37
38
39

40
41
42
43

45
46
47
48

- 41 -

o] value types and their associated boxed types

Note: While class definitions always define class types, not all class types require a class definition. Array
types and pointer types, which are implicitly defined, are also class types. See clause 7.2.3.

Similarly, not all types defined by a class definition are object types. Array types, explicitly defined object
types, and boxed types are object types. Pointer types, function pointer types, and value types are not object
types. Seeclause7.2.3.

Array Types

An array type shall be defined by specifying the element type of the array, the rank (number of dimensions)
of the array, and the upper and lower bounds of each dimension of the array. Hence, no separate definition of
the array type is needed. The bounds (as well asindicesinto the array) shall be signed integers. While the
actual bounds for each dimension are known at runtime, the signature may specify the information that is
known at compile time: no bounds, alower bound, or both an upper and lower bound.

Array elements shall be laid out within the array object in row-major order, i.e. the elements associated with the
rightmost array dimension shall be laid out contiguously from lowest to highest index. The actual storage
allocated for each array element may include platform-specific padding.

Values of an array type are objects; hence an array typeisakind of object type (see clause 7.2.3). Array objects
are defined by the CTS to be a repetition of locations where values of the array element type are stored. The
number of repeated values is determined by the rank and bounds of the array.

Only type signatures, not location signatures, are allowed as array element types.

Exact array types are created automatically by the VES when they are required. Hence, the operations on an
array type are defined by the CTS. These generally are: allocating the array based on size and lower bound
information, indexing the array to read and write a value, computing the address of an element of the array (a
managed pointer), and querying for the rank, bounds, and the total number of values stored in the array.

CLSRule16: Arrays shall have elements with a CL S-compliant type and all dimensions of the array shall
have lower bounds of zero. Only the fact that an item is an array and the element type of the array shall be
required to distinguish between overloads. When overloading is based on two or more array types the element
types shall be named types.

Note: so-called “jagged arrays’ are CLS-compliant, but when overloading multiple array types they are one-
dimensional, zero-based arrays of type System.Array.

CL S (consumer): there is no need to support arrays of non-CL S types, even when dealing with instances of
System.Array. Overload resolution need not be aware of the full complexity of array types. Programmers
should have access to the Get, Set, and Address methods on instances of System.Array if thereis no language
syntax for the full range of array types.

CL S (extender): thereis no need to provide syntax to define non-CL S types of arrays or to extend interfaces or
classesthat use non-CL S array types. Shall provide accessto the type Syst em Arr ay, but may assume that all
instances will have a CL S-compliant type. While the full array signature must be used to override an inherited
method that has an array parameter, the full complexity of array types need not be made visible to
programmers. Programmers should have access to the Get, Set, and Address methods on instances of
System.Array if there is no language syntax for the full range of array types.

CL S (framework): non-CLS array types shall not appear in exposed members. Where possible, use only one-
dimensional, zero-based arrays (vectors) of simple named types, since these are supported in the widest range
of programming languages. Overloading on array types should be avoided, and when used shall obey the
restrictions.

Array typesform a hierarchy, with all array types inheriting from the type Syst em Array. Thisisan abstract
class (see clause 7.9.6.2) that represents all arrays regardless of the type of their elements, their rank, or their
upper and lower bounds. The VES creates one array type for each distinguishable array type. In general, array
types are only distinguished by the type of their elements and their rank. The VES, however, treats single
dimensional, zero-based arrays (also known as vectors) specially. Vectors are aso distinguished by the type of

A W NP

42 -

their elements, but a vector is distinct from asingle-dimensional array of the same element type that has a non-
zero lower bound.. Zero-dimensional arrays are not supported.

Consider the following examples, using the syntax of CIL as described in Partition I1:

19

20
21
22
23
24
25

26
27

28
29
30

31

32
33
34
35

- 43 -

Table 2: Array Examples

Static specification of type Actual type constructed Allowed in CLS?
int32[] vector of int32 Yes
int32[0..5] vector of int32 Yes
int32[1..5] array, rank 1, of int32 No
int32[,] array, rank 2, of int32 Yes
int32[0..3, 0..5] array, rank 2, of int32 Yes
int32[0.., 0..] array, rank 2, of int32 Yes
int32[1.., 0..] array, rank 2, of int32 No

7.9.2

Unmanaged Pointer Types

An unmanaged pointer type (also known simply as a*“pointer type”) is defined by specifying alocation
signature for the location the pointer references. Any signature of a pointer type includes this location
signature. Hence, no separate definition of the pointer typeis needed.

While pointer types are Reference Types, values of a pointer type are not objects (see clause 7.2.3), and hence
it is not possible, given avalue of apointer type, to determine its exact type. The CTS provides two typesafe
operations on pointer types. one to load the value from the location referenced by the pointer and the other to
store an assignment compatible value into that location. The CTS also provides three operations on pointer
types (byte-based address arithmetic): adding and subtracting integers from pointers, and subtracting one
pointer from another. The results of the first two operations are pointers to the same type signature as the
original pointer. See Partition |11 for details.

CL S Rule 17: Unmanaged pointer types are not CLS-compliant.

Note:

CL S (consumer): there is no need to support unmanaged pointer types.

CL S (extender): there is no need to provide syntax to define or access unmanaged pointer types.

CL S (framework): unmanaged pointer types shall not be externally exposed.

7.9.3

7.9.4

Delegates

Delegates are the object-oriented equivalent of function pointers. Unlike function pointers, delegates are
object-oriented, type-safe, and secure. Delegates are created by defining a class that derives from the base type
Syst em Del egat e (See Partition |V). Each delegate type shall provide a method named I nvoke with appropriate
parameters, and each instance of a delegate forwards calls to its I nvoke method to a compatible static or
instance method on a particular object. The object and method to which it delegates are chosen when the
delegate instance is created.

In addition to an instance constructor and an I nvoke method, delegates may optionally have two additional
methods: Beginl nvoke and Endlnvoke. These are used for asynchronous calls.

While, for the most part, delegates appear to be simply another kind of user defined class, they are tightly
controlled. The implementations of the methods are provided by the VES, not user code. The only additional
members that may be defined on delegate types are static or instance methods.

Interface Type Definition

An interface definition defines an interface type. An interface type is a named group of methods, locations and
other contracts that shall be implemented by any object type that supports the interface contract of the same
name. An interface definition is always an incomplete description of avalue, and as such can never define a
class type or an exact type, nor can it be an object type.

- 44 -

1 Zero or more object types can support an interface type, and only object types can support an interface type. An
2 interface type may require that objects that support it shall also support other (specified) interface types. An
3 object type that supports the named interface contract shall provide a complete implementation of the methods,
4 locations, and other contracts specified (but not implemented by) the interface type. Hence, a value of an object
5 typeisalso avaue of al of the interface types the object type supports. Support for an interface contract is
6 declared, never inferred, i.e. the existence of implementations of the methods, locations, and other contracts
7 required by the interface type does not imply support of the interface contract.
8 CLSRule18: CLS-compliant interfaces shall not require the definition of non-CL S compliant methods in
9 order to implement them.
10 Note:
11 CL S (consumer): there is no need to deal with such interfaces.
12 CL S (extender): need not provide a mechanism for defining such interfaces..
13 CL S (framework): shall not expose any non-CL S compliant methods on interfaces it defines for external use.
14 Interfaces types are necessarily incomplete since they say nothing about the representation of the values of the
15 interface type. For this reason, an interface type definition shall not provide field definitions for values of the
16 interface type (i.e. instance fields), although it may declare static fields (see clause 7.4.3).
17 Similarly, an interface type definition shall not provide implementations for any methods on the values of its
18 type. However, an interface type definition may and usually does define method contracts (method name and
19 method signature) that shall be implemented by supporting types. An interface type definition may define and
20 implement static methods (see clause 7.4.3) since static methods are associated with the interface type itself
21 rather than with any value of the type.
22 Interfaces may have static or virtual methods, but shall not have instance methods.
23 CLSRule19: CLS-compliant interfaces shall not define static methods, nor shall they define fields.
24 Note:
25 CL S-compliant interfaces may define properties, events, and virtual methods.
26 CL S (consumer): need not accept interfaces that violate these rules.
27 CL S (extender): need not provide syntax to author interfaces that violate these rules.
28 CLS (framework): shall not externally expose interfaces that violate these rules. Where static methods,
29 instance methods, or fields are required a separate class may be defined that provides them.
30 Interface types may also define event and property contracts that shall be implemented by object types that
31 support the interface. Since event and property contracts reduce to sets of method contracts (Section 7.6), the
32 above rules for method definitions apply. For more information, see clause 7.11.4 and clause 7.11.3.
33 Interface type definitions may specify other interface contracts that implementations of the interface type are
34 required to support. See clause 7.9.11 for specifics.
35 An interface type is given avisibility attribute, as described in clause 7.5.3, that controls from where the
36 interface type may be referenced. An interface type definition is separate from any object type definition that
37 supports the interface type. Hence, it is possible, and often desirable, to have a different visibility for the
38 interface type and the implementing object type. However, since accessibility attributes are relative to the
39 implementing type rather than the interface itself, all members of an interface shall have public accessibility,
40 and no security permissions may be attached to members or to the interface itself.

41 7.9.5 Class Type Definition

42 All types other than interfaces, and those types for which a definition is automatically supplied by the CTS, are
43 defined by class definitions. A classtypeis acomplete specification of the representation of the values of the
44 classtype and all of the contracts (class, interface, method, property, and event) that are supported by the class

45 type. Hence, aclasstype is an exact type. A class definition, unless it specifies that the classis an abstract

© 00 NO OOr~rwWw NP

I
N R O

I
AW

[inY
a1

B
~N o

N N N N DN P
A W N B O O

NN
o U1

N N
o0~

W N
o ©

w w
N B

w W
NN

wWww
~N o O

W W
©

B b
= O

object type, not only defines the class type: it also provides implementations for all of the contracts supported

- 45 -

by the class type.

A class definition, and hence the implementation of the class type, always resides in some assembly. An
assembly is a configured set of |oadable code modules and other resources that together implement a unit of
functionality.

Note: While class definitions always define class types, not all class types require a class definition. Array
types and pointer types, which are implicitly defined, are also class types. See clause 7.2.3.

An explicit class definition is used to define:

An object type (see clause 7.2.3).
A value type and its associated boxed type (see clause 7.2.4).

An explicit class definition:

Names the class type.

Implicitly assigns the class type name to a scope, i.e. the assembly that contains the class
definition, (seeclause 7.5.2).

Defines the class contract of the same name (see Section 7.6).

Defines the representations and valid operations of all values of the class type using member
definitions for the fields, methods, properties, and events (see Section 7.11).

Defines the static members of the class type (see Section 7.11).

Specifies any other interface and class contracts also supported by the class type.
Supplies implementations for member and interface contracts supported by the class type.
Explicitly declares a visibility for the type, either public or assembly (see clause 7.5.3).

May optionally specify a method to be called to initialize the type.

The semantics of when, and what triggers execution of such type initialization methods, is as follows:

1.
2.

A type may have atype-initializer method, or not.

A type may be specified as having arelaxed semantic for its type-initializer method (for
convenience below, we call this relaxed semantic Befor eFieldl nit)

If marked BeforeFieldlnit then the type’sinitializer method is executed at, or sometime before,

first access to any static field defined for that type

If not marked Befor eFieldlnit then that type’ s initializer method is executed at (i.e., is triggered

by):
o] first access to any static or instance field of that type, or

o] first invocation of any static, instance or virtual method of that type

Execution of any type'sinitializer method will not trigger automatic execution of any initializer

methods defined by its base type, nor of any interfaces that the type implements

Note: BeforeFieldlnit behavior is intended for initialization code with no interesting side-effects, where exact
timing does not matter. Also, under Befor eFieldl nit semantics, type initializers are allowed to be executed at

or beforefirst accessto any static field of that Type -- at the discretion of the CLI

If alanguage wishes to provide more rigid behavior -- e.g. typeinitialization automatically triggers execution

of parentsinitializers, in atop-to-bottom order, then it can do so by either:

defining hidden static fields and code in each class constructor that touches the hidden static field

of its parent and/or interfaces it implements, or

N

co~NOOTh W

9

10
11
12
13

14

15
16
17
18
19

20
21
22
23
24

25

26
27
28

29
30
31
32
33

34
35
36
37

38
39
40
41

42
43

45
46
47

- 46 -

. by making explicit callsto Syst em Runti me. Conpi | er Ser vi ces. Runt i me-
Hel pers. RunCl assConst ruct or (see Partition V).

7.9.6

7.9.6

7.9.6

7.9.6

Object Type Definitions

All objects are instances of an object type. The object type of an object is set when the object is created and it
isimmutable. The object type describes the physical structure of the instance and the operations that are
allowed on it. All instances of the same object type have the same structure and the same allowable operations.
Object types are explicitly declared by a class type definition, with the exception of Array types, which are
intrinsically provided by the VES.

A Scope and Visibility

Since object type definitions are class type definitions, object type definitions implicitly specify the scope of
the name of object type to be the assembly that contains the object type definition, see clause 7.5.2. Similarly,
object type definitions shall also explicitly state the visibility attribute of the object type (either public or
assembly); see clause 7.5.3.

.2 Concreteness

An object type may be marked as abstract by the object type definition. An object type that is not marked
abstract is by definition concr ete. Only object types may be declared as abstract. Only an abstract object type
is allowed to define method contracts for which the type or the VES does not also provide the implementation.
Such method contracts are called abstract methods (see Section 7.11). All methods on an abstract class need not
be abstract.

It isan error to attempt to create an instance of an abstract object type, whether or not the type has abstract
methods. An object type that derives from an abstract object type may be concrete if it provides
implementations for any abstract methods in the base object type and is not itself marked as abstract. Instances
may be made of such a concrete derived class. Locations may have an abstract type, and instances of a concrete
type that derives from the abstract type may be stored in them.

.3 Type Members

Object type definitions include member definitions for all of the members of the type. Briefly, members of a
type include fields into which values are stored, methods that may be invoked, properties that are available, and
events that may be raised. Each member of atype may have attributes as described in Section 7.4.

. Fields of an object type specify the representation of values of the object type by specifying the
component pieces from which it is composed (see clause 7.4.1). Static fields specify fields
associated with the object type itself (see clause 7.4.3). The fields of an object type are named
and they are typed via location signatures. The names of the members of the type are scoped to
the type (see clause 7.5.2). Fields are declared using afield definition (see clause 7.11.2).

. Methods of an object type specify operations on values of the type (see clause 7.4.2). Static
methods specify operations on the type itself (see clause 7.4.3). Methods are named and they
have a method signature. The names of methods are scoped to the type (see clause 7.5.2).
M ethods are declared using a method definition (see clause 7.11.1).

. Properties of an object type specify named values that are accessible via methods that read and
write the value. The name of the property is the grouping of the methods; the methods themselves
are also named and typed via method signatures. The names of properties are scoped to the type
(see clause 7.5.2). Properties are declared using a property definition (see clause 7.11.3).

. Events of an object type specify named state transitions in which subscribers may
register/unregister interest via accessor methods. When the state changes, the subscribers are
notified of the state transition. The name of the event is the grouping of the accessor methods;
the methods themselves are also named and typed via method signatures. The names of events
are scoped to the type (see clause 7.5.2). Events are declared using an event definition (see
clause 7.11.4).

47 -

1 7.9.6.4 Supporting Interface Contracts
2 Object type definitions may declare that they support zero or more interface contracts. Declaring support for an
3 interface contract places a requirement on the implementation of the object type to fully implement that
4 interface contract. Implementing an interface contract always reduces to implementing the required set of
5 methods, i.e. the methods required by the interface type.
6 The different types that the object type implements, i.e. the object type and any implemented interface types,
7 are each a separate logical grouping of named members. If a class Foo implements an interface | Foo and | Foo
8 declares amember method i nt a() and the class also declares amember method i nt a() , there are two
9 members, one in the | Foo interface type and onein the Foo class type. An implementation of Foo will provide
10 an implementation for both, potentially shared.
11 Similarly, if aclassimplements two interfaces | Foo and | Bar each of which definesamethodint a() the
12 class will supply two method implementations, one for each interface, although they may share the actual code
13 of the implementation.
14 CL S Rule20: CLS-compliant classes, value types, and interfaces shall not require the implementation of non-
15 CLS-compliant interfaces.
16 Note:
17 CL S (consumer): need not accept classes, value types or interfaces that violate this rule.
18 CL S (extender): need not provide syntax to author classes, value types, or interfaces that violate thisrule.
19 CL S (framework): shall not externally expose classes, value types, or interfacesthat violate thisrule.

20 7.9.6.5 Supporting Class Contracts

21 Object type definitions may declare support for one other class contract. Declaring support for another class
22 contract is synonymous with object type inheritance (see clause 7.9.9).

23 7.9.6.6 Constructors

24 New values of an object type are created via constructor s. Constructors shall be instance methods, defined via
25 aspecial form of method contract, which defines the method contract as a constructor for a particular object

26 type. The constructors for an object type are part of the object type definition. While the CTS and VES ensure
27 that only aproperly defined constructor is used to make new values of an object type, the ultimate correctness
28 of anewly constructed object is dependent on the implementation of the constructor itself.

29 Object types shall define at least one constructor method, but that method need not be public. Creating a new
30 value of an object type by invoking a constructor involves the following steps in order:

31 1. Spacefor the new value is allocated in managed memory.

32 2. VESdatastructures of the new value are initialized and user-visible memory is zeroed.

33 3. The specified constructor for the object type is invoked.

34 Inside the constructor, the object type may do any initialization it chooses (possibly none).

35 CLSRule21: An object constructor shall call some class constructor of its base class before any access occurs
36 to inherited instance data. This does not apply to value types, which need not have constructors.

37 CLSRule 22: An object constructor shall not be called except as part of the creation of an object, and an object
38 shall not beinitialized twice.

39 Note:

40 CL S (consumer): Shall provide syntax for choosing the constructor to be called when an object is created.

41 CL S (extender): Shall provide syntax for defining constructor methods with different signatures. May issue a
42 compiler error if the constructor does not obey these rules.

WN B

28

29
30
31
32

33
34
35

36
37
38

39

40
41

42
43

45

- 48 -

CL S (framework): May assume that object creation includes a call to one of the constructors, and that no
object isinitialized twice. Syst em Menber wi sed one (see Partition 1V) and deserialization (including object
remoting) may not run constructors.

7.9.6.7 Finalizers

A class definition that creates an object type may supply an instance method to be called when an instance of
the classis no longer accessible. The class Syst em GC (see Partition 1V) provides limited control over the
behavior of finalizers through the methods Suppr essFi nal i ze and ReRegi st er For Fi nal i ze. Conforming
implementations of the CLI1 may specify and provide additional mechanisms that affect the behavior of
finalizers.

A conforming implementation of the CLI shall not automatically call afinalizer twice for the same object
unless

. there has been an intervening call to ReRegi st er For Fi nal i ze (not followed by acall to
Suppr essFi nal i ze), or

. the program has invoked an implementation-specific mechanism that is clearly specified to
produce an alteration to this behavior

Rationale: Programmers expect that finalizers are run precisely once on any given object unless they take an
explicit action to cause the finalizer to be run multiple times.

Itislegal to define afinalizer for aVaue Type. That finalizer however will only be run for boxed instances of
that Value Type.

Note: Since programmers may depend on finalizers to be called, the CLI should make every effort to ensure
that finalizers are called, before it shuts down, for all objects that have not been exempted from finalization by
acall to suppr essFi nal i ze. The implementation should specify any conditions under which this behavior
cannot be guaranteed.

Note: Since resources may become exhausted if finalizers are not called expeditiously, the CLI should ensure
that finalizers are called soon after the instance becomes inaccessible. While relying on memory pressure to
trigger finalization is acceptable, implementers should consider the use of additional metrics.

Value Type Definition

Not all types defined by a class definition are object types (see clause 7.2.3); in particular, value types are not
object types but they are defined using a class definition. A class definition for a value type defines both the
(unboxed) value type and the associated boxed type (see clause 7.2.4). The members of the class definition
define the representation of both:

1. When anon-static method (i.e. an instance or virtual method) is called on the value type its this
pointer is a managed reference to the instance, whereas when the method is called on the
associated boxed type the this pointer is an object reference.

I nstance methods on value types receive a this pointer that is a managed pointer to the unboxed type whereas
virtual methods (including those on interfaces implemented by the value type) receive an instance of the boxed
type.

1. Valuetypes do not support interface contracts, but their associated boxed types do.

2. A valuetype does not inherit; rather the base type specified in the class definition defines the
base type of the boxed type.

The base type of a boxed type shall not have any fields.

Unlike object types, instances of value types do not require a constructor to be called when an
instance is created. Instead, the verification rules require that verifiable code initialize instances
to zero (null for object fields).

OooO~N OO WwWN -

13

14
15
16
17

18
19

20
21

22
23
24

25
26
27

28
29
30
31
32
33
34
35

36
37
38
39

40

41
42
43

7.9.8

7.9.9

- 49 -

Type Inheritance

Inheritance of typesis another way of saying that the derived type guarantees support for all of the type
contracts of the base type. In addition, the derived type usually provides additional functionality or specialized
behavior. A type inherits from a base type by implementing the type contract of the base type. An interface type
inherits from zero or more other interfaces. Vaue types do not inherit, although the associated boxed typeisan
object type and hence inherits from other types

The derived class type shall support all of the supported interfaces contracts, class contracts, event contracts,
method contracts, and property contracts of its base type. In addition, all of the locations defined by the base
type are also defined in the derived type. The inheritance rules guarantee that code that was compiled to work
with avalue of a base type will still work when passed a value of the derived type. Because of this, aderived
type aso inherits the implementations of the base type. The derived type may extend, override, and/or hide
these implementations.

Object Type Inheritance

With the sole exception of Syst em Obj ect , which does not inherit from any other object type, al object types
shall either explicitly or implicitly declare support for (inherit from) exactly one other object type. The graph of
the inherits-relation shall form a singly rooted tree with Syst em vj ect at the base, i.e. al object types
eventually inherit from the type Syst em vj ect .

An object type declares it shall not be used as a base type (be inherited from) by declaring that it is a sealed
type.

CLSRule23:. system vj ect is CLS-compliant. Any other CL S-compliant class shall inherit fromaCLS-
compliant class.

7.9.1

7.9.1

Arrays are object types and as such inherit from other object types. Since arrays object types are manufactured
by the VES, the inheritance of arraysis fixed. See clause 7.9.1.
0 Value Typelnheritance

Value Types, in their unboxed form, do not inherit from any type. Boxed value types shall inherit directly from
System.VaueType unless they are enumerations, in which case they shall inherit from System.Enum. Boxed
value types shall be sealed.

Logically, the boxed type corresponding to a value type

. I's an object type.

. Will specify which object type isits base type, i.e. the object type from which it inherits.
. Will have a base type that has no fields defined.

. Will be sealed to avoid dealing with the complications of value slicing

The more restrictive rules specified here allow for more efficient implementation without severely
compromising functionality.

1 Interface Type lnheritance

Interface types may inherit from multiple interface types, i.e. an interface contract may list other interface
contracts that shall aso be supported. Any type that implements support for an interface type shall also
implement support for al of the inherited interface types. Thisis different from object type inheritance in two

ways.
. Object types form a single inheritance tree; interface types do not.

. Object type inheritance specifies how implementations are inherited; interface type inheritance
does not, since interfaces do not define implementation. Interface type inheritance specifies
additional contracts that an implementing object type shall support.

w N

~No o1 b~

10
11
12
13

14

15
16
17
18
19

20
21
22

23
24
25
26
27
28
29

30

31
32
33
34
35

36

37
38
39
40

41
42
43

45
46
47
48

- 50 -

To highlight the last difference, consider an interface, | Foo, that has a single method. An interface, | Bar , which
inherits from it is requiring that any object type that supports 1 Bar also support | Foo. It does not say anything
about which methods 1 Bar itself will have.

7.10 Member Inheritance

7.10.

7.10.

7.10

7.10.

Only object types may inherit implementations, hence only object types may inherit members (see
clause 7.9.8). Interface types, while they do inherit from other interface types, only inherit the requirement to
implement method contracts, never fields or method implementations.

1 Field Inheritance

A derived object type inherits all of the non-static fields of its base object type. This allows instances of the
derived type to be used wherever instances of the base type are expected (the shapes, or layouts, of the
instances will be the same). Static fields are not inherited. Just because afield exists does not mean that it may
be read or written. The type visibility, field accessibility, and security attributes of the field definition (see
clause 7.5.3) determine if afield is accessible to the derived object type.

2 Method Inheritance

A derived object type inherits all of the instance and virtual methods of its base object type. It does not inherit
constructors or static methods. Just because a method exists does not mean that it may be invoked. It shall be
accessible viathe typed reference that is being used by the referencing code. The type visibility, method
accessibility, and security attributes of the method definition (see clause 7.5.3) determine if amethod is
accessible to the derived object type.

A derived object type may hide anon-virtual (i.e. static or instance) method of its base type by providing a new
method definition with the same name or same name and signature. Either method may still be invoked, subject
to method accessibility rules, since the type that contains the method always qualifies a method reference.

Virtual methods may be marked as final, in which case they shall not be overridden in aderived object type.
This ensures that the implementation of the method is available, by avirtual call, on any object that supports
the contract of the base class that supplied the final implementation. If avirtual method is not final it is possible
to demand a security permission in order to override the virtual method, so that the ability to provide an
implementation can be limited to classes that have particular permissions. When a derived type overrides a
virtual method, it may specify anew accessibility for the virtual method, but the accessibility in the derived
class shall permit at least as much access as the access granted to the method it is overriding. See clause 7.5.3.

.3 Property and Event Inheritance

Properties and events are fundamentally constructs of the metadata intended for use by tools that target the CLI
and are not directly supported by the VES itself. It is, therefore, the job of the source language compiler and the
Reflection library [see Partition V] to determine rules for name hiding, inheritance, and so forth. The source
compiler shall generate CIL that directly accesses the methods named by the events and properties, not the
events or properties themselves.

4 Hiding, Overriding, and Layout

There are two separate issues involved in inheritance. Thefirst is which contracts a type shall implement and
hence which member names and signatures it shall provide. The second is the layout of the instance so that an
instance of a derived type can be substituted for an instance of any of its base types. Only the non-static fields
and the virtual methods that are part of the derived type affect the layout of an object.

The CTS provides independent control over both the names that are visible from a base type (hiding) and the
sharing of layout slots in the derived class (overriding). Hiding is controlled by marking a member in the
derived class as either hide by name or hide by name-and-signature. Hiding is always performed based on
the kind of member, that is, derived field names may hide base field names, but not method names, property
names, or event names. If a derived member is marked hide by name, then members of the same kind in the
base class with the same name are not visible in the derived class; if the member is marked hide by name-and-
signatur e then only a member of the same kind with exactly the same name and type (for fields) or method
signature (for methods) is hidden in the derived class. Implementation of the distinction between these two

ooo~NoOUIR W N

16
17
18
19
20
21
22
23
24

25
26

27
28

29
30
31

32
33

34
35

36

37
38
39
40
41
42
43

- 51 -

forms of hiding is provided entirely by source language compilers and the Reflection library; it has no direct
impact on the VES itself.

For example:
cl ass Base
{ field int32 A
field SystemString A
met hod i nt 32 A();
met hod i nt 32 A(int32);

class Derived inherits from Base
{ field int32 A

hi debysi g nethod int32 A();
}

The member names available in type Der i ved are:

Table 3: Member names

Kind of member Type/ Signatur e of member Name of member
Field int32 A
Met hod () ->int32 A
Met hod (int32) -> int32 A

While hiding appliesto all members of atype, overriding deals with object layout and is applicable only to
instance fields and virtual methods. The CTS provides two forms of member overriding, new slot and expect
existing slot. A member of aderived type that is marked as anew slot will always get anew dot in the object’s
layout, guaranteeing that the base field or method is available in the object by using a qualified reference that
combines the name of the base type with the name of the member and its type or signature. A member of a
derived type that is marked as expect existing slot will re-use (i.e. share or override) a ot that correspondsto a
member of the same kind (field or method), name, and type if one already exists from the base type; if no such
slot exists, anew dot is allocated and used.

The genera agorithm that is used for determining the namesin atype and the layout of objects of thetypeis
roughly asfollows:

. Flatten the inherited names (using the hide by hame or hide by name-and-signatur e rule)
ignoring accessibility rules.

. For each new member that is marked “expect existing slot”, look to see if an exact match on kind
(i.e. field or method), name, and signature exists and use that slot if it is found, otherwise allocate
anew slot.

. After doing this for all new members, add these new member-kind/name/signatures to the list of
members of this type

. Finally, remove any inherited names that match the new members based on the hide by name or
hide by name-and-signature rules.

7.11 Member Definitions

Object type definitions, interface type definitions, and value type definitions may include member definitions.
Field definitions define the representation of values of the type by specifying the substructure of the value.
Method definitions define operations on values of the type and operations on the type itself (static methods).
Property and event definitions may only be defined on object types. Property and events define named groups
of accessor method definitions that implement the named event or property behavior. Nested type declarations
define types whose names are scoped by the enclosing type and whose instances have full accessto all
members of the enclosing class.

Depending on the kind of type definition, there are restrictions on the member definitions allowed.

- 52 -

7.11.1 Method Definitions

1

2 Method definitions are composed of a name, a method signature, and optionally an implementation of the

3 method. The method signature defines the calling convention, type of the parameters to the method, and the
4 return type of the method (see clause 7.6.1). The implementation is the code to execute when the method is

5 invoked. A value type or object type may define only one method of a given name and signature. However, a
6 derived object type may have methods that are of the same name and signature as its base object type. See

7 clause 7.10.2 and clause 7.10.4.

8

The name of the method is scoped to the type (see clause 7.5.2). Methods may be given accessibility attributes

9 (see clause 7.5.3). Methods may only be invoked with arguments that are assignment compatible with the
10 parameters types of the method signature. The return value of the method shall also be assignment compatible
11 with the location in which it is stored.
12 Methods may be marked as static, indicating that the method is not an operation on values of the type but
13 rather an operation associated with the type as awhole. Methods not marked as static define the valid
14 operations on avalue of atype. When a non-static method isinvoked, a particular value of the type, referred to
15 asthisor thethis pointer, is passed as an implicit parameter.
16 A method definition that does not include a method implementation shall be marked as abstract. All non-static
17 methods of an interface definition are abstract. Abstract method definitions are only allowed in object types that
18 are marked as abstract.
19 A non-static method definition in an object type may be marked as virtual, indicating that an alternate
20 implementation may be provided in derived types. All non-static method definitions in interface definitions
21 shall be virtual methods. Virtual method may be marked asfinal, indicating that derived object types are not
22 allowed to override the method implementation.

23 7.11.2 Field Definitions

24 Field definitions are composed of a name and alocation signature. The location signature defines the type of
25 the field and the accessing constraints, see clause 7.6.1. A value type or object type may define only one field
26 of agiven name and type. However, a derived object type may have fields that are of the same name and type
27 asits base object type. See clause 7.10.1 and clause 7.10.4.

28 The name of the field is scoped to the type (see clause 7.5.2). Fields may be given accessibility attributes, see
29 clause 7.5.3. Fields may only store values that are assignment compatible with the type of the field (see

30 clause 7.3.1).

31 Fields may be marked as static, indicating that the field is not part of values of the type but rather alocation
32 associated with the type as awhole. Locations for the static fields are created when the type is loaded and

33 initialized when the type isinitiaized.

34 Fields not marked as static define the representation of avalue of atype by defining the substructure of the
35 value (see clause 7.4.1). Locations for such fields are created within every value of the type whenever anew
36 value is constructed. They areinitialized during construction of the new value. A non-static field of agiven
37 name is always located at the same place within every value of the type.

38 A field that is marked serializable isto be serialized as part of the persistent state of avalue of the type. This
39 standard does not specify the mechanism by which thisis accomplished.

40 7.11.3 Property Definitions

41 A property definition defines a named value and the methods that access the value. A property definition

42 defines the accessing contracts on that value. Hence, the property definition specifies which accessing methods
43 exist and their respective method contracts. An implementation of atype that declares support for a property
44 contract shall implement the accessing methods required by the property contract. The implementation of the
45 accessing methods defines how the value is retrieved and stored.

46 A property definition is always part of either an interface definition or a class definition. The name and value of
47 aproperty definition is scoped to the object type or the interface type that includes the property definition.

48 While all of the attributes of a member may be applied to a property (accessibility, static, etc.) these are not

49 enforced by the CTS. Instead, the CTS requires that the method contracts that comprise the property shall

00 NO Oh~hW NP

©

e el
WN RO

B
[SRGES

[N
~

N
O © ™

N NN
WN P~

NN
[RN

26

27
28
29

30
31
32

33
34

35
36

37

38
39

40
41
42

43

- 53 -

match the method implementations, as with any other method contract. There are no CIL instructions
associated with properties, just metadata.

By convention, properties define agetter method (for accessing the current value of the property) and
optionally a setter method (for modifying the current value of the property). The CTS places no restrictions on
the set of methods associated with a property, their names, or their usage.

CL S Rule 24: The methods that implement the get t er and set t er methods of a property shall be marked
SpecialName in the metadata.

CL S Rule 25: The accessibility of aproperty and of its accessors shall be identical.
CLSRule26: A property and its accessors shall all be static, al be virtual, or al be instance.

CLSRule27: Thetype of aproperty shall be the return type of the get t er and the type of the last argument of
the setter. The types of the parameters of the property shall be the types of the parametersto the get t er and
the types of al but the final parameter of thesett er. All of these types shall be CLS-compliant, and shall not
be managed pointers (i.e. shall not be passed by reference).

CL S Rule 28: Properties shall adhere to a specific naming pattern. See Section 9.4. The Speci al Nane
attribute referred to in CLS rule 26 shall beignored in appropriate name comparisons and shall adhere to
identifier rules.

Note:

CL S (consumer): Shall ignore the Speci al Nane bit in appropriate name comparisons and shall adhere to
identifier rules. Otherwise, no direct support other than the usual access to the methods that define the

property.
CL S (extender): Shall ignore the Speci al Nare bit in appropriate name comparisons and shall adhere to

identifier rules. Otherwise, no direct support other than the usual access to the methods that define the
property. In particular, an extender need not be able to define properties.

CL S (framework): Shall design understanding that not all CL S languages will access the property using
special syntax.

7.11.4 Event Definitions

The CTS supports eventsin precisely the same way that it supports properties (see clause 7.11.3). The
conventional methods, however, are different and include means for subscribing and unsubscribing to events as
well asfor firing the event.

CL S Rule 29: The methods that implement an event shall be marked Speci al Namre in the metadata.
CL S Rule 30: The accessibility of an event and of its accessors shall be identical.
CLSRule31: Theadd and r emove methods for an event shall both either be present or absent.

CLSRule32: Theadd andremove methods for an event shall each take one parameter whose type defines the
type of the event and that shall be derived from Syst em Del egat e.

CL SRule 33: Events shall adhere to a specific naming pattern. See Section 9.4. The Speci al Nane attribute
referred to in CLS rule 31 shall be ignored in appropriate name comparisons and shall adhere to identifier rules.

Note:

CL S (consumer): Shall ignore the Speci al Nane bit in appropriate name comparisons and shall adhere to
identifier rules. Otherwise, no direct support other than the usual access to the methods that define the event.

CL S (extender): Shall ignore the Speci al Narre bit in appropriate name comparisons and shall adhere to
identifier rules. Otherwise, no direct support other than the usual access to the methods that define the event.
In particular, an extender need not be able to define events.

CL S (framework): Shall design based on the understanding that not all CLS languages will access the event
using specia syntax.

-54 -

7.11.5 Nested Type Definitions

A nested type definition isidentical to atop-level type definition, with one exception: atop-level type has a
visibility attribute, while the visibility of a nested type is the same as the visibility of the enclosing type. See
clause 7.5.3.

© 00 ~NO Ol A WN

11
12
13

14
15
16

17

18
19
20
21
22
23

24
25
26

27
28
29
30
31

32

33
34
35
36

37
38
39
40
41

42
43

45

8

- 55 -

CLI Metadata

This section and its subsections contain only informative text, with the
exception of the CLS rules introduced here and repeated in Chapter 10. The
metadata format is specified in Partition 11

8.1

8.2

8.2.1

New types — value types and reference types — are introduced into the CTS via type declarations expressed in
metadata. In addition, metadatais a structured way to represent al information that the CL 1 uses to locate and
load classes, lay out instances in memory, resolve method invocations, trandate CIL to native code, enforce
security, and set up runtime context boundaries. Every CLI PE/COFF module (see Partition 1) carries a
compact metadata binary that is emitted into the module by the CLI-enabled development tool or compiler.

Each CLI-enabled language will expose alanguage-appropriate syntax for declaring types and members and for
annotating them with attributes that express which services they require of the infrastructure. Type imports are
also handled in alanguage-appropriate way, and it is the development tool or compiler that consumes the
metadata to expose the types that the developer sees.

Note that the typical component or application developer will not need to be aware of the rules for emitting and
consuming CL| metadata. While it may help a developer to understand the structure of metadata, the rules
outlined in this section are primarily of interest to tool builders and compiler writers.

Components and Assemblies

Each CLI component carries the metadata for declarations, implementations, and references specific to that
component. Therefore, the component-specific metadata is referred to as component metadata, and the
resulting component is said to be self-describing. In object models such as COM or CORBA, thisinformation
is represented by a combination of typelibs, IDL files, DLLRegisterServer, and amyriad of custom filesin
disparate formats and separate from the actual executablefile. In contrast, the metadata is a fundamental part of
a CLI| component.

Collections of CLI components and other files are packaged together for deployment into assemblies,
discussed in more detail in alater section. An assembly isalogical unit of functionality that serves asthe
primary unit of reuse in the CLI. Assemblies establish a name scope for types.

Types declared and implemented in individual components are exported for use by other implementations via
the assembly in which the component participates. All references to atype are scoped by the identity of the
assembly in whose context the type is being used. The CLI provides servicesto locate a referenced assembly
and request resolution of the type reference. It is this mechanism that provides an isolation scope for
applications: the assembly alone controls its composition.

Accessing M etadata

Metadata is emitted into and read from a CLI module using either direct accessto the file format as described
in Partition 11 or through the Reflection library. It is possible to create atool that verifiesa CLI module,
including the metadata, during devel opment, based on the specifications supplied in Partition 111 and
Partition 11.

When aclassisloaded at runtime, the CLI loader imports the metadata into its own in-memory data structures,
which can be browsed viathe CLI Reflection services. The Reflection services should be considered as similar
to acompiler; they automatically walk the inheritance hierarchy to obtain information about inherited methods
and fields, they have rules about hiding by name or name-and-signature, rules about inheritance of methods and
properties, and so forth.

Metadata Tokens

A metadata token is an implementation dependent encoding mechanism. Partition |1 describes the manner in
which metadata tokens are embedded in various sections of a CLI PE/COFF module. M etadata tokens are
embedded in CIL and native code to encode method invocations and field accesses at call sites; thetoken is

O, WwW NP

8
9

10
11
12
13
14

15
16

17
18
19
20

21

22
23
24
25
26

27

28
29
30

31
32

33
34
35
36

37
38

39

40

41
42
43

8.2.2

8.3

8.4

8.5

- 56 -

used by various infrastructure services to retrieve information from metadata about the reference and the type
on which it was scoped in order to resolve the reference.

A metadata token is atyped identifier of a metadata object (type declaration, member declaration, etc.). Given a
token, its type can be determined and it is possible to retrieve the specific metadata attributes for that metadata
object. However, a metadata token is not a persistent identifier. Rather it is scoped to a specific metadata
binary. A metadata token is represented as an index into a metadata data structure, so access is fast and direct.

Member Signaturesin Metadata

Every location — including fields, parameters, method return values, and properties — has atype, and a
specification for itstypeis carried in metadata.

A value type describes values that are represented as a sequence of bits. A reference type describes values that
are represented as the location of a sequence of bits. The CLI provides an explicit set of built-in types, each of
which has a default runtime form as either a value type or areference type. The metadata APIs may be used to
declare additional types, and part of the type specification of avariable encodes the identity of the type as well
aswhich form (value or reference) the typeis to take at runtime.

M etadata tokens representing encoded types are passed to CIL instructions that accept atype (newobj,
newarray, ldtoken). See the CIL instruction set specification in Partition I11.

These encoded type metadata tokens are also embedded in member signatures. To optimize runtime binding of
field accesses and method invocations, the type and location signatures associated with fields and methods are
encoded into member signatures in metadata. A member signature embodies all of the contract information that
is used to decide whether areference to a member succeeds or fails.

Unmanaged Code

It is possible to pass data from CLI managed code to unmanaged code. This always involves a transition from
managed to unmanaged code, which has some runtime cost, but data can often be transferred without copying.
When data must be reformatted the VES provides a reasonabl e specification of default behavior, but it is
possible to use metadata to explicitly require other forms of mar shalling (i.e. reformatted copying). The
metadata also allows access to unmanaged methods through implementation-specific pre-existing mechanisms.

Method Implementation Metadata

For each method for which an implementation is supplied in the current CLI module, the tool or compiler will
emit information used by the CIL-to-native code compilers, the CLI loader, and other infrastructure services.
This information includes:

. Whether the code is managed or unmanaged.
. Whether the implementation is in native code or CIL (note that all CIL code is managed).

. The location of the method body in the current module, as an address relative to the start of the
module file in which it is located (a Relative Virtual Address, or RVA). Or, alternatively, the
RVA isencoded as 0 and other metadata is used to tell the infrastructure where the method
implementation will be found, including:

o] An implementation to be located viathe CLI Interoperability Services. See related
specifications for details.

o} Forwarding calls through an imported global static method.

Class Layout

In the general case, the CLI loader isfreeto lay out the instances of aclassin any way it chooses, consistent
with the rules of the CTS. However, there are times when atool or compiler needs more control over the
layout. In the metadata, a classis marked with an attribute indicating whether its layout ruleis:

Ooo~N OO0 WNPE

BPRRRRR R
OUDMWNRERO

el
© 0~

NN
R O

22

23
24
25

26
27
28
29
30
31
32
33

34
35

36
37

38
39
40
41

42
43

45
46

47
48
49

8.6

- 57 -

. autolayout: A class marked “autolayout” indicates that the loader is free to lay out the classin
any way it sees fit; any layout information that may have been specified isignored. Thisisthe
default.

. layoutsequential: A class marked “layoutsequential” guides the loader to preserve field order as
emitted, but otherwise the specific offsets are calculated based on the CLI type of the field; these
may be shifted by explicit offset, padding, and/or alignment information.

. explicitlayout: A class marked “explicitlayout” causes the loader to ignore field sequence and to
use the explicit layout rules provided, in the form of field offsets and/or overall class size or
alignment. There are restrictions on legal layouts, specified in Partition I1.

It isalso possible to specify an overal size for aclass. This enables atool or compiler to emit avalue type
specification where only the size of the typeis supplied. Thisis useful in declaring CLI built-in types (such as
32 bit integer). It isaso useful in situations where the data type of a member of a structured value type does not
have arepresentation in CLI metadata (e.g., C++ bit fields). In the latter case, as long as the tool or compiler
controls the layout, and CLI doesn’'t need to know the details or play arolein the layout, this is sufficient. Note
that this means that the VES can move bits around but can’t marshal across machines — the emitting tool or
compiler will need to handle the marshaling.

Optionally, a devel oper may specify a packing size for aclass. Thisislayout information that is not often used
but it allows a developer to control the alignment of the fields. It is not an alignment specification, per se, but
rather serves as amodifier that places aceiling on all alignments. Typical valuesare 1, 2, 4, 8, or 16.

For the full specification of class layout attributes, see the classesin Syst em Runti ne. I nt er opSer vi ces in
Partition 1V.

Assemblies: Name Scopes for Types

An assembly is a collection of resources that are built to work together to deliver a cohesive set of
functionality. An assembly carries all of the rules necessary to ensure that cohesion. It isthe unit of accessto
resourcesin the CLI.

Externally, an assembly is a collection of exported resources, including types. Resources are exported by name.
Internally, an assembly is a collection of public (exported) and private (internal to the assembly) resources. It is
the assembly that determines which resources are to be exposed outside of the assembly and which resources
are accessible only within the current assembly scope. It is the assembly that controls how areferenceto a
resource, public or private, is mapped onto the bits that implement the resource. For typesin particular, the
assembly may also supply runtime configuration information. A CLI module can be thought of as a packaging
of type declarations and implementations, where the packaging decisions may change under the covers without
affecting clients of the assembly.

Theidentity of atypeisits assembly scope and its declared name. A type defined identically in two different
assembliesis considered two different types.

Assembly Dependencies: An assembly may depend on other assemblies. This happens when implementations
in the scope of one assembly reference resources that are scoped in or owned by another assembly.

. All references to other assemblies are resolved under the control of the current assembly scope.
This gives an assembly an opportunity to control how areference to another assembly is mapped
onto a particular version (or other characteristic) of that referenced assembly (although that target
assembly has sole control over how the referenced resource is resolved to an implementation).

. It is always possible to determine which assembly scope a particular implementation is running
in. All requests originating from that assembly scope are resolved relative to that scope.

From a deployment perspective, an assembly may be deployed by itself, with the assumption that any other
referenced assemblies will be available in the deployed environment. Or, it may be deployed with its dependent
assemblies.

Manifests: Every assembly has a manifest that declares what files make up the assembly, what types are
exported, and what other assemblies are required to resolve type references within the assembly. Just as CLI
components are self-describing via metadata in the CLI component, so are assemblies self-describing via their

O©OooO~NO O WNPE

18
19

20
21
22
23
24
25

26
27
28
29

30
31
32

33

34
35
36
37
38
39

40

41
42

43

45

46
47
48

8.7

- 58 -

manifests. When a single file makes up an assembly it contains both the metadata describing the types defined
in the assembly and the metadata describing the assembly itself. When an assembly contains more than one file
with metadata, each of the files describes the types defined in thefile, if any, and one of these files also
contains the metadata describing the assembly (including the names of the other files, their cryptographic
hashes, and the types they export outside of the assembly).

Applications. Assemblies introduce isolation semantics for applications. An application is ssimply an assembly
that has an external entry point that triggers (or causes a hosting environment such as a browser to trigger) the
creation of anew Application Domain. This entry point is effectively the root of atree of request invocations
and resolutions. Some applications are asingle, self-contained assembly. Others require the availability of other
assemblies to provide needed resources. In either case, when arequest is resolved to a module to load, the
module is loaded into the same Application Domain from which the request originated. It is possible to monitor
or stop an application viathe Application Domain.

References: A reference to atype aways qualifies atype name with the assembly scope within which the
reference isto be resolved — that is, an assembly establishes the name scope of available resources. However,
rather than establishing relationships between individual modules and referenced assemblies, every referenceis
resolved through the current assembly. This allows each assembly to have absolute control over how references
are resolved. See Partition |1.

M etadata Extensibility
CLI metadata is extensible. There are three reasons this is important:

. The Common Language Specification (CLS) is a specification for conventions that languages and
tools agree to support in a uniform way for better language integration. The CL S constrains parts
of the CTS model, and the CL S introduces higher-level abstractions that are layered over the
CTS. It isimportant that the metadata be able to capture these sorts of development-time
abstractions that are used by tools even though they are not recognized or supported explicitly by
the CLI.

. It should be possible to represent language-specific abstractions in metadata that are neither CLI
nor CLS language abstractions. For example, it should be possible, over time, to enable languages
like C++ to not require separate header files or IDL files in order to use types, methods, and data
members exported by compiled modules.

. It should be possible, in member signatures, to encode types and type modifiers that are used in
language-specific overloading. For example, to allow C++ to distinguish int from long even on
32-bit machines where both map to the underlying type int32.

This extensibility comesin the following forms:

. Every metadata object can carry custom attributes, and the metadata APIs provide a way to
declare, enumerate, and retrieve custom attributes. Custom attributes may be identified by a
simple name, where the value encoding is opaque and known only to the specific tool, language,
or service that defined it. Or, custom attributes may be identified by a type reference, where the
structure of the attribute is self-describing (via data members declared on the type) and any tool
including the CLI Reflection services may browse the value encoding.

CLSRule 34: The CLSonly allows a subset of the encodings of custom attributes. The only types that

shall appear in these encodings are (see Partition 1V): Syst em Type, System String, System Char,
Syst em Bool ean, System Byte, SystemInt16, System Int32, System|nt64, System Single,

Syst em Doubl e, and any enumeration type based on a CL S-compliant base integer type.
Note:
CL S (consumer): Shall be able to read attributes encoded using the restricted scheme.

CL S (extender): Must meet all requirements for CL S consumer and be able to author new classes and
new attributes. Shall be able to attach attributes based on existing attribute classes to any metadata that
isemitted. Shall implement the rulesfor the Syst em At tri but eUsageAt t ri but e (See Partition V).

ooo~NOOUOTPr~,W NP

el
()

RN
N

el
oA W

NP
[« RERRN

N NN
WN -

24

25
26
27
28
29

30
31
32
33
34

35

36
37
38
39

40

8.8

8.9

- 590 -

CL S (framework): Shall externally expose only attributes that are encoded within the CL S rules and
following the conventions specified for Syst em At t ri but eUsageAt tri but e

. In addition to CTS type extensibility, it is possible to emit custom modifiers into member
signatures (see Typesin Partition 11). The CLI will honor these modifiers for purposes of method
overloading and hiding, as well as for binding, but will not enforce any of the language-specific
semantics. These modifiers can reference the return type or any parameter of a method, or the
type of afield. They come in two kinds: required modifier s that anyone using the member must
understand in order to correctly use it, and optional modifiers that may be ignored if the modifier
is not understood.

CLSRule 35: The CLSdoes not allow publicly visible required modifiers (modreq, see Partition I1), but
does alow optional modifiers (modopt, see Partition I1) they do not understand.

Note:

CL S (consumer): Shall be able to read metadata containing optional modifiers and correctly copy
signatures that include them. May ignore these modifiers in type matching and overload resolution. May
ignore types that become ambiguous when the optional modifiers are ignored, or that use required
modifiers.

CL S (extender): Shall be able to author overrides for inherited methods with signatures that include
optional modifiers. Consequently, an extender must be able to copy such modifiers from metadata that it
imports. Thereis no requirement to support required modifiers, nor to author new methods that have any
kind of modifier in their signature.

CL S (framework): Shall not use required modifiersin externally visible signatures unless they are
marked as not CLS-compliant. Shall not expose two members on aclass that differ only by the use of
optional modifiersin their signature unless only one is marked CL S-compliant.

Globals, Imports, and Exports

The CTS does not have the notion of global statics: all statics are associated with a particular class.
Nonetheless, the metadatais designed to support languages that rely on static data that is stored directly in a
PE/COFF file and accessed by its relative virtual address. In addition, while access to managed data and
managed functions is mediated entirely through the metadata itself, the metadata provides a mechanism for
accessing unmanaged data and unmanaged code.

CLSRule 36: Global static fields and methods are not CL S-compliant.
Note:

CL S (consumer): Need not support global static fields or methods.
CL S (extender): Need not author global static fields or methods.

CL S (framework): Shall not define global static fields or methods.

Scoped Statics

The CTS does not include amodel for file- or function-scoped static functions or data members. However,
there are times when a compiler needs a metadata token to emit into CIL for a scoped function or data member.
The metadata allows members to be marked so that they are never visible/accessible outside of the PE/COFF
file in which they are declared and for which the compiler guarantees to enforce all accessrules.

End informative text

21

22
23
24
25
26
27

28
29
30
31

32
33

34
35
36

37
38
39
40

41
42
43

9.1

9.2

- 60 -

Name and Type Rules for the Common Language Specification

Identifiers

Languages that are either case-sensitive or case-insensitive can support the CLS. Sinceits rules apply only to
items exposed to other languages, private members or types that aren’t exported from an assembly may use
any names they choose. For interoperation, however, there are some restrictions.

In order to make tools work well with a case-sensitive language it isimportant that the exact case of identifiers
be maintained. At the same time, when dealing with non-English languages encoded in Unicode, there may be
more than one way to represent precisely the same identifier that includes combining characters. The CLS
requires that identifiers obey the restrictions of the appropriate Unicode standard and persist them in Canonical
form C, which preserves case but forces combining characters into a standard representation. See CLS Rule 4,
in Section 7.5.1.

At the sametime, it isimportant that externally visible names not conflict with one another when used from a
case-insensitive programming language. As aresult, all identifier comparisons shall be doneinternally to CLS-
compliant tools using the Canonical form KC, which first transforms characters to their case-canonical
representation. See CLS Rule 4, in Section 7.5.1.

When a compiler for a CLS-compliant language supports interoperability with a non-CL S-compliant language
it must be aware that the CTS and VES perform all comparisons using code-point (i.e. byte-by-byte)
comparison. Thus, even though the CLS requires that persisted identifiers be in Canonical form C, referencesto
non-CL Sidentifiers will have to be persisted using whatever encoding the non-CL S language choseto use. It is
alanguage design issue, not covered by the CTS or the CLS, precisely how this should be handled.

Overloading

Note: The CTS, while it describes inheritance, object layout, name hiding, and overriding of virtual methods,
does not discuss overloading at al. While thisis surprising, it arises from the fact that overloading is entirely
handled by compilers that target the CTS and not the type system itself. In the metadata, all references to types
and type members are fully resolved and include the precise signature that is intended. This choice was made
since every programming language has its own set of rules for coercing types and the VES does not provide a
means for expressing those rules.

Following therules of the CTS, it is possible for duplicate names to be defined in the same scope aslong as
they differ in either kind (field, method, etc.) or signature. The CLS imposes a stronger restriction for
overloading methods. Within a single scope, a given name may refer to any number of methods provided they
differ in any of the following:

. Number of parameters
. Type of each argument

Notice that the signature includes more information but CL S-compliant languages need not produce or
consume classes that differ only by that additional information (see Partition |1 for the complete list of
information carried in a signature):

. Calling convention

. Custom modifiers

. Return type

. Whether a parameter is passed by value or by reference (i.e. as a managed pointer or by-ref)

Thereis one exception to thisrule. For the special namesop_I nplicit and op_Expl i cit describedin
clause 9.3.3 methods may be provided that differ only by their return type. These are marked specially and may
be ignored by compilers that don’t support operator overloading.

0 Noool A WDNPE

11
12

13
14
15

16
17
18
19
20

21

22
23

24

25
26

27
28

29
30
31
32

33

34
35
36

37

- 61 -

Properties shall not be overloaded by type (that is, by the return type of their get t er method), but they may be
overloaded with different number or types of indices (that is, by the number and types of the parameters of its
getter method). The overloading rules for properties are identical to the method overloading rules.

CL S Rule 37: Only properties and methods may be overloaded.

CL S Rule 38: Properties, instance methods, and virtual methods may be overloaded based only on the number
and types of their parameters, except the conversion operators named op_I mplicit and op_Explicit which may
also be overloaded based on their return type.

Note:

CL S (consumer): May assume that only properties and methods are overloaded, and need not support
overloading based on return type unless providing special syntax for operator overloading. If return type
overloading isn't supported, then the op_Implicit and op_Explicit may be ignored since the functionality shall
be provided in some other way by a CL S-compliant framework.

CL S (extender): Should not permit the authoring of overloads other than those specified here. It is not
necessary to support operator overloading at all, henceiit is possible to entirely avoid support for overloading
on return type.

CL S (framework): Shall not publicly expose overloading except as specified here. Frameworks authors
should bear in mind that many programming languages, including Object-Oriented languages, do not support
overloading and will expose overloaded methods or properties through mangled names. Most languages
support neither operator overloading nor overloading based on return type, so op_Implicit and op_Explicit
shall always be augmented with some alternative way to gain the same functionality.

9.3

Operator Overloading

CLS-compliant consumer and extender tools are under no obligation to allow defining of operator overloading.
CLS-compliant consumer and extender tools do not have to provide a special mechanism to call these methods.

Note: Thistopic is addressed by the CLS so that

. languages that do provide operator overloading can describe their rules in a way that other
languages can understand, and

. languages that do not provide operator overloading can still access the underlying functionality
without the addition of special syntax.

9.3.1

Operator overloading is described by using the names specified below, and by setting a specia hit in the
metadata (SpecialName) so that they do not collide with the user’s name space. A CL S-compliant producer
tool shall provide some means for setting this bit. If these names are used, they shall have precisely the
semantics described here.

Unary Operators

Unary operators take one argument, perform some operation on it, and return the result. They are represented as
static methods on the class that defines the type of their one operand or their return type. Table 4: Unary
Operator Names shows the names that are defined.

Table 4: Unary Operator Names

Name SO C++ Operator Symbol
op_Decr enent Simlar to --

op_I ncrenent Simlar to ++
op_UnaryNegati on - (unary)

op_Unar yPl us + (unary)

op_Logi cal Not !

op_True’ Not defi ned

N -

OO0 h W

- 62 -

op_Fal se? Not defi ned
op_Addr essCf & (unary)
op_OnesConpl enent ~

op_Poi nt er Der ef erence * (unary)

9.3.2

! Theop_True and op_False operators do not exist in C++. They are provided to support tri-state boolean

types, such as those used in database languages.

Binary Operators

Binary operators take two arguments, perform some operation and return avalue. They are represented as static
methods on the class that defines the type of one of their two operands or the return type. Table 5: Binary

Operator Names shows the names that are defined.

Table5: Binary Operator Names

Name

C++ Operator Symbol

op_Addition

+ (binary)

op_Subtraction

- (binary)

op_Multiply

* (binary)

op_Division

/

op_Modulus

%

op_Excl usi veOr

N

op_Bi t wi seAnd

& (binary)

op_Bi tw seOr

op_Logi cal And

&&

op_Logi cal Or

op_Assi gn

op_LeftShift

<<

op_Ri ght Shift

>>

op_Si gnedRi ght Shi ft

Not defi ned

op_Unsi gnedRi ght Shi ft

Not defi ned

op_Equal ity

op_Great er Than

op_LessThan

op_lnequality

op_Gr eat er ThanOr Equal

op_LessThanOr Equal

op_Unsi gnedRi ght Shi ft Assi gnnent

op_Menber Sel ecti on

op_Ri ght Shi ft Assi gnnent

op_Mil tiplicationAssi gnnment

op_Poi nt er ToMenber Sel ecti on

op_Subtracti onAssi gnrment

op_Excl usi veOr Assi gnrent

op_Left Shi ft Assi gnment

OO N bW N B

el el
WN RO

el
o~ 0N

N =
o ©

N
[y

NN
Wi

NN
(G RRN

N NN
0o ~NO

29
30

31
32

33

34
35
36

37
38
39

9.3.3

9.4

- 63 -

op_Modul usAssi gnnent (73
op_Addi ti onAssi gnnent +=
op_Bi t wi seAndAssi gnnent &=

op_Bi tw seOr Assi gnnent | =

op_Conma

op_Di vi si onAssi gnnment /=

Conversion Operators

Conversion operators are unary operations that allow conversion from one type to another. The operator
method shall be defined as a static method on either the operand or return type. There are two types of
conversions:

. An implicit (widening) coercion shall not lose any magnitude or precision. These should be
provided using a method named op_I nplici t

. An explicit (narrowing) coercion may lose magnitude or precision. These should be provided
using a method named op_Expl i ci t

Note: Conversions provide functionality that can’t be generated in other ways, and many languages will not
support the use of the conversion operators through special syntax. Therefore, CLS rules require that the same
functionality be made available through an alternate mechanism. Using the more common ToXxx (where Xxx
isthe target type) and FromYyy (where Yyy is the name of the source type) naming pattern is recommended.

Because these operations may exist on the class of their operand type (so-called “from” conversions) and would
therefore differ on their return type only, the CLS specifically allows that these two operators be overloaded
based on their return type. The CLS, however, also requires that if this form of overloading is used then the
language shall provide an alternate means for providing the same functionality since not all CLS languages will
implement operators with special syntax.

CLSRule39: If either op_I nplicit orop_Explicit isprovided, an aternate means of providing the coercion
shall be provided.

Note:

CL S (consumer): Where appropriate to the language design, use the existence of op_I npl i ci t and/or
op_Explicit in choosing method overloads and generating automatic coercions.

CL S (extender): Where appropriate to the language design, implement user-defined implicit or explicit
coercion operators using the corresponding op_I npl i ci t, op_Expl i ci t , ToXxx, and/or Fr omxxx methods.

CLS (framework): If coercion operations are supported, they shall be provided as Fr omxxx and Toxxx, and
optionally op_I npli cit and op_Explicit aswell. CLSframeworks are encouraged to provide such coercion
operations.

Naming Patterns
See also Partition V.

While the CTS does not dictate the naming of properties or events, the CL S does specify a pattern to be
observed.

For Events:

Anindividual event is created by choosing or defining a delegate type that is used to signal the event. Then,
three methods are created with names based on the name of the event and with afixed signature. For the
examples below we define an event named d i ck that uses a delegate type named Event Handl er .

Event Add, used to add a handl er for an event
Pattern: void add_<Event Nane> (<Del egat eType> handl er)
Exanpl e: void add_dick (EventHandl er handl er);

O©Ooo~N O O WDN P

21

22
23
24

25
26

27
28

29
30

31
32
33

34
35

36
37
38
39

40
41

9.5

9.6

-64 -

Event Renpbve, used to renove a handler for an event
Pattern: void renove_<Event Nanme> (<Del egat eType> handl er)
Exanpl e: void renpve_O ick (EventHandl er handl er);

Event Rai se, used to signal that an event has occurred

Pattern: void fam |y rai se_<Event Name> (Event e)
For Properties:

Anindividual property is created by deciding on the type returned by its getter method and the types of the
getter’ s parameters (if any). Then, two methods are created with names based on the name of the property and
these types. For the examples below we define two properties: Name takes no parameters and returns a
System String, whilel t emtakesaSyst em Obj ect parameter and returns aSyst em Obj ect . Itemisreferred
to as an indexed property, meaning that it takes parameters and thus may appear to the user as through it were
an array with indices

PropertyGet, used to read the value of the property

Pattern: <PropType> get_<PropNane> (<Indi ces>)

Exanpl e: System String get_Nane ();

Exanpl e: System bj ect get_Item (System Obj ect key);
PropertySet, used to nodify the val ue of the property

Pattern: void set_<PropNane> (<Indices> <PropType>)

Exanpl e: void set_Nane (System String nane);

Exanpl e: void set_Item (System Cbject key, System Cbject val ue);

Exceptions

The CLI supports an exception handling model, which isintroduced in clause 11.4.2. CLS compliant
frameworks may define and throw externally visible exceptions, but there are restrictions on the type of objects
thrown:

CLSRule40: Objectsthat arethrown shall be of type Syst em Except i on or inherit from it. Nonetheless, CLS
compliant methods are not required to block the propagation of other types of exceptions.

Note:
CL S (consumer): Need not support throwing or catching of objects that are not of the specified type.

CL S (extender): Must support throwing of objects of type Syst em Except i on or atypeinheriting from it.
Need not support throwing of objects of other types.

CL S (framework): Shall not publicly expose thrown objects that are not of type Syst em Except i on or atype
inheriting from it.

Custom Attributes

In order to allow languages to provide a consistent view of custom attributes across language boundaries, the
Base Class Library provides support for the following rules defined by the CLS:

CL S Rule41: Attributes shall be of type Syst em At t ri but e, or inherit fromiit.
Note:

CL S (consumer): Need not support attributes that are not of the specified type.
CL S (extender): Must support the authoring of custom attributes.

CLS (framework): Shall not publicly expose attributes that are not of type Syst em At t ri but e or atype
inheriting from it.

=
QOWoWw ~Noulh~, WNPE

B R R R R
OURNWNR

N el
O © o~

- 65 -

The use of a particular attribute class may be restricted in various ways by placing an attribute on the attribute
class. The system At tri but eUsageAt tri but e iSused to specify these restrictions. The restrictions supported
by the Syst em Attri but eUsageAt tri but e are:

What kinds of constructs (types, methods, assemblies, etc.) may have the attribute applied to
them. By default, instances of an attribute class can be applied to any construct. Thisis specified
by setting the value of the val i don property of System Attri buteUsageAttribute. Several
constructs may be combined.

Multiple instances of the attribute class may be applied to a given piece of metadata. By default,
only one instance of any given attribute class can be applied to a single metadata item. The
Al I owvul ti pl e property of the attribute is used to specify the desired value.

Do not inherit the attribute when applied to atype. By default, any attribute attached to atype
should be inherited to types that derive from it. If multiple instances of the attribute class are
allowed, the inheritance performs a union of the attributes inherited from the parent and those
explicitly applied to the child type. If multiple instance are not allowed, then an attribute of that
type applied directly to the child overrides the attribute supplied by the parent. Thisis specified
by setting the | nheri t ed property of System AttributeUsageAttribute to the desired value.

Note: Sincethese are CLS rules and not part of the CTS itself, tools are required to specify explicitly the
custom attributes they intend to apply to any given metadataitem. That is, compilers or other tools that
generate metadata must implement the Al | owwul ti pl e and I nherit rules. The CLI does not supply attributes
automatically.The usage of attributesin the CLI isfurther described in Partition 11.

© O~N OO WN P

=Y
o

BPRERRR R R
oO~NOO DA WN R

NN
= O

NN NN
abhwiN

N
»

WNDNN
O O 0o~

w
ey

w W w
A WN

w
(431

W w ww
©O©o0o~NO®

A D DD
WN PO

R

5 DA
o 01

- 66 -

10 Collected CLS Rules

The complete set of CLS rules are collected here for reference. Recall that these rules apply only to “externally
visible” items — types that are visible outside of their own assembly and members of those types that have
public,fanily,oOrfanily-or-assenbl y accessibility. Furthermore, items may be explicitly marked asCLS-
compliant or not using the Syst em CLSConpl i ant Attri bute. The CLSrules apply only to itemsthat are
marked as CL S-compliant.

1.

10.

11.
12.

13.

14.
15.

CLSrules apply only to those parts of atype that are accessible or visible outside of the defining
assembly (see Section 6.3).

Members of non-CL'S compliant types shall not be marked CLS-compliant. (see clause 6.3.1).
The CL S does not include boxed value types (see clause 7.2.4).

Assemblies shall follow Annex 7 of Technical Report 15 of the Unicode Standard 3.0 (ISBN 0-201-
61633-5) governing the set of characters permitted to start and be included in identifiers, available
on-line at http://www.unicode.org/unicode/reports/tr15/tr15-18.html. For CL S purposes, two
identifiers are the same if their lowercase mappings (as specified by the Unicode locale-insensitive,
1-1 lowercase mappings) are the same. That is, for two identifiers to be considered different under
the CL S they shall differ in more than simply their case. However, in order to override an inherited
definition the CLI requires the precise encoding of the original declaration be used (see

clause 7.5.1).

All names introduced in a CL S-compliant scope shall be distinct independent of kind, except where
the names are identical and resolved via overloading. That is, while the CTS allows a single type
to use the same name for a method and afield, the CL S does not (see clause 7.5.2).

Fields and nested types shall be distinct by identifier comparison alone, even though the CTS
allows distinct signatures to be distinguished. Methods, properties, and events that have the same
name (by identifier comparison) shall differ by more than just the return type, except as specified in
CLS Rule 39 (see clause 7.5.2).

The underlying type of an enum shall be a built-in CLS integer type (see clause 7.5.2).

There are two distinct kinds of enums, indicated by the presence or absence of the

System Fl agsAttri but e custom attribute. One represents named integer values, the other named
bit flags that can be combined to generate an unnamed value. The value of an enum is not limited
to the specified values (see clause 7.5.2).

Literal static fields of an enum shall have the type of the enum itself (see clause 7.5.2).

Accessibility shall not be changed when overriding inherited methods, except when overriding a
method inherited from a different assembly with accessibility Family-or-Assembly. In this case the
override shall have accessibility family (see clause 7.5.3.2).

All types appearing in a signature shall be CLS-compliant (see clause 7.6.1).

The visibility and accessibility of types and members shall be such that types in the signature of
any member shall be visible and accessible whenever the member itself is visible and accessible.
For example, a public method that is visible outside its assembly shall not have an argument whose
typeis visible only within the assembly (see clause 7.6.1).

The value of aliteral static is specified through the use of field initialization metadata (see
Partition 11). A CLS compliant literal must have a value specified in field initialization metadata
that is of exactly the same type as the literal (or of the underlying type, if that literal is an enum).
(see clause 7.6.1.2).

Typed references are not CLS-compliant (see clause 7.6.1.3).

The varargs constraint is not part of the CLS, and the only calling convention supported by the CLS
is the standard managed calling convention (see clause 7.6.1.5).

O N 0T AWN B

16.

17.
18.

19.

20.

21.

22.

23.

24,

25.
26.
27.

28.

29.

30.
3L
32.

33.

34.

35.

36.

- 67 -

Arrays shall have elements with a CLS-compliant type and all dimensions of the array shall have
lower bounds of zero. Only the fact that an item is an array and the element type of the array shall
be required to distinguish between overloads. When overloading is based on two or more array
types the element types shall be named types. (see clause 7.9.1).

Unmanaged pointer types are not CL S-compliant (see clause 7.9.2).

CLS-compliant interfaces shall not require the definition of non-CL S compliant methods in order to
implement them (see clause 7.9.4).

CLS-compliant interfaces shall not define static methods, nor shall they define fields (see
clause 7.9.4).

CLS-compliant classes, value types, and interfaces shall not require the implementation of non-
CLS-compliant interfaces (see clause 7.9.6.4).

An object constructor shall call some class constructor of its base class before any access occurs to
inherited instance data. This does not apply to value types, which need not have constructors (see
clause 7.9.6.6).

An object constructor shall not be called except as part of the creation of an object, and an object
shall not be initialized twice (see clause 7.9.6.6).

System Obj ect is CLS-compliant. Any other CLS-compliant class shall inherit from a CLS-
compliant class (see clause 7.9.9).

The methods that implement the getter and setter methods of a property shall be marked
SpecialName in the metadata (see Partition 11) (see clause 7.11.3).

The accessibility of a property and of its accessors shall be identical (see clause 7.11.3).
A property and its accessors shall all be static, all be virtual, or all be instance (see clause 7.11.3).

The type of a property shall be the return type of the get t er and the type of the last argument of
thesetter. The types of the parameters of the property shall be the types of the parameters to the
get ter and the types of all but the final parameter of the sett er. All of these types shall be CLS-
compliant, and shall not be managed pointers (i.e. shall not be passed by reference) (see

clause 7.11.3).

Properties shall adhere to a specific naming pattern. See Section 9.4. The SpecialName attribute
referred to in CLS rule 26 shall be ignored in appropriate name comparisons and shall adhere to
identifier rules (see clause 7.11.3).

The methods that implement an event shall be marked SpecialName in the metadata (see

Partition |1) (see clause 7.11.4).

The accessibility of an event and of its accessors shall be identical (see clause 7.11.4).
The add and r enbve methods for an event shall both either be present or absent (see clause 7.11.4).

The add and r enove methods for an event shall each take one parameter whose type defines the
type of the event and that shall be derived from Syst em Del egat e (See clause 7.11.4).

Events shall adhere to a specific naming pattern. See Section 9.4. The SpecialName attribute
referred to in CLS rule 31 shall be ignored in appropriate name comparisons and shall adhere to
identifier rules (see clause 7.11.4).

The CLS only allows a subset of the encodings of custom attributes. The only types that shall
appear in these encodings are: Syst em Type, System String, System Char, System Bool ean,
System Byte, System Intl1l6, System Int32, System Int64, System Single, System Doubl e,
and any enumeration type based on a CLS-compliant base integer type (see Section 8.7).

The CLS does not allow publicly visible required modifiers (modreq, see Partition I1), but does
allow optional modifiers (modopt, see Partition I1) they do not understand(see Section 8.7).

Global static fields and methods are not CL S-compliant (see Section 8.8).

O©Ooo~N OO0 AWN B

(=Y
o

37.
38.

39.

40.

41.

- 68 -

Only properties and methods may be overloaded (see Section 9.2).

Properties, instance methods, and virtual methods may be overloaded based only on the number and
types of their parameters, except the conversion operators named op_I mpli cit and op_Explicit
which may also be overloaded based on their return type (see Section 9.2).

If either op_Implicit or op_Explicit isoverloaded on its return type, an alternate means of
providing the coercion shall be provided (see clause 9.3.3).

Objects that are thrown shall be of type Syst em Excepti on or inherit from it (see Section 9.5).
Nonetheless, CLS compliant methods are not required to block the propagation of other types of
exceptions.

Attributes shall be of type system Attri bute, or inherit from it (see Section 9.6).

O WN

~

© 00

10

11
12
13
14
15
16
17
18
19
20
21
22
23

24
25

26

- 69 -

11 Virtual Execution System

The Virtual Execution System (VES) provides an environment for executing managed code. It provides direct
support for aset of built-in data types, defines a hypothetical machine with an associated machine model and
state, a set of control flow constructs, and an exception handling model.To alarge extent, the purpose of the
VES isto provide the support required to execute the Common | ntermediate L anguage instruction set (see
Partition 111).

11.1 Supported Data Types

The CLI directly supports the data types shown in Table 6: Data Types Directly Supported by the CLI. That is,
these data types can be manipulated using the CIL instruction set (see Partition I11).

Table 6: Data Types Directly Supported by the CLI

Data Type

Description

int8
unsi gned int8
intl6
unsi gned int16
int32
unsi gned i nt 32
i nt 64

unsi gned i nt 64

8-hit 2's complement signed value
8-hit unsigned bhinary value

16-bit 2's complement signed value
16-bit unsigned binary value

32-bit 2's complement signed value
32-bit unsigned binary value

64-bit 2's complement signed value
64-bit unsigned binary value

float32 32-bit IEC 60559:1989 floating point value

float64 64-bit |EC 60559:1989 floating point value

native int native size 2’s complement signed value

Eﬁts: \éﬁed - native size unsigned binary value, also unmanaged pointer

F native size floating point number (internal to VES, not user visible)
0 native size object reference to managed memory

& native size managed pointer (may point into managed memory)

The CLI model uses an evaluation stack. Instructions that copy values from memory to the evaluation stack are
“loads’; instructions that copy values from the stack back to memory are “ stores’. The full set of datatypesin
Table 6: Data Types Directly Supported by the CLI can be represented in memory. However, the CLI supports
only asubset of these typesin its operations upon values stored on its evaluation stack — int32, int64, native int.
In addition the CL 1 supports an internal datatype to represent floating point values on the internal evaluation
stack. The size of the internal data type isimplementation-dependent. For further information on the treatment
of floating-point values on the evaluation stack, see clause 11.1.3 and Partition I11. Short numeric values (int8,
int16, unsigned int8, unsigned int16) are widened when loaded (memory-to-stack) and narrowed when stored
(stack-to-memory). This reflects a computer model that assumes, for numeric and object references, memory
cellsare 1, 2, 4, or 8 bytes wide but stack locations are either 4 or 8 bytes wide. User-defined value types may
appear in memory locations or on the stack and have no size limitation; the only built-in operations on them are
those that compute their address and copy them between the stack and memory.

The only CIL instructions with specia support for short numeric values (rather than support for simply the 4 or
8 byte integral values) are:

. Load and store instructions to/from memory: ldelem, ldind, stind, stelem

O Nook,w N B

PR
N RO

13

14
15
16
17
18
19
20
21
22

23

24
25
26
27
28
29
30
31

32
33
34
35

36
37
38

39

40
41
42
43

45
46

47
48

11.1.

11.1.

- 70 -

. Data conversion: conv, conv.ovf
. Array creation: newarr

The signed integer (int8, int16, int32, int64, and native int) and the respective unsigned integer (unsigned int8,
unsigned int16, unsigned int32, unsigned int64, and native unsigned int) types differ only in how the bits of the
integer are interpreted. For those operations where an unsigned integer is treated differently from a signed
integer (e.g. comparisons or arithmetic with overflow) there are separate instructions for treating an integer as
unsigned (e.g. cgt.un and add.ovf.u).

Thisinstruction set design simplifies CIL-to-native code (eg. J T) compilers and interpreters of CIL by
allowing them to internally track a smaller number of datatypes. See clause 11.3.2.1.

As described below, CIL instructions do not specify their operand types. Instead, the CLI keeps track of
operand types based on data flow and aided by a stack consistency requirement described below. For example,
the single add instruction will add two integers or two floats from the stack.

1 Native Size: native int, native unsigned int, O and &

The native-size, or generic, types (native int, native unsigned int, O, and &) are a mechanism in the CL1 for
deferring the choice of avalue' s size. These data types exist as CIL types. But the CLI maps each to the native
size for a specific processor. (For example, data type | would map to int32 on a Pentium processor, but to int64
on an |A64 processor). So, the choice of sizeis deferred until JI'T compilation or runtime, when the CLI has
been initialized and the architecture is known. Thisimplies that field and stack frame offsets are also not known
at compile time. For languages like Visual Basic, where field offsets are not computed early anyway, thisis not
ahardship. In languages like C or C++, where sizes must be known when source code is compiled, a
conservative assumption that they occupy 8 bytes is sometimes acceptable (for example, when laying out
compile-time storage).

1.1 Unmanaged Pointers as Type Native Unsigned Int

Rationale: For languages like C, when compiling all the way to native code, where the size of a pointer is
known at compile time and there are no managed objects, the fixed-size unsigned integer types (unsigned int32
or unsigned int64) may serve as pointers. However choosing pointer size at compile time hasits
disadvantages. If pointerswere chosen to be 32 bit quantities at compile time, the code would be restricted to
4 gigabytes of address space, even if it wererun on a 64 bit machine. Moreover, a 64 bit CLI would need to
take special care so those pointers passed back to 32-bit code would always fit in 32 bits. If pointerswere
chosen at compile time to be 64 bits, the code would run on a 32 bit machine, but pointersin every data
structure would be twice as large as necessary on that CLI.

For other languages, where the size of a data type need not be known at compile time, it is desirable to defer
the choice of pointer size from compile timeto CLI initialization time. In that way, the same CIL code can
handle large address spaces for those applications that need them, while also being able to reap the size
benefit of 32 bit pointers for those applications that do not need a large address space.

11.1.

The native unsigned int type is used to represent unmanaged pointers with the VES. The metadata allows
unmanaged pointers to be represented in a strongly typed manner, but these types are translated into type native
unsigned int for use by the VES.

1.2 Managed Pointer Types: O and &

The O datatype represents an object reference that is managed by the CLI. As such, the number of specified
operations is severely limited. In particular, references shall only be used on operations that indicate that they
operate on reference types (e.g. ceq and Idind.r ef), or on operations whose metadata indicates that references
are allowed (e.g. call, Idsfld, and stfld).

The & datatype (managed pointer) is similar to the O type, but pointsto the interior of an object. That is, a
managed pointer is allowed to point to afield within an object or an element within an array, rather than to
point to the ‘start’ of object or array.

Object references (O) and managed pointers (&) may be changed during garbage collection, since the data to
which they refer may be moved.

O©ooO~NOOT ~AWNPE

10

11
12

13
14

15
16
17

18
19
20

21

22
23
24

25
26
27
28
29

30
31

32
33
34

35
36
37
38
39

40
41
42

43

a4
45
46

- 71 -

Note: In summary, object references, or O types, refer to the ‘outside’ of an object, or to an object as-a-whole.
But managed pointers, or & types, refer to the interior of an object. The & types are sometimes called “ by-ref
types’ in source languages, since passing afield of an object by referenceis represented in the VES by using an
& typeto represent the type of the parameter.

11.1.1.3

In order to allow managed pointers to be used more flexibly, they are also permitted to point to areas that aren’t
under the control of the CLI garbage collector, such as the evaluation stack, static variables, and unmanaged
memory. This allows them to be used in many of the same ways that unmanaged pointers (U) are used.
Verification restrictions guarantee that, if al codeis verifiable, a managed pointer to avalue on the evaluation
stack doesn’t outlast the life of the location to which it points.

Portability: Storing Pointersin Memory

Several instructions, including calli, cpblk, initblk, Idind.*, and stind.*, expect an address on the top of the
stack. If this addressis derived from a pointer stored in memory, there is an important portability consideration.

1.

Code that stores pointersin a native sized integer or pointer location (types native int, O, native
unsigned int, or &) is always fully portable.

Code that stores pointersin an 8 byte integer (type int64 or unsigned int64) can be portable. But
this requires that a conv.ovf.u instruction be used to convert the pointer from its memory format
before its use as a pointer. This may cause a runtime exception if run on a 32-bit machine.

Code that uses any smaller integer type to store a pointer in memory (int8, unsigned int8, int16,
unsigned int16, int32, unsigned int32) is never portable, even though the use of a unsigned int32
or int32 will work correctly on a 32-bit machine.

11.1.2 Handling of Short Integer Data Types

11.1.

The CLI defines an evaluation stack that contains either 4-byte or 8-byte integers, but a memory model that
encompasses in addition 1-byte and 2-byte integers. To be more precise, the following rules are part of the CLI
model:

Loading from 1-byte or 2-byte locations (arguments, locals, fields, statics, pointers) expands to 4-
byte values. For locations with a known type (e.g. local variables) the type being accessed
determines whether the load sign-extends (signed locations) or zero-extends (unsigned locations).
For pointer dereference (Idind.*), the instruction itself identifies the type of the location (e.g.
Idind.ul indicates an unsigned location, while Idind.i1 indicates a signed location).

Storing into a 1-byte or 2-byte location truncates to fit and will not generate an overflow error.
Specific instructions (conv.ovf.*) can be used to test for overflow before storing.

Calling a method assigns values from the evaluation stack to the arguments for the method, hence
it truncates just as any other store would when the actual argument is larger than the formal
argument.

Returning from a method assigns a value to an invisible return variable, so it also truncates as a
store would when the type of the value returned is larger than the return type of the method.
Since the value of thisreturn variable is then placed on the evaluation stack, it is then sign-
extended or zero-extended as would any other load. Note that this truncation followed by
extending is not identical to simply leaving the computed value unchanged.

It is the responsibility of any translator from CIL to native machine instructions to make sure that these rules
are faithfully modeled through the native conventions of the target machine. The CLI does not specify, for
example, whether truncation of short integer arguments occurs at the call site or in the target method.

3 Handling of Floating Point Datatypes

Floating-point calculations shall be handled as described in |EC 60559:1989. This standard describes encoding
of floating point numbers, definitions of the basic operations and conversion, rounding control, and exception
handling.

©ooo~NoOoOolT A WNPE

-72 -

The standard defines special values, NaN, (not a number), +infinity, and —infinity. These values are returned
on overflow conditions. A general principleisthat operations that have avaluein the limit return an
appropriate infinity while those that have no limiting value return NaN, but see the standard for details.

Note: The following examples show the most commonly encountered cases.

X rem 0= NaN
0* +infinity =0* -infinity = NaN
(X /0) = +infinity, if X>0
NaN, if X=0
-infinity, if X <0
NaN op X = X op NaN = NaN for all operations
(+infinity) + (+infinity) = (+infinity)
X [(+infinity) =0
X mod (-infinity) = -X
(+infinity) - (+infinity) = NaN

Note: This standard does not specify the behavior of arithmetic operations on denormalized floating point
numbers, nor does it specify when or whether such representations should be created. Thisisin keeping with
IEC 60559:1989. In addition, this standard does not specify how to access the exact bit pattern of NaNs that
are created, nor the behavior when converting a NaN between 32-bit and 64-bit representation. All of this
behavior is deliberately left implementati on-specific.

For purposes of comparison, infinite values act like a number of the correct sign but with avery large
magnitude when compared with finite values. NaN is‘unordered’ for comparisons (seeclt, clt.un).

While the IEC 60559:1989 standard also allows for exceptions to be thrown under unusual conditions (such as
overflow and invalid operand), the CLI does not generate these exceptions. Instead, the CLI uses the NaN,
+infinity, and —infinity return values and provides the instruction ckfinite to allow users to generate an
exception if aresult isNaN, +infinity, or —infinity.

The rounding mode defined in IEC 60559:1989 shall be set by the CLI to “round to the nearest number,” and
neither the CIL nor the class library provide a mechanism for modifying this setting. Conforming
implementations of the CLI need not be resilient to external interference with this setting. That is, they need not
restore the mode prior to performing floating-point operations, but rather may rely on it having been set as part
of their initialization.

For conversion to integers, the default operation supplied by the CIL is “truncate towards zero”. There are class
libraries supplied to allow floating-point numbers to be converted to integers using any of the other three
traditional operations (round to nearest integer, floor (truncate towards—infinity), ceiling (truncate towards
+infinity)).

Storage locations for floating point numbers (statics, array elements, and fields of classes) are of fixed size. The
supported storage sizes are float32 and float64. Everywhere el se (on the evaluation stack, as arguments, as
return types, and as local variables) floating point numbers are represented using an internal floating-point type.
In each such instance, the nominal type of the variable or expression is either R4 or R8, but its value may be
represented internally with additional range and/or precision. The size of theinterna floating-point
representation is implementation-dependent, may vary, and shall have precision at |east as great as that of the
variable or expression being represented. An implicit widening conversion to the internal representation from
float32 or float64 is performed when those types are loaded from storage. The internal representation is
typicaly the native size for the hardware, or as required for efficient implementation of an operation. The
internal representation shall have the following characteristics:

. The internal representation shall have precision and range greater than or equal to the nominal
type.

. Conversions to and from the internal representation shall preserve value.

Note: Thisimplies that an implicit widening conversion from float32 (or float64) to the internal representation,
followed by an explicit conversion from the internal representation to float32 (or float64), will result in avalue
that isidentical to the original float32 (or float64) value.

O©ooO~NO OO~ WNPE

- 73 -

Rationale: This design allows the CLI to choose a platform-specific high-performance representation for
floating point numbers until they are placed in storage locations. For example, it may be able to leave floating
point variablesin hardware registers that provide more precision than a user hasrequested. At the same time,
CIL generators can force operations to respect language-specific rules for representations through the use of
conversion instructions.

When a floating-point value whose internal representation has greater range and/or precision than its nominal
typeis put in astorage location it is automatically coerced to the type of the storage location. This may involve
aloss of precision or the creation of an out-of-range value (NaN, +infinity, or -infinity). However, the value
may be retained in the internal representation for future use, if it is reloaded from the storage location without
having been modified. It isthe responsibility of the compiler to ensure that the retained valueis till valid at
the time of a subsequent load, taking into account the effects of aliasing and other execution threads (see
memory model section). This freedom to carry extra precision is not permitted, however, following the
execution of an explicit conversion (conv.r4 or conv.r8), at which time the internal representation must be
exactly representable in the associated type.

Note: To detect values that cannot be converted to a particular storage type, a conversion instruction (conv.r4,
or conv.r8) may be used, followed by a check for a non-finite value using ckfinite. To detect underflow when
converting to a particular storage type, a comparison to zero is required before and after the conversion.

Note: The use of an internal representation that is wider than float32 or float64 may cause differencesin
computational results when a devel oper makes seemingly unrelated modifications to their code, the result of
which may be that avalueis spilled from the internal representation (e.g. in aregister) to alocation on the
stack.

=

o~NO Ok~ W N

11

12
13

14

15
16
17
18

19
20

21
22
23

24
25
26

27

- 74 -

11.1.4 CIL Instructions and Numeric Types

This clause contains only informative text

Most CIL instructions that deal with numbers take their operands from the eval uation stack (see

clause 11.3.2.1), and these inputs have an associated type that is known to the VES. Asaresult, asingle
operation like add can have inputs of any numeric datatype, although not al instructions can deal with all
combinations of operand types. Binary operations other than addition and subtraction require that both
operands be of the same type. Addition and subtraction allow an integer to be added to or subtracted from a
managed pointer (types & and O). Details are specified in Partition 11.

Instructions fall into the following categories:

Numeric: Theseinstructions deal with both integers and floating point numbers, and consider integersto be
signed. Simple arithmetic, conditional branch, and comparison instructions fit in this category.

Integer: These instructions deal only with integers. Bit operations and unsigned integer division/remainder fit
in this category.

Floating point: These instructions deal only with floating point numbers.

Specific: Theseinstructions deal with integer and/or floating point numbers, but have variants that deal
specially with different sizes and unsigned integers. Integer operations with overflow detection, data conversion
instructions, and operations that transfer data between the evaluation stack and other parts of memory (see
clause 11.3.2) fit into this category.

Unsigned/unordered: There are special comparison and branch instructions that treat integers as unsigned and
consider unordered floating point numbers specially (asin “branch if greater than or unordered”):

L oad constant: The load constant (Idc.*) instructions are used to load constants of type int32, int64, float32 or
float64. Native size constants (type native int) shall be created by conversion from int32 (conversion from int64
would not be portable) using conv.i or conv.u.

Table 7: CIL Instructions by Numeric Category shows the CIL instructions that deal with numeric values,
along with the category to which they belong. Instructionsthat end in “.*” indicate al variants of the
instruction (based on size of data and whether the datais treated as signed or unsigned).

Table 7: CIL Instructions by Numeric Category

add Numeric div Numeric
add. ovf.* Specific div.un Integer
and Integer Ide. * Load constant
beq[. s] Numeric | del em * Specific
bgel . s] Numeric I di nd. * Specific
bge. un[. s] Unsigned/unordered mul Numeric
bgt [. s] Numeric mul . ovf.* Specific
bgt . un[. s] Unsigned/unordered neg Integer
bre[.s] Numeric newarr.* Specific
ble. un[. s] Unsigned/unordered not Integer
bIt[.s] Numeric or Integer
bl't. un[.s] Unsigned/unordered rem Numeric
bne. un[. s] Unsigned/unordered remun Integer
ceq Numeric shi Integer

N

©O© 00 ~NO O

11
12

13
14

15
16

17
18

19
20
21

22
23

24
25

26
27

28
29

30
31

32

- 75 -

cgt Numeric shr Integer

cgt.un Unsigned/unordered shr.un Specific
ckfinite Floating point stelem* Specific
clt Numeric stind.* Specific
clt.un Unsigned/unordered sub Numeric
conv. * Specific sub. ovf. * Specific
conv. ovf . * Specific xor Integer

End informative text

11.1.5 CIL Instructions and Pointer Types

This clause contains only informative text

Rationale: Some implementations of the CLI will require the ability to track pointers to objects and to collect
objects that are no longer reachable (thus providing memory management by “ garbage collection”). This
process moves objects in order to reduce the working set and thus will modify all pointers to those objects as
they move. For thisto work correctly, pointers to objects may only be used in certain ways. The O (object
reference) and & (managed pointer) datatypes are the formalization of these restrictions.

The use of object referencesistightly restricted in the CIL. They are used amost exclusively with the “virtual
object system” instructions, which are specifically designed to deal with objects. In addition, afew of the base
instructions of the CIL handle object references. In particular, object references can be:

1. Loaded onto the evaluation stack to be passed as arguments to methods (Idloc, Idarg), and stored
from the stack to their home locations (stloc, starg)

2. Duplicated or popped off the evaluation stack (dup, pop)
Tested for equality with one another, but not other data types (beq, beq.s, bne, bne.s, ceq)

L oaded-from / stored-into unmanaged memory, in type unmanaged code only (Idind.r ef,
stind.r ef)

5. Created as anull reference (Idnull)
6. Returned as avalue (ret)
Managed pointers have several additional base operations.

1. Addition and subtraction of integers, in units of bytes, returning a managed pointer (add,
add.ovf.u, sub, sub.ovf.u)

2. Subtraction of two managed pointers to elements of the same array, returning the number of bytes
between them (sub, sub.ovf.u)

3. Unsigned comparison and conditional branches based on two managed pointers (bge.un,
bge.un.s, bgt.un, bgt.un.s, ble.un, ble.un.s, blt.un, blt.un.s, cgt.un, clt.un)

Arithmetic operations upon managed pointers are intended only for use on pointers to elements of the same
array. Other uses of arithmetic on managed pointers is unspecified.

Rationale: Since the memory manager runs asynchronously with respect to programs and updates managed
pointers, both the distance between distinct objects and their relative position can change.

End informative text

15

16
17

18
19
20
21
22

23
24
25

26

27

29
30

- 76 -

11.1.6 Aggregate Data

This clause contains only informative text

The CLI supports aggregate data, that is, dataitems that have sub-components (arrays, structures, or object
instances) but are passed by copying the value. The sub-components can include references to managed
memory. Aggregate data is represented using a value type, which can be instantiated in two different ways:

. Boxed: as an Object, carrying full type information at runtime, and typically allocated on the heap
by the CLI memory manager.

. Unboxed: as a“value type instance” that does not carry type information at runtime and that is
never allocated directly on the heap. It can be part of alarger structure on the heap — afield of a
class, afield of aboxed value type, or an element of an array. Or it can be in the local variables
or incoming arguments array (see clause 11.3.2). Or it can be allocated as a static variable or
static member of a class or a static member of another value type.

Because value type instances, specified as method arguments, are copied on method call, they do not have
“identity” in the sense that Objects (boxed instances of classes) have.
11.1.6.1 Homesfor Values

The home of adatavalueiswhereit is stored for possible reuse. The CLI directly supports the following home
locations:

. An incoming argument

. A local variable of a method

. An instance field of an object or value type
. A static field of a class, interface, or module
. An array element

For each home location, there is a means to compute (at runtime) the address of the home location and a means
to determine (at J T compile time) the type of a home location. These are summarized in Table 8: Address and
Type of Home L ocations.

Table 8: Addressand Type of Home L ocations

Type of Home Runtime Address Computation JITtime Type Determination

Argument Idar ga for by-value arguments or Idarg for Method signature
by-reference arguments

Local Variable Idloca for by-value locals or Idloc for by- Locals signature in method
reference locals header

Field Idflda Type of field in the class,

interface, or module
Static Idsflda Type of field in the class,

interface, or module

Array Element Idelema for single-dimensional zero-based Element type of array
arrays or call the instance method Address

In addition to homes, built-in values can exist in two additional ways (i.e. without homes):
1. asconstant values (typically embedded in the CIL instruction stream using Idc.* instructions)

2. asanintermediate value on the evaluation stack, when returned by a method or CIL instruction.

- 77 -

11.1.6.2 Operations on Value Type Instances

1

2 Value type instances can be created, passed as arguments, returned as values, and stored into and extracted

3 from locals, fields, and elements of arrays (i.e., copied). Like classes, value types may have both static and non-
4 static members (methods and fields). But, because they carry no type information at runtime, value type

5 instances are not substitutable for items of type Object; in this respect, they act like the built-in typesint, long,
6 and so forth. There are two operations, box and unbox, that convert between value type instances and Objects.
7
8

11.1.6.2.1 Initializing Instances of Value Types
There are three options for initializing the home of avalue type instance. Y ou can zero it by loading the address

9 of the home (see Table 8: Address and Type of Home L ocations) and using the initobj instruction (for local
10 variablesthisis also accomplished by setting the zer o initialize bit in the method’ s header). Y ou can call a
11 user-defined constructor by loading the address of the home (see Table 8: Address and Type of Home
12 L ocations) and then calling the constructor directly. Or you can copy an existing instance into the home, as
13 described in clause 11.1.6.2.
14 11.1.6.2.2 Loading and Storing Instances of Value Types
15 There are two ways to load a value type onto the evaluation stack:
16 . Directly load the value from a home that has the appropriate type, using an ldarg, Idloc, Idfld, or
17 Idsfld instruction
18 . Compute the address of the value type, then use an Idobj instruction
19 Similarly, there are two ways to store a value type from the evaluation stack:
20 . Directly store the value into a home of the appropriate type, using a star g, stloc, stfld, or stsfld
21 instruction
22 . Compute the address of the value type, then use a stobj instruction
23 11.1.6.2.3 Passing and Returning Value Types
24 Value types are treated just as any other value would be treated:
25 . To pass a value type by value, simply load it onto the stack as you would any other argument:
26 use ldloc, ldarg, etc., or call amethod that returns avalue type. To access a val ue type parameter
27 that has been passed by value use the Idar ga instruction to compute its address or the Idarg
28 instruction to load the value onto the evaluation stack.
29 . To pass a value type by reference, load the address of the value type as you normally would (see
30 Table 8: Address and Type of Home Locations). To access a value type parameter that has been
31 passed by reference use the Idar g instruction to load the address of the value type and then the
32 Idobj instruction to load the value type onto the evaluation stack.
33 . Toreturn avaluetype, just load the value onto an otherwise empty evaluation stack and then
34 issue aret instruction.
35 11.1.6.2.4 Calling Methods
36 Static methods on value types are handled no differently from static methods on an ordinary class: use acall
37 instruction with a metadata token specifying the value type as the class of the method. Non-static methods (i.e.
38 instance and virtual methods) are supported on value types, but they are given special treatment. A non-static
39 method on a class (rather than a value type) expects athis pointer that is an instance of that class. This makes
40 sense for classes, since they have identity and the this pointer represents that identity. Value types, however,
41 have identity only when boxed. To address this issue, the this pointer on a non-static method of avauetypeis
42 aby-ref parameter of the value type rather than an ordinary by-value parameter.
43 A non-static method on a value type may be called in the following ways:
44 . Given an unboxed instance of a value type, the compiler will know the exact type of the object
45 statically. The call instruction can be used to invoke the function, passing as the first parameter
46 (the this pointer) the address of the instance. The metadata token used with the call instruction

47 shall specify the value type itself as the class of the method.

22

23
24
25
26
27

28

- 78 -

. Given a boxed instance of a value type, there are three cases to consider:

0 Instance or virtual methods introduced on the value type itself: unbox the instance and call
the method directly using the value type as the class of the method.

0 Virtual methods inherited from a parent class: use the callvirt instruction and specify the
method on the Syst em Obj ect, Syst em Val ueType OfF Syst em Enumclass as appropriate.

o] Virtual methods on interfaces implemented by the value type: use the callvirt instruction
and specify the method on the interface type.

11.1.6.2.5 Boxing and Unboxing

Box and unbox are conceptually equivalent to (and may be seen in higher-level languages as) casting between
avalue type instance and Syst em vj ect . Because they change data representations, however, boxing and
unboxing are like the widening and narrowing of various sizes of integers (the conv and conv.ovf instructions)
rather than the casting of reference types (theisinst and castclass instructions). The box instruction isa
widening (always typesafe) operation that converts a value type instance to Syst em bj ect by making a copy
of the instance and embedding it in a newly alocated object. Unbox is a narrowing (runtime exception may be
generated) operation that converts a Syst em Obj ect (whose runtime type is avalue type) to avalue type
instance. Thisis done by computing the address of the embedded val ue type instance without making a copy of
the instance.

11.1.6.2.6 Castclass and Islnst on Value Types

Casting to and from value type instances isn't permitted (the equivalent operations are box and unbox). When
boxed, however, it is possible to use theisinst instruction to see whether avalue of type syst em vj ect isthe
boxed representation of a particular class.

11.1.6.3 Opaque Classes

Some languages provide multi-byte data structures whose contents are manipulated directly by address
arithmetic and indirection operations. To support this feature, the CLI allows value typesto be created with a
specified size but no information about their data members. Instances of these “ opague classes’ are handled in
precisely the same way as instances of any other class, but the Idfld, stfld, Idflda, Idsfld, and stsfld instructions
shall not be used to access their contents.

End informative text

OO0 Nool A~ WN P

10
11

12
13

14
15

16
17

18

19
20

21
22

23

24
25
26
27

28

29
30

31
32
33
34

35
36
37
38
39
40

- 79 -

11.2 Module Information

Partition 11 provides details of the CLI PE file format. The CLI relies on the following information about each
method defined in a PE file:

. The instructions composing the method body, including all exception handlers.

. The signature of the method, which specifies the return type and the number, order, parameter
passing convention, and built-in data type of each of the arguments. It also specifies the native
calling convention (this does not affect the CIL virtual calling convention, just the native code).

. The exception handling array. This array holds information delineating the ranges over which
exceptions are filtered and caught. See Partition |l and clause 11.4.2.

. The size of evaluation stack that the method will require.
. The size of the locals array that the method will require.

. A “zeroinit flag” that indicates whether the local variables and memory pool should be initialized
by the CLI (see also localloc).

. Type of each local variable in the form of a signature of the local variable array (called the
“locals signature”).

In addition, the file format is capable of indicating the degree of portability of the file. There are two kinds of
restrictions that may be described:

. Restriction to a specific (32-bit or 64-bit) native size for integers.

. Restriction to a specific “endian-ness” (i.e. whether bytes are stored left-to-right or right-to-left
within a machine word).

By stating which restrictions are placed on executing the code, the CLI class loader can prevent non-portable
cade from running on an architecture that it cannot support.

11.3 Machine State

One of the design goals of the CL1 isto hide the details of a method call frame from the CIL code generator.
This allowsthe CLI (and not the CIL code generator) to choose the most efficient calling convention and stack
layout. To achieve this abstraction, the call frameisintegrated into the CLI. The machine state definitions
below reflect these design choices, where machine state consists primarily of global state and method state.

11.3.1 The Global State

The CLI manages multiple concurrent threads of control (not necessarily the same as the threads provided by a
host operating system), multiple managed heaps, and a shared memory address space.

Note: A thread of control can be thought of, somewhat ssimplistically, asasingly linked list of method states,
where anew state is created and linked back to the current state by a method call instruction — the traditional
model of a stack-based calling sequence. Notice that this model of the thread of control doesn’t correctly
explain the operation of tail., jmp, or throw instructions.

Figure 2: Machine State Model illustrates the machine state model, which includes threads of control, method
states, and multiple heaps in a shared address space. Method state, shown separately in Figure 3: Method State,
is an abstraction of the stack frame. Arguments and local variables are part of the method state, but they can
contain Object References that refer to data stored in any of the managed heaps. In general, arguments and
local variables are only visible to the executing thread, while instance and static fields and array elements may
be visible to multiple threads, and modification of such valuesis considered a side-effect.

A

QW O~NO O

- 80 -

Execution Engine

.

. 1 -
Thresd of Control -~ Thread éf Control . Thread of Cortraol
- ! '\\.-\.
i ¥ "
| —
rf
hilethod hilethod / hlethiod
St State o Sitate
[et
1 T T
State
h ¥ *
- Created
A
hilethod htedtiod / hlethiod
Siate Siate e | State
H\-‘"‘H—u,_____
: a . : ey
* 1'* - Siate
Created
hilethod hlethiod
Sitate State
F\
T X RIS
¥ ¥ State
hanaged Managed Created
Heap Heap
hilethiod
State
shared Memory Space ;
¥

Figure 2: Machine State M odel

Imeoming Arguments

Local Yariables

Local Allocation

Operand Stack
and
Outgoing Arguments

Figure 3: Method State

11.3.2 Method State

Method state describes the environment within which a method executes. (In conventional compiler
terminology, it corresponds to a superset of the information captured in the “invocation stack frame”). The CLI
method state consists of the following items:

. An instruction pointer (IP). This points to the next CIL instruction to be executed by the CLI in
the present method.

OooO~NO OO WNPE

31

32
33
34
35
36

37
38
39
40

41
42
43

45

46
47

- 81 -

. An evaluation stack. The stack is empty upon method entry. Its contents are entirely local to the
method and are preserved across call instructions (that’s to say, if this method calls another, once
that other method returns, our evaluation stack contents are “still there”). The evaluation stack is
not addressable. At all timesit is possible to deduce which one of areduced set of typesis stored
in any stack location at a specific point in the CIL instruction stream (see clause 11.3.2.1).

. A local variable array (starting at index 0). Values of local variables are preserved across calls
(in the same sense as for the evaluation stack). A local variable may hold any data type.
However, a particular slot shall be used in a type consistent way (where the type system is the one
described in clause 11.3.2.1). Local variables are initialized to 0 before entry if the initialize flag
for the method is set (see Section 11.2). The address of an individual local variable may be taken
using the Idloca instruction.

. An argument array. The values of the current method’s incoming arguments (starting at index 0).
These can be read and written by logical index. The address of an argument can be taken using
the Idarga instruction. The address of an argument is also implicitly taken by the arglist
instruction for use in conjunction with typesafe iteration through variable-length argument lists.

. A methodinfo handle. This contains read-only information about the method. In particular it
holds the signature of the method, the types of its local variables, and data about its exception
handlers.

. A local memory pool. The CLI includes instructions for dynamic allocation of objects from the
local memory pool (localloc). Memory allocated in the local memory pool is addressable. The
memory allocated in the local memory pool is reclaimed upon method context termination.

. A return state handle. This handleis used to restore the method state on return from the current
method. Typically, this would be the state of the method’s caller. This corresponds to what in
conventional compiler terminology would be the dynamic link.

. A security descriptor. This descriptor is not directly accessible to managed code but is used by
the CLI security system to record security overrides (assert, per mit-only, and deny).

The four areas of the method state — incoming arguments array, local variables array, local memory pool and
evaluation stack — are specified asif logically distinct areas. A conforming implementation of the CLI may map
these areas into one contiguous array of memory, held as a conventional stack frame on the underlying target
architecture, or use any other equivalent representation technique.

11.3.2.1 The Evaluation Stack

Associated with each method state is an evaluation stack. Most CLI instructions retrieve their arguments from
the evaluation stack and place their return values on the stack. Arguments to other methods and their return
values are al so placed on the evaluation stack. When a procedure call is made the arguments to the called
methods become the incoming arguments array (see clause 11.3.2.2) to the method. This may require a memory
copy, or simply a sharing of these two areas by the two methods.

The evaluation stack is made up of slots that can hold any data type, including an unboxed instance of avalue
type. The type state of the stack (the stack depth and types of each element on the stack) at any given pointin a
program shall be identical for all possible control flow paths. For example, a program that |oops an unknown
number of times and pushes a new element on the stack at each iteration would be prohibited.

While the CLI, in general, supports the full set of types described in Section 11.1, the CLI treats the evaluation
stack in aspecial way. While some JIT compilers may track the types on the stack in more detail, the CLI only
requires that values be one of:

. int64, an 8-byte signed integer
. int32, a 4-byte signed integer

. native int, a signed integer of either 4 or 8 bytes, whichever is more convenient for the target
architecture

0 Nool A~ W NP

©

el
()

e
w N

H
a

el el
0~ o ol

NN
= O O

NN
[OSIN\N]

24

25
26
27
28

29

30
31

32
33

34

35
36
37
38

39

40
41
42

43

11.3.

11.3.

-82-

. F, afloating point value (float32, float64, or other representation supported by the underlying
hardware)

. &, amanaged pointer
. O, an object reference

. * a“transient pointer,” which may be used only within the body of a single method, that points to
avalue known to be in unmanaged memory (see the CIL Instruction Set specification for more
details. * types are generated internally within the CLI; they are not created by the user).

. A user-defined value type
The other types are synthesized through a combination of techniques:

. Shorter integer types in other memory locations are zero-extended or sign-extended when loaded
onto the evaluation stack; these values are truncated when stored back to their home location.

. Special instructions perform numeric conversions, with or without overflow detection, between
different sizes and between signed and unsigned integers.

. Special instructions treat an integer on the stack as though it were unsigned.

. Instructions that create pointers which are guaranteed not to point into the memory manager’s
heaps (e.g. Idloca, Idarga, and Idsflda) produce transient pointers (type *) that may be used
wherever a managed pointer (type &) or unmanaged pointer (type native unsigned int) is
expected.

. When a method is called, an unmanaged pointer (type native unsigned int or *) is permitted to
match a parameter that requires a managed pointer (type &). The reverse, however, is not
permitted since it would allow a managed pointer to be “lost” by the memory manager.

. A managed pointer (type &) may be explicitly converted to an unmanaged pointer (type native
unsigned int), although this is not verifiable and may produce a runtime exception.

2.2 Local Variables and Arguments

Part of each method state is an array that holds local variables and an array that holds arguments. Like the
evaluation stack, each element of these arrays can hold any single data type or an instance of avalue type. Both
arrays start at O (that is, the first argument or local variable is numbered 0). The address of alocal variable can
be computed using the Idloca instruction, and the address of an argument using the Idar ga instruction.

Associated with each method is metadata that specifies:

. whether the local variables and memory pool memory will be initialized when the method is
entered

. the type of each argument and the length of the argument array (but see below for variable
argument lists)

. the type of each local variable and the length of the local variable array.

The CLI inserts padding as appropriate for the target architecture. That is, on some 64-bit architectures all local
variables may be 64-bit aligned, while on others they may be 8-, 16-, or 32-hit aligned. The CIL generator shall
make no assumptions about the offsets of local variables within the array. In fact, the CL1 isfree to reorder the
elementsin the local variable array, and different JI Tters may choose to order them in different ways.

2.3 Variable Argument Lists

The CLI works in conjunction with the class library to implement methods that accept argument lists of
unknown length and type (“varargs methods”). Access to these argumentsis through a typesafe iterator in the
ClassLibrary, caled syst em Argl t erat or (see Partition V).

The CIL includes one instruction provided specifically to support the argument iterator, arglist. This
instruction may be used only within a method that is declared to take a variable number of arguments. It returns

oOo~NOOO1T AWNPE

10
11
12
13
14
15

16
17
18

19
20

21
22

23
24

25
26

27

28
29

30
31
32

33

34
35

36
37

38

39
40

41
42
43

45

11.3.

- 83 -

avalue that is needed by the constructor for asyst em Argl t er at or object. Basically, the value created by
arglist provides access both to the address of the argument list that was passed to the method and aruntime
data structure that specifies the number and type of the arguments that were provided. Thisis sufficient for the
class library to implement the user visible iteration mechanism.

From the CLI point of view, varargs methods have an array of arguments like other methods. But only the
initial portion of the array has a fixed set of types and only these may be accessed directly using the Idar g,
starg, and ldar ga instructions. The argument iterator allows access to both thisinitial ssgment and the
remaining entries in the array.

2.4 Local Memory Pool

Part of each method state is alocal memory pool. Memory can be explicitly alocated from the local memory
pool using the localloc instruction. All memory in the local memory pooal is reclaimed on method exit, and that
isthe only way local memory pool memory is reclaimed (thereis no instruction provided to free local memory
that was alocated during this method invocation). The local memory pool is used to allocate objects whose
type or size is not known at compile time and which the programmer does not wish to allocate in the managed

heap.

Because the local memory pool cannot be shrunk during the lifetime of the method, alanguage implementation
cannot use the local memory pool for general-purpose memory allocation.

11.4 Control Flow

The CIL instruction set provides arich set of instructions to alter the normal flow of control from one CIL
instruction to the next.

. Conditional and Unconditional Branch instructions for use within a method, provided the
transfer doesn’t cross a protected region boundary (see clause 11.4.2).

. Method call instructions to compute new arguments, transfer them and control to a known or
computed destination method (see clause 11.4.1).

. Tail call prefix to indicate that a method should relinquish its stack frame before executing a
method call (see clause 11.4.1).

. Return from a method, returning avalue if necessary.

. Method jump instructions to transfer the current method’ s arguments to a known or computed
destination method (see clause 11.4.1).

. Exception-related instructions (see clause 11.4.2). These include instructions to initiate an
exception, transfer control out of a protected region, and end afilter, catch clause, or finally
clause.

While the CLI supports control transfers within a method, there are several restrictions that shall be observed:

1. Control transfer is never permitted to enter a catch handler or finally clause (see clause 11.4.2)
except through the exception handling mechanism.

2. Control transfer out of a protected region (see clause 11.4.2) is only permitted through an
exception instruction (leave, end.filter, end.catch, or end.finally).

The evaluation stack shall be empty after the return value is popped by aret instruction.

Each slot on the stack shall have the same data type at any given point within the method body,
regardless of the control flow that allows execution to arrive there.

5. Inorder for the JIT compilers to efficiently track the data types stored on the stack, the stack shall
normally be empty at the instruction following an unconditional control transfer instruction (br,
br.s, ret, jmp, throw, end.filter, end.catch, or end.finally). The stack may be non-empty at
such an instruction only if at some earlier location within the method there has been a forward
branch to that instruction.

14

15
16
17
18

19
20
21
22

23
24

25

26
27

28
29
30
31

32
33

34
35
36
37
38
39

40
41
42
43
44
45

6.

11.4.1

-84 -

Control is not permitted to simply “fall through” the end of a method. All paths shall terminate
with one of these instructions: ret, throw, jmp, or (tail. followed by call, calli, or callvirt).

Method Calls

Instructions emitted by the CIL code generator contain sufficient information for different implementations of
the CLI to use different native calling convention. All method calls initialize the method state areas (see
clause 11.3.2) asfollows:

1.
2.

3.

11.4.1.1

The incoming arguments array is set by the caller to the desired values.

The local variables array always has null for Object types and for fields within value types that
hold objects. In addition, if the “zero init flag” is set in the method header, then the local
variables array isinitialized to O for all integer types and 0.0 for all floating point types. Value
Types are not initialized by the CLI, but verified code will supply a call to an initializer as part of
the method’ s entry point code.

The evaluation stack is empty.

Call Site Descriptors

Call sites specify additional information that enables an interpreter or JI'T compiler to synthesize any native
calling convention. All CIL calling instructions (call, calli, and callvirt) include a description of the call site.
This description can take one of two forms. The simpler form, used with the calli instruction, isa“call site
description” (represented as a metadata token for a stand-alone call signature) that provides:

The number of arguments being passed.
The data type of each argument.
The order in which they have been placed on the call stack.

The native calling convention to be used

The more complicated form, used for the call and callvirt instructions, is a“method reference” (a metadata
methodr ef token) that augments the call site description with an identifier for the target of the call instruction.

11.4.1.2

Calling Instructions

The CIL hasthree call instructions that are used to transfer new argument values to a destination method.
Under normal circumstances, the called method will terminate and return control to the calling method.

call is designed to be used when the destination address is fixed at the time the CIL islinked. In
this case, a method reference is placed directly in the instruction. Thisis comparable to a direct
call to astatic function in C. It may be used to call static or instance methods or the (statically
known) superclass method within an instance method body.

calli is designed for use when the destination address is calculated at run time. A method pointer
is passed on the stack and the instruction contains only the call site description.

callvirt, part of the CIL common type system instruction set, uses the class of an object (known
only at runtime) to determine the method to be called. The instruction includes a method
reference, but the particular method isn’t computed until the call actually occurs. This allows an
instance of a subclass to be supplied and the method appropriate for that subclass to be invoked.
The callvirt instruction is used both for instance methods and methods on interfaces. For further
details, see the Common Type System specification and the CIL Instruction Set specification.

In addition, each of these instructions may be immediately preceded by at ai | . instruction prefix. This
specifies that the calling method terminates with this method call (and returns whatever value isreturned by the
called method). Thetai | . prefix instructs the JIT compiler to discard the caller’ s method state prior to making
the call (if the call is from untrusted code to trusted code the frame cannot be fully discarded for security
reasons). When the called method executes ar et instruction, control returns not to the calling method but rather
to wherever that method would itself have returned (typicaly, return to caller’s caller). Notice that thetai | .

~N~Nooh~ W N

9
10
11
12
13
14

15

16
17
18
19
20
21

22
23
24

25

26
27
28
29
30
31

32
33
34

35
36
37
38
39

40
41
42
43

44

45
46
47
48

- 85 -

instruction shortens the lifetime of the caller’ s frame so it is unsafe to pass managed pointers (type &) as
arguments.

Finally, there are two instructions that indicate an optimization of thet ai | . case:

. jmp isfollowed by a methodref or methoddef token and indicates that the current method’ s state
should be discarded, its arguments should be transferred intact to the destination method, and
control should be transferred to the destination. The signature of the calling method shall exactly
match the signature of the destination method.

11.4.1.3 Computed Destinations

The destination of amethod call may be either encoded directly in the CIL instruction stream (the call and jmp
instructions) or computed (the callvirt, and calli instructions). The destination address for a callvirt instruction
isautomatically computed by the CLI based on the method token and the value of the first argument (the this
pointer). The method token shall refer to avirtual method on a class that is a direct ancestor of the class of the
first argument. The CLI computes the correct destination by locating the nearest ancestor of the first
argument’ s class that supplies an implementation of the desired method.

Note: The implementation can be assumed to be more efficient than the linear search implied here).

For the calli instruction the CIL codeis responsible for computing a destination address and pushing it on the
stack. Thisistypically done through the use of aldftn or Idvirtfn instruction at some earlier time. The Idftn
instruction includes a metadata token in the CIL stream that specifies a method, and the instruction pushes the
address of that method. The ldvirtfn instruction takes a metadata token for avirtual method in the CIL stream
and an abject on the stack. It performs the same computation described above for the callvirt instruction but
pushes the resulting destination on the stack rather than calling the method.

The calli instruction includes a call site description that includes information about the native calling
convention that should be used to invoke the method. Correct CIL code shall specify a calling convention
specified in the calli instruction that matches the calling convention for the method that is being called.

11.4.1.4 Virtual Calling Convention

The CIL providesa“virtual calling convention” that is converted by the JIT into a native calling convention.
The JIT determines the optimal native calling convention for the target architecture. This allows the native
calling convention to differ from machine to machine, including details of register usage, local variable homes,
copying conventions for large call-by-value objects (as well as deciding, based on the target machine, what is
considered “large”). Thisalso allowsthe JIT to reorder the values placed on the CIL virtual stack to match the
location and order of arguments passed in the native calling convention.

The CLI uses asingle uniform calling convention for all method calls. It is the responsibility of the JTtersto
convert thisinto the appropriate native calling convention. The contents of the stack at the time of a call
instruction (call, calli, or callvirt any of which may be preceded by t ai | .) are asfollows:

1. If the method being called is an instance method (class or interface) or a virtual method, the this
pointer is the first object on the stack at the time of the call instruction. For methods on Objects
(including boxed value types), the this pointer is of type O (object reference). For methods on
value types, the this pointer is provided as a by-ref parameter; that is, the value is a pointer
(managed, &, or unmanaged, * or native int) to the instance.

2. Theremaining arguments appear on the stack in left-to-right order (that is, the lexically leftmost
argument is the lowest on the stack, immediately following the this pointer, if any).
clause 11.4.1.5 describes how each of the three parameter passing conventions (by-value, by-
reference, and typed reference) should be implemented.

11.4.1.5 Parameter Passing

The CLI supports three kinds of parameter passing, all indicated in metadata as part of the signature of the
method. Each parameter to a method has its own passing convention (e.g., the first parameter may be passed
by-value while all others are passed by-ref). Parameters shall be passed in one of the following ways (see
detailed descriptions below):

o~N OO0 WN

11.4.

11.4.

11.4.

- 86 -

. By-value parameters, where the value of an object is passed from the caller to the callee.

. By-ref parameters, where the address of the data is passed from the caller to the callee, and the
type of the parameter is therefore a managed or unmanaged pointer.

. Typed reference parameters, where a runtime representation of the data type is passed along with
the address of the data, and the type of the parameter is therefore one specially supplied for this
purpose.

It isthe responsibility of the CIL generator to follow these conventions. Verification checks that the types of
parameters match the types of values passed, but is otherwise unaware of the details of the calling convention.

1.5.1 By-Value Parameters

For built-in types (integers, floats, etc.) the caller copies the value onto the stack before the call. For objects the
object reference (type O) is pushed on the stack. For managed pointers (type &) or unmanaged pointers (type
native unsigned int), the address is passed from the caller to the callee. For value types, see the protocoal in
clause11.1.6.2.

1.5.2 By-Ref Parameters

By-Ref Parameters are the equivalent of C++ reference parameters or PASCAL var parameters: instead of
passing as an argument the value of avariable, field, or array element, its addressis passed instead; and any
assignment to the corresponding parameter actually modifies the corresponding caller’ s variable, field, or array
element. Much of thiswork is done by the higher-level language, which hides from the user the need to
compute addresses to pass a value and the use of indirection to reference or update values.

Passing avalue by reference requires that the value have a home (see clause 11.1.6.1) and it is the address of
this home that is passed. Constants, and intermediate values on the evaluation stack, cannot be passed as by-ref
parameters because they have no home.

The CLI provides instructions to support by-ref parameters:

. calculate addresses of home locations (see Table 8: Address and Type of Home L ocations)

. load and store built-in data types through these address pointers (Idind.*, stind.*, Idfld, etc.)
. copy value types (Idobj and cpobj).

Some addresses (e.g., local variables and arguments) have lifetimes tied to that method invocation. These shall
not be referenced outside their lifetimes, and so they should not be stored in locations that last beyond their
lifetime. The CIL does not (and cannot) enforce this restriction, so the CIL generator shall enforce this
restriction or the resulting CIL will not work correctly. For code to be verifiable (see Section 7.8) by-ref
parameters may only be passed to other methods or referenced via the appropriate stind or Idind instructions.

1.5.3 Typed Reference Parameters

By-ref parameters and value types are sufficient to support statically typed languages (C++, Pascal, etc.). They
also support dynamically typed languages that pay a performance penalty to box value types before passing
them to polymorphic methods (Lisp, Scheme, SmallTalk, etc.). Unfortunately, they are not sufficient to support
languages like Visual Basic that require by-reference passing of unboxed data to methods that are not statically
restricted asto the type of datathey accept. These languages require away of passing both the address of the
home of the data and the static type of the home. Thisis exactly the information that would be provided if the
data were boxed, but without the heap allocation required of abox operation.

Typed reference parameters address this requirement. A typed reference parameter is very similar to a standard
by-ref parameter but the static data type is passed as well as the address of the data. Like by-ref parameters, the
argument corresponding to a typed reference parameter will have a home.

Note: If it were not for the fact that verification and the memory manager need to be aware of the data type and
the corresponding address, a by-ref parameter could be implemented as a standard value type with two fields:
the address of the data and the type of the data.

Like aregular by-ref parameter, atyped reference parameter can refer to ahome that is on the stack, and that
home will have alifetime limited by the call stack. Thus, the CIL generator shall apply appropriate checks on

=
QWO N OO hwWw NP

e
N

e
A W

=
(6)}

16
17

18
19
20
21

22
23

24
25

26
27

28

11.4.

- 87 -

the lifetime of by-ref parameters; and verification imposes the same restrictions on the use of typed reference
parameters as it does on by-ref parameters (see clause 11.4.1.5.2).

A typed referenceis passed by either creating a new typed reference (using the mkrefany instruction) or by
copying an existing typed reference. Given atyped reference argument, the address to which it refers can be
extracted using the refanyval instruction; the type to which it refers can be extracted using the r efanytype
instruction.

1.5.4 Parameter Interactions

A given parameter may be passed using any one of the parameter passing conventions: by-value, by-ref, or
typed reference. No combination of these is allowed for a single parameter, although a method may have
different parameters with different calling mechanisms.

A parameter that has been passed in as typed reference shall not be passed on as by-ref or by-value without a
runtime type check and (in the case of by-value) a copy.

A by-ref parameter may be passed on as atyped reference by attaching the static type.
Table 9: Parameter Passing Conventions illustrates the parameter passing convention used for each data type.

Table 9: Parameter Passing Conventions

Type of data Pass By How datais sent
Built-invaluetype | Vaue Copied to called method, type statically known at both sides
(int, float, etc.) Reference Address sent to called method, type statically known at both sides
Typed Address sent along with type information to called method
reference
User-defined value | Value Called method receives a copy; type statically known at both sides
type Reference Address sent to called method, type statically known at both sides
Typed Address sent along with type information to called method
reference
Object Vaue Reference to data sent to called method, type statically known and class
available from reference
Reference Address of reference sent to called method, type statically known and
class available from reference
Typed Address of reference sent to called method along with static type
reference information, class (i.e. dynamic type) available from reference
11.4.2 Exception Handling

Exception handling is supported in the CL1 through exception objects and protected blocks of code. When an
exception occurs, an object is created to represent the exception. All exceptions objects are instances of some
class (i.e. they can be boxed value types, but not pointers, unboxed value types, etc.). Users may create their
own exception classes, typically by subclassing Syst em Except i on (See Partition V).

There are four kinds of handlers for protected blocks. A single protected block shall have exactly one handler
associated with it:

. A finally handler that shall be executed whenever the block exits, regardless of whether that
occurs by normal control flow or by an unhandled exception.

. A fault handler that shall be executed if an exception occurs, but not on completion of normal
control flow.

. A type-filtered handler that handles any exception of a specified class or any of its sub-classes.

~N~No ok WNE

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36

37
38
39

40
41

- 88 -

. A user-filtered handler that runs a user-specified set of CIL instructions to determine whether
the exception should be ignored (i.e. execution should resume), handled by the associated handler,
or passed on to the next protected block.

Protected regions, the type of the associated handler, and the location of the associated handler and (if needed)
user-supplied filter code are described through an Exception Handler Table associated with each method. The
exact format of the Exception Handler Table is specified in detail in Partition |1. Details of the exception
handling mechanism are also specified in Partition I1.

11.4.2.1 Exceptions Thrown by the CLI

CLI instructions can throw the following exceptions as part of executing individual instructions. The
documentation for each instruction lists all the exceptions the instruction can throw (except for the general
purpose ExecutionEngineException described below that may be generated by all instructions).

Base Instructions (see Partition 111)

. ArithmeticException

. DivideByZeroException

. ExecutionEngineException

. InvalidAddressException

. OverflowException

. SecurityException

. StackOverflowException
Object Model Instructions (see Partition [11)
. TypelL cadException

. I ndexOutOf RangeException
. InvalidAddressException

. InvalidCastException

. MissingFieldException

. MissingM ethodException

. Null ReferenceException

. OutOfMemoryException

. SecurityException

. StackOverflowException

The Execut i onEngi neExcept i on isspecial. It can be thrown by any instruction and indicates an unexpected
inconsistency in the CLI. Running exclusively verified code can never cause this exception to be thrown by a
conforming implementation of the CLI. However, unverified code (even though that code is conforming CIL)
can cause this exception to be thrown if it corrupts memory. Any attempt to execute non-conforming CIL or
non-conforming file formats can cause completely unspecified behavior: a conforming implementation of the
CLI need not make any provision for these cases.

There are no exceptions for things like * MetaDataT okenNotFound.” CIL verification (see Partition V) will
detect this inconsistency before the instruction is executed, leading to a verification violation. If the CIL is not
verified this type of inconsistency shall raise the generic ExecutionEngineException.

Exceptions can also be thrown by the CLI, aswell as by user code, using the thr ow instruction. The handing of
an exception isidentical, regardless of the source.

QUOUWOO~NOO OORWN B

12
13
14
15

16
17

18
19
20

21
22
23
24
25
26

27
28

29
30
31

32
33
34
35
36

37

38
39
40
41
42
43

45

46
47
48

- 89 -

11.4.2.2 Subclassing Of Exceptions

Certain types of exceptions thrown by the CLI may be subclassed to provide more information to the user. The
specification of CIL instructionsin Partition 111 describes what types of exceptions should be thrown by the
runtime environment when an abnormal situation occurs. Each of these descriptions allows a conforming
implementation to throw an object of the type described or an object of a subclass of that type.

Note: For instance, the specification of the ckf i ni t e instruction requires that an exception of type
Arithmeti cExcept i on Or asubclass of Arit hmet i cExcept i on be thrown by the CLI. A conforming
implementation may simply throw an exception of type Ari t hmet i cExcept i on, but it may also choose to
provide more information to the programmer by throwing an exception of type Not Fi ni t eNumber Except i on
with the offending number.

11.4.2.3 Resolution Exceptions

CIL allows types to reference, among other things, interfaces, classes, methods, and fields. Resolution errors
occur when references are not found or are mismatched. Resolution exceptions can be generated by references
from CIL instructions, references to base classes, to implemented interfaces, and by references from signatures
of fields, methods and other class members.

To allow scalability with respect to optimization, detection of resolution exceptionsis given latitude such that it
may occur as early asinstall time and as | ate as execution time.

The latest opportunity to check for resolution exceptions from all references except CIL instructions is as part
of initialization of the type that is doing the referencing (see Partition |1). If such aresolution exception is
detected the static initializer for that type, if present, shall not be executed.

The latest opportunity to check for resolution exceptionsin CIL instructionsis as part of the first execution of
the associated CIL instruction. When an implementation chooses to perform resolution exception checking in
CIL instructions as |ate as possible, these exceptions, if they occur, shall be thrown prior to any other non-
resolution exception that the VES may throw for that CIL instruction. Once a CIL instruction has passed the
point of throwing resolution errors (it has completed without exception, or has completed by throwing a non-
resolution exception), subsequent executions of that instruction shall no longer throw resolution exceptions.

If an implementation chooses to detect some resolution errors, from any references, earlier than the latest
opportunity for that kind of reference, it is not required to detect all resolution exceptions early.

An implementation that detects resolution errors early is alowed to prevent a class from being installed, loaded
or initialized as aresult of resolution exceptions detected in the classitself or in the transitive closure of types
from following references of any kind.

For example, each of the following represents a permitted scenario. An installation program can throw
resolution exceptions (thus failing the installation) as aresult of checking CIL instructions for resolution errors
in the set of items being installed. An implementation is allowed to fail to load a class as aresult of checking
CIL instructions in areferenced class for resolution errors. An implementation is permitted to load and
initialize a class that has resolution errorsin its CIL instructions.

The following exceptions are among those considered resolution exceptions.

. Badl mageFor mat Excepti on

. Ent r yPoi nt Not FoundExcepti on
. M ssi ngFi el dExcepti on

. M ssi ngMenber Excepti on

. M ssi ngMet hodExcepti on

. Not Support edExcepti on

i TypeLoadExcepti on
. TypeUnl oadedExcepti on

For example, when areferenced class cannot be found, a TypeLoadExcept i on isthrown. When areferenced
method (whose class is found) cannot be found, aM ssi nghet hodExcept i on isthrown. If a matching method
being used consistently is accessible, but violates declared security policy, aSecuri t yExcept i on isthrown.

Ooo~N OO WN -

10

11
12
13
14
15
16

17
18
19
20

21
22
23

24
25

26
27

28
29
30
31

32

33
34

35
36
37

38
39

40
41

42
43

- 90 -

11.4.2.4 Timing of Exceptions

Certain types of exceptions thrown by CIL instructions may be detected before the instruction is executed. In
these cases, the specific time of the throw is not precisely defined, but the exception should be thrown no later
than the instruction is executed. That relaxation of the timing of exceptionsis provided so that an
implementation may choose to detect and throw an exception before any codeis run, e.g., at thetime of CIL to
native code conversion.

Thereis adistinction between the time of detecting the error condition and throwing the associated exception.
An error condition may be detected early (e.g., at J T time), but the condition may be signaled later (e.g. at the
execution time of the offending instruction) by throwing an exception.

The following exceptions are among those that may be thrown early by the runtime:

d M ssi ngFi el dExcepti on,
. M ssi ngMet hodExcepti on,
d SecurityException,

. TypelLoadExcepti on

11.4.2.5 Overview of Exception Handling

See the Exception Handling specification in Partition |1 for details.

Each method in an executable has associated with it a (possibly empty) array of exception handling
information. Each entry in the array describes a protected block, its filter, and its handler (which may be a
catch handler, afilter handler, afinally handler, or afault handler). When an exception occurs, the CLI
searches the array for the first protected block that

. Protects aregion including the current instruction pointer and
. I's a catch handler block and
. Whose filter wishes to handle the exception

If amatch is not found in the current method, the calling method is searched, and so on. If no match is found
the CLI will dump a stack trace and abort the program.

Note: A debugger can intervene and tresat this situation like a breakpoint, before performing any stack
unwinding, so that the stack is till available for inspection through the debugger.

If amatch isfound, the CLI walks the stack back to the point just located, but this time calling the finally and
fault handlers. It then starts the corresponding exception handler. Stack frames are discarded either as this
second walk occurs or after the handler completes, depending on information in the exception handler array
entry associated with the handling block.

Some things to notice are:

. The ordering of the exception clauses in the Exception Handler Table is important. If handlers
are nested, the most deeply nested try blocks shall come before the try blocks that enclose them.

. Exception handlers may access the local variables and the local memory pool of the routine that
catches the exception, but any intermediate results on the evaluation stack at the time the
exception was thrown are lost.

. An exception object describing the exception is automatically created by the CLI and pushed onto
the evaluation stack as the first item upon entry of afilter or catch clause.

. Execution cannot be resumed at the location of the exception, except with a user -filtered
handler.

11.4.2.6 CIL Support for Exceptions

The CIL has special instructionsto:

. Throw and rethrow a user-defined exception.

- 91 -

. L eave a protected block and execute the appropriate finally clauses within a method, without
throwing an exception. Thisis also used to exit a catch clause. Notice that leaving a protected
block does not cause the fault clauses to be called.

End a user-supplied filter clause (endfilter) and return a value indicating whether to handle the
exception.

O Ohr WNPE
L]

. End afinally clause (endfinally) and continue unwinding the stack.

7 11.4.2.7 Lexical Nesting of Protected Blocks

8 A protected region (also called a“try block™) is described by two addresses: the trystart is the address of the

9 first instruction to be protected and tryend is the address immediately following the last instruction to be
10 protected. A handler region is described by two addresses: the handler start is the address of the first
11 instruction of the handler and the handlerend is the address immediately following the last instruction of the
12 handler.
13 There are three kinds of handlers: catch, finally, and fault. A single exception entry consists of
14 . Optional: a type token (the type of exception to be handled) or filterstart (the address of the first
15 instruction of the user-supplied filter code)
16 . Required: protected region
17 . Required: handler region.
18 Every method has associated with it a set of exception entries, called the exception set.
19 If an exception entry contains afilterstart, then filterstart < handlerstart. Thefilter region starts at the
20 instruction specified by filterstart and contains all instructions up to (but not including) that specified by
21 handlerstart. If thereisnofilterstart then thefilter region is empty (hence does not overlap with any region).
22 No two regions (protected region, handler region, filter region) of a single exception entry may overlap with
23 one another.
24 For every pair of exception entries in an exception set, one of the following must be true;
25 . They nest: all three regions of one entry must be within a single region of the other entry.
26 . They are digjoint: all six regions of the two entries are pairwise disjoint (no addresses overlap)
27 . They mutually protect: the protected regions are the same and the other regions are pairwise
28 disjoint.
29 The encoding of an exception entry in the file format (see Partition I1) guarantees that only a catch handler (not
30 afault handler or finaly handler) can have afilter region.

31 11.4.2.8 Control Flow Restrictions on Protected Blocks

32 The following restrictions govern control flow into, out of, and between try blocks and their associated

33 handlers.

34 1. CIL code shall not enter afilter, catch, fault or finally block except through the CLI exception
35 handling mechanism.

36 2. There areonly two ways to enter atry block from outside its lexical body:

37 Branching to or falling into thetry block’sfirst instruction. The branch may be made using a
38 conditional branch, an unconditional branch, or aleave instruction.

39 Using a leave instruction from that try’s catch block. In this case, correct CIL code may

40 branch to any instruction within the try block, not just its first instruction, so long as that
41 branch target is not protected by yet another try, nested withing the first

42 3. Upon entry to atry block the evaluation stack shall be empty.

43 4. Theonly ways CIL code may leave atry, filter, catch, finally or fault block are as follows:

QW O~NOOT ~AWN B

e
N B

e oy
g w

B
N o

18

19
20
21
22

23
24
25
26

27
28
29
30

31
32
33

34
35
36
37
38
39

40
41

42
43

-92-

a. throw from any of them.

leave from the body of atry or catch (in this case the destination of the leave shall have an
empty evaluation stack and the leave instruction has the side-effect of emptying the
evaluation stack).

endfilter may appear only as the lexically last instruction of afilter block, and it shall always be
present (even if it isimmediately preceded by athrow or other unconditional control flow).
If reached, the evaluation stack shall contain an int32 when the endfilter is executed, and
the value is used to determine how exception handling should proceed.

endfinally from anywhere within afinally or fault, with the side-effect of emptying the
evaluation stack.

rethrow from within a catch block, with the side-effect of emptying the evaluation stack.
When the try block is exited with aleave instruction, the evaluation stack shall be empty.

When a catch or filter clause is exited with a leave instruction, the evaluation stack shall be
empty. Thisinvolves popping, from the evaluation stack, the exception object that was
automatically pushed onto the stack.

7. CIL code shall not exit any try, filter, catch finally or fault block using aret instruction.

8. Thel ocal I oc instruction cannot occur within an exception block: filter, catch, finally, or fault

11.5 Proxies and Remoting

A remoting boundary existsif it is not possible to share the identity of an object directly across the boundary.
For example, if two objects exist on physically separate machines that do not share a common address space,
then aremoting boundary will exist between them. There are other administrative mechanisms for creating
remoting boundaries.

The VES provides amechanism, called the application domain, to isolate applications running in the same
operating system process from one another. Types loaded into one application domain are distinct from the

same type loaded into another application domain, and instances of objects shall not be directly shared from
one application domain to another. Hence, the application domain itself forms a remoting boundary.

The VES implements remoting boundaries based on the concept of a proxy. A proxy is an object that exists on
one side of the boundary and represents an object on the other side. The proxy forwards references to instance
fields and methods to the actual object for interpretation. Proxies do not forward references to static fields or
callsto static methods.

The implementation of proxiesis provided automatically for instances of types that derive from
System.M ar shalByRefODbj ect (see Partition [V).

11.6 Memory Model and Optimizations

11.6.1 The Memory Store

By “memory store” we mean the regular process memory that the CLI operates within. Conceptually, this store
issimply an array of bytes. Theindex into this array is the address of a data object. The CLI accesses data
objects in the memory store viathe Idind.* and stind.* instructions.

11.6.2 Alignment

Built-in datatypes shall be properly aligned, which is defined as follows:

. 1-byte, 2-byte, and 4-byte data is properly aligned when it is stored at a 1-byte, 2-byte, or 4-byte
boundary, respectively.

. 8-byte data is properly aligned when it is stored on the same boundary required by the underlying
hardware for atomic access to a nativeint.

OO NOOoTr,WNPE

13

14
15
16

17

18
19
20
21
22
23

24

25
26

27
28
29

30
31

32

33
34
35

36

37
38
39
40
41
42
43

45
46
47
48
49

11.6.

11.6.

- 903 -

Thus, int16 and unsigned int16 start on even address; int32, unsigned int32, and float32 start on an address
divisible by 4; and int64, unsigned int64, and float64 start on an address divisible by 4 or 8, depending upon
the target architecture. The native size types (nativeint, native unsigned int, and &) are always naturally
aligned (4 bytes or 8 bytes, depending on architecture). When generated externally, these should also be aligned
to their natural size, although portable code may use 8 byte alignment to guarantee architecture independence.

It is strongly recommended that float64 be aligned on an 8-byte boundary, even when the size of nativeint is
32 hits.

Thereisaspecia prefix instruction, unaligned., that may immediately precede aldind, stind, initblk, or cpblk
instruction. This prefix indicates that the data may have arbitrary alignment; the JIT is required to generate
code that correctly performs the effect of the instructions regardless of the actual alignment. Otherwise, if the
datais not properly aligned and no unligned. prefix has been specified, executing the instruction may generate
unaligned memory faults or incorrect data.

3 Byte Ordering

For datatypes larger than 1 byte, the byte ordering is dependent on the target CPU. Code that depends on byte
ordering may not run on all platforms. The PE file format (see Section 11.2) allows the file to be marked to
indicate that it depends on a particular type ordering.

4 Optimization

Conforming implementations of the CLI| are free to execute programs using any technology that guarantees,
within asingle thread of execution, that side-effects and exceptions generated by athread are visible in the
order specified by the CIL. For this purpose volatile operations (including volatile reads) constitute side-
effects. Volatile operations are specified in clause 11.6.7. There are no ordering guarantees relative to
exceptions injected into athread by another thread (such exceptions are sometimes called “asynchronous
exceptions,” e.g., System.Threading.ThreadAbortException).

Rationale: An optimizing compiler isfreeto reorder side-effects and synchronous exceptions to the extent that
this reordering does not change any observable program behavior.

Note: An implementation of the CLI is permitted to use an optimizing compiler, for example, to convert CIL to
native machine code provided the compiler maintains (within each single thread of execution) the same order
of side-effects and synchronous exceptions.

Thisisastronger condition than |SO C++ (which permits reordering between a pair of sequence points) or |SO
Scheme (which permits reordering of arguments to functions).

11.6.

5 Locks and Threads

Thelogical abstraction of athread of control is captured by an instance of the Syst em Thr eadi ng. Thr ead
object in the class library. Classes beginning with the string “Syst em Thr eadi ng” (see Partition 1V) provide
much of the user visible support for this abstraction.

To create consistency across threads of execution, the CLI provides the following mechanisms:

1. Synchronized methods. A lock that is visible across threads controls entry to the body of a
synchronized method. For instance and virtual methods the lock is associated with the this pointer.
For static methods the lock is associated with the type to which the method belongs. The lock is
taken by the logical thread (see Syst em Thr eadi ng. - Thr ead in Partition 1V) and may be entered
any number of times by the same thread; entry by other threads is prohibited while the first thread
is still holding the lock. The CLI shall release the lock when control exits (by any means) the
method invocation that first acquired the lock.

2. Explicit locks and monitors. These are provided in the class library, see
System Thr eadi ng. Moni t or. Many of the methods in the Syst em Threadi ng. Moni tor class
accept an obj ect as argument, allowing direct access to the same lock that is used by synchronized
methods. While the CL1 isresponsible for ensuring correct protocol when thislock is only used by
synchronized methods, the user must accept this responsibility when using explicit monitors on
these same objects.

- 94 -

1 3. Volatilereads and writes. The CIL includes aprefix, vol atile., that specifies that the

2 subsequent operation is to be performed with the cross-thread visibility constraints described in

3 clause 11.6.7. In addition, the class library provides methods to perform explicit volatile reads

4 (name) and writes (name), as well as a barrier synchronization (name)

5 4. Built-in atomic reads and writes. All reads and writes of certain properly aligned data types are

6 guaranteed to occur atomically. See clause 11.6.6.

7 5. Explicit atomic operations. The class library provides a variety of atomic operations in the

8 Syst em Threadi ng. I nterl ocked class.

9 Acquiring alock (Syst em Thr eadi ng. Moni t or . Ent er Or entering a synchronized method) shall implicitly
10 perform avolatile read operation, and releasing alock (Syst em Thr eadi ng. Moni tor. Exi t Or leaving a
11 synchronized method) shall implicitly perform avolatile write operation. See clause 11.6.7.
12 11.6.6 Atomic Reads and Writes
13 A conforming CLI shall guarantee that read and write access to properly aligned memory locations no larger
14 than the native word size (the size of type native int) is atomic (see clause 11.6.2). Atomic writes shall alter no
15 bits other than those written. Unless explicit layout control (see Partition |1 (Contralling Instance Layout)) is
16 used to alter the default behavior, data elements no larger than the natural word size (the size of anativeint)
17 shall be properly aligned. Object references shall be treated as though they are stored in the native word size.
18 Note: There is no guarantee about atomic update (read-modify-write) of memory, except for methods provided
19 for that purpose as part of the class library (see Partition 1VV). An atomic write of a“small dataitem” (anitem
20 no larger than the native word size) is required to do an atomic read/write/modify on hardware that does not
21 support direct writes to small dataitems.
22
23 Note: There is ho guaranteed atomic access to 8-byte data when the size of anative int is 32 bits even though
24 some implementations may perform atomic operations when the data is aligned on an 8-byte boundary.

25 11.6.7 Volatile Reads and Writes

26 Thevolatile. prefix on certain instructions shall guarantee cross-thread memory ordering rules. They do not

27 provide atomicity, other than that guaranteed by the specification of clause 11.6.6.

28 A volatile read has “acquire semantics’ meaning that the read is guaranteed to occur prior to any referencesto
29 memory that occur after the read instruction in the CIL instruction sequence. A volatile write has “release

30 semantics’ meaning that the write is guaranteed to happen after any memory references prior to the write

31 instruction in the CIL instruction sequence.

32 A conforming implementation of the CLI shall guarantee this semantics of volatile operations. This ensures
33 that all threads will observe volatile writes performed by any other thread in the order they were performed. But
34 a conforming implementation is not required to provide asingle total ordering of volatile writes as seen from
35 all threads of execution.

36 An optimizing compiler that converts CIL to native code shall not remove any volatile operation, nor may it
37 coalesce multiple volatile operations into a single operation.

38 Rationale: One traditional use of volatile operationsisto model hardware registers that are visible through

39 direct memory access. |n these cases, removing or coalescing the operations may change the behavior of the
40 program.

41

42 Note: An optimizing compiler from CIL to native code is permitted to reorder code, provided that it guarantees
43 both the single-thread semantics described in Section 11.6 and the cross-thread semantics of volatile operations.

44 11.6.8 Other Memory Model Issues

45 All memory alocated for static variables (other than those assigned RV As within a PE file, see Partition 1) and
46 objects shall be zeroed before they are made visible to any user code.

QOWoo~N OO, WNPE

=

12
13

14
15
16
17
18

19
20
21

22
23

24

25
26
27
28
29
30

31

- 95 -

A conforming implementation of the CLI shall ensure that, even in a multi-threaded environment and without
proper user synchronization, objects are alocated in a manner that prevents unauthorized memory access and
preventsillegal operations from occurring. In particular, on multiprocessor memory systems where explicit
synchronization isrequired to ensure that all relevant data structures are visible (for example, vtable pointers)
the EE shall be responsible for either enforcing this synchronization automatically or for converting errors due
to lack of synchronization into non-fatal, non-corrupting, user-visible exceptions.

It is explicitly not arequirement that a conforming implementation of the CLI guarantee that all state updates
performed within a constructor be uniformly visible before the constructor completes. CIL generators may
ensure this requirement themselves by inserting appropriate calls to the memory barrier or volatile write
instructions.

11.7 Atomicity of Memory Accesses

The CLI makes several assumptions about atomicity of memory references, and these trandlate directly into
rules required of either programmers or trandlators from high-level languagesinto CIL.

. Read and write access to word-length memory locations (types native int and native unsigned
int) that are properly aligned is atomic. Correct translation from CIL to native code requires
generation of native code sequences that supply this atomicity guarantee. Thereis no guarantee
about atomic update (read-modify-write) of memory, except for methods provided for that
purpose as part of the class library (see Partition V).

. Read and write access to 4-byte data (int32 and unsigned int32) that is aligned on a 4-byte
boundary is atomic, even on a 64-bit machine. Again, there is no guarantee about atomic read-
modify-write.

. One- and Two-byte data that does not cross aword boundary will be read atomically, but writing
may write the entire word back to memory.

. No other memory references are performed atomically.

When the CLI controls the layout of managed data, it pads the data so that if an object starts at aword boundary
all of the fields that require 4 or fewer bytes will be aligned so that reads will be atomic. The managed heap
always aligns data that it allocates to maintain this rule, so heap references (type O) to data that does not have
explicit layout will occur atomically where possible. Similarly, static variables of managed classes are allocated
so that they, too, are aligned when possible. The CLI aligns stack frames to word boundaries, but need not
attempt to align to an 8-byte boundary on 32-bit machines even if the frame contains 8-byte values.

- 96 -

© 00 N oo o b~ W N

0000OogwwwwNNNNNNI\JI\JI\JNHHI—‘I—‘I—‘I—‘I—‘I—‘I—‘I—‘
~N O O W N P O © 0 N O O B W N P O O 0N O O b W N = O

12 Index
EL e 11
ADSIFACE ... 45, 46, 52
ADSIraCt ClaSS ... 27
BCCESS ...c.eereeeee st seere e e e 34
ACCESSIDIE ... 34
APPHCALTION. ... e 58
application domain..........c.ccerereeeenereeiesenenennene 58, 92
aray Element.......ccocoveeereererese s 4,17, 31
ATAY TYPL .ttt e e 4,31,41
aSSEMDIY ... 4, 33, 35, 46, 55, 57
ASSEMDIY oo ee e eee s ee e eeenean 11
assembly dependency........ccvcveeeveevevenesiese s 57
aSSEMDBIY SCOPE.....cveeeie et 4,33
assignment compatibilityccccooevivvervvniniecieee, 37
assignment compatible..........cccccevevvnie s 30, 33
ALFTDULES. ..o 4
BULOIBYOUL. ...ttt 57
PENAVION ... 27
BOX et 29
DOXE TYPL....eeeeeeee e 5,29
boxed value..........ccovviiiiiieeee e 5,29
BYIPES .o 38
BY-TEf e 71
Calling ConVeNntion..........cccceeeeeeveevene e 5
CBSE ..ttt 531
EXPlICIE e 63
IMPLICIT . 63
T2 01V o 63
WIABNING. ..cve ittt 63
[0S [o ST 5,31
ClasS CONIACE......ceevereeeeeereeeere e 5, 36
Class definitioNs.........covveeerernine e 44
ClasSTYPe....coeiee e 5, 36, 44
CL S e 6, 19, 22
CLS-compliantcccccoevvnevecieesese e 24
COBICION. c.vtineeetenese ettt 30

-97 -

COFF .. e See PE
Common Intermediate Language..................... See CIL
Common Language Specification................... SeeCLS
component Metadata..........ccovveeeereereereresesieeenieens 55
(00) 1107010100 I 1Y/ /= S 6, 31
(0/0] 0 [0 1< (= RS 6, 46
CONSITUCTON ...t s 47
(000] 011 7= o SR 7, 25, 36, 56
conversions
EXPHCIT . 31
10! o] o | ST 31
Custom attribULES.........ccoveirrcireeee e 7
ENCIOSING LYPE....eeeeeeeieie e e 35, 36
1< 010 TSP 33
ENUMENBLiON tYPE . .eeveevecie s ree e 33
ENUMErations.........cereeermeriineee e 7
EOUEL ..ot 29
EQUBLITY ..ot 29,30
EVENT CONLIaCt.........ooceiieiieee e 37
EXACE LY. .ottt 28, 32
EeXPECt eXiStiNg SOtcovveieiiereeie e 51
EXPlICItlaYOUL ..o 57
EXPOIADIE ... 35
FAMITY .o 4,35
family-and-assembly ..o 4,35
family-or-assemblycccooveeeveevenerise s 4,35
FIE. e 4,17,31
FINBL.eec 50, 52
fUlly desCribe.......ooeririe e 28
garbage ColleCtion.........ccveveirireeiree e 21
= L= ST 8,53
global StatiCS.....ccveieieeeeeeee e 59
Ride....coiee 50, 51, 52, 59
BY NAME ..o 50
by name and signature..........cccceeeeveveveeeseceennns 50
id9

© 00 N o 0o B~ W N P

00wwwﬁgwwwOONI\JI\JI\JNNNNNNI—‘I—‘I—‘I—‘I—‘I—‘HHI—‘I—‘
o N O O W N P O © 0 N O O B W N P O ©W 0N OO O B W N P O

-08 -

TAENLICEL ..ot 29 39 method CONLIaCt.......c.ccovveireeirerieeres e 37
[ENtITIErS....ceeeeeeeeeee e 9 40 method SIgNALUIE........ceveeeeriieeierieeeereeee s 39
TAENLILY ..o 29,30,31 41 names
IMPHICIT BYPR... et 40 42 SPECTAL ..t 61
indexed propertyccoceeeveene. Seeproperty, indexed 43 NATOWING ..c.ooveruereeiiece e 30, 63
INRENTE. e 27,36 44 NESLEdocoieeeiieee e 35
inheritance demand...........ccccecveveievese s 36 45 NESEALYPE...cciiceececice e 35, 36
INNENTES ot 3L 46 NEW SOt 51
INIE-ONTY e 38 A7 DU oo 31,32
iNit-ONly CONSLIAINE.......ccoeereeeeeeee e 38 48 ODJECL....ceccee e 28
instance field.......ccovvvvrieiecerece e 32 49 ObJECt tYPe...ccoveeeeeeeeee e 27,28, 46
Instance MEethods..........ccovverrererneee e 9 50 OOP.....nn. See Programming, Object-Oriented
iNterface CoNractcccvveveeereree e 36 51 optiona MOAIfiers......ccviiiirinrireseeesee 59
interface definition...........occoeeiiiinii s 43 52 OVETIdiNG...ccoieiieie e 32,50
INtErfaCe tyPe ..o 27,28,36 53 parameter SIgNature.......cccooeveeerenerieeieeseseesieseeeeens 39
Intermediate Languagecccceeeeveerernncninnnns SeeCIL 54 partial desCription........ccooeoeveneneneneneeeseseseins 27
KING. ..o 33 55 PE e 55
Label ..o e 15 56 POINEr tYPE ..ovvereeeeiere et 17, 27,43
Code 1ahEl ..o 6 57 Pointers
01 | 50 58 =g T=o 1= o 11
layoutsequentialccoovvevererieeeereesere e YA I o 1V (= TS 4,35
1] 0 34,38 60 programming
literal CONSLIaNtc.eevevereeere e 38 61 ObjECt-OrENtedocveeeriieerieeee e 25
[0CAl SIGNALUTE......ceevieieeierieeete e 38 62 property
[OCALION ...t 30 63 INAEXEA.....coiieieeeiee s 64
[0Cation CONSEFAINEccereeieieriese e 38 64 Property CONraCtcccooererenererenerieeieseeseenee e 37
[0CaLiON SIGNALUE......cveeeeeeeieie e 38 B5 PIOXY ceeeeeeeeeeiereesiesiestesee et ne 92
MaNaged COOE.......ccoueiriinere e 20 66 PUDIIC.. .ot 4,35, 46
managed data..........ccccceveeeveeecieeceece e, 11,20,21 67 publicly accessible parts.........cccoceivvveeriecieciiesiennenn, 24
Managed POINLEYcccevveeereceeeee e 38 68 qudifiedname.......ccccoeveveiieiinienececeeeeceens 14, 33
MABNITESE ... e 57 69 QUAIITY oo 33
MArShalliNg ..c.veeeveee e LTI (O N -0 G 14,41
MEMDET ... 31 71 rEfErENCE.....cicciee s 58
MEMDEN SCOPE.....omeeeeeerierierieereeeeeereeseesee e see e 16,33 72 referencedemand.......ccccoceeeiiiiiieecee e 36
MEMDEr SIGNALUNES.......cveiveeeeerieeeie e 56 73 referenCetype.....ccciiiiiiiinee e 27
MESSAGES.eeveveraeenresre st sre st ere e sre st ere e s 27 74 referenced entity........ccoeovineininene e 34
MELBHALALc.eiveeeeerieeee e 55 75 TEf@IeNt....occiiice e 34
MELNOD ...t 28 76 RelativeVirtua Address.........ccoovveveniniennn See RVA

© 00 N oo 0o B~ W N P

wwwwgwwwwNI\JI\JI\JNNNNNNI—‘I—‘I—‘I—‘I—‘I—‘HHI—‘I—‘
o N O O W N P O © 0 N O O B W N P O © 0N O O B W N P O

remoting boundaryc.ccveeeeenenenicnenenennene 15,92
FEPrESENLALION.......evieeeerieieiereeeee e 27
required MOdifiers.......ccooeoeierinene e 59
RV A e 56
SCOPE ..ttt eee et et et sae e b sae e e 15, 33, 46
SEAIEA ..o 15, 49
Self-describing.......ccccoveeieciccesece e 55
SENAliZable ... 15, 52
SO e 15, 53
SIGNAEUIE....c.veveveeeeeeeee e e 7,15, 36, 37
SEBLIC ..o 52
StatiC FIEld. .o 16, 32
static MEthOd.........ccvveeeeeiiecceecce e, 16, 32
SUPEr Call . 16
System.AttributeUsageAttribute...........ccoceeeeeneenen. 65
SYSEEMENUM ...t 49
System.TypedReference................ See typed reference
SyStEM.VAUETYPE....oeceeeeeeeeiee et 49
RISt e 52
L1 7SY 01011 11= S 16, 31, 32,52
117 01U 27
tyPE AEfiNES ... 16, 40
type definition ... 16, 33
TYPENAIME......coiiiiiieiee e 16, 33
TYPE SAFELY ..t 20, 40
tYPE SIGNELUIE.....ceeveieceeeeeee e 17, 37
typed refErenCe. ... 39
typedref ... See typed reference
typeless programming........ccccceveeeveeeseseeeeseeseens 27
107 01 = T 16, 40
UNBIOX 1ottt 29
uniqueness

NBIME......coverrieererree e ne e 33
validation

MELAELA.eceeeeeeeerieeeie e 55
Validation.......coeeeirieeee e 17
VAIUB TYPE .. 27
VaAUBTYPES.....eeiuieeieieie ettt e 17

- 99 -

39
40
41

R &

46
47

49
50
51
52
53
54

AV = (o TP 17
VATAIGS vttt 39
VECTON ..t s 42
VENTICATON. ...ttt 20, 40
VETICAION. ..o 18
VES ..o See Virtual Execution System
VIPTUBL .. 32,52
Virtual Calloooveevieeecee e 18, 32
Virtual EXecution System.........ccoevvvveveeiveenneesienenns 19
virtual method..........ccoeenreinc s 32
Virtual MEthodS..........ccvvreeinee e 18
VISIDIIEY oo 46
VISIDI e 34
VOlatile CONSLIaINtccevreerieereree e 38
WIAENING ..o e 30, 63

Common Language Infrastructure (CL1)

Partition I1:
M etadata Definition and Semantics

4.1
4.2

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

6.1
6.2
6.2.1
6.2.2
6.2.3
6.3
6.4
6.5
6.6
6.7

7.1

Table of contents

Scope

Overview

Validation and Verification

Introductory Examples
Hello World Example

Examples

General Syntax

General Syntax Notation
Terminals

Identifiers

Labels and Lists of Labels
Lists of Hex Bytes
Floating point numbers
Source Line Information
File Names

Attributes and Metadata

ilasm Source Files

Assemblies, Manifests and Modules
Overview of Modules, Assemblies, and Files
Defining an Assembly

Information about the Assembly (<asmDecl>)
Manifest Resources

Files in the Assembly

Referencing Assemblies

Declaring Modules

Referencing Modules

Declarations inside a Module or Assembly

Exported Type Definitions

Types and Signatures

Types

© © ©O© 00 00 00 N N o o1 O

11
11
12
13
14
15
15
16
16
16
17

18
18

7.1.1

7.1.2
7.2
7.3
7.4

8.1
8.2
8.3

9.1
9.1.1
9.1.2
9.1.3
9.1.4
9.1.5
9.1.6

9.2

9.3
9.3.1
9.3.2
9.3.3

9.4

9.5
9.5.1
9.5.2
9.5.3

9.6

9.7

9.8

10

11
111
11.2

12

modreq and modopt
pinned

Built-in Types

References to User-defined Types (<typeReference>)

Native Data Types

Visibility, Accessibility and Hiding

Visibility of Top-Level Types and Accessibility of Nested Types

Accessibility
Hiding

Defining Types

Type Header (<classHead>)

Visibility and Accessibility Attributes
Type Layout Attributes

Type Semantics Attributes
Inheritance Attributes

Interoperation Attributes

Special Handling Attributes

Body of a Type Definition
Introducing and Overriding Virtual Methods
Introducing a Virtual Method

The .override Directive

Accessibility and Overriding

Method Implementation Requirements
Special Members

Instance constructors

Instance Finalizer

Type Initializer

Nested Types

Controlling Instance Layout

Global Fields and Methods

Semantics of Classes

Semantics of Interfaces
Implementing Interfaces

Implementing Virtual Methods on Interfaces

Semantics of Value Types

19
19
20
20
21

24
24
24
24

25
25
26
27
27
27
27
28
28
29
29
29
30
31
31
31
32
32
34
35
36

37

38
38
38

40

12.1
12.2
12.3

13

13.1

13.2

13.3

13.4
13.4.1
13.4.2

13.5

13.6
13.6.1
13.6.2

14
14.1
14.1.1
14.1.2
14.1.3
14.1.4
14.2
14.3
14.4
14.4.1
14.4.2
14.4.3
14.4.4
14.4.5
14.5
14.5.1
14.5.2
14.5.3
14.5.4

15
15.1
15.1.1

Referencing Value Types
Initializing Value Types

Methods of Value Types

Semantics of Special Types
Vectors

Arrays

Enums

Pointer Types

Unmanaged Pointers

Managed Pointers

Method Pointers

Delegates

Synchronous Calls to Delegates

Asynchronous Calls to Delegates

Defining, Referencing, and Calling Methods

Method Descriptors

Method Declarations

Method Definitions

Method References

Method Implementations

Static, Instance, and Virtual Methods
Calling Convention

Defining Methods

Method Body

Predefined Attributes on Methods
Implementation Attributes of Methods
Scope Blocks

vararg Methods

Unmanaged Methods

Method Transition Thunks

Platform Invoke

Via Function Pointers

Data Type Marshaling

Defining and Referencing Fields
Attributes of Fields

Accessibility Information

40
40
42

44
44
44
47
48
49
49
51
52
54
55

57
57
57
57
57
57
57
58
59
60
62
64
65
65
66
67
67
68
68

70
70
71

15.1.2
15.1.3
15.1.4
15.2
15.3
15.3.1
15.3.2
15.4
15.4.1
15.5
15.5.1

16

17

18
18.1
18.2
18.3
18.4
18.5
18.6

19

20

20.1

20.2
20.2.1
20.2.2
20.2.3
20.2.4
20.2.5

21
21.1
21.2
21.3
21.4

Field Contract Attributes

Interoperation Attributes

Other Attributes

Field Init Metadata

Embedding Data in a PE File

Data Declaration

Accessing Data from the PE File
Initialization of Non-Literal Static Data
Data Known at Link Time

Data Known at Load Time

Data Known at Run Time

Defining Properties

Defining Events

Exception Handling
Protected Blocks
Handler Blocks
Catch

Filter

Finally

Fault Handler

Declarative Security

Custom Attributes

CLS Conventions: Custom Attribute Usage
Attributes Used by the CLI

Pseudo Custom Attributes

Custom Attributes Defined by the CLS
Custom Attributes for Security

Custom Attributes for TLS

Custom Attributes, Various

Metadata Logical Format: Tables
Metadata Validation Rules
Assembly : 0x20

AssemblyOS : 0x22

AssemblyProcessor : 0x21

71
71
71
72
73
73
74
74
75
75
75

77

79

82
82
82
83
83
84
84

86

87
87
88
88
89
89
90
90

91
92
93
93
94

21.5

21.6

21.7

21.8

21.9

21.10
21.11
21.12
21.13
21.14
21.15
21.16
21.17
21.18
21.19
21.20
21.21
21.22
21.23
21.24
21.25
21.26
21.27
21.28
21.29
21.30
21.31
21.32
21.33
21.34
21.35
21.36

22
22.1
22.1.1
22.1.2
22.1.3

AssemblyRef : 0x23
AssemblyRefOS : 0x25
AssemblyRefProcessor : 0x24
ClassL ayout : OXOF
Constant : 0x0B
CustomAttribute : 0x0C
DeclSecurity : Ox0E
EventMap : 0x12

Event : Ox14
ExportedType : 0x27
Field : 0x04
FieldLayout : 0x10
FieldMarshal : 0xOD
FieldRVA : 0x1D

File : 0x26

ImplMap : 0x1C
Interfacelmpl : 0x09
ManifestResource : 0x28
MemberRef : 0x0A
Method : 0x06
MethodImpl : 0x19
MethodSemantics : 0x18
Module : 0x00
ModuleRef : Ox1A
NestedClass : 0x29
Param : 0x08

Property : Ox17
PropertyMap : 0x15
StandAloneSig : 0x11
TypeDef : 0x02
TypeRef : 0x01
TypeSpec : 0x1B

Metadata Logical Format: Other Structures

Bitmasks and Flags

Values for AssemblyHashAlgorithm

Values for AssemblyFlags

Values for Culture

94

95

95

95

98

98
100
102
102
103
105
107
108
109
109
110
110
111
112
113
116
117
118
119
119
119
120
122
122
123
128
129

130
130
130
130
130

22.1.4
22.1.5
22.1.6
22.1.7
22.1.8
22.1.9
22.1.10
22.1.11
22.1.12
22.1.13
22.1.14
22.1.15
22.2
22.2.1
22.2.2
22.2.3
22.2.4
22.2.5
22.2.6
22.2.7
22.2.8
22.2.9
22.2.10
22.2.11
22.2.12
22.2.13
22.2.14
22.2.15
22.3
22.4

23
23.1
23.2
23.2.1
23.2.2
23.2.3
23.2.4

- Vi -

Flags for Events [EventAttributes]

Flags for Fields [FieldAttributes]

Flags for Files [FileAttributes]

Flags for ImplMap [PInvokeAttributes]
Flags for ManifestResource [ManifestResourceAttributes]
Flags for Methods [MethodAttributes]
Flags for Methods [MethodI mplAttributes]
Flags for MethodSemantics [MethodSemanticsAttributes]
Flags for Params [ParamAttributes]

Flags for Properties [PropertyAttributes]
Flags for Types [TypeAttributes]

Element Types used in Signhatures

Blobs and Signatures

MethodDefSig

MethodRefSig

StandAloneMethodSig

FieldSig

PropertySig

LocalVarSig

CustomMod

TypeDefOrRefEncoded

Constraint

Param

RetType

Type

ArrayShape

TypeSpec

Short Form Signatures

Custom Attributes

Marshalling Descriptors

Metadata Physical Layout
Fixed Fields

File Headers

M etadata root

Stream Header

#Strings heap

#US and #Blob heaps

131
131
132
132
133
133
134
134
134
135
135
136
137
138
139
140
142
142
142
143
143
144
144
144
145
145
146
146
147
149

151
151
151
151
151
152
152

23.2.5
23.2.6

24

24.1

24.2
24.2.1
24.2.2
24.2.3

24.3
24.3.1
24.3.2
24.3.3

24.4
24.4.1
24.4.2
24.4.3
24.4.4
24.4.5
24.4.6

- Vii -

#GUID heap

#~ stream

File Format Extensions to PE

Structure of the Runtime File Format

PE Headers

MS-DOS Header

PE File Header

PE Optional Header

Section Headers

Import Table and Import Address Table (IAT)
Relocations

CLI Header

Common Intermediate Language Physical Layout
Method Header Type Values

Tiny Format

Fat Format

Flags for Method Headers

Method Data Section

Exception Handling Clauses

152
152

156
156
156
157
157
158
160
161
161
162
164
164
164
164
165
165
166

O©Ooo~N OO WN BB

Scope

Partition | of the Common Language Infrastructure (CL1) describes the overall architecture of the CLI, and
provides the normative description of the Common Type System (CTS), the Virtual Execution System (VES),
and the Common Language Specification (CLS). It also provides a non-normative description of the metadata
and a comprehensive set of abbreviations, acronyms (Partition 1) and definitions, included by reference
(Partition I) from al other Partitions.

Partition 11 (this specification) provides the normative description of the metadata: its physical layout (as afile
format), itslogical contents (as a set of tables and their relationships), and its semantics (as seen from a
hypothetical assembler, ilasm).

O©Ooo~N OUORrrWN BB

el el
WN RO

Overview

This document focuses on the structure and semantics of metadata. The semantics of metadata, which dictate
much of the operation of the VES, are described using the syntax of ilasm, an assembler language for CIL. The
ilasm syntax itself is considered a normative part of this ECMA standard. This constitutes Chapters 5 through
0. A complete syntax for ilasmisincluded in Partition V. The structure (both logical and physical) is covered
in Chapters 21 through 24.

Rationale: An assembly language isreally just syntax for specifying the metadata in a file and the CIL
instructionsin that file. Specifying ilasm provides a means of interchanging programs written directly for the
CLI without the use of a higher-level language and also provides a convenient way to express examples.

The semantics of the metadata also can be described independently of the actual format in which the metadata
isstored. Thispoint isimportant because the storage format as specified Chapters 21 through 24 is
engineered to be efficient for both storage space and access time but this comes at the cost of the simplicity
desirable for describing its semantics.

O©OooO~NOO OORrrWN BB

BR R R e
AWNRO

PR
N o o

18

19

20
21
22
23
24
25
26

27
28
29
30
31
32
33
34

Validation and Verification

Validation refers to a set of tests that can be performed on any file to check that the file format, metadata, and
CIL are self-consistent. These tests are intended to ensure that the file conforms to the mandatory requirements
of this specification. The behavior of conforming implementations of the CLI when presented with non-
conforming filesis unspecified.

Verification refers to a check of both CIL and its related metadata to ensure that the CIL code sequences do not
permit any access to memory outside the program’s logical address space. In conjunction with the validation
tests, verification ensures that the program cannot access memory or other resources to which it is not granted
access.

Partition 111 specifies the rules for both valid and verifiable use of CIL instructions. Partition 111 also provides
an informative description of rules for validating the internal consistency of metadata (the rules follow, albeit
indirectly, from the specification in this Partition) as well as containing a normative description of the
verification algorithm. A mathematical proof of soundness of the underlying type system is possible, and
provides the basis for the verification requirements. Aside from these rules this standard does not specify:

. at what time (if ever) such an algorithm should be performed
. what a conforming implementation should do in case of failure of verification.

The following graph makes this relationship clearer (see next paragraph for a description):

Syntactically correct IL

Walid IL
Typesafe IL

“erifiable 1L

Rl
e b
[T

Figure 1. Relationship between valid and verifiable CIL

In the above figure, the outer circle contains all code permitted by the ilasm syntax. The next circle represents
all code that isvalid CIL. The dotted inner circle represents all type safe code. Finally, the black innermost
circle contains all code that is verifiable. (The difference between typesafe code and verifiable code is one of
provability: code which passes the VES verification algorithm is, by-definition, verifiable; but that simple
algorithm rejects certain code, even though a deeper analysis would reveal it as genuinely typesafe). Note that
even if aprogram follows the syntax described in Partition V, the code may still not be valid, because valid
code shall adhere to restrictions presented in this document and in Partition I11.

Verification isavery stringent test. There are many programs that will pass validation but will fail verification.
The VES cannot guarantee that these programs do not access memory or resources to which they are not
granted access. Nonetheless, they may have been correctly constructed so that they do not access these
resources. It isthus a matter of trust, rather than mathematical proof, whether it is safe to run these programs. A
conforming implementation of the CLI may alow unverifiable code (valid code that does not pass verification)
to be executed, although this may be subject to administrative trust controls that are not part of this standard. A
conforming implementation of the CLI shall alow the execution of verifiable code, although this may be
subject to additional implementation-specified trust controls.

g b~ w N -

O©oo~N O

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25

26
27
28
29
30

31

32
33
34
35

36

4 Introductory Examples

This section and its subsections contain only informative text.

Before diving into the details, it is useful to see an introductory sample program to get afeeling for the ilasm
assembly language. The next section shows the famous Hello World program, this time in the ilasm assembly
language.

4.1 Hello World Example

This section gives asimple example to illustrate the general feel of ilasm. Below is code that prints the well
known “Hello world!” salutation. The salutation iswritten by calling wi t eLi ne, a static method found in the
class syst em Consol e that is part of the assembly nscorlib (see Partition [V).

Example (informative):
.assenbly extern nscorlib {}
.assenbly hello {}
.method static public void main() cil managed
{ .entrypoint
. maxstack 1
| dstr "Hello world!"
call void [mscorlib] System Consol e:: WitelLine(class System String)

ret

The .assembly extern declaration references an external assembly, mscorlib, which defines Syst em Consol e.
The .assembly declaration in the second line declares the name of the assembly for this program. (Assemblies
are the deployment unit for executable content for the CL1.) The.method declaration defines the global
method mai n. The body of the method is enclosed in braces. Thefirst line in the body indicates that this
method is the entry point for the assembly (.entrypoint), and the second line in the body specifies that it
requires at most one stack slot (.maxstack).

The method contains only three instructions. The Idstr instruction pushes the string constant * Hel | o wor | d! *
onto the stack and the call instruction invokes Syst em Consol e: : Wi t eLi ne, passing the string asiits only
argument (note that string literalsin CIL are instances of the standard class Syst em St ri ng). As shown, call
instructions shall include the full signature of the called method. Finally, the last instruction returns (r et) from
mal n.

4.2 Examples

This document contains integrated examples for most features of the CLI metadata. Many sections conclude
with an example showing atypical use of the feature. All these examples are written using the ilasm assembly
language. In addition, Partition VV contains alonger example of a program written in the ilasm assembly
language. All examples are, of course, informative only.

End informative text

GrhWN -

oo~N O

9
10
11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34

35
36

5.1

5.2

General Syntax

This section describes aspects of the ilasm syntax that are common to many parts of the grammar. The term
“ASCII” refersto the American Standard Code for Information Interchange, a standard seven-bit code that was
proposed by ANSI in 1963, and finalized in 1968. The ASCI| repertoire of Unicode is the set of 128 Unicode
characters from U+0000 to U+007F.

General Syntax Notation

This document uses a modified form of the BNF syntax notation. The following is a brief summary of this
notation.

Bold items are terminals. Items placed in angle brackets (e.g. <int64>) are names of syntax classes and shall be
replaced by actual instances of the class. Items placed in square brackets (e.g. [<float>]) are optional, and any
item followed by * can appear zero or more times. The character “|” means that the items on either side of it are
acceptable. The options are sorted in aphabetical order (to be more specific: in ASCII order, ignoring “<” for
syntax classes, and case-insensitive). If arule starts with an optional term, the optional term is not considered
for sorting purposes.

ilasm is a case-sensitive language. All terminals shall be used with the same case as specified in this reference.
Exanple (informative):
A grammar such as
<top> ::= <int32> | float <float> |
floats [<float> [, <float>]*] | el se <QSTRI NG

woul d consider the following all to be |egal:

12

float 3

float —4.3e7

floats

floats 2.4

floats 2.4, 3.7

el se "Sonething \'t weird"

but all of the following to be illegal:
el se 3
3, 4

float 4.3, 2.4
fl oat el se

Terminals

The basic syntax classes used in the grammar are used to describe syntactic constraints on the input intended to
convey logical restrictions on the information encoded in the metadata.

0o No Ooagh~ W N P

11
12

13
14
15
16
17
18
19

20
21

22
23

24
25
26

27

28
29

30
31
32
33
34
35
36
37

The syntactic constraints described in this clause are informative only.
The semantic constraints (e.g. “shall be represented in 32 bits”) are
normative.

<i nt 32> iseither adecimal number or “0x” followed by a hexadecimal number, and shall be represented in
32 bits.

<i nt 64> iseither adecimal number or “0x” followed by a hexadecimal number, and shall be represented in
64 hits.

<hexbyt e> isa2-digit hexadecimal number that fits into one byte.

<realnumber> is any syntactic representation for a floating point number that is distinct from that for all other
terminal nodes. In thisdocument, a period (.) is used to separate the integer and fractional parts, and “€” or “E”
separates the mantissa from the exponent. Either (but not both) may be omitted.

Note: A complete assembler may also provide syntax for infinities and NaNs.

<QSTRI NG> isastring surrounded by double quote (") marks. Within the quoted string the character “\” can
be used as an escape character, with “\t” for atab character, “\n” for anew line character, or followed by three
octal digitsin order to insert an arbitrary byte into the string. The “+" operator can be used to concatenate string
literals. Thisway, along string can be broken across multiple lines by using “+” and a new string on each line.
An dternativeisusing “\” asthe last character in aline, in which case the line break is not entered into the
generated string. Any white characters (space, line feed, carriage return, and tab) between the “\” and the first
character on the next line are ignored. See also examples below.

Note: A complete assembler will need to deal with the full set of issues required to support Unicode encodings,
see Partition | (especially CLS Rule 4).

<SQSTRI NG> issimilar to <QSTRI NG> with the difference that it is surround by single quote (') marks
instead of double quote marks.

<| D> isacontiguous string of characters which starts with either an alphabetic character or oneof “_", “$”,
“@" or “?" and isfollowed by any number of alphanumeric charactersor any of “_",“$", “@", or “?". An
<I| D> isused in only two ways:

. As alabel of a CIL instruction

. As an <i d> which can either be an <I D> or an <SQSTRI NG>, so that special characters can be
included.

Example (informative):
The foll owi ng exanpl es shows breaking of strings:
[dstr "Hello " + "World " +
“fromcClL!'"
and
[dstr "Hello Worl d\
\ 040from CI L!'"

beconme both "Hello Wrld fromcClL!'".

GabrhwWN BB

QW O~NO

12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30

31
32
33
34
35

36
37

38

5.3

Identifiers

I dentifiers are used to name entities. Simple identifiers are just equivalent to an <ID>. However, theilasm
syntax allows the use of any identifier that can be formed using the Unicode character set (see Partition 1). To
achieve this an identifier is placed within single quotation marks. Thisis summarized in the following
grammar.

<id> ::=

<| D>

| <SGSTRI NG

Keywords may only be used as identifiersif they appear in single quotes (see Partition V for alist of al
keywords).

Severa <id>'smay be combined to form alarger <id>. The <id>'s are separated by adot (.). An <id> formed
in thisway is called a <dottedname>.

| <dottednane> ::= <id> [. <id>]*

Rationale: <dottedname> is provided for convenience, since“.” can beincluded in an <id> using the
<SQSTRING> syntax. <dottedname> is used in the grammar where“.” is considered a common character
(e.g. fully qualified type names)

Exanpl es (informative):

The follow ng shows sone sinple identifiers:
A
Test
$Test
@-007?
? X

The follow ng shows identifiers in single quotes:
'Weird ldentifier’
'Cdd\ 102Char '
"Enbedded\ nRet urn’

The follow ng shows dotted nanes:
Syst em Consol e
A.B.C

"My Project’.'My Conponent’'.'My Nanme'’

Labels and Lists of L abels

Labels are provided as a programming convenience; they represent anumber that is encoded in the metadata.
The value represented by alabel istypically an offset in bytes from the beginning of the current method,
although the precise encoding differs depending on where in the logical metadata structure or CIL stream the
label occurs. For details of how labels are encoded in the metadata, see Chapters 21 through 24; for their
encoding in CIL instructions see Partition I11.

A simplelabel is a special name that represents an address. Syntactically, alabel is equivaent to an <id>. Thus,
labels may be also single quoted and may contain Unicode characters.

A list of labelsis comma separated, and can be any combination of these simple labels.

QWO ~NOUIh, WNPE

16

17
18

19
20
21

22
23

24
25

26
27

28
29
30

31

32
33
34

5.5

5.6

5.7

<l abel oroffset> ::= <id>

<l abel s> ::= <l abel oroffset> [, <labeloroffset>]*

Rationale: In a real assembler the syntax for <labeloroffset> might allow the direct specification of a number

rather than requiring symbolic labels.

ilasm distinguishes between two kinds of labels. code labels and data labels. Code labels are followed by a
colon (“:") and represent the address of an instruction to be executed. Code labels appear before an instruction
and they represent the address of the instruction that immediately followsthe label. A particular code label
name may nhot be declared more than once in a method.

In contrast to code labels, data labels specify the location of a piece of data and do not include the colon
character. The data label may not be used as a code label, and a code label may not be used as a data label. A
particular code label name may not be declared more than once in amodule.

<codelLabel > :: = <id>

<dat aLabel > :: = <id>

Exanpl e (informative):

The follow ng defines a code |abel, Idstr_|abel, that represents the
address of the ldstr instruction:

| dstr | abel: Ildstr "A | abel"

Lists of Hex Bytes

A list of bytes consists simply of one or more hex bytes. Hex bytes are pairs of characters0—9, a—f, and A —
F.

<bytes> ::= <hexbyte> [<hexbyte>*]

Floating point numbers
There are two different ways to specify afloating-point number:

9. Usethedot (“.”) for the decimal point and “€” or “E” in front of the exponent. Both the decimal
point and the exponent are optional.

10. Indicate that the floating-point value is derived from an integer using the keyword float32 or
float64 and indicating the integer in parentheses.

<float64> ::=

float32 (<int32>)

| float64 (<int64>)

| <real nunber>

Exanmpl e (informative):
5.5
1.1e10

float64(128) // note: this converts the integer 128 to its fp val ue

Source Line Information

The metadata does not encode information about the lexical scope of variables or the mapping from source line
numbersto CIL instructions. Nonetheless, it is useful to specify an assembler syntax for providing this
information for use in creating aternate encodings of the information.

N -

~N~No ol A~ W

10
11
12
13

14

15
16
17

18
19
20

21
22
23

24
25
26
27
28
29
30

31
32

33
34
35

Jinetakes aline number, and optional column number (preceded by a colon) and single quoted string that
specifies the name of the file the line number isreferring to

<externSourceDecl> ::= .line <int32> [: <int32>] [<SQSTRI N&G]

5.8

File Names

Some grammar elements require that afile name be supplied. A file nameis like any other name where“.” is
considered anormal constituent character. The specific syntax for file names follows the specifications of the
underlying operating system.

<filename> ::= Section

<dot t edname> 5.3

5.9

5.10

Attributes and Metadata

Attributes of types and their members attach descriptive information to their definition. The most common
attributes are predefined and have a specific encoding in the metadata associated with them (see Chapter 22).

In addition, the metadata provides away of attaching user-defined attributes to metadata, using several different
encodings.

From a syntactic point of view, there are several ways for specifying attributes in ilasm:

. Using special syntax built into ilasm. For example the keyword private in a<cl assAttr >
specifies that the visibility attribute on atype should be set to allow access only within the
defining assembly.

. Using a general-purpose syntax in ilasm. The non-terminal <cust onDecl > describes this
grammar (see Chapter 0). For some attributes, called pseudo-custom attributes, this grammar
actually results in setting special encodings within the metadata (see clause 20.2.1).

. Some attributes are required to be set based on the settings of other attributes or information
within the metadata and are not visible from the syntax of ilasm at all. These attributes, called
hidden attributes

. Security attributes are treated specially. There is special syntax in ilasm that allows the XML
representing security attributes to be described directly (see Chapter 19). While all other
attributes defined either in the standard library or by user-provided extension are encoded in the
metadata using one common mechanism described in Section 21.10, security attributes
(distinguished by the fact that they inherit, directly or indirectly from
System Security. Perm ssions. SecurityAttribute, seePartition IV) shall be encoded
as described in Section 21.11.

ilasm Source Files
Aninput to ilasm is a sequence of declarations, defined as follows:
<ILFile> ::= Reference
<decl >* 5.10

The complete grammar for atop level declaration is shown below. The following sections will concentrate on
the various parts of this grammar.

<decl > ::= Reference
.assenbly <dottednane> { <asnDecl >* } 6.1

| .assenbly extern <dottednane> { <asnRef Decl >* } 6.3

| .class <classHead> { <cl assMenber>* } 9

- 10 -

| .class extern <exportAttr> <dottednane> { <externd assDecl >* } g

| .corflags <int32> 6.1

| . custom <cust onDecl > 0

| .data <datadecl > 1531

| .field <fieldDecl> 0

| .file [nonetadata] <filename> [.hash = (<bytes>)] 6.2.3
[.entrypoint] o

| .nresource [public | private] <dottedname> 6.2.2

[(<@STRING>)] { <manResDecl >* } o

| . nethod <net hodHead> { <nethodBodyltenr* }]_:4

| .rodule [<filename>] 6.4

| .nodule extern <filename> 6.5

| .subsystem <int32> 6.2

| .vtfixup <vtfixupDecl > 1451

| <externSourceDecl > 5.7

| <securityDecl > 18

QW O~NOO O AW N BB

19

20
21

22

23

24
25
26

27
28
29

30
31
32
33

6.1

- 11 -

Assemblies, Manifests and Modules
Assemblies and modules are grouping constructs, each playing adifferent rolein the CLI.

An assembly is a set of one or more files deployed asa unit. An assembly always contains a manifest that
specifies (see Section 6.1):

. Version, name, culture, and security requirements for the assembly.

. Which other files, if any, belong to the assembly along with a cryptographic hash of each file.
The manifest itself resides in the metadata part of afile and that file is always part of the
assembly.

. Which of the types defined in other files of the assembly are to be exported from the assembly.
Types defined in the same file as the manifest are exported based on attributes of the type itself.

. Optionally, adigital signature for the manifest itself and the public key used to compute it.

A moduleis asingle file containing executable content in the format specified here. If the module contains a
manifest then it also specifies the modules (including itself) that constitute the assembly. An assembly shall
contain only one manifest amongst al its constituent files. For an assembly to be executed (rather than
dynamically loaded) the manifest shall reside in the module that contains the entry point.

While some programming languages introduce the concept of a namespace, there is no support in the CLI for
this concept. Type names are always specified by their full name relative to the assembly in which they are
defined.

Overview of Modules, Assemblies, and Files

This section contains informative text only.

The following picture should clarify the various forms of references:

]
Fz

assenbly Assenhlgr E

Figure 2: References

Eight files are shown in the picture. The name of each file is shown below thefile. Filesthat declare amodule
have an additional border around them and have names beginning with M. The other two files have a name
beginning with F. These files may be resource files, like bitmaps, or other files that do not contain CIL code.

FilesM1 and M4 declare an assembly in addition to the modul e declaration, namely assemblies A and B,
respectively. The assembly declaration in M1 and M4 references other modules, shown with straight lines.
Assembly A references M2 and M 3. Assembly B references M3 and M5. Thus, both assemblies reference M3.

Usually, amodule belongs only to one assembly, but it is possible to share it across assemblies. When
Assembly A isloaded at runtime, an instance of M3 will be loaded for it. When Assembly B isloaded into the
same application domain, possibly simultaneously with Assembly A, M3 will be shared for both assemblies.
Both assemblies also reference F2, for which similar rules apply.

A WNBE

10
11
12

13
14

15
16
17
18

19
20
21
22

23
24

25
26

27
28

29
30
31
32

-12 -

The module M2 references F1, shown by dotted lines. As a consegquence F1 will be loaded as part of Assembly
A, when A is executed. Thus, the file reference shall also appear with the assembly declaration. Similarly, M5
references another module, M6, which becomes part of B when B is executed. It follows, that assembly B shall
also have a module reference to M6.

End informative text

Defining an Assembly

An assembly is specified as amodule that contains a manifest in the metadata; see Section 21.2. The
information for the manifest is created from the following portions of the grammar:

<decl > ::= Section
.assenbly <dottednane> { <asnDecl >* } 6.2
| .assenbly extern <dottednane> { <asnRef Decl >* } 6.3
| .corflags <int32> 6.2
| .file [nometadata] <filename> .hash = (<bytes>) 6.2.3
[.entrypoint]
| .module extern <filename> 6.5
| .nresource [public | private] <dottedname> 6.2.2
[(<@STRING>)] { <manResDecl >* } o
| . subsystem <int32> 6.2

The .assembly directive declares the manifest and specifies to which assembly the current module belongs. A
module shall contain at most one .assembly directive. The <dot t ednane> specifies the name of the
assembly.

Note: Since some platforms treat namesin a case insensitive manner, two assemblies that have names that
differ only in case should not be declared.

The .corflags directive sets afield in the CLI header of the output PE file (see clause 24.3.3.1). A conforming
implementation of the CLI shall expect it to be 1. For backwards compatibility, the three least significant bits
arereserved. Future versions of this standard may provide definitions for values between 8 and 65,535.
Experimental and non-standard uses should thus use values greater than 65,535.

The .subsystem directiveis used only when the assembly is directly executed (as opposed to used as alibrary
for another program). It specifies the kind of application environment required for the program, by storing the
specified value in the PE file header (see clause 24.2.2). While afull 32 bit integer may be supplied, a
conforming implementation of the CLI need only respect two possible values:

If the valueis 2, the program should be run using whatever conventions are appropriate for an application that
has a graphical user interface.

If the valueis 3, the program should be run using whatever conventions are appropriate for an application that
has a direct console attached.

Exanpl e (informative):

.assenmbl y Count Down

{ .hash algorithm 32772
.ver 1:0:0:0

N -

N

»

10
11
12

13
14
15

16

17

19
20
21

22
23
24

25

26

28
29
30
31
32

33
34

- 13 -

.file Counter.dll .hash = (BA D9 7D 77 31 1C 85 4C 26 9C 49 E7 02 BE E7
52 3A CB 17 AF)

Information about the Assembly (<asmDecl>)

The following grammar shows the information that can be specified about an assembly.

<asmDecl > ::= Description Section
. cust om <cust onDecl > Custom attributes
-hash al gori thm <i nt 32> Hash algorithm used in the file directive 6.2.1.1
| .culture <QBTRING> Culture for which this assembly is built 6.2.1.2
| . publickey = (<bytes>) The originator's public key. 6213
| .ver <int32>: <int32>: <int32>: Major version, minor version, revision, and | 6.2.1.4
<int32> build
| <securityDecl > Permissions needed, desired, or prohibited 19

6.2.1.1 Hash Algorithm

<asmDecl > ::= . hash al gorithm <int32> |

When an assembly consists of more than one file (see clause 6.2.3), the manifest for the assembly specifies
both the name of the file and the cryptographic hash of the contents of the file. The algorithm used to compute
the hash can be specified, and shall be the same for al filesincluded in the assembly. All values are reserved
for future use, and conforming implementations of the CLI shall use the SHA1(see Partition 1) hash function
and shall specify this algorithm by using a value of 32772 (0x8004).

Rationale: SHA1 was chosen as the best widely available technology at the time of standardization (see
Partition1). A single agorithmis chosen since all conforming implementations of the CLI would be required
to implement all algorithms to ensure portability of executable images.

6.2.1.2 Culture

<asmDecl > ::= .culture <QSTRI NG |

When present, this indicates that the assembly has been customized for a specific culture. The strings that shall
be used here are those specified in Partition |V as acceptable with the class

System d obal i zati on. Cul turel nfo. When used for comparison between an assembly reference and an
assembly definition these strings shall be compared in a case insensitive manner.

Note: The culture names follow the IETF RFC1766 names. The format is “ <language>-<country/region>"
where <language> is alowercase two-letter codein SO 639-1. <country/region> is an uppercase two-|etter
codein 1SO 3166

6.2.1.3 Originator’s Public Key

<asnDecl > ::= .publickey = (<bytes>) |

The CLI metadata allows the producer of an assembly to compute a cryptographic hash of the assembly (using
the SHA1 hash function) and then encrypt it using the RSA algorithm (see Partition |) and a public/private key
pair of the producer’s choosing. The results of this (an “SHA1/RSA digital signature”) can then be stored in
the metadata along with the public part of the key pair required by the RSA algorithm. The .publickey
directive is used to specify the public key that was used to compute the signature. To calculate the hash, the
signature is zeroed, the hash cal culated, then the result stored into the signature.

A reference to an assembly (see Section 6.3) captures some of thisinformation at compiletime. At runtime,
the information contained in the assembly reference can be combined with the information from the manifest of

©o ~No oh

11
12

13
14
15
16

17
18
19

20
21
22

23

24
25
26

27
28
29
30

31
32
33
34
35

- 14 -

the assembly located at runtime to ensure that the same private key was used to create both the assembly seen
when the reference was created (compile time) and when it is resolved (runtime).

6.2.1.4 Version Numbers

<asmDecl > ::= .ver <int32>: <int32>: <int32>: <int32> |

The version number of the assembly, specified as four 32-bit integers. This version number shall be captured at
compile time and used as part of all references to the assembly within the compiled module. This standard
places no other requirement on the use of the version numbers.

Note: A conforming implementation may ignore version numbers entirely, or it may require that they match
precisely when binding a reference, or any other behavior deemed appropriate. By convention:

the first of these is considered the major version number and assemblies with the same name but different
major versions are not interchangeable. Thiswould be appropriate, for example, for amajor rewrite of a
product where backwards compatibility cannot be assumed.

the second of these is considered the minor version number and assemblies with the same name and major
version but different minor versions indicate significant enhancements but with intention to be backward
compatible. Thiswould be appropriate, for example, on a*“point release” of aproduct or afully backward
compatible new version of a product.

the third of these is considered the revision number and assemblies with the same name, major and minor
version number but different revisions are intended to be fully interchangeable. This would be appropriate, for
example, to fix a security holein apreviously released assembly.

the fourth of these is considered the build number and assemblies that differ only by build number are intended
to represent a recompilation from the same source. Thiswould be appropriate, for example,because of
processor, platform, or compiler changes.

M anifest Resour ces

A manifest resource is simply anamed item of data associated with an assembly. A manifest resourceis
introduced using the .mr esour ce directive, which adds the manifest resource to the assembly manifest begun
by a preceding .assembly declaration.

<decl > ::= Section

.nresource [public | private] <dottednane>

{ <manResDecl >* }

| 1

o
o

If the manifest resource is declared public it is exported from the assembly. If it is declared privateit is not
exported and hence only available from within the assembly. The <dottedname> is the name of the resource,
and the optional quoted string is a description of the resource.

<manResDecl > :: = Description Section
.assenbly extern <dottednane> Manifest resourceisin external 6.3
assembly with name <dottedname>.
| . custom <cust onDec| > Custom attribute. 0
| .file <dottednane> at <int32> Manifest resourceisin file
<dottedname> at byte offset <int32>.

For aresource stored in afile that is not a module (for example, an attached text file), the file shall be declared
in the manifest using a separate (top-level) .file declaration (see clause 6.2.3) and the byte offset shall be zero
Similarly, aresource that is defined in another assembly is referenced using .assembly exter n which requires
that the assembly has been defined in a separate (top-level) .assembly extern directive (see Section 6.3).

A WN B

[
QW0 ~NoOoO

11
12

13

14
15
16
17
18
19

20
21
22
23

24

26
27

28
29
30

31
32

6.2.3

- 15 -

Filesin the Assembly

Assemblies may be associated with other files, e.g. documentation and other files that are used during
execution. The declaration .fileis used to add areference to such afile to the manifest of the assembly: (See
Section 21.19)

<decl > ::= Section

.file [nometadata] <filenane> .hash = (<bytes>) [.entrypoint]

I 5.10

6.3

The attribute nometadata is specified if the file is not amodule according to this specification. Filesthat are
marked as nometadata may have any format; they are considered pure data files.

The <bytes> after the .hash specify a hash value computed for the file. The VES shall recompute this hash
value prior to accessing thisfile and shall generate an exception if it does not match. The algorithm used to
calculate this hash value is specified with .hash algorithm (see clause 6.2.1.1).

If specified, the .entrypoint directive indicates that the entrypoint of a multi-module assembly is contained in
thisfile.

Referencing Assemblies

<asnRefDecl > ::= .assenbly extern <dottednane> [as <dottedname>]
{ <asnRef Decl >* }

An assembly mediates all accesses from the files that it contains to other assemblies. Thisis done through the
metadata by requiring that the manifest for the executing assembly contain a declaration for any assembly
referenced by the executing code. The syntax .assembly extern asatop-level declaration is used for this
purpose. Theoptional as clause provides an alias which allowsilasm to address external assemblies that have
the same name, but differing in version, culture, etc.

The dotted name used in .assembly extern shall exactly match the name of the assembly as declared with
.assembly directive in a case sensitive manner. (So, even though an assembly might be stored within afile,
within afilesystem that is case-blind, the names stored internally within metadata are case-sensitive, and shall
match exactly.)

<asnRef Decl > :: = Description Section
-hash = (" <bytes>) Hash of referenced assembly 6.2.3

| .custom <custonDecl > Custom attributes 0

| .culture <QSTRING> Culture of the referenced assembly 6.2.1.2
| . publickeytoken = (<bytes>) The low 8 bytes of the SHA1 hash of the 6.3

originator's public key.

| . publickey = (<bytes>) The originator’s full public key 6.2.1.3
|<i 'n;/grz:i nt32> : <int32> : <int32>: E)Au;ialjgr version, minor version, revision, and %

These declarations are the same as those for .assembly declarations (clause 6.2.1), except for the addition of
.publickeytoken. Thisdeclaration is used to store the low 8 bytes of the SHA 1 hash of the originator’s public
key in the assembly reference, rather than the full public key.

An assembly reference can store either afull public key or an 8 byte “ publickeytoken.” Either can be used to
validate that the same private key used to sign the assembly at compile time signed the assembly used at
runtime. Neither isrequired to be present, and while both can be stored thisis not useful.

A conforming implementation of the CLI need not perform this validation, but it is permitted to do so, and it
may refuse to load an assembly for which the validation fails. A conforming implementation of the CLI may

© 00 N O ok WNPE

B
= O

12

13
14

15
16

17

18

19
20
21
22

23
24

25

26

27
28

6.4

6.5

6.6

- 16 -

also refuse to permit access to an assembly unless the assembly reference contains either the public key or the
public key token. A conforming implementation of the CLI shall make the same access decision independent
of whether apublic key or atoken is used.

Rationale: The full public key is cryptographically safer, but requires more storage space in the assembly
reference.

Exanple (informative):

.assenbly extern MyConponents

{ .publickey = (BB AA BB EE 11 22 33 00)
.hash = (2A 71 E9 47 F5 15 E6 07 35 E4 CB E3 B4 Al D3 7F 7F A0 9C 24)
.ver 2:10:2002:0

Declaring Modules

All CIL files are modules and are referenced by alogical name carried in the metadata rather than their file
name. See Section 21.16.

<decl > ::= Section

| . nodule <filenane>

Exanpl e (informative):

. modul e Count Down. exe

Referencing Modules

When an item isin the current assembly but part of a different module than the one containing the manifest, the
defining module shall be declared in the manifest of the assembly using the .module extern directive. The
name used in the .module exter n directive of the referencing assembly shall exactly match the name used in
the .module directive (see Section 6.4) of the defining module. See Section 21.28.

<decl > :: = Section

| . rmodule extern <fil ename>

Exanple (informative):

.modul e extern Counter.dl|l

Declarations inside a Module or Assembly

Declarations inside a module or assembly are specified by the following grammar. More information on each
option can be found in the corresponding section.

<decl > ::= Section
| .class <classHead> { <cl assMenber>* } 9

| . custom <cust onDecl > 0

| .data <datadecl > 1531

| .field <fieldDecl> 0

arw N

6.7

17 -

| . method <met hodHead> { <nethodBodyltenr* } 1:4
| <externSourceDecl > 5.7
| <securityDecl > 18

Exported Type Definitions

The manifest module, of which there can only be one per assembly, includes the .assembly statement. To
export atype defined in any other module of an assembly requires an entry in the assembly’s manifest. The

following grammar is used to construct such an entry in the manifest:

<decl> ::= Section
.class extern <exportAttr> <dottedname> { <externC assDecl>* }

<externC assDecl > :: = Section
.file <dottednane>

| .class extern <dottednane>

| .custom <custonDecl > 0

The <exportAttr> value shall be either public or nested public and shall match the visibility of the type.

For example, suppose an assembly consists of two modules A.EXE and B.DLL. A.EXE contains the manifest.

A public class“Foo” isdefined in B.DLL. In order to export it —that is, to make it visible by, and usable from,

other assemblies —a.class exter n statement shall be included in A.EXE.

Conversely, apublic class “Bar” defined in A.EXE does not need any .class exter n statement.

Rationale: Tools should be able to retrieve a single module, the manifest module, to determine the complete set

types defined by the assembly. Therefore, information from other modules within the assembly isreplicated in

the manifest module. By convention, the manifest module is also known as the assembly.

©ooo~N o0k WN B

10

12

7.1

- 18 -

Types and Signatures

The metadata provides mechanisms to both define types and reference types. Chapter 9 describes the metadata
associated with a type definition, regardless of whether the typeis an interface, class or avalue type.

The mechanism used to reference typesis divided into two parts. Thefirst isthe creation of alogical
description of user-defined types that are referenced but (typically) not defined in the current module. These
are stored in alogical table in the metadata (see Section 21.35).

The second is a signature that encodes one or more type references, along with avariety of modifiers. The
grammar non-terminal <t ype> describes an individual entry in asignature. The encoding of asignatureis
specified in Section 22.1.15

Types

The following grammar completely specifies all built-in types including pointer types of the CLI system. It also
shows the syntax for user defined types that can be defined in the CLI system:

<type> ::= Description Section
bool Boolean 7.2

| boxed <typeReference> Boxed user-defined value type

| char 16-bit Unicode code point 1.2

| class <typeReference> User defined reference type. 7.3

| float32 32-bit floating point number 7.2

| float64 64-hit floating point number 7.2

[ints Signed 8-bit integer 7.2

| int16 Signed 16-bit integer 7.2

| int32 Signed 32-bit integer 7.2

| int64 Signed 64-bit integer 1.2

| method <cal | Conv> <type> * Method pointer 0

(<paraneters>)

| native int Signed integer whose size varies 1.2
depending on platform (32- or 64-bit)

| native unsigned int Unsigned integer whose size varies 1.2
depending on platform (32- or 64-bit)

| object See Syst em Cbj ect in Partition 1V

| string See Syst em St ri ng in Partition 1V

| <type> & Managed pointer to <type>. <type> 134
shall not be a managed pointer type or
typedr ef

| <type> * Unmanaged pointer to <type> 134

| <type> [[<bound> [, <bound>]*]] Array of <type> with optional rank 13.1and 13.2
(number of dimensions) and bounds.

| <type> nodopt (<typeReference>) Custom modifier that may beignored | O

by the caller.

A WNPE

O©oo~N O O

11
12

13
14
15
16

17
18
19
20

21

22
23
24
25

-19 -

| <type> nodreq (<typeReference>) Custom modifier that the caller shall 0
understand.

| <type> pinned For local variablesonly. Thegarbage | 7.1.2
collector shall not move the referenced
value.

| typedref Typed reference, created by mkrefany | 7.2
and used by refanytype or refanyval.

| val uetype <typeReference> User defined value type (unboxed) 0

| unsigned int8 Unsigned 8-bit integers 12

| unsigned int16 Unsigned 16-bit integers 7.2

| unsigned int32 Unsigned 32-bit integers 1.2

| unsigned int64 Unsigned 64-bit integers 7.2

| void No type. Only alowed asareturn 1.2
type or as part of void *

In several situations the grammar permits the use of adlightly simpler mechanism for specifying types, by just
allowing type names (e.g. “Syst em GC") to be used instead of the full algebra (e.g. “class system GC'). These
are called type specifications:

<typeSpec> ::= Section
[[.nodul e] <dottedname>] 7.3

| <typeReference> 7.2

| <type> 11

modreq and modopt

Custom modifiers, defined using modreq (“required modifier”) and modopt (“optional modifier”), are similar to
custom attributes (see Chapter 0) except that modifiers are part of a signature rather than attached to a
declaration. Each modifer associates a type reference with an item in the signature.

The CLI itself shall treat required and optional modifiers in the same manner. Two signatures that differ only
by the addition of a custom modifier (required or optional) shall not be considered to match. Custom modifiers
have no other effect on the operation of the VES.

Rationale: The distinction between required and optional modifiers isimportant to tools other than the CLI
that deal with the metadata, typically compilers and program analysers. A required modifier indicates that
thereis a special semantics to the modified item that should not be ignored, while an optional modifier can
simply be ignored.

For example, the concept of const in the C programming language can be modelled with an optional modifier
since the caller of a method that has a constant parameter need not treat it in any special way. On the other
hand, a parameter that shall be copy constructed in C++ shall be marked with a required custom attribute
sinceit is the caller who makes the copy.

pinned

The signature encoding for pinned shall appear only in signatures that describe local variables (see

clause 14.4.1.3). While amethod with a pinned local variable is executing the VES shall not relocate the object
to which the local refers. That is, if the implementation of the CLI uses a garbage collector that moves objects,
the collector shall not move objects that are referenced by an active pinned local variable.

WN -

~No o b~

10
11

12

13

14
15

16
17
18

19
20
21
22

23
24
25
26
27

28
29
30
31
32

33
34
35

36

37
38
39

7.2

7.3

- 20 -

Rationale: If unmanaged pointers are used to dereference managed objects, these objects shall be pinned.
This happens, for example, when a managed object is passed to a method designed to operate with unmanaged
data.

Built-in Types
The CLI built-in types have corresponding value types defined in the Base Class Library. They shall be
referenced in signatures only using their special encodings (i.e. not using the general purpose valuetype
<t ypeRef er ence> syntax). Partition | specifiesthe built-in types.

References to User-defined Types (<typeReference>)

User-defined types are referenced either using their full name and aresolution scope or (if oneisavailablein
the same module) a type definition (see Chapter 9).

A <t ypeRef er ence> isused to capture the full name and resol ution scope.

<typeReference> ::=

[<resol uti onScope>] <dottedname> [/ <dottednane>]*

<resol uti onScope> :: =

[.nodule <filenane>]

| [<assenbl yRef Name>]

<assenbl yRef Name> . : = Section

<dot t edname> 5.1

The following resolution scopes are specified for un-nested types:

. Current module (and, hence, assembly). Thisisthe most common case and is the default if no
resolution scope is specified. The type shall be resolved to a definition only if the definition
occurs in the same module as the reference.

Note: A type reference that refers to atype in the same module and assembly is better represented using
atype definition. Where thisis not possible (for example, when referencing a nested type that has
compiler controlled accessibility) or convenient (for example, in some one-pass compilers) atype
reference is equivalent and may be used.

. Different module, current assembly. The resolution scope shall be a module reference
syntactically reprented using the notation [.module <fi | ename>] . The type shall be resolved
to adefinition only if the referenced module (see Section 6.4) and type (see Section 6.7) have
been declared by the current assembly and hence have entries in the assembly’s manifest. Note
that in this case the manifest is not physically stored with the referencing module.

. Different assembly. The resolution scope shall be an assembly reference syntactically
represented using the notation [<assenbl yRef Name>] . The referenced assembly shall be
declared in the manifest for the current assembly (see Section 6.3), the type shall be declared in
the referenced assembly’ s manifest, and the type shall be marked as exported from that assembly
(see section 6.7 and clause 9.1.1).

. For nested types, the resolution scope is always the enclosing type. (See Section 9.6). Thisis
indicated syntactically by using a slash (“/”) to separate the enclosing type name from the nested
type’ s name

Exanpl e (informative):

The proper way to refer to a type defined in the base class library.
The nanme of the type is SystemConsole and it is found in the assenbly
named nscorlib.

QW 00 N O Ok~ W N P

e =
N R

13

14
15
16
17

18
19

20
21
22
23

24
25
26
27

28
29
30
31
32

7.4

- 21 -

.assenmbly extern nscorlib { }
.class [nmscorlib] System Consol e

A reference to the type named ¢ D in the nodul e named x in the current
assenbl y.

.modul e extern x

.class [.module x]C.D

A reference to the type named c nested inside of the type naned Foo. Bar
i n anot her assenbly, named MyAssenbly.

.assembly extern MyAssenmbly { }
.class [MyAssenbl y] Foo. Bar/ C

Native Data Types

Some implementations of the CLI will be hosted on top of existing operating systems or runtime platforms that
specify data types required to perform certain functions. The metadata all ows interaction with these native data
types by specifying how the built-in and user-defined types of the CLI are to be marshalled to and from native
datatypes. This marshalling information can be specified (using the keyword marshal) for

. the return type of a method, indicating that a native data type is actually returned and shall be
marshalled back into the specified CLI data type

. a parameter to a method, indicating that the CLI data type provided by the caller shall be
marshalled into the specified native data type (if the parameter is passed by reference the updated
value shall be marshalled back from the native data type into the CL| data type when the call is
compl eted)

. afield of auser-defined type, indicating that any attempt to pass the object in which it occurs to
platform methods shall make a copy of the object, replacing the field by the specified native data
type (if the object is passed by reference then the updated value shall be marshalled back when
the call is completed)

Thefollowing table lists al native types supported by the CLI and provides adescription for each of them. A
more complete description can be found in Partition 1V in the definition of the enum

System Runti ne. | nt er opser vi ces. UnmanagedType, Which provides the actual values used to encode the
types. All encoding values from O through 63 are reserved for backward compatibility with existing
implementations of the CL1. Values 64 through 127 are reserved for future use in this and related Standards.

<nativeType> ::= Description Namein
classlibrary
[] Native array. Type and size are determined at LPArray
runtime from the actual marshaled array.
| bool Boolean. 4-byte integer value where a non-zero Bool
value represents TRUE and O represents FALSE.
| float32 32-hit floating point number. FLOAT32
| float64 64-bit floating point number. FLOAT64
| [unsigned] int Signed or unsigned integer, sized to hold apointer | SysUlInt or Sysint

on the platform

| [unsigned] int8 Signed or unsigned 8-bit integer unsigned int8 or int8

© 00 N o 0o~ W NP

=
o

el el
WN R

[
(62N

- 22 -

| [unsigned] int16 Signed or unsigned 16-hit integer unsigned int16 or int16
| [unsigned] int32 Signed or unsigned 32-hit integer unsigned int32 or int32
| [unsigned] int64 Signed or unsigned 64-hit integer unsigned int64 or int64
| I'pstr A pointer to anull terminated array of ANSI LPStr

characters. Code page isimplementation specific.

| I'ptstr A pointer to anull terminated array of platform LPTStr
characters (ANSI or Unicode). Code page and
character encoding are implementation specific.

| I'pvoid An untyped pointer, platform specifies size. LPVoid
| I'pwstr A pointer to anull terminated array of Unicode LPWStr
characters. Character encoding isimplementation
specific.
| method A function pointer. FunctionPtr
| <nativeType> [] Array of <nativeType>. The length is determined | LPArray
at runtime by the size of the actual marshaled
array.
| <nativeType> [<int32>] | Array of <nativeType> of length <int32>. LPArray
| <nativeType> Array of <nativeType> with runtime supplied LPArray

[+ <int32>] element size. The int32 specifies a parameter to

the current method (counting from parameter
number 0) that, at runtime, will contain the size of
an element of the array in bytes. Can only be
applied to methods, not fields.

| <nativeType> Array of <nativeType> with runtime supplied LPArray
[<int32>+ <int32>] element size. The first int32 specifies the number
of elementsin thearray. The second int32
specifies which parameter to the current method
(counting from parameter number 1) will specify
the additional number of elementsin the array.
Can only be applied to methods, not fields

Exanple (informative):
.method int32 ML(int32 marshal (i nt32), bool[] marshal (bool [5]))

Met hod ML takes two argunments: an int32, and an array of 5 bools

++++++++++

.method int32 M(int32 marshal (i nt32), bool[] marshal (bool [+1]))

Met hod M2 takes two argunents: an int32, and an array of bools: the
number of elements in that array is given by the value of the first
par anet er

+++++tt+t+++

N Oogahrh WON P

- 23 -

.method int32 M3(int32 marshal (i nt32), bool[] marshal (bool [7+1]))

Met hod M3 takes two argunents: an int32, and an array of bools: the
number of elements in that array is given as 7 plus the val ue of the
first parameter

A OWON

=
QOWoo~NO O

11
12
13
14
15

16
17
18
19

20

21
22

23
24

25
26
27

28
29
30
31

8.1

8.2

8.3

- 24 -

Visibility, Accessibility and Hiding

Partition | specifies visibility and accessibility. In addition to these attributes, the metadata stores information
about method name hiding. Hiding controls which method names inherited from a base type are available for
compile-time name binding.

Visibility of Top-Level Types and Accessibility of Nested Types

Visibility is attached only to top-level types, and there are only two possibilities: visible to types within the
same assembly, or visible to types regardless of assembly. For nested types (i.e. types that are members of
another type) the nested type has an accessibility that further refines the set of methods that can reference the
type. A nested type may have any of the 7 accessibility modes (see Partition 1), but has no direct visibility
attribute of its own, using the visibility of its enclosing type instead.

Because the visibility of atop-level type controls the visibility of the names of all of its members, anested type
cannot be more visible than the type in which it isnested. That is, if the enclosing typeis visible only within an
assembly then a nested type with public accessibility is still only available within the assembly. By contrast, a
nested type that has assembly accessibility is restricted to use within the assembly even if the enclosing type is
visible outside the assembly.

To make the encoding of all types consistent and compact, the visibility of atop-level type and the accessibility
of anested type are encoded using the same mechanism in the logical model of clause 22.1.14.
Accessibility
Accessihility is encoded directly in the metadata. See, for example, clause 21.24.
Hiding
Hiding is a compile-time concept that applies to individual methods of atype. The CTS specifies two
mechanisms for hiding, specified by a single bit:

. hide-by-name, meaning that the introduction of a name in a given type hides all inherited
members of the same kind (method or field) with the same name.

. hide-by-name-and-sig, meaning that the introduction of a name in a given type hides any inherited
member of the same kind but with precisely the same type (for fields) or signature (for methods,
properties, and events).

There is no runtime support for hiding. A conforming implementation of the CLI treats al references as though
the names were marked hide-by-name-and-sig. Compilersthat desire the effect of hide-by-name can do so by
marking method definitions with the news| ot attribute (see clause 14.4.2.3) and correctly chosing the type
used to resolve a method reference (see clause 14.1.3).

~N~No o h~W

(o]

10
11
12
13

14

16

17
18
19

20
21
22
23
24
25

26
27
28
29
30

31
32
33
34
35

9.1

- 25 -

Defining Types

Types (i.e., classes, value types, and interfaces) may be defined at the top-level of amodule;

<decl > ::= Section

.class <cl assHead> { <cl assMenber>* } 9

The logical metadata table created by this declaration is specified in Section 21.34.

Rationale: For historical reasons, many of the syntactic classes used for defining typesincorrectly use “ class’
instead of “ type” in their name. All classes are types, but “ types’ is a broader term encompassing value types,

and interfaces.

Type Header (<classHead>)
A type header consists of
. any number of type attributes
. aname (an <id>)
. a base type (or parent type), which defaults to [mscorlib]Syst em Obj ect

. an optional list of interfaces whose contract this type and all its descendent types shall satisfy

<cl assHead> :: =

<cl assAttr>* <id> [extends <typeReference>] [inplenents <typeReference> [,
<t ypeRef erence>] *]

The extends keyword defines the base type of atype. A type shall extend from exactly one other type. If no
typeis specified, ilasmwill add an extend clause to make the type inherit from Syst em vj ect .

The implements keyword defines the interfaces of atype. By listing an interface here, atype declares that all
of its concrete implementations will support the contract of that interface, including providing implementations
of any virtual methods the interface declares. See also Chapter 10 and Chapter 11.

Exanpl e (informative):

.class private auto autochar Counter Text Box
ext ends [System W ndows. For ns] Syst em W ndows. For ns. Text Box
i mpl ements [.nmodul e Count er] Count Di spl ay

{ // body of the class

}

Thi s code decl ares the cl ass CounterTextBox, which extends the cl ass

Syst em W ndows. Forns. TextBox i h the assenbly System Wndows. Forns and i mpl ement s
the interface CountbDisplay in the nmodul e Counter of the current assenbly.
The attri butes private, auto and autochar are described in the foll ow ng
secti ons.

A type can have any number of custom attributes attached. Custom attributes are attached as described in
Chapter 0. The other (predefined) attributes of atype may be grouped into attributes that specify visibility, type
layout information, type semantics information, inheritance rules, interoperation information, and information
on special handling. The following subsections provide additional information on each group of predefined
attributes.

<classAttr> ::= Description Section

o~NO O PhW

- 26 -

abstract Typeisabstract. 9.14
| ansi Marshal strings to platform as ANSI. 9.15
| auto Auto layout of type. 9.1.2
| autochar Marshal strings to platform based on platform. 9.15
| beforefieldinit Calling static methods does not initialize type. 9.16
| explicit Layout of fieldsis provided explicitly. 912
| interface Interface declaration. 9.1.3
| nested assembly Assembly accessibility for nested type. 911
| nested famandassem Family and Assembly accessibility for nested type. 911
| nested famly Family accessibility for nested type. 911
| nested famorassem Family or Assembly accessibility for nested type. 911
| nested private Private accessibility for nested type. 911
| nested public Public accessibility for nested type. 911
| private Private visibility of top-level type. 911
| public Public visibility of top-level type. 911
| rtspecial name Special treatment by runtime. 9.1.6
| seal ed The type cannot be subclassed. 9.14
| sequential Thetypeislaid out sequentially. 912
| serializable Type may be serialized. 916
| special name Special treatment by tools. 9.16
| unicode Marshal strings to platform as Unicode. 915

A Visibility and Accessibility Attributes

<classAttr> ::= ..
| nested assenbly
| nested famandassem
| nested famly
| nested fanorassem
| nested private
| nested public
| private
[public

See Partition |. A type that is not nested inside another shall have exactly one visibility (private or public) and
shall not have an accessiblity. Nested types shall have no visibility, but instead shall have exactly one of the
accessibility attributes (nested assembly, nested famandassem, nested family, nested famorassem, nested
private, or nested public). The default visibility for top-level typesis private. The default accessibility for
nested types is nested private.

o~N OO O ~AOWN

11
12

13

14
15
16
17
18

19

20

21
22

23
24

25

26
27
28
29
30

31
32

33

9.1.

9.1.

9.1.

9.1.

2

- 27 -

Type Layout Attributes

<classAttr> ::= ...

| auto

| explicit

| sequenti al

The type layout specifies how the fields of an instance of atype are arranged. A given type shall have only one
layout attribute specified. By convention, ilasm supplies auto if no layout attribute is specified.

auto: the layout shall be done by the CLI, with no user-supplied constraints
explicit: the layout of the fieldsis explicitly provided (see Section 9.7).

sequential: the CLI shall lay out the fields in sequential order, based on the order of the fieldsin the logical
metadata table (see Section 21.15).

Rationale: The default auto layout should provide the best layout for the platform on which the codeis
executing. sequential layout isintended to instruct the CLI to match layout rules commonly followed by
languages like C and C++ on an individual platform, where thisis possible while still guaranteeing verifiable
layout. explicit layout allows the CIL generator to specify the precise layout semantics.

3

Type Semantics Attributes

<classAttr> ::= ...

| interface

4

The type semantic attributes specify whether an interface, class, or value type shall be defined. Theinterface
attribute specifies an interface. If this attribute is not present and the definition extends (directly or indirectly)
Syst em Val ueType avalue type shall be defined (see Chapter 0). Otherwise, a class shall be defined (see

Chapter 10).
Note that the runtime size of a value type shall not exceed 1 MByte (0x100000 bytes)

Inheritance Attributes

<cl assAttr> ::= ...

| abstract

| seal ed

Attributes that specify special semantics are abstract and sealed. These attributes may be used together.

abstract specifies that this type shall not be instantiated. |f atype contains abstract methods, the type shall be
declared as an abstract type.

sealed specifiesthat atype shall not have subclasses. All value types shall be sealed.

Rationale: Virtual methods of sealed types are effectively instance methods, since they cannot be overridden.
Framework authors should use sealed classes sparingly since they do not provide a convenient building block
for user extensibility. Sealed classes may be necessary when the implementation of a set of virtual methods for
a single class (typically inherited from different interfaces) becomes interdependent or depends critically on
implementation details not visible to potential subclasses.

Atypethat is both abstract and sealed should have only static members, and serves as what some languages
call a namespace.

5

Interoperation Attributes

<classAttr> ::= ...

| ansi

00 N O O WNPE

©

10
11

12
13

14
15

16
17
18

19
20
21

22
23
24

- 28 -

| autochar

| uni code

9.1.6

These attributes are for interoperation with unmanaged code. They specify the default behavior to be used
when calling a method (static, instance, or virtual) on the class that has an argument or return type of

Syst em St ri ng and does not itself specify marshalling behavior. Only one value shall be specified for any
type, and the default valueis ansi.

ansi specifies that marshalling shall be to and from ANSI strings
unicode specifies that marshalling shall be to and from Unicode strings
autochar specifies either ANSI or Unicode behavior, depending on the platform on which the CLI is running.

Special Handling Attributes

<classAttr> ::= ...

beforefieldinit

speci al nane

|
| serializable
[
[

rtspeci al name

These attributes may be combined in any way.

befor efieldinit instructs the CLI that it need not initialize the type before a static method is called. See
clause 9.5.3.

specialname indicates that the name of thisitem may have specia significance to tools other than the CLI.
See, for example, Partition | .

rtspecialname indicates that the name of thisitem has specia significance to the CLI. There are no currently
defined special type names; thisis for future use. Any item marked rtspecialname shall also be marked
specialname

Rationale: If an itemistreated specially by the CLI, then tools should also be made aware of that. The
converseis not true.

9.2

Body of a Type Definition

A type may contain any number of further declarations. The directives .event, .field, .method, and .property
are used to declare members of atype. The directive .class inside a type declaration is used to create a nested
type, which is discussed in further detail in Section 9.6.

<cl assMenber> :: = Description Section
.class <cl assHead> { <cl assMenber>* } Defines a nested type. 9.6
| . custom <cust onmDecl > Custom attribute. 0
| .data <datadecl > Defines static data 15.3
associated with the type.
| .event <eventHead> { <event Menber>* } Declares an event. 17
| .field <fieldbDecl> Declares afield belonging | O
to the type.
| . method <met hodHead> { <nethodBodyltenm>* } Declares a method of the 14
type.
| .override <typeSpec> :: <methodNane> with Specifies that the first 3.2
I'l Co t t S| v t hodNa . .
scall Conv> <type> <typeSpec> :: <nethodName> (method is overridden by

Ok, wW N

10

11
12
13

14
15
16
17

18

19
20
21
22
23

24
25
26
27

28
29
30

- 29 -

<par amet er s>) the definition of the
second method.

| . pack <int32> Used for explicit layout of | 9.7
fields.

| .property <propHead> { <propMenber>* } Declares a property of the | 16
type.

| .size <int32> Used for explicit layout of | 9.7
fields.

| <externSour ceDecl > line

| <securi tyDecl > .permission or 19
.capability

9.3

9.3.1

9.3.2

Introducing and Overriding Virtual Methods

A virtual method of a base type is overridden by providing a direct implementation of the method (using a
method definition, see Section 14.4) and not specifying it to be newslot (see clause 14.4.2.3). Anexisting

method body may also be used to implement a given virtual declaration using the .override directive (see

clause 9.3.2).

Introducing a Virtual Method

A virtual method isintroduced in the inheritance hierarchy by defining avirtual method (see Section 14.4). The
versioning semantics differ depending on whether or not the definition is marked as newslot (see
clause 14.4.2.3):

If the definition is marked newslot then the definition always creates a new virtual method, even if abase class
provides a matching virtual method. Any reference to the virtual method created before the new virtual
function was defined will continue to refer to the original definition.

If the definition is not marked newslot then it creates a new virtual method only if there is no virtual method of
the same name and signature inherited from abase class. If the inheritance hierarchy changes so that the
definition matches an inherited virtual function the definition will be treated as a new implementation of the
inherited function.

The .override Directive

The .override directive specifies that a virtual method should be implemented (overridden), in thistype, by a
virtual method with a different name but with the same signature. It can be used to provide an implementation
for avirtual method inherited from a base class or avirtual method specified in an interface implemented by
thistype. The .override directive specifies a Method Implementation (Methodlmpl) in the metadata (see
clause 14.1.4).

<cl assMenber> :: = Section

.override <typeSpec> :: <nethodNane> with <cal | Conv> <type> <typeSpec> ::
<nmet hodNanme> (<par aneters>)

| .. 9.2

Thefirst <t ypeSpec> :: <net hodNane> pair specifies the virtual method that is being overridden. It
shall reference either an inherited virtual method or a virtual method on an interface that the current type
implements. The remaining information specifies the virtual method that provides the implementation.

While the syntax specified here and the actual metadata format (see Section 21.25)allows any virtual method
to be used to provide an implementation, a conforming program shall provide a virtual method actually
implemented directly on the type containing the .override directive.

© 00 N ouhr~ W NP

e~ i < e
g A W N P O

B
~No

18

19
20
21
22
23

24

25
26

27
28
29
30

- 30 -

Rationale: The metadata is designed to be more expressive than can be expected of all implementations of the
VES.

Exanple (informative):

The foll owi ng exanpl e shows a typical use of the .override directive. A
met hod i npl ementation is provided for a method declared in an interface

(see Chapter 11).
.class interface |

{ .method public virtual abstract void nm() cil managed {}

}

.class C inplenments |

{ .method virtual public void n2()
{ /'l body of n2

}

.override l::mwth instance void C:.:n2()
}
The .override directive specifies that the C. :n2 body shall provide the
i npl ement ati on of be used to inplenment |::mon objects of class C.

9.3.3 Accessibility and Overriding

If atype overrides an inherited method, it may widen, but it shall not narrow, the accessibility of that method.
Asaprinciple, if aclient of atypeisallowed to access amethod of that type, then it should also be able to
access that method (identified by name and signature) in any derived type. Table 7.1 specifies narrow and
widen in this context —a“Yes’ denotes that the subclass can apply that accessibility, a“No” denotesitis

illegal.

Table7.1: Legal Widening of AccesstoaVirtual Method

Subclass Basetype Accessibility
private family assembly famandassem famorassem public
private Yes No No No No No
family Yes Yes No No If not in same No
assembly

assembly Yes No Same No No No
assembly

famandassem Yes No No Same assembly No No

famorassem Yes Yes Same Yes Same assembly | No
assembly

public Yes Yes Yes Yes Yes Yes

Note: A method may be overridden even if it may not be accessed by the subclass.

If amethod has assembly accessihility, then it shall have public accessibility if it is being overridden by a

method in adifferent assembly. A similar rule applies to famandassem, where also famorassem is allowed

outside the assembly. In both cases assembly or famandassem, respectively, may be used inside the same

assembly.

~N~No ok~ WNE

(o]

10

11
12

13

14
15

16
17
18
19

20

21
22

23

24
25
26
27
28
29
30

9.4

9.5

9.5.1

- 31 -

A special rule applies to famor assem, as shown in the table. Thisis the only case where the accessibility is
apparently narrowed by the subclass. A famor assem method may be overridden with family accessibility by a
type in another assembly.

Rationale: Because there is no way to specify “ family or specific other assembly” it isnot possible to specify
that the accessibility should be unchanged. To avoid narrowing access, it would be necessary to specify an
accessibility of public, which would force widening of access even when it isnot desired. Asa compromise,
the minor narrowing of “ family” aloneis permitted.

Method Implementation Requirements
A type (concrete or abstract) may provide
. implementations for instance, static, and virtual methods that it introduces

. implementations for methods declared in interfaces that it has specified it will implement, or that
its base type has specified it will implement

. alternative implementations for virtual methods inherited from its parent

. implementations for virtual methods inherited from an abstract base type that did not provide an
implementation

A concrete (i.e. non-abstract) type shall provide either directly or by inheritance an implementation for
. all methods declared by the type itself
. all virtual methods of interfaces implemented by the type

. all virtual methods that the type inherits from its base type

Special Members

There are three special members, all methods, that can be defined as part of atype: instance constructors,
instance finalizers, and type initializers.

Instance constructors

Instance constructors initialize an instance of atype. An instance constructor is called when an instance of a
typeis created by the newobj instruction (see Partition I11). Instance constructors shall be instance (not static or
virtual) methods, they shall be named .ctor and marked both rtspecialname and specialname (see

clause 14.4.2.6). Instance constructors may take parameters, but shall not return avalue. Instance constructors
may be overloaded (i.e. atype may have several instance constructors). Each instance constructor shall have a
unique signature. Unlike other methods, instance constructors may write into fields of the type that are marked
with the initonly attribute (see clause 15.1.2).

© 00 N oo A WON B

L < i
A W N R O

15
16
17
18
19

20
21
22

23
24

25
26

27

28
29

30
31
32
33
34

35
36
37

38
39
40

- 32 -

Exanmpl e (informative):

The followi ng shows the definition of an instance constructor that does
not take any paraneters:

.class X {

. met hod public rtspecial nane speci al nanme instance void .ctor() ci
managed

{ .maxstack 1

/I call super constructor

| darg. 0 /1 load this pointer

call instance void [nmscorlib] System Object::.ctor()
/'l do other initialization work

ret

}

9.5.2

9.5.3

Instance Finalizer
The behavior of finalizersis specified in Partition |. The finalize method for a particular type is specified by
overriding the virtual method Fi nal i ze in System.Object.

Type Initializer
Types may contain special methods called type initializers to initialize the type itself.

All types (classes, interfaces, and value types) may have atypeinitializer. This method shall be static, take no
parameters, return no value, be marked with rtspecialname and specialname (see clause 14.4.2.6), and be
named .cctor .

Like instance initializers, type initializers may write into static fields of their type that are marked with the
initonly attribute (see clause 15.1.2).

Note: Typeinitiaizers are often simple methods that initialize the type' s static fields from stored constants or
via simple computations. There are, however, no limitations on what code is permitted in atype initializer.

9.5.3

9.5.3

A Type Initialization Guarantees

The CLI shall provide the following guarantees regarding type initialization (but see also clause 9.5.3.2 and
clause 9.5.3.3):

11. When typeinitializers are executed is specified in Partition |

12. A typeinitializer shall run exactly once for any given type, unless explicitly called by user code

13. No method other than those called directly or indirectly from the type initializer will be able to
access members of atype before itsinitializer completes execution.

.2 Relaxed Guarantees

A type can be marked with the attribute befor efieldinit (see clause 9.1.6) to indicate that all the guarantees
specified in clause 9.5.3.1 are not required. In particular, the final requirement of guarantee 1 need not be
provided: the type initializer need not run before a static method is called or referenced.

Rationale: When code can be executed in multiple application domains it becomes particularly expensive to
ensure thisfinal guarantee. At the sametime, examination of large bodies of managed code have shown that
thisfinal guaranteeisrarely required, since type initializers are almost always simple methods for initializing

N -

© oOo~N O ok~ W

10
11
12

13
14

15
16
17
18
19
20
21
22
23

24
25

26
27

28
29
30
31
32
33
34
35
36
37
38
39

40
41

- 33 -

static fields. Leaving it up to the CIL generator (and hence, possibly, to the programmer) to decide whether
this guarantee is required therefore provides efficiency when it is desired at the cost of consistency guarantees.

9.5.3.3 Races and Deadlocks

In addition to the type initialization guarantees specified in clause 9.5.3.1 the CL1 shall ensure two further
guarantees for code that is called from atype initializer:

14. Static variables of atype are in a known state prior to any access whatsoever.

15. Typeinitialization alone shall not create a deadlock unless some code called from a type
initializer (directly or indirectly) explicitly invokes blocking operations.

Rationale:

Consider the following two class definitions:

.class public A extends [mscorlib] System Obj ect
{ field static public class A a

field static public class B b

.method public static rtspecial name special nane void .cctor ()
{ Idnull /1 b=null

stsfld class B A:b

ldsfld class AB::a // a=B.a

stsfld class A A:a

ret

.class public B extends [mscorlib]System Object
{ field static public class A a

field static public class B b

.method public static rtspecial name speci al name void .cctor ()
{ ldnull /1 a=null

stsfld class AB::a

ldsfld class B A.:b // b=ADb

stfld class BB::b

ret

}

After loading these two classes, an attempt to reference any of the static fields causes a problem, since the type
initializer for each of A and B requiresthat the type initializer of the other be invoked first. Requiring that no
access to a type be permitted until itsinitializer has completed would create a deadlock situation. Instead, the
CLI provides a weaker guarantee: the initializer will have started to run, but it need not have completed. But
this alone would allow the full uninitialized state of a type to be visible, which would make it difficult to
guarantee repeatable results.

0 N O oA WDNBE

11
12
13
14

15
16

17

18
19
20

21
22
23

24
25
26

27
28

29

30
31
32

33
34
35
36
37

38
39

40
M
42

9.6

- 34 -

There are similar, but more complex, problems when type initialization takes place in a multi-threaded system.
In these cases, for example, two separate threads might start attempting to access static variables of separate
types (A and B) and then each would have to wait for the other to complete initialization.

A rough outline of the algorithm is as follows:

1. At class load time (hence prior to initialization time) store zero or null into all static fields of the type.

2. If thetypeisinitialized you are done.

2.1. If the typeis not yet initialized, try to take an initialization lock.

2.2. If successful, record thisthread as responsible for initializing the type and proceed to step 2.3.

2.2.1. If not, see whether this thread or any thread waiting for thisthread to complete already holds the lock.

2.2.2. If so, return since blocking would create a deadlock. This thread will now see an incompletely initialized
state for the type, but no deadlock will arise.

2.2.3 If not, block until the type isinitialized then return.
2.3 Initialize the parent type and then all interfaces implemented by this type.
2.4 Execute the type initialization code for this type.

2.5 Mark the type as initialized, release the initialization lock, awaken any threads waiting for this type to be
initialized, and return.

Nested Types

Nested types are specified in Partition 1. Interfaces may be nested inside of classes and value types, but classes
and value types shall not be nested inside of interfaces. For information about the logical tables associated with
nested types, see Section 21.29.

Note: A nested type is not associated with an instance of its enclosing type. The nested type hasits own base
type and may be instantiated independent of the enclosing type. This means that the instance members of the
enclosing type are not accessible using the this pointer of the nested type.

A nested type may access any members of its enclosing type, including private members, as long as the
member is static or the nested type has a reference to an instance of the enclosing type. Thus, by using nested
types atype may give accessto its private members to another type.

On the other side, the enclosing type may not access any private or family members of the nested type. Only
members with assembly, famorassem, or public accessibility can be accessed by the enclosing type.

Exanple (informative):

The follow ng exanpl e shows a class declared i nside another class. Both
cl asses declare a field. The nested class nay access both fields, while
t he encl osi ng cl ass does not have access to the field b.

.class private auto autochar Count er Text Box
ext ends [System W ndows. For ns] Syst em W ndows. For ns. Text Box
i mpl ements [.nmodul e Count er] Il countDi spl ay
{ .field static private int32 a
/* Nested class. Decl ares the NegativeNunber Excepti on */

.class nested assenmbly NonPositiveNunber Excepti on extends
[mscorli b] System Excepti on

{ .field static private int32 b
/'l body of nested cl ass

} // end of nested cl ass Negati veNunber Excepti on

- 35 -

Controlling Instance L ayout

The CLI supports both sequential and explicit layout control, see clause 9.1.2. For explicit layout it isalso
necessary to specify the precise layout of an instance, see also Section 21.18 and Section 21.16.

<fieldDecl> ::=

[[<int32>]] <fieldAttr>* <type> <id>

The optional int32 specified in brackets at the beginning of the declaration specifies the byte offset from the
beginning of the instance of the type. Thisform of explicit layout control shall not be used with global fields
specified using the at notation (see clause 15.3.2).

Offset values shall be 0 or greater; they cannot be negative. It is possible to overlap fieldsin thisway, even
though it is not recommended. The field may be accessed using pointer arithmetic and Idind to load the field
indirectly or stind to store the field indirectly (see Partition I11). See Section 21.18 and Section 21.16 for
encoding of thisinformation. For explicit layout, every field shall be assigned an offset.

The .pack directive specifies that fields should be placed within the runtime object at addresses which are a
multiple of the specified number, or at natural alignment for that field type, whichever issmaller. e.g., .pack 2
would allow 32-bit-wide fields to be started on even addresses — whereas without any .pack directive, they
would be naturally aligned — that is to say, placed on addresses that are amultiple of 4. The integer following
.pack shall beoneof 0, 1, 2, 4, 8, 16, 32, 64 or 128. (A value of zero indicates that the pack size used should
match the default for the current platform). The .pack directive shall not be supplied for any type with explicit
layout control.

The directive .size specifies that amemory block of the specified amount of bytes shall be allocated for an
instance of the type. e.g., .size 32 would create a block of 32 bytes for the instance. The value specified shall
be greater than or equal to the calculated size of the class, based upon itsfield sizes and any .pack directive.
Note that if this directive appliesto avalue type, then the size shall be lessthan 1 MByte.

Note: Metadata that controlsinstance layout isnot a“hint,” it is an integral part of the VES that shall be
supported by al conforming implementations of the CLI.

Exanple (informative):
The follow ng class uses sequential |ayout of its fields:
.class sequential public Sequential Cl ass
{ .field public int32 a /] store at offset O bytes
.field public int32 b // store at offset 4 bytes
}
The follow ng class uses explicit |layout of its fields:
.class explicit public ExplicitClass
{ .field [0] public int32 a /] store at offset 0O bytes
.field [6] public int32 b // store at offset 6 bytes
}
The follow ng value type uses .pack to pack its fields together:
.class val ue seal ed public MyCl ass extends [nscorlib] System Val ueType
{ .pack 2
.field public int8 a // store at offset 0 bytes
.field public int32 b// store at offset 2 bytes (not 4)

a b~ W N -

oo~N O

9.8

- 36 -

The follow ng class specifies a contiguous block of 16 bytes:
.cl ass public Bl obClass
{ .size 16

Global Fields and Methods

In addition to types with static members, many languages have the notion of data and methods that are not part
of atype at all. These are referred to as global fields and methods.

It issimplest to understand global fields and methods in the CLI by imagining that they are simply members of
an invisible abstract public class. In fact, the CLI defines such a special class, named '<Mdul e>', that does
not have a base type and does not implement any interfaces. The only noticeable differenceisin how
definitions of this special class are treated when multiple modules are combined together, asis done by aclass
loader. This processis known as metadata merging.

For an ordinary type, if the metadata merges two definitions of the same type, it simply discards one definition
on the assumption they are equivalent and that any anomaly will be discovered when the typeisused. For the
special classthat holds global members, however, members are unioned across all modules at mergetime. If
the same name appears to be defined for cross-module use in multiple modules then there isan error. In detail:

. If no member of the same kind (field or method), name, and signature exists, then add this
member to the output class.

. If there are duplicates and no more than one has an accessibility other than compiler controlled,
then add them all in the output class.

. If there are duplicates and two or more have an accessibility other than compilercontrolled an
error has occurred.

=

QOwoo~N OOk wWN BB

- 37 -

10 Semantics of Classes

Classes, as specified in Partition |, define typesin an inheritance hierarchy. A class (except for the built-in
class Syst em Obj ect) shall declare exactly one parent class. A class shall declare zero or more interfaces
that it implements (see Chapter 11). A concrete class may be instantiated to create an object, but an abstract
class (see clause 9.1.4) shall not beinstantiated. A class may define fields (static or instance), methods (static,
instance, or virtual), events, properties, and nested types (classes, value types, or interfaces).

Instances of aclass (objects) are created only by explicitly using the newobj instruction (see Partition I11).
When avariable or field that has a class asitstype is created (for example, by calling a method that has alocal
variable of aclass type) the value shall initially be null, a special value that is assignment compatible with all
class types even though it is not an instance of any particular class.

QW oO~NOOUT ~AWN P

36

37
38

39
40

41
42
43

- 38 -

11 Semantics of Interfaces

Interfaces, as specified in Partition |, define a contract that other types may implement. Interfaces may have
static fields and methods, but they shall not have instance fields or methods. Interfaces may define virtual
methods, but only if they are abstract (see Partition | and clause 14.4.2.4).

Rationale: Interfaces cannot define instance fields for the same reason that the CLI does not support multiple
inheritance of base types: in the presence of dynamic loading of data types there is no known implementation
technique that is both efficient when used and has no cost when not used. By contrast, providing static fields
and methods need not affect the layout of instances and ther efore does not raise these issues.

Interfaces may be nested inside any type (interface, class, or value type). Classes and value types shall not be
nested inside of interfaces.

11.1 Implementing Interfaces

Classes and value types shall implement zero or more interfaces. Implementing an interface implies that all
concrete instances of the class or value type shall provide an implementation for each abstract virtual method
declared in theinterface. In order to implement an interface, a class or value type shall either explicitly declare
that it does so (using the implements attribute in its type definition, see Section 9.1) or shall be derived from a
base class that implements the interface.

Note: An abstract class (since it cannot be instantiated) need not provide implementations of the virtual
methods of interfaces it implements, but any concrete class derived from it shall provide the implementation.

Merely providing implementations for all of the abstract methods of an interface is not sufficient to have a
type implement that interface. Conceptually, this represents that fact that an interface represents a contract that
may have more requirements than are captured in the set of abstract methods. From an implementation point
of view, this allows the layout of typesto be constrained only by those interfaces that are explicitly declared.

Interfaces shall declare that they require the implementation of zero or more other interfaces. If one interface,
A, declaresthat it requires the implementation of another interface, B, then A implicitly declares that it requires
the implementation of all interfaces required by B. If aclass or value type declares that it implements A, then
all concrete instances shall provide implementations of the virtual methods declared in A and al of the
interfaces A requires.

Exanpl e (informative):
The follow ng class inplements the interface IStartStopEventSource defi ned
in the nodul e Counter.

.class private auto autochar StartStopButton
ext ends [System W ndows. For ns] Syst em W ndows. For ns. Butt on
i mpl ements [.nmodul e Counter]lstartStopEvent Source

{ // body of class
}

11.2 Implementing Virtual Methods on Interfaces

Classes that implement an interface (see Section 11.1) are required to provide implementations for the abstract
virtual methods defined by the interface. There are three mechanisms for providing this implementation:

. directly specifying an implementation, using the same name and signature as appears in the
interface

. inheritance of an existing implementation from the base type
. use of an explicit Met hodl nmpl (see clause 14.1.4).

The Virtual Execution System shall determine the appropriate implementation of avirtual method to be used
for an interface abstract method using the following algorithm.

O©Ooo~N OO0 W NP

[l
(')

el
wN

PR R R R R
© oo~ UA

- 39 -

. If the parent class implements the interface, start with the same virtual methods that it provides,
otherwise create an interface that has empty slots for all virtual functions.

. If this class explicitly specifies that it implements the interface

0 if the class defines any public virtual newslot functions whose name and signature match a
virtual method on the interface, then use these new virtual methods to implement the
corresponding interface method.

. If there are any virtual methods in the interface that still have empty slots, seeif there are any
public virtual methods available on this class (directly or inherited) and use these to implement
the corresponding methods on the interface.

. Apply all Met hodl npl s that are specified for this class, thereby placing explicitly specified
virtual methods into the interface in preference to those inherited or chosen by name matching.

. If the current class is not abstract and there are any interface methods that still have empty slots,
then the program is not valid.

Rationale: Interfaces can be thought of as specifying, primarily, a set of virtual methods that shall be
implemented by any class that implements the interface. The class specifies a mapping fromits own virtual
methods to those of the interface. Thusit is virtual methods, not specific implementations of those methods,
that are associated with interfaces. Overriding a virtual method on a class with a specific implementation will
thus affect not only the virtual method named in the class but also any interface virtual methods to which that
same virtual method has been mapped.

O Nooh~h WN BB

20

21
22
23

24
25

26
27
28

29
30

31
32

33

34
35

36
37
38

39
40

41
42

12

- 40 -

Semantics of Value Types

In contrast to classes, value types (see Partition 1) are not accessed by using areference but are stored directly
in the location of that type.

Rationale: Value types are used to describe the type of small data items. They can be compared to struct (as
opposed to pointersto struct) typesin C++. Compared to reference types, value types are accessed faster since
thereisno additional indirection involved. As elements of arrays they do not require allocating memory for the
pointers aswell as for the data itself. Typical value types are complex numbers, geometric points, or dates.

12.1

12.2

Like other types, value types may have fields (static or instance), methods (static, instance, or virtual),
properties, events, and nested types. A value type may be converted into a corresponding reference type (its
boxed form, a class automatically created for this purpose by the VES when avalue type is defined) by a
process called boxing. A boxed value type may be converted back into its value type representation, the
unboxed form, by a process called unboxing. Value types shall be sealed, and they shall have a base type of
either Syst em Val ueType or Syst em Enum(see Partition |V). Vaue types shall implement zero or more
interfaces, but this has meaning only in their boxed form (see Section 12.3).

Unboxed value types are not considered subtypes of another type and it is not valid to use the isinst instruction
(see Partition 111) on unboxed value types. Theisinst instruction may be used for boxed value types. Unboxed
value types shall not be assigned the value null and they shall not be compared to null.

Value types support layout control in the same way as reference types do (see Section 9.7). Thisis especially
important when values are imported from native code.

Referencing Value Types

The unboxed form of avalue type shall be referred to by using the valuetype keyword followed by atype
reference. The boxed form of avalue type shall be referred to by using the boxed keyword followed by atype
reference.

<val ueTypeReference> :: =
boxed <typeReference> |

val uet ype <typeReference>

Initializing Value Types

Like classes, value types may have both instance constructors (see clause 9.5.1) and typeinitializers (see
clause 9.5.3). Unlike classes that are automatically initialized to null, however, the following rules constitute
the only guarantee about theinitilisation of (unboxed) value types:

. Static variables shall be initialized to zero when atype isloaded (see clause 9.5.3.3), hence statics
whose type is a value type are zero-initialized when the type is loaded.

. Local variables shall be initialized to zero if the appropriate bit in the method header (see
clause 24.4.4) is set.

. Arrays shall be zero initialized.

. Instances of classes (i.e. objects) shall be zero initialized prior to calling their instance
constructor.

Rationale: Guaranteeing automatic initialization of unboxed value types is both difficult and expensive,
especially on platforms that support thread-local storage and allow threads to be created outside of the CLI
and then passed to the CLI for management.

Note: Boxed value types are classes and follow the rules for classes.

The instruction initobj (see Partition 111) performs zero-initialization under program control. If avalue type has
a constructor, an instance of its unboxed type can be created asis done with classes. The newobj instruction

© O~NOOUT A WNPE

N RN NDNNRNNNRNRRR R R R B B R R
® N o 08 W NP O © 0 N O 0 M W N PP O

W N
o ©

w
ey

w W
W N

w W
(SR

wWw W w
0 N O

B W
o ©

A
'—\

- 41 -

(see Partition 111) is used along with the initializer and its parameters to alocate and initialize the instance. The
instance of the value type will be allocated on the stack. The Base Class Library provides the method
System Array. Initialize (SeePartition V) to zero al instancesin an array of unboxed value types.

Exanple (informative):

The follow ng code declares and initializes three value type vari abl es.
The first variable is zero-initialized, the second is initialized by
calling an instance constructor, and the third by creating the object
on the stack and storing it into the |ocal.

.assenbly Test { }
.assenbly extern System Draw ng {

.ver 1:0:3102:0

. publ i ckeyt oken = (b03f5f 7f 11d50a3a)
}
. met hod public static void Start ()
{ .maxstack 3

.entrypoi nt

.locals init (valuetype [System Draw ng] System Draw ng. Si ze Zero,

val uetype [System Drawi ng] System Drawi ng. Si ze Init,

val uetype [System Drawi ng] Syst em Drawi ng. Si ze Store)
/!l Zero initialize the |ocal naned Zero
| dl oca Zero /! | oad address of |ocal vari able

i nitobj val uetype [System Draw ng] System Draw ng. Si ze

// Call the initializer on the | ocal named Init

I dloca Init /!l | oad address of |ocal variable

I dc.i4 425 // |l oad argument 1 (wi dth)

I dc.i4 300 /'l load argunment 2 (height)
_ cglzl) i nstance void [System Drawi ng] System Drawi ng. Si ze: : . ctor (i nt32,
I nt

/! Create a new instance on the stack and store into Store. Not e
t hat

[/l stobj is used here — but one could equally well wuse stloc, stfld,
etc.

| dl oca Store
I dc.i4 425 // |l oad argument 1 (wi dth)
I dc.i4 300 /'l load argunment 2 (height)

newobj instance void
[Syst em Dr awi ng] Syst em Dr awi ng. Si ze: :.ctor (i nt32, int32)

stobj val uetype [System Draw ng] System Drawi ng. Si ze

N -

17
18

19
20
21
22
23
24

25
26
27
28
29
30

- 42 -

12.3 Methods of Value Types

Value types may have static, instance and virtual methods. static methods of value types are defined and called
the same way as static methods of class types. Aswith classes, both instance and virtual methods of a boxed or
unboxed value type may be called using the call instruction. The callvirt instruction shall not be used with
unboxed value types, but it may be used on boxed value types.

Instance and virtual methods of classes shall be coded to expect areference to an instance of the class as the
this pointer. By contrast, instance and virtual methods of value types shall be coded to expect a managed
pointer (see Partition I) to an unboxed instance of the value type. The CLI shall convert a boxed value type
into a managed pointer to the unboxed value type when a boxed value type is passed as the this pointer to a
virtual method whose implementation is provided by the unboxed value type.

Note: This operation is the same as unboxing the instance, since the unbox instruction (see Partition 11) is
defined to return a managed pointer to the value type that shares memory with the original boxed instance.

The following diagrams may help understand the relationship between the boxed and unboxed representations
of avaluetype.

Heap: léE l pointer
I reference
Heap or |1.5
Stack: 3
Top of
Stack: O T n

G l| pointer
Heap: 3
| I reference
Top of
Itack: u W (]

Rationale: Animportant use of instance methods on value types is to change internal state of the instance.
This cannot be done if an instance of the unboxed value type is used for the this pointer, since it would be
operating on a copy of the value, not the original value: unboxed value types are copied when they are passed
as arguments.

Virtual methods are used to allow multiple types to share implementation code, and this requires that all
classes that implement the virtual method share a common representation defined by the class that first
introduces the method. Since value types can (and in the Base Class Library do) implement interfaces and
virtual methods defined on Syst em bj ect, it isimportant that the virtual method be callable using a boxed
value type so it can be manipulated as would any other type that implements the interface. Thisleadsto the
requirement that the EE automatically unbox value types on virtual calls.

© 00 NOoOuh WN

=
o

o
N P

el
o bW

el T
w N o

- 43 -

Table 1: Type of thisgiven CIL instruction and declaring type of instance method.

Value Type (Boxed or Unboxed) Interface ClassType
call managed pointer to value type illega object reference
callvirt managed pointer to value type object reference object reference

Exanple (informative):

The follow ng converts an integer of the value type int32 into a
string. Recall that int32 corresponds to the unboxed val ue type
System I nt32 defined in the Base Class Library. Suppose the integer is
decl ared as:

.locals init (int32 x)

Then the call is made as shown bel ow.
| dl oca x /1l | oad managed pointer to |ocal variable
call instance string

val uetype [nscorlib] System Convert:: ToString()

However, if System Object (a class) is used as the type reference rather
t han sSystem Int32 (a value type), the value of x shall be boxed before the
call is made and the code becones:

| dl oc x
box val uetype [nscorlib] System I nt 32

callvirt instance string [mscorlib] System Object:: ToString()

=

w N

4

31

32
33

34
35
36

- 44 -

13 Semantics of Special Types

Special Types are those that are referenced from CIL, but for which no definition is supplied: the VES supplies
the definitions automatically based on information available from the reference.

13.1 Vectors

<type> ::= ..

| <type> []

Vectors are single-dimension arrays with a zero lower bound. They have direct support in CIL instructions
(newarr, Idelem, stelem, and Idelema, see Partition 111). The CIL Framework also provides methods that deal
with multidimensional arrays, or single-dimension arrays with a non-zero lower bound (see Section 13.2). Two
vectors are the same type if their element types are the same, regardless of their actual upper bounds.

Vectors have afixed size and element type, determined when they are created. All CIL instructions shall
respect these values. That is, they shall reliably detect attempts to index beyond the end of the vector, attempts
to store the incorrect type of datainto an element of avector, and attempts to take addresses of elements of a
vector with an incorrect datatype. See Partition |11.

Exanple (informative):
Decl ari ng a vector of Strings:
.field string[] errorStrings
Decl aring a vector of function pointers:
.field nmethod i nstance void*(int32) [] myVec

Create a vector of 4 strings, and store it into the field errorStrings.
The four strings lie at errorStrings[0] through errorStrings[3]:

ldc.i4.4

newarr string

stfld string[] CountDownFornm :errorStrings
Store the string "First" into errorStrings[O0]:

I dfld string[] CountDownForm :errorStrings

Idc.i4.0

| dstr "First"

stel em

Vectors are subtypes of Syst em Arr ay, an abstract class pre-defined by the CLI. It provides several methods
that can be applied to all vectors. See Partition IV.

13.2 Arrays

While vectors (see Section 13.1) have direct support through CIL instructions, al other arrays are supported by
the VES by creating subtypes of the abstract class System.Arrray (see Partition |V)

<type> ::= ..

| <type> [[<bound> [, <bound>]*]]

The rank of an array isthe number of dimensions. The CLI does not support arrays with rank 0. The type of
an array (other than avector) shall be determined by the type of its elements and the number of dimensions.

<bound> ::= Descri ption

ol
RPOWOWD NOUA WNE

=
N

e e~ oy
oUW

W W W W W W W W NN N N DN N DN NDNDNDN PR B
N OO o0 A WO N P O O 0N 0ok WN PP O o 0N

- 45 -

lower and upper bounds unspecified. In the case of
multi-dimensional arrays, the ellipsis may be omitted

| <int32> zero lower bound, <int32> upper bound
| <int32> ... lower bound only specified
| <int32> ... <int32> both bounds specified

The fundamental operations provided by the CIL instruction set for vectors are provided by methods on the
class created by the VES.

The VES shall provide two constructors for arrays. One takes a sequence of numbers giving the number of
elementsin each dimension (alower bound of zero is assumed). The second takes twice as many arguments: a
sequence of lower bounds, one for each dimension; followed by a sequence of Iengths, one for each dimension
(where length is the number of elements required).

In addition to array constructors, the VES shall provide the instance methods Get , Set , and Addr ess to access
specific elements and compute their addresses. These methods take a number for each dimension, to specify the
target element. In addition, set takes an additional final argument specifying the value to store into the target
element.

Exanple (informative):

Creates an array, MyArray, of strings with two di nensions, with i ndexes
5..10 and 3..7. Stores the string "One" into MyArray[5, 3], retrieves
it and prints it out. Then conputes the address of MyArray[5, 4],
stores "Test" into it, retrieves it, and prints it out.

.assenbly Test { }

.assenbly extern nscorlib { }

.met hod public static void Start ()
{ .maxstack 5
.entrypoi nt
.locals (class [mscorlib]System String[,] myArray)

ldc.i4.5 /! load | ower bound for dim1
ldc.i4.6 /!l | oad (upper bound - |ower bound + 1) for dim1
ldc.i4.3 [/ load | ower bound for dim 2
ldc.i4.5 /!l | oad (upper bound - |ower bound + 1) for dim2
newobj instance void string[,]::.ctor(int32,

int32, int32, int32)
stloc nyArray

| dl oc myArray

ldc.i4.5
ldc.i4.3
| dstr " One"

call instance void string[,]::Set(int32, int32, string)

© 0 N o 0o~ WODN PP

NN B B R R R R R R R
B O © ® N O U0 A W N B O

N NN
A W N

25
26
27

28

29
30
31

32
33
34

- 46 -

| dl oc nmyArray

Idc.i4.5

Idc.i4.3

call instance string string[,]::Cet(int32, int32)

call void [mscorlib] System Consol e: : WiteLine(string)

| dl oc nmyArray

ldc.i4.5

ldc.i4.4

call instance string & string[,]::Address(int32, int32)
| dstr "Test"

stind. ref

| dl oc myArray

ldc.i4.5
ldc.i4.4
call instance string string[,]::Get(int32, int32)

call void [mscorlib] System Consol e: : WiteLine(string)

The following text is informative

Whilst the elements of multi-dimensional arrays can be thought of aslaid out in contiguous memory, arrays of
arrays are different — each dimension (except the last) holds an array reference. The following picture
illustrates the difference:

aV s

rF

[

Ontheleftisa[6, 10] rectangular array. Ontheright isnot one, but atotal of five arrays. The vertical array is
an array of arrays, and references the four horizontal arrays. Note how the first and second elements of the
vertical array both reference the same horizontal array.

Note that all dimensions of amulti-dimensional array shall be of the same size. But in an array of arrays, it is
possible to reference arrays of different sizes. For example, the figure on the right shows the vertical array
referencing arrays of lengths 8, 8, 3, null, 6 and 1.

=Y

O©oo~NO Ol b~

11
12

13
14
15
16
17

18

19
20
21

22
23
24
25
26

27

28
29
30
31
32
33

34
35
36
37
38
39
40
41
42
43

47 -

Thereis no specia support for these so-called jagged arraysin either the CIL instruction set or the VES. They
are simply vectors whose elements are themselves either the base elements or (recursively) jagged arrays.

End of informative text

13.3 Enums

An enum, short for enumeration, defines a set of symbolsthat all have the same type. A type shall be an enum
if and only if it has an immediate base type of Syst em Enum Since Syst em Enumitself has an immediate base
type of Syst em Val ueType (See Partition V), enums are value types (see Chapter 0). The symbols of an enum
are represented by an underlying type: one of { bool , char, i nt 8, unsi gned i nt 8, i nt 16, unsi gned i nt 16,
int32,unsignedint32,int64, unsignedint64,float32,float64,nativeint,unsignednativeint }

Note: The CLI does not provide a guarantee that values of the enum type are integers corresponding to one of
the symbols (unlike Pascal). Infact, the CLS (see Partition |, CLS) defines a convention for using enumsto
represent bit flags which can be combined to form integral value that are not named by the enum type itself.

Enums obey additional restrictions beyond those on other value types. Enums shall contain only fields as
members (they shall not even define type initializers or instance constructors); they shall not implement any
interfaces; they shall have auto field layout (see clause 9.1.2); they shall have exactly one instance field and it
shall be of the underlying type of the enum; all other fields shall be static and literal (see Section 15.1); and
they shall not be initialized with the initobj instruction.

Rationale: These restrictions allow a very efficient implementation of enums.

The single, required, instance field stores the value of an instance of the enum. The static literal fields of an
enum declare the mapping of the symbols of the enum to the underlying values. All of these fields shall have
the type of the enum and shall have field init metadata that assigns them a value (see Section 15.2).

For binding purposes (e.g. for locating a method definition from the method reference used to call it) enums
shall be distinct from their underlying type. For al other purposes, including verification and execution of
code, an unboxed enum freely interconverts with its underlying type. Enums can be boxed (see Chapter 0) to a
corresponding boxed instance type, but this type is not the same as the boxed type of the underlying type, so
boxing does not lose the original type of the enum.

Exanple (informative):

Decl are an enumtype, then create a |l ocal variable of that type. Store
a constant of the underlying type into the enum (show ng automatic
coercsion fromthe underlying type to the enumtype). Load the enum
back and print it as the underlying type (showi ng autonmatic coersion
back). Finally, load the address of the enum and extract the contents
of the instance field and print that out as well.

.assenbly Test { }

.assenbly extern nscorlib { }

.cl ass seal ed public ErrorCodes extends [nscorlib] System Enum
{ .field public unsigned int8 MyVal ue
.field public static literal val uetype ErrorCodes no_error = int8(0)
.field public static literal val uetype ErrorCodes format _error =
int8(1)
.field public static literal val uetype ErrorCodes overflow error =
i nt8(2)

.field public static literal val uetype ErrorCodes nonpositive error =

© 0 N o 0o~ WODN PP

e N o =
N o 00 W N B O

=
oo

19
20
21
22

23
24
25

26
27
28

29
30

31
32

33
34

- 48 -

i nt 8(3)

.met hod public static void Start()
{ . maxstack 5
.entrypoi nt

.locals init (valuetype ErrorCodes errorCode)

ldc.i4.1 [/ load 1 (= format _error)

stl oc errorCode /'l store in local, note conversion to enum
| dl oc error Code

call void [mscorlib] System Consol e: : WiteLine(int32)

| dl oca error Code /'l address of enum

| df I d unsi gned int8 val uetype Error Codes: : MyVal ue

call void [mscorlib] System Consol e:: WiteLine(int32)

ret
o
13.4 Pointer Types
<type> ::= ... Section
| <type> & 13.4.2
| <type> * M_

A pointer type shall be defined by specifying a signature that includes the type for the location it pointsat. A
pointer may be managed (reported to the CLI garbage collector, denoted by &, see clause 13.4.2) or
unmanaged (not reported, denoted by *, see clause 13.4.1)

Pointers may contain the address of afield (of an object or value type) or an element of an array. Pointers
differ from object references in that they do not point to an entire type instance, but rather to the interior of an
instance. The CLI provides two type-safe operations on pointer:

. loading the value from the location referenced by the pointer
. storing an assignment-compatible value into the location referenced by the pointer
For pointers into the same array or object (see Partition 1) the following arithmetic operations are supported:

. Adding an integer value to a pointer, where that value is interpreted as a number of bytes, results
in a pointer of the same kind

. Subtracting an integer value (number of bytes) from a pointer results in a pointer of the same
kind. Note that subtracting a pointer from an integer value is not permitted.

. Two pointers, regardless of kind, can be subtracted from one another, producing an integer value
that specifies the number of bytes between the addresses they reference.

OO0 ~AWN -

13

14
15
16
17
18
19

20
21

22

23
24

25
26

27
28
29
30
31

32
33
34
35

36
37

- 49 -

The following is informative text

Pointers are compatible with unsigned int32 on 32-bit architectures, and with unsigned int64 on 64-bit
architectures. They are best considered as unsigned int, whose size varies depending upon the runtime machine
architecture.

The CIL instruction set (see Partition |11) contains instructions to compute addresses of fields, local variables,
arguments, and elements of vectors:

Instruction Description

I darga L oad address of argument

I del ema Load address of vector element
I'df I da Load address of field

I'dl oca Load address of local variable
I'dsflda Load address of static field

13.4.

13.4.

Once apointer is loaded onto the stack, the Idind class of instructions may be used to load the data item to
which it points. Similarly, the stind class of instructions can be used to store data into the location.

Note that the CLI will throw an | nval i doper at i onExcept i on for an Idflda instruction if the addressis not
within the current application domain. This situation arisestypically only from the use of objects with a base
type of Syst em Mar shal ByRef Obj ect (See Partition IV) .

1 Unmanaged Pointers

Unmanaged pointers (*) are the traditional pointers used in languages like C and C++. There are no restrictions
on their use, although for the most part they result in code that cannot be verified. Whileit is perfectly legal to
mark locations that contain unmanaged pointers as though they were unsigned integers (and thisis, in fact, how
they are treated by the VES), it is often better to mark them as unmanaged pointers to a specific type of data.
Thisisdone by using * in asignature for areturn value, local variable or an argument or by using a pointer
type for afield or array element.

. Unmanaged pointers are not reported to the garbage collector and can be used in any way that an
integer can be used.

. Verifiable code cannot dereference unmanaged pointers.

. Unverified code can pass an unmanaged pointer to a method that expects a managed pointer. This
is safe only if one of the following is true:

The unmanaged pointer refers to memory that is not in memory used by the CLI for storing
instances of objects (“garbage collected memory” or “managed memory”).

The unmanaged pointer contains the address of a field within an object.
The unmanaged pointer contains the address of an element within an array.
The unmanaged pointer contains the address where the element following the last element in an
array would be located
2 Managed Pointers

Managed pointers (&) may point to an instance of avalue type, afield of an object, afield of avalue type, an
element of an array, or the address where an element just past the end of an array would be stored (for pointer
indexes into managed arrays). Managed pointers cannot be null, and they shall be reported to the garbage
collector even if they do not point to managed memory.

Managed pointers are specified by using & in asignature for areturn value, local variable or an argument or by
using aby-ref type for afield or array element.

0 No o1 AW N P

11
12
13

14

- 50 -

Managed pointers can be passed as arguments, stored in local variables, and returned as values.
If a parameter is passed by reference, the corresponding argument is a managed pointer.

Managed pointers cannot be stored in static variables, array elements, or fields of objects or value
types.
Managed pointers are not interchangeable with object references.

A managed pointer cannot point to another managed pointer, but it can point to an object
reference or a value type.

A managed pointer can point to alocal variable, or a method argument

Managed pointers that do not point to managed memory can be converted (using conv.u or
conv.ovf.u) into unmanaged pointers, but thisis not verifiable.

Unverified code that erroneously converts a managed pointer into an unmanaged pointer can
seriously compromise the integrity of the CLI. See Partition |11 (Managed Pointers) for
more details.

End informative text

O©oOo~N OO WN -

=
o

el el
O WNPE

W W W W W W W W W W NN N DN NN DNDNDNDNDN P B PR
© 00 N O 0o A WO NP O © 0N O O A W N P O O 0N O

- 51 -

13.5 Method Pointers

<type> ::= ..

| nethod <cal | Conv> <type> * (<paraneters>)

Variables of type method pointer shall store the address of the entry point to a method with compatible
signature. A pointer to a static or instance method is obtained with the Idftn instruction, while a pointer to a
virtual method is obtained with the Idvirtftn instruction. A method may be called by using a method pointer
with the calli instruction. See Partition |11 for the specification of these instructions.

Note: Like other pointers, method pointers are compatible with unsigned int64 on 64-bit architectures with
unsigned int32 and on 32-bit architectures. The preferred usage, however, is unsigned native int, which works
on both 32- and 64-bit architectures.

Exanpl e (informative):

Call a nmethod using a pointer. The nmethod MakeDeci sion:: Decide returns
a nmethod pointer to either AddOne or Negate, alternating on each call.
The mai n program call MakeDeci sion::Decide three times and after each
call uses a CALLI instruction to call the nethod specified. The output
printed is "-1 2 —-1" indicating successful alternating calls.

.assenbly Test { }

.assenbly extern nscorlib { }

.method public static int32 AddOne(int32 | nput)

{ . maxstack 5

| darg | nput
ldc.i4. 1
add

ret

.met hod public static int32 Negate(int32 |nput)
{ .maxstack 5

| darg | nput

neg

ret

.class val ue seal ed public MakeDeci si on extends
[mscorlib] System Val ueType
{ .field static bool Oscillate
.met hod public static nmethod int32 *(int32) Decide()
{ Idsfld bool val uetype MakeDecision::Oscillate

© 0 N o 0o~ WODN PP

W W W NN N DN DN DNMNDNMNDNDMDNDDNNEPEP PP R P PP PP
N P O © 00 NN OO 01 A W N P O O 0WL0W N O O B W N B+~ O

33

34
35
36
37

38
39

- 52 -

stsfld bool val uetype MakeDeci si on:
brfal se Negatelt
I dftn int32 AddOne(i nt 32)
ret
Negatelt:
I dftn int32 Negate(int32)
r et

.met hod public static void Start ()
{ .maxstack 2

.entrypoi nt

ldc.i4. 1

call nethod int32 *(int32) val uetype
call'i int32(int32)

call wvoid [nscorlib] System Consol e: :
ldc.i4. 1

call nethod int32 *(int32) val uetype
call'i int32(int32)

call wvoid [nscorlib] System Consol e: :
ldc.i4. 1

call nethod int32 *(int32) val uetype
call'i int32(int32)

call wvoid [nscorlib] System Consol e: :
ret

13.6 Delegates

Delegates (see Partition |) are the object-oriented equivalent of function pointers. Unlike function pointers,
delegates are object-oriented, type-safe, and secure. Delegates are reference types, and are declared in the form
of Classes. Delegates shall have an immediate base type of Syst em Mul t i cast Del egat e, which in turns

:Oscillate

MakeDeci si on: : Deci de()

Wit eLine(int32)

MakeDeci si on: : Deci de()

Wit eLine(int32)

MakeDeci si on: : Deci de()

Wit eLine(int32)

has an immediate base type of Syst em Del egat e (See Partition V).

Delegates shall be declared sealed, and the only members a Delegate shall have are either two or four methods
as specified here. These methods shall be declared runtime and managed (see clause 14.4.3). They shall not

OoOoO~N OO WNPE

- 53 -

have abody, since it shall be automatically created by the VES. Other methods available on delegates are
inherited from the classes Syst em Del egat e and Syst em Ml ti cast Del egat e in the Base Class Library (see
Partition 1V).

Rationale: A better design would be to simply have delegate classes derive directly from
Syst em Del egat e. Unfortunately, backward compatibility with an existing CLI does not permit this
design.

The instance constructor (named .ctor and marked specialname and rtspecialname, see clause 9.5.1) shall
take exactly two parameters. The first parameter shall be of type Syst em vj ect and the second parameter
shall be of type syst em I nt Pt r. When actually called (viaa newobj instruction, see Partition I11), the first
argument shall be an instance of the class (or one of its subclasses) that defines the target method and the
second argument shall be a method pointer to the method to be called.

The 1 nvoke method shall be virtual and have the same signature (return type, parameter types, calling
convention, and modifiers, see Section 7.1) as the target method. When actually called the arguments passed
shall match the types specified in this signature.

The Begi nl nvoke method (see clause 13.6.2.1), if present, shall be virtual have a signature related to, but not
the same as, that of the | nvoke method. There are two differencesin the signature. First, the return type shall
be system | AsyncResul t (see Partition IV). Second, there shall be two additional parameters that follow those
of I nvoke: thefirst of type Syst em AsynccCal | back and the second of type Syst em bj ect .

The Endl nvoke method (see clause 13.6.2) shall be virtual have the same return type asthe | nvoke method. It
shall take as parameters exactly those parameters of Invoke that are managed pointers, in the same order they
occur in the signature for Invoke. In addition, there shall be an additional parameter of type

System | AsyncResul t.

Exanple (informative):

The follow ng exanpl e decl ares a Del egate used to call functions that
take a single integer and return void. It provides all four nethods so
it can be called either synchronously or asynchronously. Because there
are no paraneters that are passed by reference (i.e. as managed
pointers) there are no additional argunents to Endl nvoke.

.assenbly Test { }

.assenmbly extern nscorlib { }

.class private seal ed Start StopEvent Handl er
extends [nscorlib] System Mul ti cast Del egat e
{ .nmethod public special nane rtspeci al nane i nstance
void .ctor(object Instance, native int Method)
runti me managed {}
.method public virtual void Invoke(int32 action) runtinme mnaged {}
. met hod public virtual
class [nmscorlib] System | AsyncResul t
Begi nl nvoke(i nt32 acti on,

class [nscorlib] System AsyncCal | back cal | back,
obj ect I nstance) runtine managed {}

. met hod public virtual

voi d Endl nvoke(cl ass [nmscorlib] System | AsyncResult result)

o0 W N

10
11
12

13

14
15
16

17
18
19
20
21
22

23
24

25
26
27
28

29
30
31

32
33
34
35
36
37
38
39
40
41
42

- 54 -

Aswith any class, an instance is created using the newobj instruction in conjunction with the instance
constructor. The first argument to the constructor shall be the object on which the method isto be called, or it
shall be null if the method is a static method. The second argument shall be a method pointer to a method on
the corresponding class and with a signature that matches that of the delegate class being instantiated.

13.6.1 Synchronous Calls to Delegates

The synchronous mode of calling delegates corresponds to regular method calls and is performed by calling the
virtual method named | nvoke on the delegate. The delegate itself is the first argument to this call (it servesas
the this pointer), followed by the other arguments as specified in the signature. When this call is made, the
caller shall block until the called method returns. The called method shall be executed on the same thread as the
caler.

Exanple (informative):

Continui ng the previous exanple, define a class Test that declares a
met hod, onStart Stop, appropriate for use as the target for the
del egat e.

.class public Test

{ .field public int32 MyData
.met hod public void onStartStop(int32 action)
{ ret /1l put your code here

}

.met hod public special nane rtspeci al name
i nstance void .ctor(int32 Data)

{ ret /1l call parent constructor, store state, etc.

}

Then define a main program This one constructs an instance of Test and
then a del egate that targets the onStartStop net hod of that instance.
Finally, call the del egate.

.met hod public static void Start()
{ . maxstack 3
.entrypoi nt
.locals (class StartStopEvent Handl er Del egat eOne,
cl ass Test |nstanceOne)
/| Create instance of Test class
ldc.i4.1
newobj instance void Test::.ctor(int32)

stl oc | nstanceOne

[/ Create delegate to onStartStop method of that class

© 0 N o o~ WODN PP

NN B R R R R R R R R
B O © ® N O U0 M W N B O

22
23
24

25

26
27

28

29
30

31
32
33

34
35

36
37

38

39
40

- 55 -

| dl oc | nstanceOne
I dftn instance void Test::onStart Stop(int32)

newobj void Start St opEvent Handl er::.ctor(object, native int)
stl oc Del egat eOne

/1 I nvoke the del egate, passing 100 as an ar gunent

| dl oc Del egat eOne

| dc.i4 100

callvirt instance void Start St opEvent Handl er: : | nvoke(i nt 32)

ret

/!l Note that the exanple above creates a del egate to a non-virtual
[/ function. |f onStartStop had instead been a virtual function, use

[/ the followi ng code sequence instead :

| dl oc | nstanceOne

dup

Idvirtftn instance void Test::onStart Stop(int32)

newobj void Start St opEvent Handl er::.ctor(object, native int)
stl oc Del egat eOne

/1 I nvoke the del egate, passing 100 as an ar gunent

| dl oc Del egat eOne

Note: The code sequence above shall use dup —not Idlioc InstanceOne twice. The dup code sequence is easily
recognized as typesafe, whereas alter natives would require more complex analysis. Verifiability of codeis
discussed in Partition 111

13.6.2 Asynchronous Calls to Delegates

In the asynchronous mode, the call is dispatched, and the caller shall continue execution without waiting for the
method to return. The called method shall be executed on a separate thread.

To call delegates asynchronously, the Begi nl nvoke and Endl nvoke methods are used.

Note: if the caller thread terminates before the callee completes, the callee thread is unaffected. The callee
thread continues execution and terminates silently

Note: the callee may throw exceptions. Any unhandled exception propagates to the caller viathe Endl nvoke
method.

13.6.2.1 The Beginlnvoke Method

An asynchronous call to a delegate shall begin by making avirtual call to the Begi nl nvoke method.
Begi nl nvoke issimilar to the nvoke method (see clause 13.6.1), but has three differences:

. It has atwo additional parameters, appended to the list, of type Syst em Asynccal | back, and
System Obj ect

. The return type of the method is Syst em | AsyncResul t

Although the Begi nl nvoke method therefore includes parameters that represent return values, these values are
not updated by this method. The results instead are obtained from the Endl nvoke method (see below).

O©OoO~NOO O WNE

19

20
21
22
23

24
25
26

- 56 -

Unlike a synchronous call, an asynchronous call shall provide away for the caller to determine when the call
has been completed. The CLI provides two such mechanisms. The first is through the result returned from the
call. Thisobject, an instance of the interface Syst em | AsyncResul t, can be used to wait for the result to be
computed, it can be queried for the current status of the method call, and it contains the Syst em Obj ect
value that was passed to the call to Begi nl nvoke. See Partition 1V.

The second mechanism is through the Syst em AsynccCal | back delegate passed to Begi nl nvoke. The VES
shall call this delegate when the value is computed or an exception has been raised indicating that the result will
not be available. The value passed to this callback is the same value passed to the call to Begi nl nvoke. A
value of null may be passed for Syst em AsyncCal | back to indicate that the VES need not provide the
callback.

Rationale: This model supports both a polling approach (by checking the status of the returned
System | AsyncResul t) and an event-driven approach (by supplying a Syst em AsyncCal | back) to
asynchronous calls.

A synchronous call returnsinformation both through its return value and through output parameters. Output
parameters are represented in the CLI as parameters with managed pointer type. Both the returned value and
the values of the output parameters are not available until the VES signals that the asynchronous call has
completed successfully. They are retrieved by calling the Endl nvoke method on the del egate that began the
asynchronous call.

13.6.2.2 The Endinvoke Method

The Endl nvoke method can be called at any time after Begi nl nvoke. It shall suspend the thread that calls it
until the asynchronous call completes. If the call completes successfully, Endl nvoke will return the value that
would have been returned had the call been made synchronously, and its managed pointer arguments will point
to values that would have been returned to the out parameters of the synchronous call.

Endl nvoke requires as parameters the value returned by the originating call to Begi ni nvoke (so that different
calls to the same del egate can be distinguished, since they may execute concurrently) as well as any managed
pointers that were passed as arguments (so their return values can be provided).

o~N OO O

10
11
12
13
14

15

16
17
18
19

20

21
22
23
24

25

26
27
28
29
30

31

32

33
34
35
36

37
38

-57 -

14 Defining, Referencing, and Calling Methods
Methods may be defined at the global level (outside of any type):

<decl> ::= ...

| . method <met hodHead> { <nethodBodyltenr* }

aswell asinside atype:

<cl assMenber> ::= ..

| . method <met hodHead> { <nethodBodyltenr* }

14.1 Method Descriptors

There are four constructs in ilasm connected with methods. These correspond with different metadata
constructs, as described in Chapter 21.

14.1.1 Method Declarations

A MethodDecl, or method declaration, supplies the method name and signature (parameter and return types),
but not its body. That is, a method declaration provides a <methodHead> but no <methodBodyltem>s. These
are used at callsites to specify the call target (call or callvirt instructions, see Partition [11) or to declare an
abstract method. A MethodDecl has no direct logical couterpart in the metadata; it can be either aMethod or a
MethodRef.

14.1.2 Method Definitions

A Method, or method definition, supplies the method name, attributes, signature and body. That is, a method
definition provides a <methodHead> as well as one or more <methodBodyltem>s. The body includes the
method's CIL instructions, exception handlers, local variable information, and additional runtime or custom
metadata about the method. See Chapter 178.

14.1.3 Method References

A MethodRef, or method reference, is areference to a method. It is used when amethod is called whose
definition lies in another module or assembly. A MethodRef shall be resolved by the VES into a Method before
the method is called at runtime. 1f a matching Method cannot be found, the VES shall throw a

Syst em M ssi ngMet hodExcept i on. See Chapter 21.23.

14.1.4 Method Implementations

A Methodlmpl, or method implementation, supplies the executable body for an existing virtual method. It
associates a Method (representing the body) with a MethodDecl or Method (representing the virtual method). A
Methodimpl is used to provide an implementation for an inherited virtual method or avirtual method from an
interface when the default mechanism (matching by name and signature) would not provide the correct result.
See Section 21.25.

14.2 Static, Instance, and Virtual Methods

Static methods are methods that are associated with atype, not with its instances.

I nstance methods are associated with an instance of atype: within the body of an instance method it is possible
to reference the particular instance on which the method is operating (viathe this pointer). It follows that
instance methods may only be defined in classes or value types, but not in interfaces or outside of atype
(globally). However, notice

16. instance methods on classes (including boxed value types), have a this pointer that is by default
an object reference to the class on which the method is defined

©Ooo~NoO O AW NP

23

24
25
26
27

28
29

30
31
32
33

34

36

37
38
39

- 58 -

17. instance methods on (unboxed) value types, have a this pointer that is by default a managed
pointer to an instance of the type on which the method is defined

18. thereisaspecial encoding (denoted by the syntactic item explicit in the calling convention, see
Section 14.3) to specify the type of the this pointer, overriding the default values specified here

19. the this pointer may be null

Virtual methods are associated with an instance of atype in much the same way as for instance methods.
However, unlike instance methods, it is possible to call avirtual method in such away that the implementation
of the method shall be chosen at runtime by the VES depends upon the type of object used for the this pointer.
The particular Method that implements a virtual method is determined dynamically at runtime (avirtual call)
when invoked viathe callvirt instruction; whilst the binding is decided at compile time when invoked viathe
call instruction (see Partition I11).

With virtual calls (only) the notion of inheritance becomes important. A subclass may override avirtual
method inherited from its base classes, providing a new implementation of the method. The method attribute
newslot specifies that the CLI shall not override the virtual method definition of the base type, but shall treat
the new definition as an independent virtual method definition.

Abstract virtual methods (which shall only be defined in abstract classes or interfaces) shall be called only with
acallvirt instruction. Similarly, the address of an abstract virtual method shall be computed with the Idvirtftn
instruction, and the ldftn instruction shall not be used.

Rationale: With a concrete virtual method there is always an implementation available from the class that
contains the definition, thus thereis no need at runtime to have an instance of a class available. Abstract
virtual methods, however, receive their implementation only from a subtype or a class that implements the
appropriate interface, hence an instance of a class that actually implements the method is required.

14.3 Calling Convention

<cal Il Conv> ::= [instance [explicit]] [<callKind>]

A calling convention specifies how a method expects its arguments to be passed from the caller to the called
method. It consists of two parts; the first deals with the existence and type of the this pointer, while the second
relates to the mechanism for transporting the arguments.

If the attribute instance is present it indicates that a this pointer shall be passed to the method. It shall be used
for both instance and virtual methods.

Normally, aparameter list (which aways follows the calling convention) does not provide information about
the type of the this pointer, since this can be deduced from other information. When the combination instance
explicit is specified, however, the first type in the subsequent parameter list specifies the type of the this pointer
and subsequent entries specify the types of the parameters themselves.

<cal I Kind> ::=

def aul t

unmanaged cdecl

unmanaged fastcal |

unmanaged t hi scal |

[
[
| unmanaged stdcal |
|
|

vararg

Managed code shall have only the default or vararg calling kind. default shall be used in all cases except
when a method accepts an arbitrary number of arguments, in which case varar g shall be used.

When dealing with methods implemented outside the CLI it isimportant to be able to specify the calling
convention required. For thisreason there are 16 possible encodings of the calling kind. Two are used for the
managed calling kinds. Four are reserved with defined meaning across many platforms:

N o0 A WN P

(o]

10
11
12
13
14
15
16
17
18

19
20

21

23
24

25
26

- 59 -

. unmanaged cdecl is the calling convention used by standard C

. unmanaged stdcall specifies a standard C++ call

. unmanaged fastcall is a special optimized C++ calling convention

. unmanaged thiscall is a C++ call that passes a this pointer to the method

Four more are reserved for existing calling conventions, but their use is not portable. Four more are reserved
for future standardization, and two are available for non-standard experimental use.

(By "portable" is meant afeature that is available on all conforming implementations of the CLI)

14.4 Defining Methods

<met hodHead> :: =

<met hAttr>* [<cal | Conv>] [<paramAttr>*] <type>
[marshal ([<nativeType>])]

<met hodName> (<paraneters>) <inpl Attr>*

The method head (see also Chapter 178) consists of

. the calling convention (<cal | Conv>, see Section 14.3)

. any number of predefined method attributes (<par amAt t r >, see clause 14.4.2)
. a return type with optional attributes

. optional marshalling information (see Section 7.4)

. amethod name

. asignature

. and any number of implementation attributes (<i npl At t r >, see clause 14.4.3)
Methods that do not have areturn value shall use void as the return type.

<met hodName> :: =

.cctor

| .ctor

| <dottedname>

Method names are either ssmple names or the special names used for instance constructors and type initializers.

<paraneters> ::= [<paranpr [, <paranmp]*]

<paranmp ::=

| [<paramAttr>*] <type> [narshal ([<nativeType>])] [<id>]

The <id>, if present, is the name of the parameter. A parameter may be referenced either by using its name or
the zero-based index of the parameter. In CIL instructionsit is always encoded using the zero-based index (the
nameisfor ease of useinilasm).

Note that, in contrast to calling avararg method, the definition of avararg method does not include any
elipsis(“..."”)

<paramAttr> ::=

[in]

| [opt]

©Ooo~NO O~ WNPE

=Y
o

e
N -

13

14
15
16

17
18

19

- 60 -

| [out]

The parameter attributes shall be attached to the parameters (see Section 21.30) and hence are not part of a
method signature.

Note: Unlike parameter attributes, custom modifiers (modopt and modreq) are part of the signature. Thus,
modifiers form part of the method’ s contract while parameter attributes are not.

14.4.

i n and out shall only be attached to parameters of pointer (managed or unmanaged) type. They specify
whether the parameter is intended to supply input to the method, return a value from the method, or both. If
neither is specified in isassumed. The CLI itself does not enforce the semantics of these bits, although they
may be used to optimize performance, especially in scenarios where the call site and the method are in different
application domains, processes, or computers.

opt specifies that this parameter is intended to be optional from an end-user point of view. The valueto be
supplied is stored using the .param syntax (see clause 14.4.1.4).
1 Method Body

The method body shall contain the instructions of a program. However, it may also contain labels, additional
syntactic forms and many directives that provide additional information to ilasm and are helpful in the
compilation of methods of some languages.

<met hodBodyl tenp :: = Description Section
- custom <cust omDecl > Definition of custom attributes. 0

| .data <datadecl> Emits data to the data section 15.3

| .emitbyte <unsigned int8> Emits a byte to the code section of the 14.4.1.1
method.

| . entrypoint Specifies that this method is the entry 14.4.1.2
point to the application (only one such
method is allowed).

| .locals [init] Defines aset of local variables for this 14.4.1.3

(<l ocal sSi gnature>) method.

| . maxstack <int32> int32 specifies the maximum number of | 14.4.1
elements on the evaluation stack during
the execution of the method

| .override Use current method as the 9.32

<typeSpec>: : <met hodName> implementation for the method specified.

| .param [<int32>] Store a constant <fieldinit> value for 14.4.1.4

[= <fieldlnit>] parameter <int32>

| <externSourcebDecl > lineor #line 5.7

| <instr> An instruction Partition V

[<id> . A label 0

| <securitybDecl > .permission or .per missionset 19

| <sehBl ock> An exception block 0

14.4.

1.1 .emitbyte

<met hodBodyltem> ::= ...

| .emtbyte <unsigned int8>

©O© 0 ~NO O,

11
12

13
14
15

16
17

18

19
20

21
22
23
24
25
26
27
28
29
30

31
32

33
34

35
36

- 61 -

Emits an unsigned 8 bit value directly into the CIL stream of the method. The valueis emitted at the position
where the directive appears.

Note: the .emitbyte directiveis used for generating tests. It is not required in generating regular programs

14.4.1.2 .entrypoint

<met hodBodyltenm> ::= ...

| .entrypoint

The .entrypoint directive marks the current method, which shall be static, as the entry point to an application.
The VES shall call this method to start the application. An executable shall have exactly one entry point
method. This entry point method may be a global method or may appear inside atype. (The effect of the
directive isto place the metadata token for this method into the CL1 header of the PE file)

The entry point method shall either accept no arguments or a vector of strings. If it accepts a vector of strings,
the strings shall represent the arguments to the executable, with index 0 containing the first argument. The
mechanism for specifying these arguments is platform-specific and is not specified here.

The return type of the entry point method shall be void, int32, or unsigned int32. If an int32 or unsigned int32
is returned, the executable may return an exit code to the host environment. A value of 0 shall indicate that the
application terminated ordinarily.

The accessibility of the entry point method shall not prevent its use in starting execution. Once started the VES
shall treat the entry point as it would any other method.

Exanple (informative):

The follow ng exanple prints the first argunent and return successfully
to the operating system

.met hod public static int32 MyEntry(string[] s) CIL managed
{ .entrypoint
. maxst ack 2
| darg. 0 /!l load and print the first argunent
ldc.i4.0
| del em r ef
call void [mscorlib] System Consol e: : WiteLine(string)
ldc.i4.0 /] return success

ret

14.4.1.3 .locals

The .locals statement declareslocal variables (see Partition I) for the current method.

<met hodBodyltenm> ::= ...

| .locals [init] (<local sSignature>)

<l ocal sSi gnature> ::= <local > [, <local>]*

<local > ::= <type> [<id>]

The<i d>, if present, isthe name of thelocal.

If init is specified, the variables are initialized to their default values according to their type. Reference types
areinitialized to null and value types are zeroed out.

=

QW oOoO~NOUTLh~W

=

=
=

12
13

14
15
16

- 62 -

Note: Verifiable methods shall include the init keyword. See Partition 1.

14.4.1.4 .param

<met hodBodyltenm> ::= ...

| .param [<int32>] [= <fieldlnit>]

Stores in the metadata a constant value associated with method parameter number <int32>, see Section 21.9.
While the CLI requires that a value be supplied for the parameter, some tools may use the presence of this
attribute to indicate that the tool rather than the user is intended to supply the value of the parameter. Unlike
CIL instructions, .param usesindex 0 to specify the return value of the method, index 1 isthe first parameter
of the method, and so forth.

Note: The CLI attaches no semantic whatsoever to these values— it is entirely up to compilers to implement
any semantic they wish (eg so-called default argument values)

14.4.2 Predefined Attributes on Methods

<nmethAttr> ::= Description Section
abstract The method is abstract (shall also bevirtual). | 14.4.2.4

| assenbly Assembly accessibility 1442.1

| conpilercontrolled Compiler-controlled accessibility. 14421

| famandassem Family and Assembly accessibility 14.4.2.1

| famly Family accessibility 14421

| fanorassem Family or Assembly accessibility 14421

| final Thisvirtual method cannot be overriddenby | 14.4.2.2
subclasses.

| hidebysig Hide by signature. Ignored by the runtime. 14422

| newsl ot Specifies that this method shall get anew slot | 14.4.2.3
in the virtual method table.

| pi Zg% K& Eas <OSTR NG I(\;Aozt:g?w Itf] :CL}rl:glelr)ll i mplemented in native 14.4.25

<pi VALt T>*) ying platform

| private Private accessibility 144.2.1

| public Public accessihility. 144.2.1

| rtspecial nanme The method name needsto be treated in a 14.4.2.6
specia way by the runtime.

| special nane The method name needsto be treated in a 14.4.2.6
specia way by some tool.

| static Method is static. 14.4.2.2

| virtual Method is virtual. 14.4.2.2

The following combinations of predefined attributes areillegal:
. static combined with any of final, virtual, or newslot
. abstract combined with any of final or pinvokeimpl

. compilercontrolled combined with any of virtual, final, specialname or rtspecialname

1

0 ~No o

11

12
13

14

15

16
17

18

19

21
22

23

24

- 63 -

14.4.2.1 Accessibility Information

<met hAttr> ::= ..

assenbly

conpi l ercontrol | ed

f amandassem

f anmorassem

private

|
|
|
| famly
[
[
|

public

Only one of these attributes shall be applied to a given method. See Partition |.

14.4.2.2 Method Contract Attributes

<met hAttr> ::= ..

| final

| hidebysig

| static

| virtual

These attributes may be combined, except a method shall not be both static and virtual; only virtual methods
may be final; and abstract methods shall not be final.

final methods shall not be overridden by subclasses of this type.

hidebysig is supplied for the use of tools and isignored by the VES. It specifies that the declared method hides
all methods of the parent types that have a matching method signature; when omitted the method should hide
all methods of the same name, regardless of the signature.

Rationale: Some languages use a hide-by-name semantics (C++) while others use a hide-by-name-and-
signature semantics (C#, Java™)

Static and virtual are described in Section O.

14.4.2.3 Overriding Behavior

<methAttr> ::= ..

| newsl ot

newslot shall only be used with virtual methods. See Section 9.3.

14.4.2.4 Method Attributes

<met hAttr> ::.= ..

| abstract

abstract shall only be used with virtual methods that are not final. It specifies that an implementation of the
method is not provided but shall be provided by a subclass. Abstract methods shall only appear in abstract
types (see clause 9.1.4).

14.4.2.5 Interoperation Attributes

<met hAttr> ::= ...

| pinvokeinpl (<QSTRING [as <QSTRING>] <pinvAttr>*)

o bW

~

9

10
11

12
13

14
15
16

17
18

19

See clause Oand Section 21.20.

14.4.2.6 Special Handling Attributes

- 64 -

<met hAttr> :.= ..

| rtspecial nane

| speci al nane

14.4.3

The attribute rtspecialname specifies that the method name shall be treated in a special way by the runtime.
Examples of special names are .ctor (object constructor) and .cctor (typeinitializer).

specialname indicates that the name of this method has special meaning to some tools.

14.4.3.1

Implementation Attributes of Methods
<inpl Attr> ::= Description Section
cil The method contains standard CIL code. | 14.4.3.1
| forwardref The body of this method is not specified 14.4.3.3
with this declaration.
| internalcall Denotes the method body isprovided by | 14.4.3.3
the CLI itself
| managed The method is a managed method. 14.4.3.2
| native The method contains native code. 14.4.3.1
| noinlining The runtime shall not expand the method | 14.4.3.3
inline,
| runtime The body of the method is not defined but | 14.4.3.1
produced by the runtime.
| synchroni zed The method shall be executed in asingle | 14.4.3.3
threaded fashion.
| unmanaged Specifies that the method is unmanaged. 14.4.3.2
Code Implementation Attributes
<implAttr> ::= ..
[cil
| native
| runtine

These attributes are exclusive, they specify the type of code the method contains.

cil specifies that the method body consists of cil code. Unless the method is declared abstract, the body of the

method shall be provided if cil is used.

native specifies that a method was implemented using native code, tied to a specific processor for which it was

generated. native methods shall not have a body but instead refer to a native method that declares the body.
Typically, the PInvoke functionality (see clause 0) of the CLI isused to refer to a native method.

runtime specifies that the implementation of the method is automatically provided by the runtime and is
primarily used for the method of delegates (see Section 13.6).

14.4.3.2 Managed or Unmanaged

<impl Attr> ::= ..

wWNE

O©oo~N ooug

11
12

13
14

15
16
17

18
19
20
21
22
23
24
25

26

27
28

29

30
31

32
33
34

35
36
37

38

- 65 -

| managed

| unmanaged

These shall not be combined. Methods implemented using CIL are managed. Unmanaged is used primarily
with PInvoke (see clause 0).

14.4.3.3 |Implementation Information

<impl Attr> ::= ..

| forwardref

| internalcal

| noinlining

| synchronized

These attributes may be combined.

forwar dref specifies that the body of the method is provided elsewhere. This attribute shall not be present
when an assembly is loaded by the VES. It isused for tools (like a static linker) that will combine separately
compiled modules and resolve the forward reference.

internalcall specifies that the method body is provided by this CLI (and istypically used by low-level methods
in asystem library). It shall not be applied to methods that are intended for use across implementations of the
CLI.

noinlining specifies that the body of this method should not be included into the code of any caller methods, by
a CIL-to-native-code compiler; it shall be kept as a separate routine.

Rationale: specifying that a method not be inlined ensuresthat it remains'visible' for debugging (eg displaying
stack traces) and profiling. It also provides a mechanism for the programmer to override the default heuristics
a ClL-to-native-code compiler uses for inlining.

synchronized specifies that the whole body of the method shall be single threaded. If this method is an
instance or virtual method alock on the object shall be obtained before the method is entered. If this method is
a static method a lock on the type shall be obtained before the method is entered. If alock cannot be obtained
the requesting thread shall not proceed until it is granted the lock. This may cause deadlocks. The lock is
released when the method exits, either through anormal return or an exception. Exiting a synchronized method
using atail. call shall beimplemented as though the tail. had not been specified. noinlining specifies that the
runtime shall not inline this method. Inlining refers to the process of replacing the call instruction with the body
of the called method. This may be done by the runtime for optimization purposes.

14.4.4 Scope Blocks

<scopeBl ock> ::= { <nmethodBodyltenm* }

A scopeBlock is used to group elements of a method body together. For example, it is used to designate the
code sequence that constitutes the body of an exception handler.

14.4.5 vararg Methods

var arg methods accept a variable number of arguments. They shall use the vararg calling convention (see
Section 14.3).

At each call site, amethod reference shall be used to describe the types of the actual arguments that are passed.
The fixed part of the argument list shall be separated from the additional arguments with an ellipsis (see
Partition 1).

The varar g arguments shall be accessed by obtaining a handle to the argument list using the CIL instruction
arglist (see Partition 111). The handle may be used to create an instance of the value type Syst em Argl t er at or
which provides a typesafe mechanism for accessing the arguments (see Partition V).

© 00 N O OB~ WNPE

=
o

o
N P

el e e
o N O 0 B~ W

N =
[@{e]

N N N N NN
o 0o~ W N B

27

28
29
30

31

32
33

34
35

36
37

38
39
40

- 66 -

The follow ng exanpl e shows how a vararg nethod is declared and how t he
first vararg argunment is accessed, assunming that at |east one
addi ti onal argunent was passed to the nethod:

.method public static vararg void MyMet hod(int32 required) {

. maxst ack 3

.locals init (valuetype System Arglterator it, int32 x)

| dl oca it /] initialize the iterator

i nitobj val uet ype System Arglterator

| dl oca it

argli st [/ obtain the argunent handl e
call instance void System Arglterator::.ctor(val uetype

Syst em Runti meAr gunent Handl e) // call constructor of iterator
/* argunment value will be stored in x when retrieved, so | oad
address of x */
| dl oca X
| dl oca it
/]l retrieve the argunent, the argunent for required does not matter
call instance typedref System Arglterator:: Get NextArg()

call object System TypedReference:: ToObj ect (typedref) [l retrieve
t he obj ect

castcl ass System | nt 32 /'l cast and unbox

unbox i nt 32

cpobj int32 [/ copy the value into x
[/ first vararg argunent is stored in x

ret

Unmanaged Methods

In addition to supporting managed code and managed data, the CL | provides facilities for accessing pre-
existing native code from the underlying platform, known as unmanaged code. Thesefacilities are, by
necessity, platform dependent and hence are only partially specified here.

This standard specifies:

. A mechanism in the file format for providing function pointers to managed code that can be called
from unmanaged code (see clause 14.5.1).

. A mechanism for marking certain method definitions as being implemented in unmanaged code
(called platform invoke, see clause 0).

. A mechanism for marking call sites used with method pointers to indicate that the call isto an
unmanaged method (see clause 14.5.3).

. A small set of pre-defined data types that can be passed (marshaled) using these mechanisms on
all implementations of the CLI (see clause 14.5.4). The set of types is extensible through the use
of custom attributes and modifiers, but these extensions are platform-specific.

~N~No ok~ WN B

10
11
12
13

14

15
16
17
18

19
20
21

22
23

24

25
26
27
28

29

31
32
33
34
35

14.5.

- 67 -

1 Method Transition Thunks

Note: This mechanism is not part of the Kernel Profile, so it may not be present in all conforming
implementations of the CLI. See Partition |V.

In order to call from unmanaged code into managed code some platforms require a specific transition sequence
to be performed. In addition, some platforms require that the representation of data types be converted (data
marshalling). Both of these problems are solved by the .vtfixup directive. This directive may appear severa
times only at the top level of a CIL assembly file, as shown by the following grammar:

<decl > ::= Section

.vtfixup <vtfixupDecl >

| .. 5.10

The .vtfixup directive declaresthat at a certain memory location there is atable that contains metadata tokens
referring to methods that shall be converted into method pointers. The CLI will do this conversion
automatically when thefile isloaded into memory for execution. The declaration specifies the number of
entries in the table, what kind of method pointer is required, the width of an entry in the table, and the location
of thetable:

<vtfixupDecl> ::=

[<int32>] <vtfixupAttr>* at <datalabel >

<vtfixupAttr> ::=

f romunnanaged

[int32

[inted

14.5

The attributes int32 and int64 are mutually exclusive and int32 is the default. These attributes specify the
width of each dot in thetable. Each slot contains a 32-bit metadata token (zero-padded if the table has 64 bit
slots), and the CLI convertsit into amethod pointer of the same width as the dlot.

If fromunmanaged is specified, the CLI will generate a thunk that will convert the unmanaged method call to
amanaged call, call the method, and return the result to the unmanaged environment. The thunk will also
perform data marshalling in the platform-specific manner described for platform invoke.

Theilasm syntax does not specify a mechanism for creating the table of tokens, but a compiler may simply
emit the tokens as byte literals into a block specified using the .data directive.

.2 Platform Invoke

Methods defined in native code may be invoked using the platforminvoke (also know as PInvoke or p/invoke)
functionality of the CLI. Platform invoke will switch from managed to unmanaged state and back and aso
handle necessary data marshalling. M ethods that need to be called using PInvoke are marked as pinvokeimpl.
In addition, the methods shall have the implementation attributes native and unmanaged (see clause 14.4.2.4).

<methAttr> ::= Description Section
pi nvokei npl (<@STRING> [as <QSTRI NG| I npl emented in native code

<pi nvAttr>*)

I 14.4.2

Thefirst quoted string is a platform-specific description indicating where the implementation of the method is
located (for example, on Microsoft Windows™ this would be the name of the DLL that implements the
method). The second (optional) string is the name of the method as it exists on that platform, since the
platform may use name-mangling rules that force the name as it appears to a managed program to differ from
the name as seen in the native implementation (this is common, for example, when the native code is generated
by a C++ compiler).

- 68 -

1 Only static methods, defined at global scope (ie, outside of any type), may be marked pinvokeimpl. A method
2 declared with pinvokeimpl shall not have abody specified as part of the definition.
<pinvAttr> ::= Description (platform specific, suggestion only)
ansi ANSI character set.
| autochar Determine character set automatically.
| cdecl Standard C style call
| fastcall C style fastcall.
| stdcall Standard C++ style call.
| thiscall The method accepts an implicit this pointer.
| unicode Unicode character set.
| platformapi Use call convention appropriate to target platform.
3
4 The attributes ansi, autochar, and unicode are mutually exclusive. They govern how strings will be marshaled
5 for callsto this method: ansi indicates that the native code will receive (and possibly return) a platform-specific
6 representation that corresponds to a string encoded in the ANSI character set (typically this would match the
7 representation of a C or C++ string constant); autochar indicates a platform-specific representation that is
8 “natural” for the underlying platform; and unicode indicates a platform-specific representation that corresponds
9 to a string encoded for use with Unicode methods on that platform.
10 The attributes cdecl, fastcall, stdcall, thiscall, and platfor mapi are mutually exclusive. They are platform-
11 specific and specificy the calling conventions for native code.
1
13 Exanpl e (informative):
14 i The foll owi ng shows the declaration of the method MessageBeep | ocated in
15 |the M crosoft W ndows™ DLL user32.dl1:
16 i . method public static pinvokeinpl ("user32.dll" stdcall) int8
17 | MessageBeep(unsi gned int32) native unmanaged {}

18 14.5.3 Via Function Pointers

19 Unmanaged functions can aso be called viafunction pointers. There is no difference between calling managed
20 or unmanaged functions with pointers. However, the unmanaged function needs to be declared with

21 pinvokeimpl as described in clause 0. Calling managed methods with function pointersis described in

22 Section 0

23 14.5.4 Data Type Marshaling

24 While data type marshaling is necessarily platform-dependent, this standard specifies aminimum set of data
25 types that shall be supported by all conforming implementations of the CLI. Additional data types may be

26 supported in an implementati on-dependent manner, using custom attributes and/or custom modifiers to specify
27 any special handling required on the particular implementation.

28 The following data types shall be marshaled by all conforming implementations of the CLI; the native data type
29 to which they conform isimplementation specific:

30 . All integer data types (int8, int16, unsigned int8, bool, char etc.) including the native integer
31 types.

32 . Enumerations, as their underlying data type.

33 . All floating point data types (float32 and float64), if they are supported by the CLI

34 implementation for managed code.

35 . The type string.

e

RPOOW O~NO O AhWN B

- 69 -

. Unmanaged pointers to any of the above types.

In addition, the following types shall be supported for marshaling from managed code to unmanaged code, but
need not be supported in the reverse direction (i.e. as return types when calling unmanaged methods or as
parameters when calling from unmanaged methods into managed methods)

. One-dimensional zero-based arrays of any of the above

. Delegates (the mechanism for calling from unmanaged code into a delegate is platform-specific; it
should not be assumed that marshaling a delegate will produce a function pointer that can be used
directly from unmanaged code)

Finally, the type GCHandle can be used to marshal an object to unmanaged code. The unmanaged code
receives a platform-specific data type that can be used as an “opague handle” to a specific object. See

Partition IV.

0 NOoO Ooapr~rwWN B

10
11

12
13
14

15
16
17
18
19

21
22

23

24
25

26

- 70 -

15 Defining and Referencing Fields

Fields are typed memory locations that store the data of a program. The CLI allows the declaration of both
instance and static fields. While static fields are associated with atype and shared across all instances of that
type, instance fields are associated with a particular instance of that type. When instantiated, the instance has

its own copy of that field.

The CLI also supports global fields, which are fields declared outside of any type definition. Global fields shall

be static.

A field is defined by the .field directive: (see Section 21.15)

<field> ::= .field <fiel dDecl >

<fieldDecl> ::=

[[<int32>]] <fieldAttr>* <type> <id> [= <fieldlnit> | at <datalabel >]

The <fieldDecl> has the following parts:

. an optional integer specifying the byte offset of the field within an instance (see Section 9.7). If
present, the type containing this field shall have the explicit layout attribute. An offset shall not

be supplied for global or static fields.

. any number of field attributes (see Section 15.2)

. type
. name

. optionally either a <fieldlnit> form or a data label

Global fields shall have a data label associated with them. This specifies where, in the PE file, the datafor that

fieldislocated. Static fields of atype may, but do not need to, be assigned a data label.

Exanpl e (informative):

.field private class [.nodul e

15.1 Attributes of Fields

Count er.dl |] Count er counter

Attributes of afield specify information about accessibility, contract information, interoperation attributes, as

well as information on specia handling.

The following subsections contain additional information on each group of predefined attributes of afield.

<fieldAttr> ::= Description Section
assenbly Assembly accessibility. 1511
| famandassem Family and Assembly accessihility. 15.1.1
| family Family accessibility. 1511
| fanorassem Family or Assembly accessihility. 1511
| initonly Marks a constant field. 15.1.2
| Titeral Specifies metadata field. No memory isalocated | 15.1.2
at runtime for thisfield.
| marshal (<nativeType>) Marshaling information. 15.1.3
| notserialized Field is not serialized with other fields of thetype. | 15.1.2
| private Private accessibility. 151.1

a AW N B

o~N O

28

29
30
31
32
33

34
35
36
37

38
39

- 71 -

| conpilercontrolled Compiler controlled accessibility. 1511
| public Public accessibility. 1511
| rtspecial nanme Special treatment by runtime. 1514
| special nane Special name for other tools. 1514
| static Static field. 15.1.2

15.1.

15.1.

1 Accessibility Information

The accessibility attributes are assembly, famandassem, family, famorassem, private, compiler controlled
and public. These attributes are mutually exclusive.

Accessibility attributes are described in Section 8.2.

2 Field Contract Attributes

Field contract attributes are initonly, literal, static and notserialized. These attributes may be combined.
Only static fields may be literal. The default is an instance field that may be serialized.

static specifiesthat the field is associated with the type itself rather than with an instance of the type. Static
fields can be accessed without having an instance of atype, e.g. by static methods. As a consequence, a static
field is shared, within an application domain, between all instances of atype, and any modification of thisfield
will affect al instances. If static is not specified, an instance field is created.

initonly marks fields which are constant after they areinitialized. These fields may only be mutated inside a
constructor. If the field is a static field, then it may be mutated only inside the type initializer of thetypein
which it was declared. If it isan instance field, then it may be mutated only in one of the instance constructors
of the type in which it was defined. It may not be mutated in any other method or in any other constructor,
including constructors of subclasses.

Note: The VES need not check whether initonly fields are mutated outside the constructors. The VES need not
report any errorsif a method changes the value of a constant. However, such codeis not valid and is not
verifiable.

literal specifies that thisfield represents a constant value; they shall be assigned avalue. In contrast to initonly
fields, literal fields do not exist at runtime. There is no memory allocated for them. literal fields become part
of the metadata but cannot be accessed by the code. literal fields are assigned a value by using the <fieldInit>
syntax (see Section 15.2).

Note: It isthe responsibility of tools generating CIL to replace source code references to the literal with its
actual value. Hence changing the value of aliteral requires recompilation of any code that references the
literal. Literal values are, thus, not version-resilient.

15.1.

3 Interoperation Attributes

Thereis one attribute for interoperation with pre-existing native applications; it is platform-specific and shall
not be used in code intended to run on multiple implementations of the CLI. The attribute is mar shal and
specifies that the field' s contents should be converted to and from a specified native data type when passed to
unmanaged code. Every conforming implementation of the CLI will have default marshaling rules as well as
restrictions on what automatic conversions can be specified using the mar shal attribute. See also clause 14.5.4

Note: Marshaling of user-defined typesis not required of all implementations of the CLI. It is specified in this
standard so that implementations which choose to provide it will allow control over its behavior in a consistent
manner. While thisis not sufficient to guarantee portability of code that uses this feature, it does increase the
likelihood that such code will be portable.

15.1.

4 Other Attributes
The attribute rtspecialname indicates that the field name shall be treated in a special way by the runtime.

OOk WNE

10
11
12

13
14
15
16

17

-72 -

Rationale: There are currently no field names that are required to be marked with rtspecialname. It is
provided for extensions, future standardization, and to increase consistency between the declaration of fields
and methods (instance and type initializer methods shall be marked with this attribute).

The attribute specialname indicates that the field name has special meaning to tools other than the runtime,
typically because it marks a name that has meaning for the Common Language Specification (CLS, see
Partition 1).

15.2 Field Init Metadata

The <fieldInit> metadata can be optionally added to a field declaration. The use of this feature may not be
combined with a data label.

The <fieldInit> information is stored in metadata and this information can be queried from metadata. But the
CLI does not use this information to automatically initialize the corresponding fields. Thefield initiaizer is
typically used with literal fields (see clause 15.1.2) or parameters with default values. See Section 21.9

The following table lists the options for afield initializer. Note that while both the type and the field initializer
are stored in metadata there is no requirement that they match. (Any importing compiler is responsible for
coercing the stored value to the target field type). The description column in the table below provides
additional information.

<fieldlnit> ::= Description
bool (true | false) Boolean value, encoded astrue or false

| bytearray (<bytes>) String of bytes, stored without conversion. May be be padded
with one zero byte to make the total byte-count an even number

| char (<int32>) 16 hit unsigned integer (Unicode character)

| float32 (<float64>) 32 hit floating point number, with the floating point number
specified in parentheses.

| float32 (<int32>) <int32> is binary representation of float

| float64 (<float64>) 64 bit floating point number, with the floating point number
specified in parentheses.

| float64 (<int64>) <int64> is binary representation of double

| [unsigned] int8 (<int8>) 8 hit integer with the integer specified in parentheses.

| [unsigned] intl6 (<int16>) 16 hit integer with the integer specified in parentheses.

| [unsigned] int32 (<int32>) 32 bit integer with the integer specified in parentheses.

| [unsigned] int64 (<int64>) 64 bit integer with the integer specified in parentheses.

| <QSTRING> String. <QSTRING> is stored as Unicode

| nullref Null object reference

N~Noohkh W N BB

(o]

10

11
12

13
14

15
16

17
18

19
20

21
22

23
24
25
26
27
28
29

- 73 -

Exanmpl e (informative):
The follow ng exanple shows a typical use of this:
.field public static literal valuetype ErrorCodes no_error = int8(0)

The field naned no_error is a literal of type ErrorCodes (a val ue type)
for which no nenory is allocated. Tools and conpilers can | ook up the
val ue and detect that it is intended to be an 8 bit signed integer
whose val ue is O.

15.3 Embedding Data in a PE File

There are several waysto declare adatafield that is stored in a PE file. In al cases, the .data directive is used.

Data can be embedded in a PE file by using the .data directive at the top-level.

<decl > ::= Section

. dat a <dat adecl >

| .. 6.6

Data may also be declared as part of atype:

<cl assMember> :: = Section
. dat a <dat adecl >

| .. 9.2

Y et another alternative isto declare data inside a method:

<met hodBodyl ten» :: = Section
. dat a <dat adecl >

I 14.4.1

15.3.

1 Data Declaration

A .data directive contains an optional data label and the body which defines the actual data. A datalabel shall
be used if the data is to be accessed by the code.

<dat aDecl > :: = [<dat aLabel > =] <ddBody>

The body consists either of one dataitem or alist of dataitemsin braces. A list of dataitemsis similar to an
array.

<ddBody> :: =

<ddl t en>

[{ <dditenList> }

A list of items consists of any number of items:

<ddltenmlist> ::= <ddlten» [, <ddltenList>]

The list may be used to declare multiple data items associated with one label. The itemswill be laid out in the
order declared. Thefirst dataitem is accessible directly through the label. To access the other items, pointer
arithmetic is used, adding the size of each dataitem to get to the next onein the list. The use of pointer
arithmetic will make the application not verifiable. (Each dataitem shall have a <datal abel> if it isto be
referenced afterwards; missing a <datal abel> is useful in order to insert alignment padding between data
items)

WN -

O N o Oop

10

11

12
13

14
15
16

17
18

19

20
21
22

23
24
25
26

27

28

- 74 -

A dataitem declares the type of the data and provides the data in parentheses. If alist of dataitems contains
items of the same type and initial value, the grammar below can be used as a short cut for some of the types:
the number of times the item shall be replicated is put in brackets after the declaration.

<ddltenr ::= Descri ption
& (<id>) Addr ess of | abel

| bytearray (<bytes>) Array of bytes

| char * (<QSTRING) Array of (Unicode) characters

| float32 [(<float64>)] [[<int32>]] 32-bit floating point nunber, nmay be
replicated

| float64 [(<float64>)] [[<int32>]] 64-bit floating point nunber, nmay be
replicated

| int8 [(<int8>)] [[<int32>]] 8-bit integer, may be replicated

| intl6 [(<intl6>)] [[<int32>]] 16-bit integer, may be replicated

| int32 [(<int32>)] [[<int32>]] 32-bit integer, may be replicated

| int64 [(<int64>)] [[<int32>]] 64-bit integer, may be replicated

Exanmpl e (informative):
The follow ng declares a 32 bit signed integer with value 123:
.data thelnt = int32(123)

The follow ng declares 10 replications of an 8 bit unsigned integer
with val ue 3:

.data theBytes = int8 (3) [10]

15.3.2 Accessing Data from the PE File

The data stored in a PE File using the .data directive can be accessed through a static variable, either global or
amember of atype, declared at a particular position of the data:

<fieldDecl> ::= <fiel dAttr>* <type> <id> at <datalLabel >

The datais then accessed by a program as it would access any other static variable, using instructions such as
Idsfld, Idsflda, and so on (see Partition [11).

The ahility to access data from within the PE File may be subject to platform-specific rules, typically related to
section access permissions within the PE File format itself.

Exanmpl e (informative):

The followi ng accesses the data declared in the exanpl e of
clause 15.3.1. First a static variable needs to be declared for the
data, e.g. a global static vari able:

.field public static int32 nylnt at thelnt
Then the static vari able can be used to | oad the data:
I dsfld int32 nylnt

// data on stack

15.4 Initialization of Non-Literal Static Data

This section and its subsections contain only informative text.

WN -

19

20
21
22
23

24

25
26
27
28

29
30
31

32
33
34

35
36
37

38
39
40

41
42
43

45
46

- 75 -

Many languages that support stetic data (i.e. variables that have a lifetime that is the entire program) provide
for ameansto initialize that data before the program begins running. There are three common mechanisms for
doing this, and each is supported in the CLI.

15.4.1 Data Known at Link Time

When the correct value to be stored into the static datais known at the time the program is linked (or compiled
for those languages with no linker step), the actual value can be stored directly into the PE file, typically into
the data area (see Section 15.3). References to the variable are made directly to the location where this data has
been placed in memory, using the OS supplied fix-up mechanism to adjust any references to this areaif the file
loads at an address other than the one assumed by the linker.

In the CLI, this technique can be used directly if the static variable has one of the primitive numeric typesor is
avalue type with explicit type layout and no embedded references to managed objects. In this case the datais
laid out in the data area as usual and the static variable is assigned a particular RVA (i.e. offset from the start of
the PE file) by using adata label with the field declaration (using the at syntax).

This mechanism, however, does not interact well with the CLI notion of an application domain (see Partition 1).
An application domain is intended to isolate two applications running in the same OS process from one another
by guaranteeing that they have no shared data. Since the PE file is shared across the entire process, any data
accessed viathis mechanismis visible to all application domainsin the process, thus violating the application
domain isolation boundary.

15.5 Data Known at Load Time

When the correct value is not known until the PE file isloaded (for example, if it contains values computed
based on the load addresses of several PE files) it may be possible to supply arbitrary code to run as the PE file
isloaded, but this mechanism is platform-specific and may not be available in al conforming implementations
of the CLI.

15.5.1 Data Known at Run Time

When the correct value cannot be determined until type layout is computed, the user shall supply code as part
of atypeinitializer to initialize the static data. The guarantees about type initialization are covered in

clause 9.5.3.1. Aswill be explained below, global statics are modeled in the CLI as though they belonged to a
type, so the same guarantees apply to both global and type statics.

Because the layout of managed types need not occur until atypeisfirst referenced, it is not possible to
statically initialize managed types by simply laying the data out in the PE file. Instead, thereisatype
initialization process that proceeds in the following steps:

20. All static variables are zeroed.
21. The user-supplied type initialization procedure, if any, isinvoked as described in clause 9.5.3.
Within atypeinitialization procedure there are several techniques:

. Generate explicit code that stores constants into the appropriate fields of the static variables. For
small data structures this can be efficient, but it requires that the initializer be converted to native
code, which may prove to be both a code space and an execution time problem.

. Box value types. When the static variable is simply a boxed version of a primitive numeric type or
avalue type with explicit layout, introduce an additional static variable with known RV A that
holds the unboxed instance and then simply use the box instruction to create the boxed copy.

. Create a managed array from a static native array of data. This can be done by marshaling the
native array to a managed array. The specific marshaler to be used depends on the native array.
E.g., it may be a safearray.

. Default initialize a managed array of a value type. The Base Class Library provides a method that
zeroes the storage for every element of an array of unboxed value types
(System Runti me. Conpil er Services. I nitializeArray)

- 76 -

End informative text

=

©O©o0o~NO

10

11
12
13

14
15

16
17

18
19
20

21
22

23
24
25

26
27

28

29
30

- 77 -

16 Defining Properties

A Property is declared by the using the .property directive. Properties may only be declared inside of types (ie
global Properties are not supported)

<cl assMenber> :: =

.property <propHead> { <propMenber>* }

See Section 21.31 and Section 21.32 for how Property information is stored in metadata.

<propHead> :: =

[speci al nane] [rt speci al nane] <cal | Conv> <type> <id> (<paraneters>)

The property directive specifies a calling convention (see Section 14.3), type, name, and parameter in
parentheses. specialname marks the Property as special to other tools, while rtspecialname marks Property as
special to the CLI. The signature for the property (i.e., the <propHead> production) shall match the signature
of the property's .get method (see below)

Rationale: There are currently no property names that are required to be marked with rtspecialname. It is
provided for extensions, future standardization, and to increase consistency between the declaration of
properties and methods (instance and type initializer methods shall be marked with this attribute).

While the CLI places no constraints on the methods that make up a property, the CL S (see Partition I) specifies
aset of consistency constraints..

A property may contain any number of methodsin its body. The following table shows these and provides
short descriptions of each item:

<propMenber> :: = Description Section
| . custom <cust onDecl > Custom attribute. 0
|< -get <cal |l Conv> <type> [<typeSpec> ::] Specifies the getter for the
met hodNane> (<parameters>) property.
| .other <callConv> <type> [<typeSpec> ::] Specifies a method for the
<met hodName> (<paramet ers>) property other than the getter or
setter.
|<.set <cal | Conv> <type> [<typeSpec> ::] Specifies the setter for the
met hodNanme> (<paraneters>) property.
| <externSour ceDecl > Jineor #line 5.7

.get specifies the getter for this property. The <typeSpec> defaults to the current type. Only one getter may be
specified for aproperty. To be CLS compliant, the definition of getter shall be marked specialname.

.set specifies the setter for this property. The <typeSpec> defaults to the current type. Only one setter may be
specified for aproperty. To be CLS compliant, the definition of setter shall be marked specialname.

.other is used to specify any other methods that this property comprises.
In addition, custom attributes (see Chapter 0) or source line declarations may be specified.

Exanpl e (informative):

Thi s exanpl e shows the decl aration of the property used in the exanple
in Part 5.

.class public auto autochar MyCount extends [nscorlib] System Object {

. met hod virtual hidebysig public special nanme instance int32
get _Count () {

© 00 N o o1 AW DN P

e = i < e
o U1 W DN P O

- 78 -

/'l body of getter

. met hod virtual hidebysig public special name instance void

set _Count (i nt 32 newCount) {

[/l body of setter
}
. met hod virtual hidebysig public instance void reset_Count () ({
// body of refresh method
}
[/ the declaration of the property
. property int32 Count() {
.get instance int32 get Count ()
.set instance void set_ Count (int32)

.ot her instance void reset_ Count ()

=

13

15
16

17
18
19

20
21
22

23
24
25

26
27

28

29
30

- 79 -

17 Defining Events

Events are declared inside types with the .event directive; there are no global events.

<cl assMenber> :: = Section

.event <eventHead> { <event Menber>* }

(o)

See Section 21.13 and Section 21.11

<event Head> :: =

[speci al nane] [rtspecial nane] [<typeSpec>] <id>

In typical usage, the <typeSpec> (if present) identifies a delegate whose signature matches the arguments
passed to the event’ s fire method.

The event head may contain the keywords specialname or rtspecialname. specialname marks the name of the
property for other tools, while rtspecialname marks the name of the event as special for the runtime.

Rationale: There are currently no event names that are required to be marked with rtspecialname. Itis
provided for extensions, future standardization, and to increase consistency between the declaration of events
and methods (instance and type initializer methods shall be marked with this attribute).

<event Menber> = Description Section
-addon <cal | Conv> <type> [<typeSpec> ::] <methodName> (| Add method for event.

<paraneters>)

| . custom <cust onDecl > Custom attribute. 0

| .fire <callConv> <type> [<typeSpec> ::] <methodName> (Fire method for event.

<paraneters>)

| .other <call Conv> <type> [<typeSpec> ::] <nethodName> (Other method.

<paraneters>)

| .removeon <call Conv> <type> [<typeSpec> ::] Remove method for event.

<met hodName> (<paraneters>)

| <externSour ceDecl > lineor #line 5.7

The .addon directive specifies the add method , and the <typeSpec> defaults to the same type as the event.
The CL S specifies naming conventions and consistency constraints for events, and requires that the definition
of the add method be marked with specialname.

The .removeon directive specifies the remove method , and the <typeSpec> defaults to the same type as the
event. The CL S specifies naming conventions and consistency constraints for events, and requires that the
definition of the remove method be marked with specialname.

The .fire directive specifies the fire method , and the <typeSpec> defaults to the same type as the event. The
CL S specifies naming conventions and consistency constraints for events, and requires that the definition of the
fire method be marked with specialname.

An event may contain any number of other methods specified with the .other directive. From the point of view
of the CLI, these methods are only associated with each other through the event. If they have special semantics,
this needs to be documented by the implementer.

Events may also have custom attributes (Chapter 0) associated with them and they may declare source line
information.

Exanpl e (informative):

This shows the declaration of an event, its correspondi ng del egate, and

itypical inplenentations of the add, rempove, and fire method of the

O N Ooh W NP

el el el o
WN RO

2R
o0 b

N DN NN NN DNDN PR B2 -
N o o0 A W N P O © 0N

NN
© 00

w W W w
w N O

w W
(SR8

B W W W W
O © 0O N O

A DS DS
WN P

- 80 -

event. The event and the nmethods are declared in a class called
Count er.

/'l the del egate

.class private seal ed auto autochar Ti meUpEvent Handl er ext ends
[mscorlib] System Miul ti cast Del egate {

. met hod public hidebysig special name rtspeci al nanme i nstance void
.ctor(object 'object', native int 'nmethod') runtime managed {}

. met hod public hidebysig virtual instance void |Invoke() runtime
managed {}

. met hod public hidebysig newslot virtual instance class
[mecorlib] System | AsyncResult Begi nl nvoke(cl ass
[mecorli b] System AsyncCal | back cal | back, object 'object') runtinme
managed {}

. met hod public hidebysig newslot virtual instance void
Endl nvoke(cl ass [nscorlib] System | AsyncResult result) runtime managed

{}
}

/!l the class that declares the event

.class public auto autochar Counter extends [nscorlib] System Object {

// field to store the handlers, initialized to nul
.field private class Ti neUpEvent Handl er ti meUpEvent Handl er

/'l the event decl aration
.event Ti meUpEvent Handl er start StopEvent {
.addon instance void add _Ti meUp(cl ass Ti neUpEvent Handl er ' handl er')

.renoveon instance void renove_Ti neUp(cl ass Ti neUpEvent Handl er
"handl er")

.fire instance void fire_Ti meUpEvent ()

// the add met hod, conmbi nes the handler with existing del egates

. met hod public hidebysig virtual special name instance void
add_Ti meUp(cl ass Ti mneUpEvent Handl er ' handler') {

. maxstack 4

| darg. O

dup

I df I d cl ass Ti neUpEvent Handl er Count er:: Ti meUpEvent Handl er
| darg ' handl er'

call class[nscorlib] System Del egate
[mscorli b] System Del egat e: : Conbi ne(cl ass [nmscorlib] Syst em Del egat e,
class [nmscorlib] Syst em Del egat e)

© oOo~N OO O A WDN P

S S S
w N B O

2R
o0 b

W N DN N DN DN DN DNDNDNDNDNBRPB P2P
O © 0 N OO 0O A W N P O © 00 N

- 81 -

castcl ass Ti mneUpEvent Handl er
stfld class Ti meUpEvent Handl er Counter::ti meUpEvent Handl er

ret

/'l the rempve net hod, renoves the handler fromthe nmulticast del egate

.met hod virtual public special nanme void remove_ Ti meUp(cl ass
Ti meUpEvent Handl er ' handler') {

. maxstack 4

| darg. O

dup

| df I d cl ass Ti neUpEvent Handl er Counter::ti meUpEvent Handl er
| darg ' handl er"

call class[nscorlib] System Del egate
[mecorlib] System Del egat e: : Renove(cl ass [nscorli b] System Del egat e,
class [nscorlib] Syst em Del egat e)

castcl ass Ti mneUpEvent Handl er
stfld class Ti meUpEvent Handl er Counter::ti meUpEvent Handl er

ret

/[l the fire nethod

.method virtual famly special name void fire_Ti mUpEvent () ({
. maxstack 3
| darg. O
| df I d cl ass Ti neUpEvent Handl er Counter::ti meUpEvent Handl er
callvirt instance void Ti neUpEvent Handl er: : | nvoke()

ret

}

} // end of class Counter

O WN -

- 82 -

18 Exception Handling

In the CLI, amethod may define arange of CIL instructionsthat are said to be protected. Thisiscalled thetry
block. It can then associate one or more handlers with that try block. If an exception occurs during execution
anywhere within the try block, an exception object is created that describes the problem. The CIL then takes
over, transferring control from the point at which the exception was thrown, to the block of code that iswilling
to handle that exception. See Partition |.

<sehBl ock> :: =

<tryBl ock> <sehCd ause> [<sehCd ause>*]

The next few sections expand upon this simple description, by describing the five kinds of code block that take

O O oo~

12

13

14
15
16

17

19
20

21
22

23

part in exception processing: try, catch, filter, finally, and fault. (note that there are restrictions upon how
many, and what kinds of <sehClause> a given <tryBlock> may have; see Partition . for details.

The remaining syntax items are described in detail below; they are collected here for reference.

<tryBlock> ::=

Description

.try <l abel > to <l abel >

Protect region from first label to prior to second

| .try <scopeBl ock>

<scopeBlock> is protected

<sehd ause> :: =

Description

catch <typeRef erence> <handl er Bl ock>

Catch al objects of the specified type

| fault <handl erBl ock>

Handle all exceptions but not normal exit

| filter <label > <handl er Bl ock>

Enter handler only if filter succeeds

| finally <handl er Bl ock>

Handle al exceptions and normal exit

<handl er Bl ock> :: =

Description

handl er <l abel > to <l abel >

Handler rangeis from first label to prior to second

| <scopeBl ock>

<scopeBlock> is the handler block

18.1 Protected Blocks

A try, or protected, or guarded, block is declared with the .try directive.

<tryBlock> ::=

Descriptions

.try <l abel > to <l abel >

Protect region from first label to prior to second.

| .try <scopeBl ock>

<scopeBlock> is protected

In the first, the protected block is delimited by two labels. Thefirst label isthefirst instruction to be protected,

while the second label isthe instruction just beyond the last one to be protected. Both labels shall be defined

prior to this point.

The second uses a scope block (see clause 14.

the ones to be protected.

18.2 Handler Blocks

4.4) after the .try directive —the instructions within that scope are

<handl er Bl ock> :: =

Description

| handl er <l abel> to <l abel >

Handler rangeis from first label to prior to second

A WNE

(6]

10
11
12
13
14
15
16
17
18

19
20

21
22
23
24

25
26
27
28
29
30
31
32
33
34
35

- 83 -

| <scopeBl ock> <scopeBlock> is the handler block

In the first syntax, the labels enclose the instructions of the handler block, the first label being the first
instruction of the handler while the second isthe instruction immediately after the handler. Alternatively, the
handler block isjust a scope block.

18.3 Catch

A catch block is declared using the catch keyword. This specifies the type of exception object the clause is
designed to handle, and the handler code itself.

<sehd ause> :: =

catch <typeRef erence> <handl er Bl ock>

Exanple (informative):
try {
/]l protected instructions
| eave exit SEH /1 normal exit
} catch [nscorlib] System For mat Excepti on {

/1 handl e the exception

pop /'l pop the exception object
| eave exit SEH /1 | eave catch handl er
}
exitsem /I continue here]
18.4 Filter

A filter block is declared using the filter keyword.

<sehd ause> ::= ...

| filter <l abel> <handl erBl ock>

| filter <scope> <handl er Bl ock>

Thefilter code begins at the specified label and ends at the first instruction of the handler block. (Note that the
CLI demands that the filter block shall immediately precede, within the CIL stream, its corresponding handler
block)

Exanple (informative):

.method public static void m () {

try {

/] protected instructions

| eave exitSEH /1 normal exit
}
filter {

[/ deci de whether to handl e
pop /1l pop exception object
ldc.i4.1 /| EXCEPTI ON_EXECUTE_HANDLER
endfilter [/ return answer to CLI

© 0 N o o B~ W NP

10
11

12
13

14
15
16
17
18
19
20
21
22

23
24

25
26

27
28
29
30
31
32
33
34

-84 -

}
{
/1 handl e the exception
pop [/ pop the exception object
| eave exit SEH [l leave filter handl er
}

exi t SEH:

18.5 Finally

A finally block is declared using the finally keyword. This specifies the handler code, with this grammar:

<sehd ause> ::= ...

| finally <handl er Bl ock>

The last possible CIL instruction that can be executed in afinally handler shall be endfinally.
'Exanmple (informative):
try {
/] protected instructions
| eave exitTry /1l shall use |eave
} finally {
[/ finally handl er

endfinally

}

exitTry: /1 back to nor mal

18.6 Fault Handler

A fault block is declared using the fault keyword. This specifies the handler code, with this grammar:

<sehd ause> ::= ...

| fault <handl erBl ock>

The last possible CIL instruction that can be executed in afault handler shall be endfault.
Exanple (informative):
.met hod public static void n() {
startTry:
/]l protected instructions
| eave exit SEH /1 shall use |eave

endTry:

start Faul t:

0O N OO O~ W DN B

- 85 -

e // fault handler instructions
endf aul t
endFaul t:

.try startTry to endTry fault handler startFault to endFault

exi t SEH: // back to nornmal

G WN -

© O~NO

10

11

19

- 86 -

Declarative Security

Many languages that target the CL1 use attribute syntax to attach declarative security attributes to itemsin the
metadata. Thisinformation is actually converted by the compiler into an XML-based representation that is
stored in the metadata, see Section 21.11. By contrast, ilasm requires the conversion information to be
represented in itsinput.

<securityDecl> ::=

. perm ssionset <secAction> = (<bytes>)

| . perm ssion <secAction> <typeReference> (<naneVal Pairs>)

In .permission, <typeReference> specifies the permission class and <nameV alPairs> specifies the settings.
See Section 21.11

In .permissionset the bytes specify the serialized version of the security settings:

<secAction> ::= Description
assert Assert permission so that callers do not need it.
| demand Demand permission of all calers.
| deny Deny permission so checks will fail.
| inheritcheck Demand permission of a subclass.
| Iinkcheck Demand permission of caler.
| pernitonly Reduce permissions so check will fail.
| reqopt Reguest optional additional permissions.
| regrefuse Refuse to be granted these permissions.
| request Hint that permission may be required.

| <naneVal Pai rs> ::= <naneVal Pair> [, <naneVal Pair>]*

| <nameVal Pair> ::= <SQSTRI N& = <SQSTRI NG

- 87 -

1 20 Custom Attributes
2 Custom attributes add user-defined annotations to the metadata. Custom attributes allow an instance of atype
3 to be stored with any element of the metadata. This mechanism can be used to store application specific
4 information at compile time and access it either at runtime or when another tool reads the metadata. While any
5 user-defined type can be used as an attribute, CL S compliance requires that attributes will be instances of types
6 whose parent is Syst em At t ri but e. The CLI predefines some attribute types and uses them to control runtime
7 behavior. Some languages predefine attribute types to represent language features not directly represented in
8 the CTS. Users or other tools are welcome to define and use additional attribute types.
9 Custom attributes are declared using the directive .custom. Followed by this directive is the method declaration
10 for atype constructor, optionally followed by a <bytes> in parentheses:
<custonDecl > :: =
<ctor> [= (<bytes>)]
11
12 The <ctor> item represents a method declaration (see Section 14.4), specific for the case where the method's
13 nameis.ctor.
14 For example:
15 .custominstance void nmyAttribute::.ctor(bool, bool) = (01 00 00 01 00 00)
16 Custom attributes can be attached to any item in metadata, except a custom attribute itself. Commonly, custom
17 attributes are attached to assemblies, modules, classes, interfaces, value types, methods, fields, properties and
18 events (the custom attribute is attached to the immediately preceding declaration)
19 The <bytes> item is not required if the constructor takes no arguments. In these cases, al that mattersisthe
20 presence of the custom attribute.
21 If the constructor takes parameters, their values shall be specified in the <bytes> item. The format for this
22 ‘blob’ is defined in Section 22.3.
23 ' Exanple (informative):
24 The follow ng exanple shows a class that is marked with the
25 System SerializableAttribute and a method that is marked with the
26 System Runti me. Renot i ng. OneWayAttribute. The keyword serializabl e corresponds
27 to the System SerializableAttribute.
28 .class public MyCl ass {
29 .custom void [nmscorlib] System Serializabl eAttribute::.ctor ()
30 .met hod public static void main() {
31 . custom voi d
32 [mscorlib] System Runti me. Renoti ng. OneWayAttri bute::.ctor ()
33 ret
34 }
35 I

36 20.1 CLS Conventions: Custom Attribute Usage

37 CL S imposes certain conventions upon the use of Custom Attributesin order to improve cross-language
38 operation. See Partition | for details.

=
QOWoo~N OO0 ~AWN

11
12
13

14
15
16
17
18
19

20
21
22

23
24
25

26
27

28
29
30
31

32

- 88 -

20.2 Attributes Used by the CLI

There are two kinds of Custom Attributes, called (genuine) Custom Attributes, and Pseudo Custom Attributes.
Custom Attributes and Pseudo Custom Attributes are treated differently, at the time they are defined, as
follows:

. A Custom Attribute is stored directly into the metadata; the' blob’ which holds its defining datais
stored as-is. That ‘blob’ can be retrieved later.

. A Pseudo Custom Attribute is recognized because its name is one of a short list. Rather than
storeits ‘blob’ directly in metadata, that ‘blob’ is parsed, and the information it contains is used
to set bits and/or fields within metadata tables. The ‘blob’ is then discarded; it cannot be
retrieved later.

Pseudo Custom Attributes therefore serve to capture user directives, using the same familiar syntax the
compiler provides for regular Custom Attributes, but these user directives are then stored into the more space-
efficient form of metadata tables. Tables are also faster to check at runtime than (genuine) Custom Attributes.

Many Custom Attributes are invented by higher layers of software. They are stored and returned by the CL1I,
without its knowing or caring what they ‘mean’. But all Pseudo Custom Attributes, plus a collection of regular
Custom Attributes, are of special interest to compilers and to the CLI. An example of such Custom Attributes
iSSystem Refl ecti on. Def aul t Menber At tri bute. Thisis stored in metadata as aregular Custom Attribute
‘blob’, but reflection uses this Custom Attribute when called to invoke the default member (property) for a

type.
The following subsectionslist all of the Pseudo Custom Attributes and distinguished Custom Attributes, where

distinguished means that the CL| and/or compilers pay direct attention to them, and their behavior is affected in
some way.

In order to prevent name collisions into the future, all custom attributes in the Syst emnamespace are reserved
for standardization.

20.2.1 Pseudo Custom Attributes

Thefollowing table lists the CL1 Pseudo Custom Attributes. They are defined in either the Syst em or the
Syst em Ref | ecti on NAMespaces.

Attribute Description

Assenbl yAl gorithm DAttribute | Recordsthe ID of the hash algorithm used (reserved only)

Assenbl yFl agsAttribute Records the flags for this assembly (reserved only)

Dl lnmportAttribute Provides information about code implemented within an unmanaged
library

Fiel dOffsetAttribute Specifies the byte offset of fields within their enclosing class or value type

InAttribute Indicates that a method parameter is an [in] argument

Mar shal AsAttribute Specifies how a dataitem should be marshalled between managed and
unmanaged code -- see Section 0.

Met hodl npl Attribute Specifies details of how amethod is implemented

QutAttribute Indicates that a method parameter is an [out] argument

StructLayoutAttribute Allowsthe caller to control how the fields of aclass or value type are laid

out in managed memory

Not all of these Pseudo Custom Attributes are specified in this standard, but all of them are reserved and shall
not be used for other purposes. For details on these attributes, see the documentation for the corresponding
classin Partition | V.

The Pseudo Custom Attributes above affect bits and fields in metadata, as follows:

- 89 -

Assenbl yAl gorit hm DAttri but e : Setsthe Assembly.HashAlgld field
Assenbl yFl agsAttri but e : setsthe Assembly.Flagsfield

DI I mport Attribute : setsthe Method.Flags.Pinvokel mpl bit for the attributed method; also, adds a new row
into the ImplMayp table (setting MappingFlags, Member Forwar ded, ImportName and I mportScope columns)

Fiel dOFfset Attribute : setsthe FieldLayout.OffSet value for the attributed field
I nAttribut e : setsthe Param.Flags.In bit for the attributed parameter

Mar shal AsAttri but e : setsthe Field.Flags.HasFieldMarshal bit for the attributed field (or the
Param.Flags.HasFieldMarshal bit for the attributed parameter); also enters anew row into the FieldMarshal
table for both Parent and NativeType columns.

Met hodl npl At t ri but e : setsthe Method.ImplFlags field of the attributed method

©ooo~N OO O AW N P

e
= O

Qut Attri but e : setsthe Param.Flags.Out bit for the attributed parameter

Struct Layout At t ri but e : setsthe TypeDef.Flags.LayoutMask sub-field for the attributed type. And,
optionally, the TypeDef.Flags.StringFormatMask sub-field, the ClassLayout.PackingSz ,and
ClassLayout.ClassSze fields for that type.

B
AWM

15 20.2.2 Custom Attributes Defined by the CLS

16 The CL S specifies certain Custom Attributes and requires that conformant languages support them. These
17 attributes are located under Syst em

Attribute Description

AttributeUsageAttribute Used to specify how an attribute is intended to be used.

Qbsol eteAttribute Indicates that an element is not to be used.

CLSConpl i antAttribute Indicates whether or not an element is declared to be CLS compliant

through an instance field on the attribute object.

18
19 20.2.3 Custom Attributes for Security
20 The following Custom Attributes affect the security checks performed upon method invocations at runtime.
21 They are defined in the Syst em Securi ty namespace.

Attribute Description

Dynami cSecuri tyMet hodAt tri bute Indicates to the CLI that the method requires space to be

allocated for a security object
Suppr essUnnmanagedCodeSecuri tyAttri bute I ndi cates the target method, implemented as unmanaged
code, should skip per-call checks

22
23 The following Custom Attributes are defined in the Syst em Securi ty. Per ni ssi ons. namespace. Note that
24 these are all base classes; the actual instances of security attributes found in assemblies will be sub-classes of
25 these.

Attribute Description

CodeAccessSecurityAttribute Thisisthe base attribute class for declarative security using

custom attributes.

DnsPer mi ssi onAttribute Custom attribute class for declarative security with
DnsPermission

Envi ronment Per ni ssi onAttribute Custom attribute class for declarative security with
EnvironmentPermission.

- 90 -

Filel OPerni ssionAttribute Custom attribute class for declarative security with
Filel OPermission.
Refl ectionPermissionAttribute Custom attribute class for declarative security with
ReflectionPermission.
SecurityAttribute Thisisthe base attribute class for declarative security from
which CodeA ccessSecurityAttribute is derived.
SecurityPermnissionAttribute Indicates whether the attributed method can affect security
settings
Sitel dentityPernissionAttribute Custom attribute class for declarative security with
Sitel dentityPermission.
Socket Permi ssi onAttribute Custom attribute class for declarative security with
SocketPermission.
StrongNarel denti tyPermi ssionAttribute Custom attribute class for declarative security with
StrongNamel dentity Permission.
WebPer i ssi onAttribute Custom attribute class for declarative security with
WebPermission.
1
2 Note that any other security-related Custom Attributes (ie, any Custom Attributes that derive from
3 System Security. Permi ssi ons. SecurityAttribute) included into an assembly, may cause a conforming
4 implementaion of the CLI to rgject such an assembly when it is loaded, or throw an exception at runtime if any
5 attempt is made to access those security-related Custom Attributes. (This statement in fact holds true for any
6 Custom Attributes that cannot be resolved; security-related Custom Attributes are just one particular case)
7 20.2.4 Custom Attributesfor TLS
8 A Custom Attribute that denotes a TL S (thread-local storage) field is defined in the Syst em namespace
Attribute Description
ThreadStaticAttribute Provides for type member fields that are relative for the thread.
9
10 20.2.5 Custom Attributes, Various
11 The following Custom Attributes control various aspects of the CLI:
Attribute Description
Condi tional Attribute Used to mark methods as callable, based on some compile-time
condition. If the condition isfalse, the method will not be called
Deci mal Constant Attribute Stores the value of adecimal constant in metadata
Def aul t Menber Attri bute Defines the member of atype that is the default member used by

reflection’ s InvokeMember.

FlagsAttribute Custom attribute indicating an enumeration should be treated as a
bitfield; that is, a set of flags

I ndexer NaneAt tribute Indicates the name by which an indexer will be known in
programming languages that do not support indexers directly

ParamArrayAttribute Indicates that the method will allow a variable number of
arguments in itsinvocation

12

oO~NOOO1T AhWN P

11
12
13

14
15
16
17
18

19
20

21

22
23
24

25
26
27
28
29
30

31
32
33

34
35
36

37
38

39
40
41

42
43

45

- 91 -

21 Metadata Logical Format: Tables

This section defines the structures that describe metadata, and how they are cross-indexed. This corresponds to
how metadataislaid out, after being read into memory from a PE file. (For a description of metadata layout
inside the PE fileitself, see Chapter 23)

Metadata is stored in two kinds of structure —tables (arrays of records), and heaps. There are four heapsin any
module: String, Blob, Userstring and Guid. Thefirst three are byte arrays (so valid indexes into these heaps
might be 0, 23, 25, 39, etc). The Guid heap is an array of GUIDs, each 16 byteswide. Itsfirst element is
numbered 1, its second 2, and so on.

Each entry in each column of each table is either a constant or an index.

Constants are either literal values (eg ALG_SID_SHA1 = 4, stored in the HashAlgld column of the Assembly
table), or, more commonly, bitmasks. Most bitmasks (they are almost all called “ Flags’) are 2 bytes wide (eg
the Flags column in the Field table), but there are afew that are 4 bytes (eg the Flags column in the TypeDef
table)

Each index is either 2 bytes wide, or 4 byteswide. The index points into another (or the same) table, or into
one of the four heaps. The size of each index column in atableis only made 4 bytesiif it needs to be, for that
particular module. So, if aparticular column indexes atable, or tables, whose highest row number fitsin a 2-
byte value, the indexer column need only be 2 byteswide. Conversely, for huge tables, containing 64K rows or
more, an indexer of that table will be 4 bytes wide.

Note that indexes begin at 1, meaning the first row in any given metadata table. Anindex value of zero denotes
that it does not index arow at al (it behaves like a null reference)

The columns that index a metadata table are of two sorts:

. Simple — that column indexes one, and only one, table. e.g., the FieldList column in the TypeDef
table always indexes the Field table. So all valuesin that column are simple integers, giving the
row number in the target table

. Coded — that column indexes any of several tables. e.g., the Extends column in the TypeDef table
can index into the TypeDef table, or into the TypeRef table. A few bits of that index value are
reserved to define which table it targets. For the most part, this specification talks of index values
after being decoded into row numbers within the target table. However, the specification includes
a description of these coded indexes in the section that describes the physical layout of Metadata

(Chapter 23).

M etadata preserves name strings, as created by a compiler or code generator, unchanged. Essentialy it treats
each string as an opaque 'blob'. In particular, it preserves case. The CLI imposes no limit on the size of names
stored in metadata and subsequently processed by the CLI

Matching AssemblyRefs and ModuleRefs to their corresponding Assembly and Module shall be performed
case-blind (see Partition I). However, all other name matches (type, field, method, property, event) is exact —
so that thislevel of resolution is the same across all platforms, whether their OS is case-sensitive or not.

Tables are given both aname (eg "Assembly") and numbered (eg 0x20). The number for each table islisted
immediately with itstitle in the following sections.

A few of the tables represent extensions to regular CLI files. Specifically, ENCLog and ENCMap, which
occur in temporary images, generated during "Edit and Continue” or "incremental compilation” scenarios,
whilst debugging. Both table types are reserved for future use.

References to the methods or fields of a Type are stored together in a metadata table called the Member Ref
table. However, sometimes, for clearer explanation, this specification distinguishes between these two kinds
of reference, calling them “MethodRef” and “ FieldRef”.

This contains informative text only

=
QOO0 NO UOPrhWN BB

11
12
13
14
15

16

17
18
19
20

21
22
23
24
25

26
27
28

29

30
31

32
33

34

35
36

37
38

39
40
41

42
43

45

- 92 -

21.1 Metadata Validation Rules

The sections that follow describe the schema for each kind of metadata table, and explain the detailed rules that
guarantee metadata emitted into any PE fileisvalid. Checking that metadata is valid ensures that later
processing - checking the CIL instruction stream for type safety, building method tables, CIL-to-native-code
compilation, data marshalling, etc will not cause the CL I to crash or behave in an insecure fashion.

In addition, some of the rules are used to check compliance with the CL S requirements (see Partition |) even
though these are not related to valid Metadata. These are marked with atrailing [CL §] tag.

Therulesfor valid metadata refer to an individual module. A module is any collection of metadata that could
typically be saved to a disk file. Thisincludes the output of compilers and linkers, or the output of script
compilers (where often the metadata is held only in memory, but never actually saved to afile on disk).

Therules address intraamodule validation only. So, validator software, for example, that checks conformance
with this spec, need not resolve references or walk type hierarchies defined in other modules. However, it
should be clear that even if two modules, A and B, analyzed separately, contain only valid metadata, they may
still bein error when viewed together (e.g., acall from Module A, to a method defined in module B, might
specify a callsite signature that does not match the signatures defined for that method in B)

All checks are categorized as ERROR, WARNING or CLS.

. An ERROR reports something that might cause a CLI to crash or hang, it might run but produce
wrong answers; or it might be entirely benign. There may exist conforming implementations of
the CLI that will not accept metadata that violates an ERROR rule, and therefore such metadata is
invalid and is not portable.

. A WARNING reports something, not actually wrong, but possibly a slip on the part of the
compiler. Normally, it indicates a case where a compiler could have encoded the same
information in a more compact fashion or where the metadata represents a construct that can have
no actual use at runtime. All conforming implementations will support metadata that violate only
WARNING rules; hence such metadata is both valid and portable.

. A CLS reports lack of compliance with common language specification (see Partition 1). Such
metadata is both valid and portable, but there may exist programming languages that cannot
process it, even though all conforming implementations of the CLI| support the constructs.

Validation rulesfall into afew broad categories, asfollows:

. Number of Rows A few tables are allowed only one row (e.g. Module table). Most have no such
restriction.

. Unique Rows No table may contain duplicate rows, where “duplicate” is defined in terms of its
key column, or combination of columns

. Valid Indexes Columns which are indexes shall point somewhere sensible, as follows:

o] Every index into the String, Blob or Userstring heaps shall point into that heap, neither
before its start (offset 0), nor after its end

o] Every index into the Guid heap shall lie between 1 and the maximum element number in
this module, inclusive

o} Every index (row number) into another metadata table shall lie between 0 and that table’'s
row count + 1 (for some tables, the index may point just past the end of any target table,
meaning it indexes nothing)

. Valid Bitmasks Columns which are bitmasks shall only have valid permutations of bits set

. Valid RVAs There are restrictions upon fields and methods that are assigned RVAs (Relative
Virtual Addresses; these are byte offsets, expressed from the address at which the corresponding
PE file is loaded into memory)

WN -

o0 o O

10
11
12
13
14

15
16
17

18

19
20
21
22
23
24
25

26
27

28
29

30

31
32
33
34
35

36
37

- 903 -

Note that some of the rules listed below say "nothing" - for example, some rules state that a particular tableis
allowed zero or more rows - so there is no way that the check can fail. Thisis done simply for completeness, to
record that such details have indeed been addressed, rather than overlooked.

End informative text

The CLI imposes no limit on the size of names stored in metadata, and subsequently processed by a CL |
implementation.

21.2 Assembly : 0x20

The Assembly table has the following columns:

. HashAlgld (a4 byte constant of type AssemblyHashAlgorithm, clause 22.1.1)

. MagjorVersion, MinorVersion, BuildNumber, RevisionNumber (2 byte constants)
. Flags (a 4 byte bitmask of type AssemblyFlags, clause 22.1.2)

. PublicKey (index into Blob heap)

. Name (index into String heap)

. Culture (index into String heap)

The Assembly table is defined using the .assembly directive (see Section 6.2); its columns are obtained from
the respective .hash algorithm, .ver, .publickey, and .culture (see clause 6.2.1 For an example see
Section 6.2.

This contains informative text only

22. The Assembly table may contain zero or onerow [ERROR]

23. HashAlgld should be one of the specified values [ERROR]

24. Flags may have only those values set that are specified [ERROR]
25. PublicKey may be null or non-null

26. Name shall index a non-null string in the String heap [ERROR]
27. The string indexed by Name can be of unlimited length

28. Culture may be null or non-null

29. If Cultureisnon-null, it shall index a single string from the list specified (see clause 22.1.3)
[ERROR]

Note: Name is asimple name (e.g., “Foo” - no drive letter, no path, no file extension); on POSI X-compliant
systems Name contains no colon, no forward-slash, no backslash, no period.

End informative text

21.3 AssemblyOS : 0x22

The AssemblyOStabl e has the following columns:
. OSPlatformlD (a4 byte constant)

. OSMajorVersion (a 4 byte constant)

. OSMinorVersion (a 4 byte constant)

This record should not be emitted into any PE file. If present in aPE file, it should be treated asif al itsfields
were zero. It should be ignored by the CLI.

abrh W N B

17

- 94 -

21.4 AssemblyProcessor : 0x21
The AssemblyProcessor table has the following column:
. Processor (a4 byte constant)
This record should not be emitted into any PE file. If present in a PE file, it should be treated asif itsfield were
zero. It should beignored by the CLI.
21.5 AssemblyRef : 0x23
The AssemblyRef table has the following columns:
. MagjorVersion, MinorVersion, BuildNumber, RevisionNumber (2 byte constants)
. Flags (a 4 byte bitmask of type AssemblyFlags, clause 22.1.2)

. PublicKeyOrToken (index into Blob heap — the public key or token that identifies the author of
this Assembly)

. Name (index into String heap)
. Culture (index into String heap)
. HashValue (index into Blob heap)

Thetable is defined by the .assembly extern directive (see Section 6.3). Its columns are filled using directives
similar to those of the Assembly table except for the PublicKeyOrToken column which is defined using the
.publickeytoken directive. For an example see Section 6.3.

QW 00 N Ol AW N P

e
N R

e oy
g w

B
~N o

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34

35
36
37

38
39

- 95 -

This contains informative text only

30. MagjorVersion, MinorVersion, BuildNumber, RevisionNumber can each have any value

31. Flags may have only one possible bit set — the PublicK ey bit (see clause 22.1.2). All other bits
shall be zero. [ERROR]

32. PublicKkeyOrToken my be null, or non-null (note that the Flags.PublicK ey bit specifies whether
the 'blob’ is afull public key, or the short hashed token)

33. If non-null, then PublicKeyOrToken shall index avalid offset in the Blob heap [ERROR]
34. Name shall index a non-null string, in the String heap (there is no limit to its length). [ERROR]

35. Culture may be null or non-null. If non-null, it shall index a single string from the list specified
(see clause 22.1.3) [ERROR]

36. HashValue may be null or non-null
37. If non-null, then HashValue shall index a non-empty 'blob’ in the Blob heap [ERROR]

38. The AssemblyRef table shall contain no duplicates, where duplicate rows have the same
MajorVersion, MinorVersion, BuildNumber, RevisionNumber, PublicKeyOr Token, Name and
Culture [WARNING]

Note: Nameis asimple name (e.g., “Foo” - no drive letter, no path, no file extension); on POSI X -compliant
systems Name contains no colon, no forward-slash, no backslash, no period.End informative text

21.6 AssemblyRefOS : 0x25
The AssemblyRefOS table has the following columns:
. OSPlatformld (4 byte constant)
. OSMajorVersion (4 byte constant)
. OSMinorVersion (4 byte constant)
. AssemblyRef (index into the AssemblyRef table)
These records should not be emitted into any PE file. If present in a PE file, they should be treated as-if their
fieldswere zero. They should be ignored by the CLI.
21.7 AssemblyRefProcessor : 0x24
The AssemblyRefProcessor table has the following columns:
. Processor (4 byte constant)
. AssemblyRef (index into the AssemblyRef table)
These records should not be emitted into any PE file. If present in a PE file, they should be treated as-if their
fields were zero. They should be ignored by the CLI.
21.8 ClassLayout : OxOF

The ClassLayout table is used to define how the fields of a class or value type shall belaid out by the CLI
(normally, the CLI isfree to reorder and/or insert gaps between the fields defined for a class or value type).

Rationale: Thisfeatureis used to make a managed value type be laid out in exactly the same way as an
unmanaged C struct —with this condition true, the managed value type can be handed to unmanaged code,
which accesses the fields exactly as if that block of memory had been laid out by unmanaged code.

The information held in the ClassLayout table depends upon the Flags value for { AutoLayout,
SequentialLayout, ExplicitLayout} in the owner class or value type.

wWN P

co~N OOUl b

10
11
12

13

15
16

17
18

19

- 96 -

A type has layout if it is marked Sequential Layout or ExplicitLayout. If any type within an inheritance chain
has layout, then so shall al its parents, up to the one that descends immediately from Syst em bj ect , or from

Syst em Val ueType.

This contains informative text only

Layout cannot begin part way down the chain. But it islega to stop “having layout” at any point down the

chain.

For example, in the diagrams below, Class A derivesfrom Syst em vj ect ; class B derivesfrom A; class C
derivesfrom B. System bj ect hasno layout. But A, B and C are all defined with layout, and that islegal.

Legal

System Object (no layout)

Lagal

!

A (layout)

!

B (layaout)

!

C (layout)

Systermn Object (no layout)

!

E (layout)

!

F {layout)

!

G (no layout)

Similarly with ClassesE, F and G. G hasno layout. Thistooislegal. The following picture shows two

illegal setups:

Ilegal

System Object (no layout)

Negal

!

H (o layolt)

!

| {laouit)

!

J (layout)

Systermn Object (no layout)

!

K (layaut)

!

L (o layout)

!

M (layeit)

On the left, the “ chain with layout” does not start at the ‘highest’ class. And on the right, thereisa‘hol€e’ in the

“chain with layout”

Layout information for aclass or value typeis held in two tables — the ClassLayout and FieldLayout tables, as

shown in this diagram:

Typelef Table

iy Class

FieldLayout Table

‘\ClassLay-:-ut Table

A

Field Table

OO WNER

~

10
11
12
13

14

15

16
17

18
19
20

21

22
23

24
25
26

27
28
29

30

31
32

33

34
35
36

37
38
39

40

41
42

43

-97 -

This example shows how row 3 of the ClassLayout table points to row 2 in the TypeDef table (the definition for
aClass, caled “MyClass’). Rows 4 through 6 of the FieldLayout table point to corresponding rows in the
Field table. Thisillustrates how the CLI storesthe explicit offsets for the three fields that are defined in
“MyClass’ (thereis aways onerow in the FieldLayout table for each field in the owning class or value type)
So, the ClassLayout table acts as an extension to those rows of the TypeDef table that have layout info; since
many classes do not have layout info, this design overall saves space

End informative text

The ClassLayout table has the following columns:
. PackingSize (a 2 byte constant)

. ClassSize (a 4 byte constant)

. Parent (index into TypeDef table)

The rows of the ClassLayout table are defined by placing .pack and .size directives on the body of a parent
type declaration (see Section 9.2). For an example see Section 9.7.

This contains informative text only

39. A ClassLayout table may contain zero or more or rows

40. Parent shall index avalid row in the TypeDef table, corresponding to a Class or ValueType (not
to an Interface) [ERROR]

41. The Class or ValueType indexed by Parent shall not be AutoLayout - i.e., it shall be one of
Sequential Layout or ExplicitLayout. (See clause 22.1.14). Put another way, AutoLayout types
shall not own any rows in the ClassLayout table. [ERROR]

42. If Parent indexes a SequentialLayout type, then: [ERROR]

o} PackingSize shall be one of {0, 1, 2, 4, 8, 16, 32, 64, 128} (0 means use the default pack size
for the platform that the application is running on)

o] if ClassSize is non-zero, then it shall be greater than or equal to the calculated size of the
class, based upon its field sizes and PackingSize (compilers request padding at the end of a
class by providing a value for ClassSize that is larger than its calculated size) [ERROR]

o] a ClassSize of zero does not mean the class has zero size. It means, no size was specified at
definition time. Instead, the actual size is calculated from the field types, taking account of
packing size (default or specified) and natural alignment on the target, runtime platform

o} if Parent indexes a ValueType, then ClassSize shall be less than 1 MByte (0x100000 bytes)

43. Note that ExplicitLayout types might result in verifiable types, so long as that layout does not
create union types.

44. If Parent indexes an ExplicitLayout type, then [ERROR]

0 if ClassSize is non-zero, then it shall be greater than or equal to the calculated size of the
class, based upon the rows it owns in the FieldLayout table (compilers create padding at the
end of aclass by providing avalue for ClassSize that is larger than its calculated size)

o] a ClassSize of zero does not mean the class has zero size. It means, no size was specified at
definition time. Instead, the actual size is calculated from the field types, their specified
offsets, and any beyond-end alignment packing performed by the target platform

o] if Parent indexes a ValueType, then ClassSize shall be less than 1 MByte (0x100000 bytes)

o} PackingSize shall be 0 (because it makes no sense to provide explicit offsets for each field,
as well as a packing size)

45. Layout along the length of an inheritance chain shall follow the rules specified above (starts at
“highest’ Type, with no ‘holes’, etc) [ERROR]

© oO~NOOO1T B~ W DN

10

12
13
14

15
16

17

18

20
21
22

23
24

25
26

27
28
29

30

31
32
33

35
36

37

38
39
40
41

- 08 -

End informative text

21.9 Constant : Ox0B
The Constant table is used to store compile-time, constant values for fields, parameters and properties.
The Constant table has the following columns:

. Type (a1 byte constant, followed by a 1-byte padding zero) : see Clause 22.1.15 . The encoding
of Type for the nullref value for <fieldInit> in ilasm (see Section 15.2) iS ELEMENT_TYPE_CLASS
with a Value of zero. Unlike uses of ELEMENT_TYPE_CLASS in signatures, this one is not followed
by atype token.

. Parent (index into the Param or Field or Property table; more precisely, a HasConst coded index)
. Value (index into Blob heap)

Note that Constant information does not directly influence runtime behavior. Compilersinspect this
information, at compile time, when importing metadata; but the value of the constant itself, if used, becomes
embedded into the CIL stream the compiler emits. There are no CIL instructions to access the Constant table at
runtime.

A row in the Constant table for a parent is created whenever a compile-time value is specified for that parent,
for an example see Section 15.2.

This contains informative text only

46. Type shall be exactly one of: ELEMENT_TYPE_BOOLEAN, ELEMENT_TYPE_CHAR, ELEMENT_TYPE_I1,
ELEMENT_TYPE_U1, ELEMENT_TYPE_|2, ELEMENT_TYPE_U2, ELEMENT_TYPE_| 4,
ELEMENT_TYPE_U4, ELEMENT_TYPE_| 8, ELEMENT_TYPE U8, ELEMENT_TYPE_ R4,

ELEMENT_TYPE_R8, ELEMENT_TYPE_STRI NG, Or ELEMENT_TYPE_CLASS with a Value of zero (See

clause 22.1.15) [ERROR]

47. Type shall not be any of: ELEMENT_TYPE_I 1, ELEMENT_TYPE_U2, ELEMENT_TYPE_U4,
ELEMENT_TYPE_US (See clause 22.1.15) [CLS]

48. Parent shall index avalid row in the Field or Property or Param table [ERROR]
49. There shall be no duplicate rows, based upon Parent [ERROR]

50. Constant.Type must match exactly the declared type of the Param, Field or Property identified by
Parent (in the case where the parent is an enum, it must match exactly the underlying type of that
enum) [CLS]

End informative text

21.10 CustomAttribute : 0x0C
The CustomAttribute table has the following columns:

. Parent (index into any metadata table, except the CustomAttribute table itself; more precisely, a
HasCustomAttribute coded index)

. Type (index into the Method or MethodRef table; more precisely, a CustomAttributeType coded
index)

. Value (index into Blob heap)

The CustomAttribute table stores data that can be used to instantiate a Custom Attribute (more precisely, an
object of the specified Custom Attribute class) at runtime. The column called Typeis slightly misleading — it
actually indexes a constructor method — the owner of that constructor method is the Type of the Custom
Attribute.

N -

QW 00 NO UOh W

L <
A W N P

=
o ol

NN B R R
B O © 0w -

NN
wiN

N DN N N
N o o b~

NN
©

w W
O

w W
W N

W W
[T NN

B W W W
o © o0 N

A
N

- 99 -

A row in the CustomAttribute table for a parent is created by the .custom attribute, which gives the value of
the Type column and optionally that of the Value column (see Chapter 0)

This contains informative text only

All binary values are stored in little-endian format (except PackedLen items - used only as counts for the
number of bytesto follow in a UTF8 string)

51.

52.
53.

54,
55.
56.

57.

58.

59.

It islegal for there to be no CustomAttribute present at all - that is, for the CustomAttribute.Value
field to be null

Parent can be an index into any metadata table, except the CustomAttribute table itself [ERROR]

Type shall index avalid row in the Method or MethodRef table. That row shall be a constructor
method (for the class of which this information forms an instance) [ERROR]

Value may be null or non-null

If Value is non-null, it shall index a'blob' in the Blob heap [ERROR]

The following rules apply to the overall structure of the Value 'blob'(see Section 22.3):
o Prolog shall be 0x0001 [ERROR]

o] There shall be as many occurrences of FixedArg as are declared in the Constructor method
[ERROR]

NumNamed may be zero or more

There shall be exactly NumNamed occurrences of NamedArg [ERROR]

Each NamedArg shall be accessible by the caller [ERROR]

If NumNamed = 0 then there shall be no further items in the CustomAttrib [ERROR]
The following rules apply to the structure of FixedArg (see Section 22.3):

o O O o

o} If thisitem is not for a vector (a single-dimension array with lower bound of 0), then there
shall be exactly one Elem [ERROR]
o] If thisitemis for a vector, then:

o] NumElem shall be 1 or more [ERROR]
o] This shall be followed by NumElem occurrences of Elem [ERROR]
The following rules apply to the structure of Elem (see Section 22.3):

o] If thisis asimple type or an enum (see Section 22.3 for how this is defined), then Elem
consists simply of its value [ERROR]

o] If thisis astring, or a Type, then Elem consists of a Ser String — PackedLen count of bytes,
followed by the UTF8 characters [ERROR]

o} If thisis a boxed simple value type (bool, char, float32, float64, int8, intl6, int32, int64,
unsigned int8, unsigned int16, unsigned int32 or unsigned int64), then Elem consists of the

corresponding type denoter (ELEMENT_TYPE_BOOLEAN, ELEMENT_TYPE_CHAR,
ELEMENT_TYPE |1, ELEMENT TYPE_U1l, ELEMENT TYPE_I2, ELEMENT_TYPE_U2,
ELEMENT_TYPE_| 4, ELEMENT _TYPE_U4, ELEMENT_TYPE_I8, ELEMENT_TYPE_US,

ELEMENT_TYPE_R4, ELEMENT_TYPE_R8), followed by its value. [ERROR]
The following rules apply to the structure of NamedArg (see Section 22.3):
o} The single byte FI ELD (0x53) or PROPERTY (0x54) [ERROR]
o} The type of the field or property -- one of ELEMENT_TYPE_BOOLEAN, ELEMENT_TYPE_CHAR,

ELEMENT_TYPE_ |1, ELEMENT_TYPE_ U1, ELEMENT TYPE_I2, ELEMENT_TYPE_U2,
ELEMENT_TYPE_| 4, ELEMENT_TYPE_U4, ELEMENT_TYPE_I8, ELEMENT_TYPE_US,

g AW NP

10
11
12
13

14
15
16
17

18
19
20
21
22
23
24
25
26
27
28

29
30

31
32

33

35
36
37
38
39

- 100 -

ELEMENT_TYPE_R4, ELEMENT_TYPE_R8, ELEMENT_TYPE_STRI NG or the constant 0x50 (for an
argument of type Syst em Type)

0 The name of the Field or Property, respectively with the previous item, as a SerString —
PackedLen count of bytes, followed by the UTF8 characters of the name [ERROR]

0 A FixedArg (see above) [ERROR]

End informative text

21.11 DeclSecurity : OxOE

Security attributes, which derive from Syst em Securi ty. Per ni ssi ons. Securi tyAttri but e (See Partition V),
can be attached to a TypeDef, a Method or to an Assembly. All constructors of this class shall take a

System Security. Permi ssi ons. SecurityActi on value astheir first parameter, describing what should be
done with the permission on the type, method or assembly to which it is attached. Code access security
attributes, which derive from Syst em Securi ty. Per i ssi ons. CodeAccessSecuri t yAt tri but e, may have any
of the security actions.

These different security actions are encoded in the Decl Security table as a 2-byte enum (see below). All
security custom attributes for a given security action on a method, type or assembly shall be gathered together
and one Syst em Securi ty. Perni ssi onSet instance shall be created, stored in the Blob heap, and referenced
from the Decl Security table.

Note: The general flow from a compiler’s point of view isasfollows. The user specifies a custom attribute
through some language-specific syntax that encodes a call to the attribute’ s constructor. If the attribute’ stypeis
derived (directly or indirectly) from Syst em Securi ty. Per mi ssi ons. Securi tyAttri but e then it is a security
custom attribute and requires special treatment, as follows (other custom attributes are handled by simply
recording the constructor in the metadata as described in Section 21.10). The attribute object is constructed, and
provides amethod (Cr eat ePer ni ssi on) to convert it into a security permission object (an object derived from
Syst em Securi ty. Permi ssi on). All the permission objects attached to a given metadata item with the same
security action are combined together into a Syst em Securi ty. Per ni ssi onSet. Thispermission setis
converted into aform that is ready to be stored in XML using its Toxm. method to create a

System Security. SecurityEl enent. Finaly, the XML that is required for the metadata is created using the
ToSt ri ng method on the security €lement.

The Decl Security table has the following columns:
. Action (2 byte value)

. Parent (index into the TypeDef, Method or Assembly table; more precisely, a HasDecl Security
coded index)

. PermissionSet (index into Blob heap)

Action is a 2-byte representation of Security Actions, see Syst em Security. SecurityAction in Partition 1V.
The values 0 through OxFF are reserved for future standards use. Values 0x20 through 0x7F and 0x100
through 0xO7FF are for uses where the action may be ignored if it is not understood or supported. Values 0x80
through OxFF and 0x0800 through OxFFFF are for uses where the action shall be implemented for secure
operation; in implementations where the action is not available no access to the assembly, type, or method shall
be permitted.

Security Action Note Explanation of behavior Legal Scope

Assert 1 Without further checks satisfy Demand for Method, Type
specified permission

Demand 1 Check all callersin the call chain have been Method, Type

granted specified permission, throw
Securi t yExcepti on (See Partition V) on failure

Deny 1 Without further checks refuse Demand for Method, Type

onnnifiad navrmicesiAan

O NO Ooh WNE

PR
N RO

13

14

15
16

17
18
19

20

21
22

23
24
25

26

- 101 -

specified permission

InheritanceDemand 1 Specified permission shall be granted in order to Method, Type

inherit from class or override virtua method.

LinkDemand 1 Check immediate caller has been granted Method, Type

specified permission, throw Securi t yExcept i on
(see Partition 1V) on failure

PermitOnly 1 Without further checks refuse Demand for all Method, Type
permissions other than those specified.

RequestMinimum Specify minimum permissions required to run Assembly

RequestOptional Specify optional permissionsto grant Assembly

RequestRefuse Specify permissions not to be granted Assembly

NonCasDemand 2 Check that current assembly has been granted Method, Type

specified permission, throw Securi t yExcept i on
(see Partition 1V) otherwise

NonCasLinkDemand | 2 Check that immediate caller has been granted Method, Type

specified permission, throw Securi t yExcept i on
(see Partition 1V) otherwise

PreitGrant Reserved for implementation-specific use Assembly

Note 1. Specified attribute shall derive from Syst em Securi ty. Per ni ssi ons. CodeAccess-
SecurityAttribute

Note 2: Attribute shall derive from Syst em Security. Perni ssi ons. Securi tyAttribute, but shal not derive
from Syst em Security. Perni ssi ons. CodeAccessSecurityAttribute

Parent is a Meta Data token that identifies the Method, Type or Assembly on which security custom attributes
serialized in PermissionSet was defined.

PermissionSet isa 'blob' that contains the XML serialization of apermission set. The permission set contains
the permissions that were requested with an Action on a specific Method, Type or Assembly (see Parent).

The rows of the Decl Security table are filled by attaching a.per mission or .per missionset directive that
specifies the Action and PermissionSet on a parent assembly (see Section 6.6) or parent type or method (see
Section 9.2).

This contains informative text only

60.
61.

62.

63.

64.

65.
66.

Action may have only those values set that are specified [ERROR]

Parent shall be one of TypeDef, MethodDef, or Assembly. That is, it shall index avalid row in
the TypeDef table, the MethodDef table, or the Assembly table [ERROR]

If Parent indexes arow in the TypeDef table, that row should not define an Interface. The
security system ignores any such parent; compilers should not emit such permissions sets
[WARNING]

If Parent indexes a TypeDef, then its TypeDef.Flags.HasSecurity bit should be set [ERROR]

If Parent indexes a MethodDef, then its MethodDef.Flags.HasSecurity bit should be set
[ERROR]

PermissionSet should index a 'blob' in the Blob heap [ERROR]

The format of the 'blob' indexed by PermissionSet should represent avalid, serialized CLI object
graph. The serialized form of all standardized permissions is specified in Partition IV. [ERROR]

End informative text

QW Oo~N O O~ W N P

12

13
14

15
16

17

18

19
20
21

22
23

24
25

26
27
28
29
30
31

- 102 -

21.12 EventMap : 0x12
The EventMap table has the following columns:
. Parent (index into the TypeDef table)

. EventList (index into Event table). It marks the first of a contiguous run of Events owned by this
Type. The run continues to the smaller of:

0] the last row of the Event table

0 the next run of Events, found by inspecting the EventList of the next row in the EventMap
table

Note that EventMap info does not directly influence runtime behavior; what countsis the info stored for each
method that the event comprises.

This contains informative text only

67. EventMap table may contain zero or more rows

68. There shall be no duplicate rows, based upon Parent (a given class has only one ‘pointer’ to the
start of its event list) [ERROR]

69. There shall be no duplicate rows, based upon EventList (different classes cannot share rows in the
Event table) [ERROR]

End informative text

21.13 Event : 0x14

Events are treated within metadata much like Properties — a way to associate a collection of methods defined on
given class. There are two required methods—add_and remove , plus optional raise _and others. All of the
methods gathered together as an Event shall be defined on the class.

The association between arow in the TypeDef table and the collection of methods that make up a given Event,
is held in three separate tables (exactly analogous to that used for Properties) — see the below:

TypeDef Table

MyClass Evertiap Table

add_DocChanged Event Tabie

remove_DocChanged MethodSematics Table
add_TimedOut \

remove_TimedOut

DacChanged
TimedOut

Row 3 of the EventMap table indexes row 2 of the TypeDef table on the left (MyClass), whilst indexing row 4
of the Event table on the right — the row for an Event called DocChanged. This setup establishes that MyClass
has an Event called DocChanged. But what methods in the Method table are gathered together as ‘ belonging’
to event DocChanged? That association is contained in the MethodSemantics table — its row 2 indexes event
DocChanged to the right, and row 2 in the Method table to the left (a method called add DocChanged). Also,
row 3 of the MethodSemantics table indexes DocChanged to the right, and row 3 in the Method table to the left

0 N o0ur~hwWw NP

11

12
13

14

15

16
17
18
19
20
21

22
23

24
25

26
27

28
29

30
31

32
33

34

35

36
37
38

39
40
41
42

- 103 -

(amethod called remove_DocChanged). As the shading suggests, MyClass has another event, called
TimedOut, with two methods, add_TimedOut and remove_TimedOut.

Event tables do alittle more than group together existing rows from other tables. The Event table has columns
for EventFlags, Name (eg DocChanged and TimedOut in the example here) and EventType. In addition, the
MethodSemanti cs table has a column to record whether the method it pointsat isan add _, aremove , araise
or other.

The Event table has the following columns;
. EventFlags (a 2 byte bitmask of type EventAttribute, clause 22.1.4)
. Name (index into String heap)

. EventType (index into TypeDef, TypeRef or TypeSpec tables, more precisely, a TypeDefOr Ref
coded index) [this corresponds to the Type of the Event; it is not the Type that owns this event]

Note that Event information does not directly influence runtime behavior; what countsis the information stored
for each method that the event comprises.

The EventMap and Event tables result from putting the .event directive on a class (see Chapter 17).

This contains informative text only

70. The Event table may contain zero or more rows

71. Each row shall have one, and only one, owner row in the EventMap table [ERROR]

72. EventFlags may have only those values set that are specified (all combinations valid) [ERROR]
73. Name shall index a non-null string in the String heap [ERROR]

74. The Name string shall be avalid CLS identifier [CLS]

75. EventType may be null or non-null

76. If EventTypeis non-null, then it shall index avalid row in the TypeDef or TypeRef table
[ERROR]

77. If EventTypeis non-null, then the row in TypeDef , TypeRef, or TypeSpec table that it indexes
shall be a Class (not an Interface; not a ValueType) [ERROR]

78. For each row, there shall be one add_ and one remove_ row in the MethodSemantics table
[ERROR]

79. For each row, there can be zero or one raise_row, as well as zero or more other rows in the
MethodSemantics table [ERROR]

80. Within the rows owned by a given row in the TypeDef table, there shall be no duplicates based
upon Name [ERROR]

81. There shall be no duplicate rows based upon Name, where Name fields are compared using CLS
conflicting-identifier-rules [CLS]

End informative text

21.14 ExportedType : 0x27

The ExportedType table holds arow for each type, defined within other modules of this Assembly, that is
exported out of this Assembly. In essence, it stores TypeDef row numbers of all types that are marked public in
other modulesthat this Assembly comprises.

The actual target row in a TypeDef table is given by the combination of TypeDefld (in effect, row number) and
Implementation (in effect, the module that holds the target TypeDef table). Note that thisisthe only occurrence
in metadata of foreign tokens — that is token values that have a meaning in another module. (Regular token
values are indexes into table in the current module)

QOoo~N O Ul hAWNBE

A =
N R

=
AW

S
N~ o o

18

19
20

21

22
23

24

25
26

27
28

29
30
31

32
33

35

36
37

38
39

40
41

- 104 -

The full name of the type need not be stored directly. Instead, it may be split into two parts at any included “.”
(although typically this done at the last “.” in the full name). The part preceding the“.” is stored asthe
TypeNamespace and that following the “.” is stored asthe TypeName. If thereisno “.” in the full name, then
the TypeNamespace shall be the index of the empty string.

The ExportedType table has the following columns:

Flags (a 4 byte bitmask of type TypeAttributes, clause 22.1.14)

TypeDefld (4 byte index into a TypeDef table of another module in this Assembly). Thisfieldis
used as a hint only. If the entry in the target TypeDef table matches the TypeName and
TypeNamespace entries in this table, resolution has succeeded. But if there is a mismatch, the
CLI shall fall back to a search of the target TypeDef table

TypeName (index into the String heap)
TypeNamespace (index into the String heap)

Implementation. This can be an index (more precisely, an Implementation coded index) into one
of 2 tables, as follows:

0 File table, where that entry says which module in the current assembly holds the TypeDef

0 ExportedType table, where that entry is the enclosing Type of the current nested Type

The rows in the ExportedType table are the result of the .class extern directive (see Section 6.7).

This contains informative text only

The term “FullName” refers to the string created as follows: if the TypeNamespace is null, then use the

TypeName, otherwise use the concatenation of Typenamespace, “.” , and TypeName.

82. The ExportedType table may contain zero or more rows

83. There shall be no entries in the ExportedType table for Types that are defined in the current
module - just for Types defined in other modules within the Assembly [ERROR]

84. Flags may have only those values set that are specified [ERROR]

85. If Implementation indexes the File table, then Flags.VisibilityMask shall be publ i ¢ (see
clause 22.1.14) [ERROR]

86. If Implementation indexes the ExportedType table, then Flags.VisibilityMask shall be
Nest edPubl i ¢ (See see clause 22.1.14) [ERROR]

87. If non-null, TypeDefld should index avalid row in a TypeDef table in a module somewhere within
this Assembly (but not this module), and the row so indexed should have its Flags.Public = 1
(see seeclause 22.1.14) [WARNING]

88. TypeName shall index a non-null string in the String heap [ERROR]

89. TypeNamespace may be null, or non-null

90. If TypeNamespace is non-null, then it shall index a non-null string in the String heap [ERROR]

91. FullName shall be avalid CLS identifier [CLY]

92. If thisis anested Type, then TypeNamespace should be null, and TypeName should represent the
unmangled, simple name of the nested Type [ERROR]

93. Implementation shall be avalid index into either: [ERROR]

. the File table; that file shall hold a definition of the target Type in its TypeDef table

. a different row in the current ExportedType table - this identifies the enclosing Type of the
current, nested Type

QOWOoO~NO Ok W NP

=

=
=

12
13
14
15
16

17
18
19
20

21

22
23
24
25
26
27
28

29
30

31

32
33
34
35

36
37

- 105 -

94. FullName shall match exactly the corresponding FullName for the row in the TypeDef table
indexed by TypeDefld [ERROR]

95. Ignoring nested Types, there shall be no duplicate rows, based upon FullName [ERROR]

96. For nested Types, there shall be no duplicate rows, based upon TypeName and enclosing Type
[ERROR]

97. The complete list of Types exported from the current Assembly is given as the catenation of the
ExportedType table with all public Typesin the current TypeDef table, where “public” means a
Flags.tdVisibilityMask of either Public or NestedPublic. There shall be no duplicate rows, in this
concatenated table, based upon FullName (add Enclosing Type into the duplicates check if thisis
anested Type) [ERROR]

End informative text

21.15 Field : 0x04
The Field table has the following columns:
. Flags (a 2 byte bitmask of type FieldAttributes, clause 22.1.5)
. Name (index into String heap)
. Signature (index into Blob heap)

Conceptually, each row in the Field table is owned by one, and only one, row in the TypeDef table. However,
the owner of any row in the Field table is not stored anywherein the Field table itself. Thereismerely a
‘forward-pointer’ from each row in the TypeDef table (the FieldList column), as shown in the following
illustration.

TypeDef Table
Field Table

T§

FieldList Column

The TypeDef table has rows 1 through 4. The first row in the TypeDef table corresponds to a pseudo type,
inserted automatically by the CLI. It isused to denote those rows in the Field table corresponding to global
variables. The Field table hasrows 1 through 6. Type 1 (pseudo type for ‘module’) ownsrows 1 and 2 in the
Field table. Type 2 ownsno rowsin the Field table, even though its FieldList indexes row 3 in the Field table.
Type 3 owns rows 3 through 5 in the Field table. Type 4 ownsrow 6 in the Field table. (The next pointersin
the diagram show the next free row in each table) So, in the Field table, rows 1 and 2 belong to Type 1 (global
variables); rows 3 through 5 belong to Type 3; row 6 belongsto Type 4.

Each row in the Field table results from atoplevel .field directive (see Section 5.10), or a .field directive inside
aType (see Section 9.2). For an example see Section 0.

This contains informative text only

98. Field table may contain zero or more rows

99. Each row shall have one, and only one, owner row in the TypeDef table [ERROR]
100. The owner row in the TypeDef table shall not be an Interface [CLS]

101. Flags may have only those set that are specified [ERROR]

102. The FieldAccessMask subfield of Flags shall contain precisely one of Conpi |l ercontrol | ed,
Privat e, FamANDAssem Assembl y, Fani | y, FamORAssem, Of Publ i ¢ (see clause 22.1.5) [ERROR]

QO O~N OO0l AW N B

[S S
w N P

[N
[N

=
~N o

[E=Y
(o]

N =
o ©

N
[y

NN NN
[62 B VRN N}

NDNNN
©o0o~NO®»

wwwwwgwwww
© 0 N O O w N +» O

N
o

103.
104.
105.

106.

107.

108.

109.
110.
111.
112.

113.

114.

115.

116.

117.

- 106 -

Flagsmay set O or 1 of Literal or Initonly (not both) (see clause 22.1.5) [ERROR]
If Flags.Literal = 1 then Flags.Static shall be 1 too (see clause 22.1.5) [ERROR]

If Flags.RTSpecialName = 1, then Flags.SpecialName shall also be 1 (see clause 22.1.5)
[ERROR]

If Flags.HasFieldMarshal = 1, then this row shall ‘own’ exactly one row in the FieldMarshal
table (seeclause 22.1.5) [ERROR]

If Flags.HasDefault = 1, then this row shall ‘own’ exactly one row in the Constant table (see
clause 22.1.5) [ERROR]

If Flags.HasFieldRVA = 1, then this row shall ‘own’ exactly one row in the Field’s RVA table
(see clause 22.1.5) [ERROR]

Name shall index a non-null string in the String heap [ERROR]
The Name string shall be avalid CLS identifier [CLS]
Signature shall index avalid field signature in the Blob heap [ERROR]

If Flags.Compilercontrolled = 1 (see clause 22.1.5), then this row isignored completely in
duplicate checking.

If the owner of thisfield is the internally-generated type called <Module>, it denotes that this
field is defined at module scope (commonly called a global variable). In this case:

o} Flags.Static shall be 1 [ERROR]

0 Flags.Member AccessMask subfield shall be one of Publ i ¢, Conpi | ercontrol | ed, Or
Private (seeclause22.1.5) [ERROR]

0 module-scope fields are not allowed [CLS]

There shall be no duplicate rows in the Field table, based upon owner+Name+ Signature (where
owner is the owning row in the TypeDef table, as described above) (Note however that if
Flags.Compilercontrolled = 1, then this row is completely excluded from duplicate checking)
[ERROR]

There shall be no duplicate rows in the Field table, based upon owner+Name, where Name fields
are compared using CLS conflicting-identifier-rules. So, for example,”int i* and"float i"
would be considered CLS duplicates. (Note however that if Flags.Compilercontrolled = 1, then
this row is completely excluded from duplicate checking, as noted above) [CLS]

If thisisafield of an Enum, and Name string = "value__" then:
b. RTspecial Name shall be 1 [ERROR]
owner row in TypeDef table shall derive directly from Syst em Enum [ERROR]
the owner row in TypeDef table shall have no other instance fields [CLS]
its Signature shall be one of (seeclause 22.1.15): [CLS]
. ELEMENT_TYPE_UL
. ELEMENT_TYPE | 2
. ELEMENT_TYPE | 4
. ELEMENT_TYPE | 8

its Signature shall be an integral type.

End informative text

19

20

21
22

23
24

25
26

27
28

29

30
31

32
33
34

35
36
37
38

39
40

41

- 107 -

21.16 FieldLayout : 0x10
The FieldLayout table has the following columns:

Offset (a 4 byte constant)
Field (index into the Field table)

Note that each Field in any Typeis defined by its Signature. When a Type instance (ie, an object) islaid out by
the CLI, each Field is one of three kinds:

Scalar — for any member of built-in, such asint32. The size of the field is given by the size of
that intrinsic, which varies between 1 and 8 bytes

ObjectRef —for CLASS, STRI NG, OBJECT, ARRAY, SZARRAY
Pointer — for PTR, FNPTR

ValueType — for VALUETYPE. The instance of that ValueType is actually laid out in this object, so
the size of the field is the size of that ValueType

(Thislists above use an abbreviation — each all-caps name should be prefixed by ELEMVENT_TYPE_ so, for
example, STRI NGis actually ELEMENT_TYPE_STRI NG. See clause 22.1.15)

Note that metadata specifying explicit structure layout may be valid for use on one platform but not another,
since some of the rules specified here are dependent on platform-specific alignment rules.

A row in the FieldLayout tableis created if the .field directive for the parent field has specified afield offset
(see Section 9.7).

This contains informative text only

118.
119.

120.
121.
122.

123.

124,
125.

126.

127.

128.

A FieldLayout table may contain zero or more or rows

The Type whose Fields are described by each row of the FieldLayout table shall have
Flags.ExplicitLayout (see clause 22.1.14) set [ERROR]

Offset shall be zero or more (cannot be negative) [ERROR]
Field shall index avalid row in the Field table [ERROR]

Therow in the Field table indexed by Field shall be non-static (ie its Flags.Satic shall be 0)
[ERROR]

Among the rows owned by a given Type there shall be no duplicates, based upon Field. Thatis,
agiven Field of a Type cannot be given two offsets. [ERROR]

Each Field of kind ObjectRef shall be naturally aligned within the Type [ERROR]

No Field of kind ObjectRef may overlap any other Field no matter what its kind, wholly or
partially [ERROR]

Among the rows owned by a given Typeit is perfectly legal for several rows to have the same
value of Offset, so long as they are not of type ObjectRef (used to define C unions, for example)
[ERROR]

If ClassSize in the owner ClassLayout row is non-zero, then no Field may extend beyond that
ClassSize (ie, the Field Offset value plus the Field’s calculated size shall not exceed ClassSize)
(note that it islegal, and common, for ClassSize to be supplied as larger than the calculated
object size - the CLI1 pads the object with trailing bytes up to the ClassSize value) [ERROR]

Every Field of an ExplicitLayout Type shall be given an offset - that is, it shall have arow in the
FieldLayout table [ERROR]

End informative text

© O~NOUT ~AWN P

I
N P O

(RN
A~ W

15

16

17
18

19

20
21
22

23
24

25
26

27
28

29
30

31
32

33

35
36

37
38
39

40
41
42

- 108 -

21.17 FieldMarshal : 0x0D

The FieldMarshal table has two columns. It ‘links an existing row in the Field or Param table, to information
in the Blob heap that defines how that field or parameter (which, as usual, covers the method return, as
parameter number 0) should be marshalled when calling to or from unmanaged code via Plnvoke dispatch.

Note that FieldMarshal information is used only by code paths that arbitrate operation with unmanaged code.
In order to execute such paths, the caller, on most platforms, would be installed with elevated security
permission. Once it invokes unmanaged code, it lies outside the regime that the CLI can check - it issimply
trusted not to violate the type system.

The FieldMarshal table has the following columns:

. Parent (index into Field or Param table; more precisely, a HasFieldMarshal coded index)
. NativeType (index into the Blob heap)

For the detailed format of the 'blob’, see Section 0

A row in the FieldMarshal table is created if the .field directive for the parent field has specified a.mar shall
attribute (see Section 15.1).

This contains informative text only

129. A FieldMarshal table may contain zero or more rows

130. Parent shall index avalid row in the Field or Param table (Parent values are encoded to say
which of these two tables each refers to) [ERROR]

131. NativeType shall index a non-null 'blob’ in the Blob heap [ERROR]

132. No two rows can point to the same parent. In other words, after the Parent values have been
decoded to determine whether they refer to the Field or the Param table, no two rows can point to
the same row in the Field table or in the Param table [ERROR]

133. The following checks apply to the Marshal Spec 'blob’ (see Section 0):
C. Nativelntrinsic shall be exactly one of the constant valuesin its production [ERROR]

If Nativelntrinsic has the value BYVALSTR, then Parent shall point to arow in the Field table, not
the Param table [ERROR]

If FI XEDARRAY, then Parent shall point to a row in the Field table, not the Param table [ERROR]
If FI XEDARRAY, then NumElem shall be 1 or more [ERROR]

If FI XEDARRAY, then ArrayElemType shall be exactly one of the constant values in its production
[ERROR]

If ARRAY, then ArrayElemType shall be exactly one of the constant values in its production
[ERROR]

If ARRAY, then ParamNum may be zero
If ARRAY, then ParamNum cannot be < 0 [ERROR]

If ARRAY, and ParamNum > 0, then Parent shall point to arow in the Param table, not in the Field
table [ERROR]

If ARRAY, and ParamNum > 0, then ParamNum cannot exceed the number of parameters supplied
to the MethodDef (or MethodRef if a VARARG call) of which the parent Param is a member
[ERROR]

If ARRAY, then ElemMult shall be >= 1 [ERROR]
If ARRAY and ElemMult <> 1 issue awarning, because it is probably a mistake [WARNING]
If ARRAY and ParamNum == 0, then NumElem shall be >= 1 [ERROR]

24

25
26
27
28
29
30

31

32

33
34

35
36

37
38

- 109 -

If ARRAY and ParamNum = 0 and NumElem != 0 then issue a warning, because it is probably a
mistake [WARNING]

End informative text ‘

21.18 FieldRVA : 0x1D
The FieldRVA table has the following columns:
. RVA (a 4 byte constant)
. Field (index into Field table)

Conceptually, each row in the FieldRVA table is an extension to exactly one row in the Field table, and records
the RVA (Rédative Virtual Address) within the image file at which thisfield’sinitial valueis stored.

A row in the FieldRVA tableis created for each static parent field that has specified the optional data label (see
Chapter 0). The RVA column isthe relative virtual address of the data in the PE file (see Section 15.3).

This contains informative text only

134. RVA shall be non-zero [ERROR]
135. RVA shall point into the current module’ s data area (not its metadata area) [ERROR]
136. Field shall index avalid table in the Field table [ERROR]

137. Any field with an RVA shall be aValueType (not a Class, and not an Interface). Moreover, it
shall not have any private fields (and likewise for any of its fields that are themselves
ValueTypes). (If any of these conditions were breached, code could overlay that global static and
access its private fields.) Moreover, no fields of that ValueType can be Object References (into
the GC heap) [ERROR]

138. So long as two RV A-based fields comply with the previous conditions, the ranges of memory
spanned by the two ValueTypes may overlap, with no further constraints. Thisis not actually an
additional rule; it simply clarifies the position with regard to overlapped RV A-based fields

End informative text

21.19 File: 0x26
The File table has the following columns:
. Flags (a 4 byte bitmask of type FileAttributes, clause 22.1.6)
. Name (index into String heap)
. HashValue (index into Blob heap)

Therows of the File table result from .file directivesin an Assembly (see clause 6.2.3)

This contains informative text only

139. Flags may have only those values set that are specified (all combinations valid) [ERROR]

140. Name shall index a non-null string in the String heap. It shall be in the format
<filename>.<extension> (eg “foo.dll”, but not “c:\utils\foo.dll”) [ERROR]

141. HashValue shall index a non-empty 'blob' in the Blob heap [ERROR]
142. There shall be no duplicate rows - rows with the same Name value [ERROR]

143. If this module contains arow in the Assembly table (that is, if this module “holds the manifest”)
then there shall not be any row in the File table for this module - i.e., no self-reference [ERROR]

[

25

26
27
28

29
30
31

32
33

35

36

37

38
39

- 110 -

144. If the File table is empty, then this, by definition, is a single-file assembly. In this case, the
ExportedType table should be empty [WARNING]

End informative text

21.20 ImplMap : 0x1C

The ImplMayp table holds information about unmanaged methods that can be reached from managed code,
using PInvoke dispatch.

Each row of the ImplMap table associates arow in the Method table (Member Forwar ded) with the name of a
routine (ImportName) in some unmanaged DLL (ImportScope).

Note: A typical example would be: associate the managed Method stored in row N of the Method table (so
Member Forwarded would have the value N) with the routine called “ GetEnvironmentVariable” (the string
indexed by ImportName) inthe DLL called “kernel32" (the string in the Modul eRef table indexed by
ImportScope). The CLI intercepts calls to managed Method number N, and instead forwards them as calls to
the unmanged routine called “ GetEnvironmentVariable” in “kernel32.dIl” (including marshalling any
arguments, as required)

The CLI does not support this mechanism to access fields that are exported fromaDLL -- only methods.

The ImplMap table has the following columns:
. MappingFlags (a 2 byte bitmask of type PInvokeAttributes, clause 22.1.7)

. Member Forwarded (index into the Field or Method table; more precisely, a Member Forwarded
coded index. However, it only ever indexes the Method table, since Field export is not supported.

. ImportName (index into the String heap)
. ImportScope (index into the Modul eRef table)

A row is entered in the ImplMap table for each parent Method (see Section 14.5) that is defined with a
.pinvokeimpl interoperation attribute specifying the MappingFlags, ImportName and |mportScope. For an
example see Section 14.5.

This contains informative text only

145. ImplMap may contain zero or more rows
146. MappingFlags may have only those values set that are specified [ERROR]
147. MemberForwarded shall index avalid row in the Method table [ERROR]

148. The MappingFlags.Char SetMask (see clause 22.1.7) in the row of the Method table indexed by
Member Forwarded shall have at most one of the following bits set: Char Set Ansi ,
Char Set Uni code, Or Char Set Aut o} (if none set, the default is Char Set Not Spec) [ERROR]

149. ImportName shall index a non-null string in the String heap [ERROR]
150. ImportScope shall index a valid row in the ModuleRef table [ERROR]

151. Therow indexed in the Method table by Member Forwarded shall have its Flags.Pinvokelmpl = 1,
and Flags.Static = 1 [ERROR]

End informative text

21.21 Interfacelmpl : 0x09
The Interfacelmpl table has the following columns:

. Class (index into the TypeDef table)

AW NP

© 00 N O O

10

12

13
14

15
16
17

18

19
20
21
22
23

24
25

26
27
28

29

30

31
32

33

34
35

36
37

38
39

- 111 -

Interface (index into the TypeDef, TypeRef or TypeSpec table; more precisely, a TypeDefOr Ref
coded index)

The Interfacelmpl table records which interfaces a Type implements. Conceptually, each row in the
Interfacelmpl table says that Class implements Interface.

This contains informative text only

152.
153.
154.

155.

156.
157.

The Interfacelmpl table may contain zero or more rows

Class shall be non-null [ERROR]

If Class is non-null, then:

d. Classshall index avalid row in the TypeDef table [ERROR]
Interface shall index avalid row in the TypeDef or TypeRef table [ERROR]

The row in the TypeDef, TypeRef or TypeSpec table indexed by Interface shall be an interface
(Flags.Interface = 1), not a Class or ValueType [ERROR]

There should be no duplicates in the Interfacel mpl table, based upon non-null- Class and
Interface values [WARNING]

There can be many rows with the same value for Class (a class can implement many interfaces)

There can be many rows with the same value for Interface (many classes can implement the same
interface)

End informative text

21.22 ManifestResource : 0x28

The ManifestResour ce table has the following columns:

Offset (a4 byte constant)
Flags (a 4 byte bitmask of type ManifestResour ceAttributes, clause 22.1.8)
Name (index into the String heap)

Implementation (index into File table, or AssemblyRef table, or null; more precisely, an
I mplementation coded index)

The Offset specifies the byte offset within the referenced file at which this resource record begins. The
I mplementation specifies which file holds this resource. The rows in the table result from .mresour ce
directives on the Assembly (see clause 6.2.2).

This contains informative text only

158.
159.

160.
161.

162.
163.
164.

The ManifestResource table may contain zero or more rows

Offset shall be avalid offset into the target file, starting from the Resource entry in the COR
header [ERROR]

Flags may have only those values set that are specified [ERROR]

The VisibilityMask (see clause 22.1.8) subfield of Flags shall be one of Public or Private
[ERROR]

Name shall index a non-null string in the String heap [ERROR]
Implementation may be null or non-null (if null, it means the resource is stored in the current file)

If Implementation is null, then Offset shall be avalid offset in the current file, starting from the
Resource entry in the CLI header [ERROR]

A W NP

)]

16

17

18
19
20

21
22

23
24
25

26

27
28

29
30

31
32

33

35

36
37

38

39
40

-112 -

165. If Implementation is non-null, then it shall index a valid row in the File or AssemblyRef table
[ERROR]

166. There shall be no duplicate rows, based upon Name [ERROR]
167. If theresourceis an index into the File table, Offset shall be zero [ERROR]

End informative text

21.23 MemberRef : Ox0A

The Member Ref table combines two sorts of references —to Fields and to Methods of a class, known as
‘MethodRef’ and ‘FieldRef’, respectively. The Member Ref table has the following columns:

. Class (index into the TypeRef, ModuleRef, Method, TypeSpec or TypeDef tables; more precisely, a
Member RefParent coded index)

. Name (index into String heap)
. Signature (index into Blob heap)

An entry is made into the Member Ref table whenever areference is made, in the CIL code, to a method
or field which is defined in another module or assembly. (Also, an entry is made for a call to a method
with a VARARG signature, even when it is defined in the same module as the callsite)

This contains informative text only

168. Class shall be one of ... [ERROR]

e. aTypeRef token, if the class that defines the member is defined in another module. (Note:
it isunusual, but legal, to use a TypeRef token when the member is defined in this same
module - its TypeDef token can be used instead)

a ModuleRef token, if the member is defined, in another module of the same assembly, as a global
function or variable

a MethodDef token, when used to supply a call-site signature for a varargs method that is defined
in this module. The Name shall match the Name in the corresponding MethodDef row. The
Signature shall match the Signature in the target method definition [ERROR]

a TypeSpec token, if the member is a member of a constructed type

169. Class shall not be null (this would indicate an unresolved reference to a global function or
variable) [ERROR]

170. Name shall index a non-null string in the String heap [ERROR]
171. The Name string shall be avalid CLS identifier [CLY]

172. Signature shall index avalid field or method signature in the Blob heap. In particular, it shall
embed exactly one of the following ‘calling conventions': [ERROR]

f. DEFAULT (0x0)
VARARG (0x5)
FI ELD (0Ox6)

173. The Member Ref table shall contain no duplicates, where duplicate rows have the same Class,
Name and Signature [WARNING]

174. Signature shall not have the VARARG (0x5) calling convention [CLS]

175. There shall be no duplicate rows, where Name fields are compared using CL S conflicting-
identifier-rules [CLS]

O NO O~ wWNER

=Y
o

11
12
13
14
15
16
17

18
19

20

21
22

23

24
25
26

27

28
29
30
31

32
33

34

35
36
37
38
39
40

- 113 -

176. There shall be no duplicate rows, where Name fields are compared using CL S conflicting-
identifier-rules. (note, particular, that the return type, and whether parameters are marked
ELEMENT_TYPE_BYREF (see clause 22.1.15) are ignored in the CLS. For example, int foo() and
doubl e foo() resultin duplicate rows by CLS rules. Similarly, void bar(int i) andvoid
bar (int& i) also result in duplicate rows by CLS rules) [CLS]

177. If Class and Name resolve to afield, then that field shall not have a value of Conpi | ercontrol | ed
(see clause 22.1.5) in its Flags.FieldAccessMask subfield [ERROR]

178. If Class and Name resolve to a method, then that method shall not have a value of he
Conpi | ercontrol | ed initsFlags.MemberAccessMask (see clause 22.1.9) subfield [ERROR]

End informative text

21.24 Method : 0x06
The Method table has the following columns;
. RVA (a 4 byte constant)
. ImplFlags (a 2 byte bitmask of type Methodl mplAttributes, clause 22.1.9)
. Flags (a 2 byte bitmask of type MethodAttribute, clause 22.1.9)
. Name (index into String heap)
. Signature (index into Blob heap)

. ParamList (index into Param table). It marks the first of a contiguous run of Parameters owned
by this method. The run continues to the smaller of:

o] the last row of the Param table

o] the next run of Parameters, found by inspecting the ParamList of the next row in the
Method table

Conceptually, every row in the Method table is owned by one, and only one, row in the TypeDef table.

Therows in the Method table result from .method directives (see Chapter 14). The RVA column is computed
when the image for the PE file is emitted and points to the cor_I LMETHOD structure for the body of the method

(see Chapter 24.4)

This contains informative text only

179. The Method table may contain zero or more rows

180. Each row shall have one, and only one, owner row in the TypeDef table [ERROR]
181. ImplFlags may have only those values set that are specified [ERROR]

182. Flags may have only those values set that are specified [ERROR]

183. The Member AccessMask (see clause 22.1.9) subfield of Flags shall contain precisely one of
Conpi | ercontrol |l ed, Private, FamANDAssem Assem Fanmi | y, FamORAssem, Of Publ i ¢ [ERROR]

184. The following combined bit settingsin Flags areillegal [ERROR]

g. Static | Final

Static | Virtual

Static | NewSl ot

Fi nal | Abstract
Abstract | Pinvokel npl

Conpi l ercontrolled | Virtual

0 N O O~ W NP

185.

186.
187.

188.

189.

190.

191.
192.

193.

194.

195.
196.
197.

198.

199.

200.

- 114 -

Conpi |l ercontrol l ed | Final
Conpi |l ercontrol |l ed | Speci al Name
Conpi l ercontroll ed | RTSpeci al Name

An abstract method shall be virtual. So: if Flags.Abstract = 1 then Flags.Virtual shall also be 1
[ERROR]

If Flags.RTSpecialName = 1 then Flags.SpecialName shall also be 1 [ERROR]

If Flags.HasSecurity = 1, then at least one of the following conditions shall be true: [ERROR]
0 this Method owns at least row in the Decl Security table

0 this Method has a custom attribute called SuppressUnmanagedCodeSecurityAttribute

If this Method owns one (or more) rows in the DeclSecurity table then Flags.HasSecurity shall be
1 [ERROR]

If this Method has a custom attribute called SuppressUnmanagedCodeSecurityAttribute then
Flags.HasSecurity shall be 1 [ERROR]

A Method may have a custom attribute called DynamicSecurityMethodAttribute - but this has no
effect whatsoever upon the value of its Flags.HasSecurity

Name shall index a nhon-null string in the String heap [ERROR]

Interfaces cannot have instance constructors. So, if this Method is owned by an Interface, then its
Name cannot be .ctor [ERROR]

Interfaces can only own virtual methods (not static or instance methods). So, if this Method is
owned by an Interface, Flags.Static shall be clear [ERROR]

The Name string shall be avalid CLS identifier (unless Flags.RTSpecialName is set - for
example, .cctor islegal) [CLS]

Signature shall index a valid method signature in the Blob heap [ERROR]
If Flags.Compilercontrolled = 1, then this row isignored completely in duplicate checking

If the owner of this method is the internally-generated type called <Module>, it denotes that this
method is defined at module scope. (In C++, the method is called global and can be referenced
only within its compiland, from its point of declaration forwards.) In this case:

h. Flags.Satic shall be 1 [ERROR]
Flags.Abstract shall be 0 [ERROR]
Flags.Virtual shall be 0 [ERROR]

Flags.Member AccessMask subfield shall be one of Conpi | ercontrolled, Public, OF Private
[ERROR]

module-scope methods are not allowed [CLS]

It makes no sense for ValueTypes, which have no identity, to have synchronized methods (unless
they are boxed). So, if the owner of this method is a ValueType then the method cannot be
synchronized. i.e. ImplFlags.Synchronized shall be 0 [ERROR]

There shall be no duplicate rows in the Method table, based upon owner+Name+ Signature (where
owner is the owning row in the TypeDef table). (Note however that if Flags.Compilercontrolled
=1, then thisrow is completely excluded from duplicate checking) [ERROR]

There shall be no duplicate rows in the Method table, based upon owner+Name+ Signature, where
Name fields are compared using CL S conflicting-identifier-rules; also, the Type defined in the
signatures shall be different. So, for example, *int i" and"float i" would be considered CLS
duplicates; also, the return type of the method isignored (Note however that if
Flags.Compilercontrolled = 1, then this row is completely excluded from duplicate checking as
explained above) [CLS]

O N o 0o M W NP

[S S
w N B O

e
[620N

B
~N o

ol
© ©

NN
= O

N DN N N NN
N o o~ WDN

NN
©

W W W W W w
a B~ W N B O

w W
~N o

B W W
o ©

201.

202.
203.

204.

205.

206.
207.

208.

209.

210.

211.

212.

213.

214.

215.

216.

- 115 -

If any of Fi nal , NewSl ot , Hi deBySi g are set in Flags, then Flags.Virtual shall also be set
[ERROR]

If Flags.PInvokelmpl is set, then Flags.Virtual shall be 0 [ERROR]

If Flags.Abstract != 1 then exactly one of the following shall also be true: [ERROR]
o] RVA =0

o} Flags.PInvokelmpl = 1

o} ImplFlags.Runtime = 1

If the method is Conpi | ercontrol | ed, then the RVA shall be non-zero or marked with
Pi nvokel mpl =1 [ERROR]

Signature shall have exactly one of the following managed calling conventions [ERROR]
i. DEFAULT (0x0)

VARARG (X5)

Signature shall have the calling conventions DEFAULT (0x0). [CLS]

Signature: If and only if the method is not st ati ¢ then the calling convention byte in Signature
has its HASTHI s (0x20) bit set [ERROR]

Signature: If the method isst ati ¢, then the HASTHI S (0x20) bit in the calling convention byte
shall be 0 [ERROR]

If EXPLI CI TTHI S (0x40) in the signature is set, then HASTHI S (0x20) shall also be set (notein
passing: if EXPLI CI TTHI S is set, then the code is not verifiable) [ERROR]

The EXPLI €I TTHI S (0x40) bit can be set only in signatures for function pointers. signatures whose
MethodDefSig is preceded by FNPTR (0x1B) [ERROR]

If RVA = 0, then either: [ERROR]
o] Flags.Abstract = 1, or

0 ImplFlags.Runtime = 1, or

o] Flags.Pinvokelmpl = 1, or

If RVA 1= 0, then: [ERROR]

j Flags.Abstract shall be 0, and

ImplFlags.CodeTypeMask shall be have exactly one of the following values: Nati ve, CIL, or
Runti me, and

RVA shall point into the CIL code stream in thisfile

If Flags.Pinvokelmpl = 1 then [ERROR]

0 RVA = 0 and the method owns arow in the ImplMap table, OR
If Flags.RTSpecialName = 1 then Name shall be one of: [ERROR]
k. .ctor (object constructor method)

.cctor (class constructor method)

Conversely, if Name is any of the above special names then Flags.RTSpecialName shall be set
[ERROR]

If Name = .ctor (object constructor method) then:
l. return type in Signature shall be ELEMENT_TYPE_VOID (see clause 22.1.15) [ERROR]
Flags.Static shall be 0 [ERROR]

© 00 N o 0o ~AW N P

I e
N R O

=
W

15

16

17
18
19
20

21
22
23

24
25

26
27

28
29

30

31

32
33

35

36
37

38
39

40

- 116 -

Flags.Abstract shall be 0 [ERROR]
Flags.Virtual shall be 0 [ERROR]

‘Owner’ type shall be avalid Class or ValueType (not <Module> and not an Interface) in the
TypeDef table [ERROR]

there can be 0 or more .ctors for any given ‘owner’
217. If Name = .cctor (class constructor method) then:
m. return typein Signature shall be ELEMENT_TYPE_VvO D (see clause 22.1.15) [ERROR]
Signature shall have DEFAULT (0xO0) for its calling convention [ERROR]
there shall be no parameters supplied in Signature [ERROR]
Flags.Satic shall be set [ERROR]
Flags.Virtual shall be clear [ERROR]
Flags.Abstract shall be clear [ERROR]

218. Among the set of methods owned by any given row in the TypeDef table there can be 0 or 1
methods named .cctor (never 2 or more) [ERROR]

End informative text

21.25 Methodlmpl : 0x19

Methodlmpls let a compiler override the default inheritance rules provided by the CLI. Their original use was
to allow aclass“C”, that inherited method “Foo” from interfaces | and J, to provide implementations for both
methods (rather than have only one slot for “Foo” in its vtable). But Methodimpls can be used for other reasons
too, limited only by the compiler writer’ s ingenuity within the constraints defined in the Validation rules below.

In the example above, Class specifies“ C”, MethodDeclaration specifies I::Foo, MethodBody specifies the
method which provides the implementation for I::Foo (either a method body within “C”, or a method body
implemented by a superclass of “C")

The Methodlmpl table has the following columns:
. Class (index into TypeDef table)

. MethodBody (index into Method or Member Ref table; more precisely, a MethodDefOr Ref coded
index)

. MethodDeclaration (index into Method or Member Ref table; more precisely, a MethodDefOr Ref
coded index)

ilasm usesthe .override directive to specify the rows of the Methodimpl table (see clause 9.3.2).

This contains informative text only

219. The Methodimpl table may contain zero or more rows

220. Class shall index avalid row in the TypeDef table [ERROR]

221. MethodBody shall index avalid row in the Method or MethodRef table [ERROR]
222. The method indexed by MethodDeclaration shall have Flags.Virtual set [ERROR]

223. The owner Type of the method indexed by MethodDeclaration shall not have Flags.Sealed = 0
[ERROR]

224. The method indexed by MethodBody shall be a member of Class or some superclass of Class
(MethodImpls do not allow compilersto ‘hook’ arbitrary method bodies) [ERROR]

225. The method indexed by MethodBody shall be virtual [ERROR]

O N OO0 AW NP

=Y
o

=
=

12
13
14
15
16
17
18

19

20
21

22
23

24
25

26

27
28

29
30

31
32

33
34

35
36
37

38
39

226.

227.

228.

229.
230.

231.

- 117 -

The method indexed by MethodBody shall have its Method.RVA != 0 (cannot be an unmanaged
method reached via PInvoke, for example) [ERROR]

MethodDeclaration shall index a method in the ancestor chain of Class (reached via its Extends
chain) or in the interface tree of Class (reached viaits Interfacelmpl entries) [ERROR]

The method indexed by MethodDeclaration shall not be final (its Flags.Final shall be 0)
[ERROR]

The method indexed by MethodDeclaration shall be accessible to Class [ERROR]

The method signature defined by MethodBody shall match those defined by MethodDeclaration
[ERROR]

There shall be no duplicate rows, based upon Class+ MethodDeclaration [ERROR]

End informative text

21.26 MethodSemantics: 0x18
The MethodSemantics table has the following columns:

Semantics (a 2 byte bitmask of type MethodSemanticsAttributes, clause 22.1.10)
Method (index into the Method table)

Association (index into the Event or Property table; more precisely, a HasSemantics coded index)

The rows of the MethodSemantics table arefilled by .property (see Chapter 16) and .event directives (see
Chapter 17). See clause 21.13 for more information.

This contains informative text only

232.
233.
234.

235.

236.

237.

238.

239.
240.
241,
242,

MethodSemantics table may contain zero or more rows
Semantics may have only those values set that are specified [ERROR]

Method shall index avalid row in the Method table, and that row shall be for a method defined on
the same class as the Property or Event this row describes [ERROR]

All methods for a given Property or Event shall have the same accessibility (ie the
Member AccessMask subfield of their Flags row) and cannot be Conpi | ercontrol l ed [CLS]

Semantics: constrained as follows:

o] If this row is for a Property, then exactly one of Setter, Getter, or & her shall be set
[ERROR]

o] If this row is for an Event, then exactly one of Addon, RenoveOn, Fire, or Ot her shall be set
[ERROR]

If thisrow isfor an Event, and its Semantics is Addon Or RenoveOn, then the row in the Method
table indexed by Method shall take a Delegate as a parameter, and return void [ERROR]

If thisrow isfor an Event, and its Semantics is Fi r e, then the row indexed in the Method table by
Method may return any type

For each property, there shall be a setter, or a getter, or both [CLS]
Any getter method for a property whose Name is xxx shall be called get_xxx [CLS]
Any setter method for a property whose Name is xxx shall be called set_xxx [CLS]

If a property provides both getter and setter methods, then these methods shall have the same
value in the Flags.Member AccessMask subfield [CLS]

O NO UOh W NP

=
o

e
N

=
W

=
o O

17

18
19
20
21

22
23

24
25

26
27
28
29

30
31
32
33

35
36

37
38
39

40

41

42
43

- 118 -

243. |If aproperty provides both getter and setter methods, then these methods shall have the same
value for their Method.Flags.Virtual [CLS]

244. Any getter and setter methods shall have Method.Flags.SpecialName =1 [CLS]

245. Any getter method shall have a return type which matches the signature indexed by the
Property. Type field [CLS]

246. The last parameter for any setter method shall have a type which matches the signature indexed
by the Property.Type field [CLS]

247. Any setter method shall have return type ELEMENT_TYPE_VOI D (see clause 22.1.15) in
Method.Signature [CLS]

248. If the property isindexed, the indexes for getter and setter shall agree in number and type [CLS]

249. Any AddOn method for an event whose Name is xxx shall have the signature: void add_xxx
(<DelegateType> handler) [CLS]

250. Any RemoveOn method for an event whose Name is xxx shall have the signature: void
remove xxx(<DelegateType> handler) [CLSY]

251. Any Fire method for an event whose Name is xxx shall have the signature: void raise_xxx(Event
e) [CLS]

End informative text

21.27 Module : 0x00
The Module table has the following columns:
. Generation (2 byte value, reserved, shall be zero)
. Name (index into String heap)

. Mvid (index into Guid heap; simply a Guid used to distinguish between two versions of the same
module)

. Encld (index into Guid heap, reserved, shall be zero)
. EncBaseld (index into Guid heap, reserved, shall be zero)

The Mvid column shall index a unique GUID in the GUID heap (see Section 23.2.5) that identifies thisinstance
of the module. The Mvid may be ignored on read by conforming implementations of the CLI. The Mvid should
be newly generated for every module, using the algorithm specified in ISO/IEC 11578:1996 (Annex A) or
another compatible algorithm.

Note: The term GUID stands for Globally Unique | Dentifier, a 16-byte long number typically displayed using
its hexadecimal encoding. A GUID may be generated by several well-known algorithms including those used
for UUIDs (Universally Unique IDentifiers) in RPC and CORBA, aswell as CLSIDs, GUIDs, and IIDsin
COM.

Rationale: While the VES itself makes no use of the Mvid, other tools (such as debuggers, which are outside
the scope of this standard) rely on the fact that the Mvid almost always differs from one module to another.

The Generation, Encld and EncBaseld columns can be written as zero, and can be ignored by conforming
implementations of the CLI. The rows in the Modul e table result from .module directives in the Assembly

(see Section 6.4).

This contains informative text only

252. The Module table shall contain one and only one row [ERROR]

253. Name shall index a non-null string. This string should match exactly any corresponding
ModuleRef.Name string that resolves to this module. [ERROR]

o 01~ W

~

©

10

11
12
13

14

15
16
17
18

19
20
21

22

23
24

25
26

27
28

29
30

31
32

33
34

35

36
37

254,

- 119 -

Mvid shall index a hon-null GUID in the Guid heap [ERROR]

End informative text

21.28 ModuleRef : Ox1A
The Modul eRef table has the following column;

Name (index into String heap)

The rows in the Modul eRef table result from .module extern directivesin the Assembly (see Section 6.5).

This contains informative text only

255.

256.
257.

Name shall index a non-null string in the String heap. This string shall enable the CLI to locate
the target module (typically, it might name the file used to hold the module) [ERROR]

There should be no duplicate rows [WARNING]

Name should match an entry in the Name column of the File table. Moreover, that entry shall
enable the CL1 to locate the target module (typically it might name the file used to hold the
module) [ERROR]

End informative text

21.29 NestedClass: 0x29
The NestedClass table has the following columns:

NestedClass (index into the TypeDef table)
EnclosingClass (index into the TypeDef table)

The NestedClass table records which Type definitions are nested within which other Type definition. Ina
typical high-level language, including ilasm, the nested classis defined aslexically ‘inside’ the text of its
enclosing Type.

This contains informative text only

The NestedClass table records which Type definitions are nested within which other Type definition. Ina
typical high-level language, the nested classis defined as lexically ‘inside’ the text of its enclosing Type

258.
259.
260.

261.

262.

263.

The NestedClass table may contain zero or more rows
NestedClass shall index avalid row in the TypeDef table [ERROR]

EnclosingClass shall index a valid row in the TypeDef table (note particularly, it is not allowed to
index the TypeRef table) [ERROR]

There should be no duplicate rows (ie same values for NestedClass and EnclosingClass)
[WARNING]

A given Type can only be nested by one encloser. So, there cannot be two rows with the same
value for NestedClass, but different value for EnclosingClass [ERROR]

A given Type can ‘own’ several different nested Types, so it is perfectly legal to have two or
more rows with the same value for EnclosingClass but different values for NestedClass

End informative text

21.30 Param : 0x08

The Param table has the following columns:

ol A W N P

~

10

11
12
13

14
15

16

17
18

19

20
21

22
23

24

25

26
27
28
29

- 120 -

Flags (a2 byte bitmask of type ParamAttributes, clause 22.1.12)
Sequence (a 2 byte constant)
Name (index into String heap)

Conceptually, every row in the Param table is owned by one, and only one, row in the Method table

Therows in the Param table result from the parameters in a method declaration (see Section 14.4), or from a
.param attribute attached to a method (see clause 14.4.1).

This contains informative text only

264.
265.
266.
267.

268.

269.
270.

271.
272.

273.
274.

Param table may contain zero or more rows
Each row shall have one, and only one, owner row in the MethodDef table [ERROR]
Flags may have only those values set that are specified (all combinations valid) [ERROR]

Sequence shall have avalue >= 0 and <= number of parametersin owner method. A Sequence
value of O refers to the owner method'’ s return type; its parameters are then numbered from 1
onwards [ERROR]

Successive rows of the Param table that are owned by the same method shall be ordered by
increasing Sequence value - although gaps in the sequence are allowed [WARNING]

If Flags.HasDefault = 1 then this row shall own exactly one row in the Constant table [ERROR]

If Flags.HasDefault = 0, then there shall be no rows in the Constant table owned by this row
[ERROR]

parameters cannot be given default values, so Flags.HasDefault shall be 0 [CLS]

if Flags.FieldMarshal = 1 then this row shall own exactly one row in the FieldMarshal table
[ERROR]

Name may be null or non-null

If Name is non-null, then it shall index a non-null string in the String heap [WARNING]

End informative text

21.31 Property : 0x17

Properties within metadata are best viewed as a means to gather together collections of methods defined on a
class, give them a name, and not much else. The methods are typically get and set methods, already defined
on the class, and inserted like any other methods into the Method table. The association is held together by
three separate tables — see the below:

©Coo~NOOTh~,WwW NP

PR
Nk~ O

R
No o~ W

N PR
oS © ™

NN
N

23

24

25
26

27
28
29
30

31
32
33

-121 -

TpsDed Talbds

My Class | FvaniMap Tabda

aild Do Changed | Fvenl Tabla

remave_[ocChanged MethodSamanics Tahie
aded TamadOul \

reaTiea Tamac

DacChangaed
T s ik

Row 3 of the PropertyMap table indexes row 2 of the TypeDef table on the left (MyClass), whilst indexing row
4 of the Property table on the right — the row for a property called Foo. This setup establishes that MyClass has
aproperty called Foo. But what methods in the Method table are gathered together as ‘belonging’ to property
Foo? That association is contained in the MethodSemantics table — its row 2 indexes property Foo to theright,
and row 2 in the Method table to the left (a method called get_Foo). Also, row 3 of the MethodSemantics table
indexes Foo to theright, and row 3 in the Method table to the left (a method called set_Foo). Asthe shading
suggests, MyClass has another property, called Bar, with two methods, get_Bar and set_Bar.

Property tables do alittle more than group together existing rows from other tables. The Property table has
columns for Flags, Name (eg Foo and Bar in the example here) and Type. In addition, the MethodSemantics
table has a column to record whether the method it pointsat isaset_, aget_or other.

Note: The CLS (see Partition |) refersto instance, virtual, and static properties. The signature of a property
(from the Type column) can be used to distinguish a static property, since instance and virtual properties will
have the “HASTHIS" bit set in the signature (see clause 22.2.1) while a static property will not. The distinction
between an instance and a virtual property depends on the signature of the getter and setter methods, which the
CLS requires to be either both virtual or both instance.

The Property (0x17) table has the following columns;
. Flags (a 2 byte bitmask of type PropertyAttributes, clause 22.1.13)
. Name (index into String heap)

. Type (index into Blob heap) [the name of this column is misleading. It does not index a TypeDef
or TypeRef table — instead it indexes the signature in the Blob heap of the Property)

This contains informative text only

275. Property table may contain zero or more rows

276. Each row shall have one, and only one, owner row in the PropertyMap table (as described above)
[ERROR]

277. PropFlags may have only those values set that are specified (all combinations valid) [ERROR]
278. Name shall index a non-null string in the String heap [ERROR]

279. The Name string shall be avalid CLS identifier [CLS]

280. Type shall index a non-null signature in the Blob heap [ERROR]

281. The signature indexed by Type shall be avalid signature for a property (ie, low nibble of leading
byteis 0x8). Apart from this leading byte, the signature is the same as the property’s get method
[ERROR]

abhw NP

()]

10
11

12

13
14

15

16

17

18
19

20
21

22

23

24
25
26
27

28

29
30
31

32
33

35
36
37
38

39
40

-122 -

282. Within the rows owned by a given row in the TypeDef table, there shall be no duplicates based
upon Name+ Type [ERROR]

283. There shall be no duplicate rows based upon Name, where Name fields are compared using CLS
conflicting-identifier-rules (in particular, properties cannot be overloaded by their Type — a class
cannot have two properties, "i nt Foo" and "String Foo", for example) [CLS]

End informative text

21.32 PropertyMap : 0x15

The PropertyMap table has the following columns:
. Parent (index into the TypeDef table)

. PropertyList (index into Property table). It marks the first of a contiguous run of Properties
owned by Parent. The run continues to the smaller of:

0 the last row of the Property table

0 the next run of Properties, found by inspecting the PropertyList of the next row in this
PropertyMap table

The PropertyMap and Property tables result from putting the .property directive on aclass (see Chapter 16).

This contains informative text only

284. PropertyMap table may contain zero or more rows

285. There shall be no duplicate rows, based upon Parent (a given class has only one ‘pointer’ to the
start of its property list) [ERROR]

286. There shall be no duplicate rows, based upon PropertyList (different classes cannot share rowsin
the Property table) [ERROR]

End informative text

21.33 StandAloneSig : 0x11

Signatures are stored in the metadata Blob heap. 1n most cases, they are indexed by a column in some table —
Field.9gnature, Method.Signature, Member Ref.Signature, etc. However, there are two cases that require a
metadata token for a signature that is not indexed by any metadatatable. The StandAloneSg table fulfils this
need. It hasjust one column, that points to a Signature in the Blob heap.

The signature shall describe either:

. a method — code generators create a row in the StandAloneSig table for each occurrence of a calli
CIL instruction. That row indexes the call-site signature for the function pointer operand of the
calli instruction

. local variables — code generators create one row in the StandAloneSig table for each method, to
describe all of itslocal variables. The .locals directive in ilasm generates a row in the
StandAloneSig table.

TheStandAloneSig table has the following column:
. Signature (index into the Blob heap)

Exanple (informative):
// On encountering the calli instruction, ilasm generates a signature

/1l in the blob heap (DEFAULT, ParamCount = 1, RetType = int32, Paraml =
i nt32),

© 00 N O OB~ W DN B

NN B B R R R R R R R
B O © © N O U A W DN LB O

22
23
24
25
26

27

28
29
30
31
32

33
34

35
36

37

-123 -

/'l indexed by the StandAl oneSig table:

.assenbly Test {}

.method static int32 AddTen(i nt 32)
{ ldarg.0

ldc.i4 10

add

ret

. cl ass Test
{ .method static void main()

{ .entrypoint

ldc.i4.1

I dftn int32 AddTen(i nt 32)
cal l'i int32(int32)

pop

r et

This contains informative text only

287. The StandAloneSig table may contain zero or more rows

288. Signature shall index avalid signature in the Blob heap [ERROR]

289. The signature 'blob' indexed by Signature shall be a valid METHOD or LOCALS signature [ERROR]
290. Duplicate rows are allowed

End informative text

21.34 TypeDef : 0x02
The TypeDef table has the following columns:
. Flags (a 4 byte bitmask of type TypeAttributes, clause 22.1.14)
. Name (index into String heap)
. Namespace (index into String heap)

. Extends (index into TypeDef, TypeRef or TypeSpec table; more precisely, a TypeDefOrRef coded
index)

. FieldList (index into Field table; it marks the first of a continguous run of Fields owned by this
Type). The run continues to the smaller of:

o the last row of the Field table

© 00 ~NO U1 AW NP

R =
= O

e
w N

[
(2NN

P
~N o

NN
O O

W W W NN N N N N NN
N P O © 00 N O O B W N

GRE

A D W W W W
R O © 0 N O

- 124 -

o] the next run of Fields, found by inspecting the FieldList of the next row in this TypeDef
table

. MethodList (index into Method table; it marks the first of a continguous run of Methods owned by
this Type). The run continues to the smaller of:

o the last row of the Method table

o} the next run of Methods, found by inspecting the MethodList of the next row in this TypeDef
table

Note that any type shall be one, and only one, of

. Class (Flags.Interface = 0, and derives ultimately from System.Object)
. Interface (Flags.Interface = 1)

. Value type, derived ultimately from System.ValueType

For any given type, there are two separate, and quite distinct ‘inheritance’ chains of pointersto other types (the
pointers are actually implemented as indexes into metadata tables). The two chains are:

. Extension chain — defined via the Extends column of the TypeDef table. Typically, a derived
Class extends a base Class (always one, and only one, base Class)

. Interface chains — defined via the Interfacel mpl table. Typically, a Class implements zero, one or
more Interfaces

These two chains (extension and interface) are always kept separate in metadata. The Extends chain represents
one-to-onerelations—that is, one Class extends (or ‘derives from’) exactly one other Class (called its
immediate base Class). The Interface chains may represent one-to-many relations—that is, one Class might
well implement two or more I nterfaces.

Exanple (informative, witten in C#):

interface 1A {void mil(int i); }
interface IB {void n2(int i, int j); }

class C: IA IB{

int f1, f2;

public void mi(int i) {f1 =1; }
public void nm2(int i, int j) {f1 =1i; f2 =j;}

}

[/ In netadata, Interface | A extends nothing; Interface IB
/'l extends nothing; class C extends System Object and inpl enents

/!l Interfaces IA and |IB

An Interface can also ‘inherit’ from one or more other Interfaces — metadata stores those links viathe
Interfacelmpl table (the nomenclature is alittle inappropriate here — there is no “implementation” involved —
perhaps a clearer name might have been Interface table, or Interfacel nherit table)

Exanple (informative, witten in C#):

interface | A {void mil(int i); }
interface I B {void n2(int i, int j); }
interface 1C : IA |IB{void nB(int i, int j, int k);}

class C: IC{
int f1, f2, f3;

00 N OO 0o~ WN B

11
12
13
14

15

16

18
19
20

21

22
23
24

25
26
27
28
29

30

- 125 -

public void mi(int i) {f1=1; }
public void m2(int i, int j) {f1=1i; f2 =j; }
public void nmB(int i, int j, int k) {f1 =1i; f2 =j; f3 = k;}

}

/1 In nmetadata, Interface | A extends nothing; Interface |IB extends
/1 nothing; Interface IC "inherits" Interfaces |A and IB (defined via
/'l the Interfacelnpl table); Class C extends System Object and

/1l implenments Interface |IC (see Interfacel npl table)

There are also afew specialized types. One is the user-defined Enum — which shall derive directly from
System.Enum (via the Extends field)

Another dlightly specialized type is a nested type which is declared in ilasm as |exically nested within an
enclosing type declaration. Whether atype is nested can be determined by the value of its Flags.Visibility sub-
field —it shall be one of the set { NestedPublic, NestedPrivate, NestedFamily, NestedAssembly,
NestedFamANDAssem, NestedFamORAssem} .

The roots of the inheritance hierarchies look like this:

System, Object

l J Systemn ValueType System.Delegate
Interface
____.--""'-J '\H :
-‘r___,..-""' -I1'1.
s System. Enum

Class [¥
Interfacs '

’_17 "‘\.
| 5,
x'L
|

4‘ [4 '
Class i ValueType Enum

There is one system-defined root — System.Object. All Classes and ValueTypes shall derive, ultimately, from
System.Object; Classes can derive from other Classes (through a single, non-looping chain) to any depth
required. This Extends inheritance chain is shown with heavy arrows.

(See below for details of the Syst em Del egat e Class)

Interfaces do not inherit from one another, however, they specify zero or more other interfaces which shall be
implemented. The Interface requirement chain is shown aslight, dashed arrows. Thisincludes links between
Interfaces and Classes/VaueTypes — where the latter are said to implement that interface or interfaces.

Regular ValueTypes (ie excluding Enums — see later) are defined as deriving directly from System.ValueType.
Regular ValueTypes cannot be derived to a depth of more than one. (Another way to state thisis that user-
defined ValueTypes shall be sealed.) User-defined Enums shall derive directly from System.Enum. Enums
cannot be derived to a depth of more than one below System.Enum. (Another way to state thisis that user-
defined Enums shall be sealed.) System.Enum derives directly from System.ValueType.

The hierarchy below System.Delegate is as follows:

g ~AwWNPE

© oo~N O

10

12

13
14

15
16
17

18
19

20
21

22
23

24
25
26
27
28

29
30

31
32
33

35
36

- 126 -

System. Delegate

!

Systemn MulticastDelegate

'

[
MulticasiDelagate J

User-defined delegates derive directly from Syst em Mul ti cast Del egate. Delegates cannot be derived to a
depth of more than one.

For the directives to declare types see Chapter 9.

This contains informative text only

291.

292.

293.
294,
295,
296.
297.
298.

299.
300.
301.

TypeDef table may contain one or more rows. There is always one row (row zero) that represents
the pseudo class that acts as parent for functions and variables defined at module scope.

Flags:
n. Flags may have only those values set that are specified [ERROR]

can set 0 or 1 of Sequenti al Layout and ExplicitLayout (if none set, then defaultsto
Aut oLayout) [ERROR]

can set 0 or 1 of uni codeCl ass and Aut oCl ass (if none set, then defaults to Ansi Cl ass)
[ERROR]

If Flags.HasSecurity = 1, then at least one of the following conditions shall be true: [ERROR]
. this Type owns at least one row in the Decl Security table
. this Type has a custom attribute called Suppr essUnmanagedCodeSecurityAttribute

If this Type owns one (or more) rows in the Decl Security table then Flags.HasSecurity shall be 1
[ERROR]

If this Type has a custom attribute called Suppr essUnmanagedCodeSecurit yAttri but e then
Flags.HasSecurity shall be 1 [ERROR]

Note that it islegal for an Interface to have HasSecuri ty set. However, the security system
ignores any permission requests attached to that Interface

Name shall index a non-null string in the String heap [ERROR]

The Name string shall be avalid CLS identifier [CLS]

Namespace may be null or non-null

If non-null, then Namespace shall index a non-null string in the String heap [ERROR]
If non-null, Namespace's string shall be avalid CLS Identifier [CLS]

Every Class (with the sole exception of syst em obj ect) shall extend one, and only one, other
Class - so Extends for a Class shall be non-null [ERROR]

System Obj ect shall have an Extends value of null [ERROR]
System Val ueType shall have an Extends value of Syst em Obj ect [ERROR]

With the sole exception of Syst em Obj ect, for any Class, Extends shall index avalid row in the
TypeDef or TypeRef table, where valid means 1 <= row <= rowcount. In addition, that row itself
shall be a Class (not an Interface or ValueType) In addition, that base Class shall not be sealed
(its Flags.Sealed shall be 0) [ERROR]

O N O bW NP

B
()

N -
A w N

=
o ol

NN B PR
= O w©o =~

N N
w N

NDNNN
~No o1~

NN
©

w
o

w w
N

w W
NN}

wW W
o 01

w W
o~

A bW
= O ©

B &S

302.

303.

304.

305.
306.

307.

308.
300.
310.
311.

312.

313.
314.
315.

316.

317.
318.

319.

320.

321.

322.

323.

-127 -

A Class cannot extend itself, or any of its children (ie its derived Classes), since this would
introduce loops in the hierarchy tree [ERROR]

An Interface never extends another Type - so Extends shall be null (Interfaces do implement other
Interfaces, but recall that this relationship is captured via the Interfacelmpl table, rather than the
Extends column) [ERROR]

FieldList can be null or non-null
A Class or Interface may ‘own’ zero or more fields

A ValueType shall have a non-zero size - either by defining at least one field, or by providing a
non-zero ClassSize [ERROR]

If FieldList is non-null, it shall index avalid row in the Field table, where valid means 1 <= row
<=rowcount+1 [ERROR]

MethodList can be null or non-null
A Type may ‘own’ zero or more methods
The runtime size of a ValueType shall not exceed 1 MByte (0x100000 bytes) [ERROR]

If MethodList is non-null, it shall index avalid row in the Method table, where valid means 1 <=
row <= rowcount+1 [ERROR]

A Class which has one or more abstract methods cannot be instantiated, and shall have
Flags.Abstract = 1. Note that the methods owned by the class include all of those inherited from
its base class and interfaces it implements, plus those defined viaits MethodList. (The CLI shall
analyze class definitions at runtime; if it finds a class to have one or more abstract methods, but
has Flags.Abstract = 0, it will throw an exception) [ERROR]

An Interface shall have Flags.Abstract = 1 [ERROR]
Itislegal for an abstract Type to have a constructor method (ie, a method named .ctor)

Any non-abstract Type (ie Flags.Abstract = 0) shall provide an implementation (body) for every
method its contract requires. Its methods may be inherited from its base class, from the interfaces
it implements, or defined by itself. The implementations may be inherited from its base class, or
defined by itself [ERROR]

An Interface (Flags.Interface == 1) can own static fields (Field.Static == 1) but cannot own
instance fields (Field.Static == 0) [ERROR]

An Interface cannot be sealed (if Flags.Interface == 1, then Flags.Sealed shall be 0) [ERROR]

All of the methods owned by an Interface (Flags.Interface == 1) shall be abstract (Flags.Abstract
== 1) [ERROR]

There shall be no duplicate rows in the TypeDef table, based on Namespace+ Name (unless thisis
a nested type - see below) [ERROR]

If thisis a nested type, there shall be no duplicate row in the TypeDef table, based upon
Namespace+ Name+ Owner RowlnNestedClassTable [ERROR]

There shall be no duplicate rows, where Namespace+ Name fields are compared using CLS
conflicting-identifier-rules (unless this is a nested type - see below) [CLS]

If thisis a nested type, there shall be no duplicate rows, based upon
Namespace+ Name+ Owner Rowl nNestedClassTable and where Namespace+ Name fields are
compared using CLS conflicting-identifier-rules [CLS]

If Extends = System.Enum (ie, type is a user-defined Enum) then:
0. shall be sealed (seal ed =1) [ERROR]
shall not have any methods of its own (MethodList chain shall be zero length) [ERROR]

QW 00 N o0 A W N B

L o
A W N B

=
o O

el el
© 0o~

N
o

21

22
23

24
25

26
27

28

29

30
31
32

33

35

36
37

38
39

- 128 -

shall not implement any interfaces (no entries in Interfacelmpl table for thistype) [ERROR]
shall not have any properties [ERROR]

shall not have any events [ERROR]

any static fields shall be literal (have Flags.Literal = 1) [ERROR]

shall have at least one static, literal field. If more than one, they shall all be of the same type.
Any such static literal fields shall be of the type of the Enum [CLS]

shall be at least one instance field, of integral type [ERROR]
shall be exactly one instance field [CLS]

the Name string of the instance field shall be "value _"; it shall marked RTSpeci al Nane; itstype
shall be one of (see clause 22.1.15): [CLS]

. ELEMENT _TYPE_UL

. ELEMENT_TYPE | 2
. ELEMENT_TYPE | 4
. ELEMENT_TYPE_| 8

shall be no other members (ie, apart from any static literals, and the one instance field called
"value__ ") [CLS]

324. A Nested type (defined above) shall own exactly one row in the NestedClass table - where ‘owns’
means arow in that NestedClass table whose NestedClass column holds the TypeDef token for
this type definition [ERROR]

325. A ValueType shall be sealed [ERROR]

End informative text

21.35 TypeRef : 0x01
The TypeRef table has the following columns:

. ResolutionScope (index into Module, Modul eRef, AssemblyRef or TypeRef tables, or null; more
precisely, a ResolutionScope coded index)

. Name (index into String heap)

. Namespace (index into String heap)

This contains informative text only

326. ResolutionScope shall be exactly one of:

p. null - inthis case, there shall be arow in the ExportedType table for this Type - its
Implementation field shall contain a File token or an AssemblyRef token that says where the
type is defined [ERROR]

a TypeRef token, if thisis a nested type (which can be determined by, for example, inspecting the
Flags column in its TypeDef table - the accessibility subfield is one of the t dNest edxxX set)
[ERROR]

a ModuleRef token, if the target type is defined in another module within the same Assembly as
this one [ERROR]

a Module token, if the target type is defined in the current module - this should not occur in a CLI
(“compressed metadata’) module [WARNING]

QW O~N OO O A W NP

=

=
=

12

13
14
15

16
17

18
19

20
21

22
23
24

25

-129 -

an AssemblyRef token, if the target type is defined in a different Assembly from the current
module [ERROR]

327. Name shall index a non-null string in the String heap [ERROR]

328. Namespace may be null, or non-null

329. If non-null, Namespace shall index a non-null string in the String heap [ERROR]
330. The Name string shall be avalid CLS identifier [CLS]

331. There shall be no duplicate rows, where a duplicate has the same ResolutionScope, Name and
Namespace [ERROR]

332. There shall be no duplicate rows, where Name and Namespace fields are compared using CLS
conflicting-identifier-rules [CLS]

End informative text

21.36 TypeSpec : 0x1B

The TypeSpec table has just one column, which indexes the specification of a Type, stored in the Blob heap.
This provides a metadata token for that Type (rather than simply an index into the Blob heap) — thisis required,
typicaly, for array operations — creating, or calling methods on the array class.

The TypeSpec table has the following column:
. Signature (index into the Blob heap, where the blob is formatted as specified in clause 22.2.14)

Note that TypeSpec tokens can be used with any of the CIL instructions that take a TypeDef or TypeRef token —
specifically:

castclass, cpobj, initobj, isinst, Idelema, Idobj, mkrefany, newarr, refanyval, sizeof, stobj, box, unbox

This contains informative text only

The TypeSpec table may contain zero or more rows
Sgnature shall index avalid Type specification in the Blob heap [ERROR]
There shall be no duplicate rows, based upon Sgnature [ERROR]

End informative text

8

- 130 -

22 Metadata Logical Format: Other Structures

22.1 Bitmasks and Flags

This section explains the various flags and bitmasks used in the various metadata tables.

22.1.1 Values for AssemblyHashAlgorithm

Algorithm Value

None 0x0000

Reserved (MD5) 0x8003

SHAL 0x8004

22.1.2 Values for AssemblyFlags

Flag Value Description

Publ i cKey 0x0001 The assembly reference holds the full (unhashed)
public key.

Si deBySi deConpati bl e 0x0000 The assembly is side by side compatible

<reserved> 0x0030 Reserved: both bits shall be zero

Enabl eJI Tconpi | eTracki ng 0x8000 Reserved (a conforming implementation of the CLI
may ignore this setting on read; some implementations
might use this bit to indicate that a CIL-to-native-code
compiler should generate CIL-to-native code map)

Di sabl eJI Tconpi | eOpti mi zer 0x4000

Reserved (aconforming implementation of the CLI
may ignore this setting on read; some implementations
might use this hit to indicate that a CIL-to-native-code
compiler should not generate optimized code)

22.1.3 Values for Culture

ar - SA ar-1Q ar - EG ar-LY
ar-DZ ar - VA ar-TN ar- oM
ar - YE ar - SY ar-JO ar-LB
ar - KW ar - AE ar - BH ar- QA
bg- BG ca-ES zh-TW zh-CN
zh- HK zh- SG zh- MO cs-CZ
da- DK de- DE de- CH de- AT
de-LU de- LI el -&R en- US
en- GB en- AU en- CA en- NZ
en-1E en-ZA en-JM en-CB
en-BZ en-TT en-ZW en- PH
es-ES-Ts es- WX es-ES-Is es-GT
es-CR es- PA es-DO es- VE
es- CO es- PE es- AR es-EC
es-CL es- Uy es- PY es- BO

O~NOO O WNE

©

10
11

- 131 -

es- SV es- HN es-N es- PR
Fi-Fl fr-FR fr-BE fr-CA
Fr-CH fr-LU fr-MC he-1L
hu- HU is-1S it-1T it-CH
Ja-JP ko- KR nl - NL nl - BE
nb- NO nn- NO pl - PL pt- BR
pt-PT ro- RO ru- RU hr - HR
Lt-sr-SP Cy-sr-SP sk- SK sqg- AL
sv- SE sv-Fl th-TH tr-TR
ur - PK id-1D uk- UA be- BY
sl - Sl et-EE lv-LV It-LT
fa-1R Vi - VN hy- AM Lt-az-AZ
Cy-az-AZ eu- ES k- MK af - ZA
ka- GE fo-FO hi-I'N ns- MY
ns- BN kk- KZ ky- KZ SW KE
Lt-uz-UzZ Cy-uz-Uz tt-TA pa-IN
gu-1N ta-1N te-1N kn- 1N
nr-1N sa-I N m- MWN gl -ES
kok- 1N syr-SY di v- W

22.1.

Note on RFC 1766 Locale names: atypical string would be “en-US’. Thefirst part (“en” in the example) uses
I SO 639 characters (“Latin-alphabet charactersin lowercase. No diacritical marks of modified characters are
used”). The second part (“US’ in the example) uses SO 3166 characters (similar to SO 639, but uppercase).
In other words, the familiar ASCI| characters — a-z and A-Z respectively. However, whilst RFC 1766
recommends the first part is lowercase, the second part uppercase, it allows mixed case. Therefore, the
validation rule checks only that Culture is one of the stringsin the list above — but the check is totally case-
blind —where case-blind is the familiar fold on values less than U+0080

4 Flags for Events [EventAttributes]

Flag Value Description
Speci al Nane 0x0200 Event is special.
RTSpeci al Name 0x0400

CLI provides 'special’ behavior, depending upon the name of the
event

22.1.

5 Flags for Fields [FieldAttributes]

Flag Value Description

Fi el dAccessMask 0x0007

Conpi | ercontrol | ed 0x0000 Member not referenceable

Private 0x0001 Accessible only by the parent type
FamANDAssem 0x0002 Accessible by sub-types only in this Assembly
Assenbly 0x0003 Accessibly by anyone in the Assembly

Fam |y 0x0004 Accessible only by type and sub-types
FanORAssem 0x0005

Accessibly by sub-types anywhere, plus anyone in assembly

- 132 -

22.1.

Public 0x0006 Accessibly by anyone who has visibility to
this scope field contract attributes

Static 0x0010 Defined on type, else per instance

Initonly 0x0020 Field may only beinitialized, not written to after init

Literal 0x0040 Value is compile time constant

Not Seri al i zed 0x0080 Field does not have to be serialized when type is remoted

Speci al Narre 0x0200 Field is specid

Interop Attributes

Pl nvokel npl 0x2000 Implementation is forwarded through Plnvoke.

Additional flags

RTSpeci al Name 0x0400 CLI provides 'specia’ behavior, depending upon the name of the
field

HasFi el dMar shal 0x1000 Field has marshalling information

HasDef aul t 0x8000 Field has default

HasFi el dRVA 0x0100 Field hasRVA

6 Flagsfor Files [FileAttributes]

Flag Value Description

Cont ai nsMet aDat a 0x0000 Thisisnot aresource file

Cont ai nsNoMet aDat a 0x0001 Thisis aresource file or other non-metadata-containing file

22.1.

7 Flagsfor ImplMap [PInvokeAttributes]

Flag Value Description

NoMangl e 0x0001 PInvokeisto use the member name as specified
Character set

Char Set Mask 0x0006 Thisis aresource file or other non-metadata-containing file
Char Set Not Spec 0x0000

Char Set Ansi 0x0002

Char Set Uni code 0x0004

Char Set Aut o 0x0006

Suppor t sLast Error 0x0040 Information about target function. Not relevant for fields
Calling convention

Cal | ConvMask 0x0700

Cal | ConvW napi 0x0100

Cal | ConvCdecl 0x0200

Cal | ConvStdcal | 0x0300

Cal | ConvThi scal | 0x0400

- 133 -

Cal | ConvFast cal |

0x0500

22.1.

8 Flags for ManifestResource [ManifestResour ceAttributes]

Flag Value Description

Vi si bilityMask 0x0007

Public 0x0001 The Resource is exported from the Assembly
Private 0x0002

The Resource is private to the Assembly

22.1.

9 Flagsfor Methods [MethodAttributes]

Flag Value Description

Mermber AccessMask 0x0007

Conpi | ercontrol | ed 0x0000 Member not referenceable

Private 0x0001 Accessible only by the parent type

FamANDAssem 0x0002 Accessible by sub-types only in this Assembly

Assem 0x0003 Accessibly by anyone in the Assembly

Fam |y 0x0004 Accessible only by type and sub-types

FanmORAssem 0x0005 Accessibly by sub-types anywhere, plus anyone in assembly

Public 0x0006 Accessibly by anyone who has visibility to this scope

Static 0x0010 Defined on type, else per instance

Fi nal 0x0020 Method may not be overridden

Virtual 0x0040 Method is virtual

Hi deBySi g 0x0080 Method hides by nametsig, else just by name

Vt abl eLayout Mask 0x0100 Use this mask to retrieve vtabl e attributes

ReuseSl ot 0x0000 Method reuses existing slot in vtable

News! ot 0x0100 Method aways gets anew dot in the vtable

Abst r act 0x0400 Method does not provide an implementation

Speci al Nane 0x0800 Method is special

Interop attributes

Pl nvokel npl 0x2000 Implementation is forwarded through Plnvoke

UnmanagedExpor t 0x0008 Reserved: shall be zero for conforming implementations

Addi ti onal flags

RTSpeci al Name 0x1000 CLI provides 'special' behavior, depending upon the name of
the method

HasSecurity 0x4000

Method has security associate with it

- 134 -

Requi r eSecbj ect

0x8000

Method calls another method containing security code.

22.1.

10 Flags for Methods [MethodI mplAttributes]

Flag Value Description

CodeTypeMask 0x0003

Ic 0x0000 Method impl is CIL

Native 0x0001 Method impl is native

OPTI L 0x0002 Reserved: shall be zero in conforming implementations
Runti me 0x0003 Method impl is provided by the runtime

ManagedMask 0x0004 Flags specifying whether the code is managed or unmanaged.
Unrmanaged 0x0004 Method impl is unmanaged, otherwise managed

Managed 0x0000 Method impl is managed

Implementation info and interop

For war dRef 0x0010 Indicates method is defined; used primarily in merge
scenarios

PreserveSig 0x0080 Reserved: conforming implementations may ignore

I'nternal Call 0x1000 Reserved: shall be zero in conforming implementations

Synchroni zed 0x0020 Method is single threaded through the body

Nol nl'i ni ng 0x0008 Method may not be inlined

MaxMet hodl npl Val Oxffff

Range check value

22.1.11 Flags for MethodSemantics [MethodSemanticsAttributes]
Flag Value Description
Setter 0x0001 Setter for property
Getter 0x0002 Getter for property
Ct her 0x0004 Other method for property or event
AddOn 0x0008 AddOn method for event
RenoveOn 0x0010 RemoveOn method for event
Fire 0x0020 Fire method for event
22.1.12 Flags for Params [ParamAttributes]
Flag Value Description
M 0x0001 Paramis[In]
aut 0x0002 Param is [out]
Opt i onal 0x0004 Param is optional
HasDef aul t 0x1000 Param has default value
HasFi el dvar shal 0x2000 Param has FidldMarshal

- 135 -

Unused Oxcf e Reserved: shall be zero in a conforming implementation
22.1.13 Flags for Properties [PropertyAttributes]

Flag Value Description

Speci al Nane 0x0200 Property is special

RTSpeci al Nare 0x0400 Runtime(metadatainternal APIs) should check name

encoding
HasDef aul t 0x1000 Property has default
Unused Oxe9f f Reserved: shall be zero in a conforming implementation
22.1.14 Flags for Types [TypeAttributes]

Flag Value Description

Visibility attributes

Vi sibi l'ityMask 0x00000007 Use this mask to retrieve visibility information

Not Publ i ¢ 0x00000000 Class has no public scope

Public 0x00000001 Class has public scope

Nest edPubl i c 0x00000002 Class is nested with public visibility

Nest edPri vat e 0x00000003 Classis nested with private visibility

Nest edFami |y 0x00000004 Classis nested with family visibility

Nest edAssenbl y 0x00000005 Class is nested with assembly visibility

Nest edFamANDAssem 0x00000006 Classis nested with fami|y and assembly
visibility

Nest edFanORAssem 0x00000007 Class is nested with family or assembly
visibility

Classlayout attributes

Layout Mask 0x00000018 Use this mask to retrieve class layout
information

Aut oLayout 0x00000000 Classfields are auto-laid out

Sequent i al Layout 0x00000008 Classfields are laid out sequentially

Expli cit Layout 0x00000010 Layout is supplied explicitly

Class semantics attributes

Cl assSemant i csMask 0x00000020 Use this mask to retrive class semantics
information

C ass 0x00000000 Typeisaclass

Interface 0x00000020 Typeisaninterface

Special semanticsin addition to class semantics

Abstract 0x00000080 Classis abstract

Seal ed 0x00000100 Class cannot be extended

AW N PP

- 136 -

Speci al Nare 0x00000400 Class nameis special

Implementation Attributes

I nport 0x00001000 Clasy/Interface isimported

Serializabl e 0x00002000 Classis seridizable

String formatting Attributes

Stri ngFor mat Mask 0x00030000 Use this mask to retrieve string information for
native interop

Ansi O ass 0x00000000 LPSTRisinterpreted as ANSI

Uni coded ass 0x00010000 LPSTRisinterpreted as Unicode

Aut oQ ass 0x00020000 LPSTRisinterpreted automatically

Class I nitialization Attributes

Bef oreFi el dl ni t 0x00100000 Initialize the class before first static field
access

Additional Flags

RTSpeci al Name 0x00000800 CLI provides 'specia’ behavior, depending
upon the name of the Type

HasSecurity 0x00040000 Type has security associate with it

22.1.

15 Element Types used in Signatures

The following table lists the values for ELEMENT _TY PE constants. These are used extensively in metadata
signature blobs — see Section 22.2

Name Value Remarks
ELEMVENT_TYPE_END 0x00 Marksend of alist
ELEMENT_TYPE_VO D 0ox01
ELEMENT_TYPE_BOOLEAN 0x02
ELEMENT_TYPE_CHAR 0x03
ELEMENT_TYPE_| 1 0x04
ELEMENT_TYPE_UL 0x05
ELEVENT_TYPE_| 2 0x06
ELEMENT_TYPE_W2 0x07
ELEMENT_TYPE_| 4 0x08
ELEMENT_TYPE_U4 0x09
ELEMENT_TYPE_| 8 0x0a
ELEVENT_TYPE_US8 0x0b
ELEMENT_TYPE_R4 0x0c
ELEVENT_TYPE_R8 0x0d
ELEMENT_TYPE_STRI NG 0x0e
ELEMENT_TYPE_PTR OxOf Followed by <type> token

© 00 N O OPrWOWN -

e =
= O

el
b wi

[Y
o~ o

- 137 -

ELEMENT_TYPE_BYREF 0x10 Followed by <type> token

ELEMENT_TYPE_VALUETYPE Ox11 Followed by <type> token

ELEMENT_TYPE_CLASS 0x12 Followed by <type> token

ELEMENT_TYPE_ARRAY 0x14 <type> <rank> <boundsCount>
<bound1> ... <loCount> <lol> ...

ELENMENT_TYPE_TYPEDBYREF 0x16

ELEMENT_TYPE_| 0x18 System.IntPtr

ELEMENT_TYPE_U 0x19 System.UIntPtr

ELEMENT_TYPE_FNPTR 0x1b Followed by full method signature

ELEMENT_TYPE_OBJECT ox1c System.Object

ELEMENT_TYPE_SZARRAY Ox1d Single-dim array with O lower
bound

ELEMENT_TYPE_CMOD_REQD Oxaf Required modifier : followed by a
TypeDef or TypeRef token

ELEMENT_TYPE_CMOD_OPT 0x20 Optional modifier : followed by a
TypeDef or TypeRef token

ELEMENT_TYPE_| NTERNAL 0x21 Implemented within the CLI

ELEMENT_TYPE_MODI FI ER 0x40 Or’d with following element types

ELEMENT_TYPE_SENTI NEL 0x41 Sentinel for varargs method
signature

ELEMENT_TYPE_PI NNED 0x45 Denotes alocal variable that
points at a pinned object

22.2 Blobs and Signatures

The word signature is conventionally used to describe the type info for afunction or method —that is, the type
of each of its parameters, and the type of itsreturn value. Within metadata, the word signature is aso used to
describe the type info for fields, properties, and local variables. Each Signatureis stored as a (counted) byte
array in the Blob heap. There are five kinds of Signature, as follows:

. MethodRefSig — differs from a MethodDefSig only for VARARG calls
. MethodDef Sig

. FieldSig

. PropertySig

. LocalVarSig

. TypeSpec

The value of the leading byte of a Signature 'blob" indicates what kind of Signature it is. This section defines
the binary 'blob’ format for each kind of Signature. . In the syntax diagrams that accompany many of the
definitions, shading is used to combine what would otherwise be multiple diagrams into a single diagram; the
accompanying text describes the use of shading.

Note that Signatures are compressed before being stored into the Blob heap (described below) by compressing
the integers embedded in the signature. The maximum encodable integer is 29 hits long, OX1IFFFFFFF. The
compression algorithm used is as follows (bit 0 isthe least significant hit):

POOWOO N OO0 AW NP

R

12
13
14

15
16

17
18
19

20
21
22

23
24

25

- 138 -

. If the value lies between 0 (0x00) and 127 (Ox7F), inclusive, encode as a one-byte integer (bit #7
is clear, value held in bits #6 through #0)

. If the value lies between 278 (0x80) and 2”14 — 1 (0x3FFF), inclusive, encode as a two-byte
integer with bit #15 set, bit #14 clear (value held in bits #13 through #0)

. Otherwise, encode as a 4-byte integer, with bit #31 set, bit #30 set, bit #29 clear (value held in
bits #28 through #0)

. A null string should be represented with the reserved single byte OxFF, and no following data

Note: The table below shows several examples. The first column gives avalue, expressed in familiar (C-like)
hex notation . The second column shows the corresponding, compressed result, as it would appear in a PE file,
with successive bytes of the result lying at successively higher byte offsets within thefile. (Thisisthe opposite
order from how regular binary integers are laid out in a PE fil€)

Original Value Compressed Representation
0x03 03

OX7F 7F (7 bits set)

0x80 8080

O0x2E57 AES57

Ox3FFF BFFF

0x4000 C000 4000

Ox1FFF FFFF DFFF FFFF

Thus, the most significant bits (the first ones encountered in a PE file) of a*“compressed” field, can reveal
whether it occupies 1, 2, or 4 bytes, aswell asitsvalue. For thisto work, the “compressed” value, as explained
above, is stored in big-endian order - with the most significant byte at the smallest offset within the file.

Signatures make extensive use of constant values called ELEVENT_TYPE_xxx — see Clause 22.1.15. In particular,
signatures include two modifiers called:

ELEMENT_TYPE_BYREF — this element is a managed pointer (see Partition 1). This modifier can only occur in the
definition of Param (clause 22.2.10) or RetType (clause 22.2.11). It shall not occur within the definition of a
Field (clause 22.2.4)

ELEMENT_TYPE_PTR— this element is an unmanaged pointer (see Partition 1). This modifier can occur in the
definition of Param (clause 22.2.10) or RetType (clause 22.2.11) or Field (clause 22.2.4)

22.2.1 MethodDefSig

A MethodDefSig isindexed by the Method.Signature column. It captures the signature of a method or global
function. The syntax chart for aMethodDefSig is:

MethodDefSig

——»= HASTHIS \= EXPLICITTHIS ‘ Y p=| DEFALILT —‘!- ParamCount
N |
* i)

'. VARARG |

—

| RetType p=| Param

O N OO0l AW NP

18

19
20
21
22
23

24
25
26

27
28

This chart uses the following abbreviations:

- 139 -

HASTH S = 0x20, used to encode the keyword instance in the calling convention, see

Section 14.3

EXPLI CI TTH S = 0x40,
Section 14.3

used to encode the keyword explicit in the calling convention, see

DEFAULT = 0x0, used to encode the keyword default in the calling convention, see Section 14.3

VARARG = for 0x5, used to encode the keyword vararg in the calling convention, see

Section 14.3

Thefirst byte of the Signature holds bits for HASTHI S, EXPLI € TTHI S and calling convention — DEFAULT or
VARARG. These are OR'd together.

ParamCount is an integer that holds the number of parameters (0 or more). It can be any number between O
and Ox1FFFFFFF The compiler compresses it too (see Partition 11 Metadata Validation) — before storing into
the 'blob' (ParamCount counts just the method parameters — it does not include the method' s return type)

The RetType item describes the type of the method’ s return value (see clause 22.2.11)

The Param item describes the type of each of the method’ s parameters. There shall be ParamCount instances
of the Paramitem (see clause 22.2.10).

22.2.2 MethodRefSig

A MethodRefSig isindexed by the Member Ref . Si gnat ur e column. This provides the callsite Signature for a
method. Normally, this callsite Signature shall match exactly the Signature specified in the definition of the
target method. For example, if amethod Foo is defined that takes two uint32s and returns void; then any
callsite shall index a signature that takes exactly two uint32s and returnsvoid. In this case, the syntax chart for

aMethodRefSig isidentical with that for a MethodDefSig — see clause 22.2.1

The Signature at a callsite differs from that at its definition, only for a method with the VARARG calling
convention. In this case, the callsite Signature is extended to include info about the extra VARARG arguments
(for example, corresponding to the“...” in C syntax). The syntax chart for thiscaseis:

- HASTHIS

StandAloneMethodSig

—#=| EXPLICITTHIS

DEFALLT

Y

VARARG

Y

'/

ParamCount

C

Y

Y

STDCALL

THISCALL

Y

FASTCALL

Y

RetType

r= Param

This chart uses the following abbreviations:

SEMTIMEL

Param —p-—

O ~NO 01 AW NP

27

28
29
30
31

- 140 -

HASTHI S = 0x20, used to encode the keyword instance in the calling convention, see
Section 14.3

EXPLI CI TTH S = 0x40, used to encode the keyword explicit in the calling convention, see
Section 14.3

DEFAULT = 0x0, used to encode the keyword default in the calling convention, see Section 14.3

VARARG = for 0x5, used to encode the keyword vararg in the calling convention, see
Section 14.3

SENTI NEL = 0x41 (see clause 22.1.15), used to encode “...” in the parameter list, see
Section 14.3

. The first byte of the Signature holds bits for HASTHI S, EXPLI CI TTHI S and calling convention —
DEFAULT, VARARG, C, STDCALL, THI SCALL, or FASTCALL. These are OR’d together.

. ParamCount is an integer that holds the number of parameters (O or more). It can be any number
between 0 and Ox1FFFFFFF The compiler compresses it too (see Partition 11 Metadata
Validation) — before storing into the 'blob’ (ParamCount counts just the method parameters — it
does not include the method’s return type)

. The RetType item describes the type of the method’ s return value (see clause 22.2.11)

. The Param item describes the type of each of the method’ s parameters. There shall be
ParamCount instances of the Param item (see clause 22.2.10).

The Param item describes the type of each of the method’ s parameters. There shall be ParamCount instances
of the Paramitem.This startsjust like the MethodDefSig for a VARARG method (see clause 22.2.1). But then a
SENTI NEL token is appended, followed by extra Param items to describe the extra VARARG arguments. Note that
the ParamCount item shall indicate the total number of Paramitems in the Signature — before and after the
SENTI NEL byte (0x41).

In the unusual case that a callsite supplies no extra arguments, the signature shall not include a SENTI NEL (this
is the route shown by the lower arrow that bypasses SENTI NEL and goes to the end of the MethodRefSig
definition)

22.2.3 StandAloneMethodSig

A StandAloneMethodSig isindexed by the St andAl oneSi g. Si gnat ur e column. It istypically created as

preparation for executing acalli instruction. Itissimilar to aMethodRefSig, in that it represents a callsite
signature, but its calling convention may specify an unmanaged target (the calli instruction invokes either
managed, or unmanaged code). Its syntax chart is:

© 0O N O O B WN -

e
= O

el
w N

PR e
~No o s

RN
[ee]

N =
[@{e]

NNDNDNDN
O~ wWNE

NN
~N o

HASTHIS \.'-_- EXPLICITTHIS /
:: /‘] WARARG [

- 141 -

StandAloneMethodSig

¥

DEFALLT | ParamCount

g STDCALL e

| THISCALL e

pe| FASTCALL [

L— = RetType o= Param = SEMTIMEL _ | Param
CS CALLCORY
WARMARC

This chart uses the following abbreviations (see Section 14.3):
HASTHI S for 0x20

EXPLI CI TTHI S for 0x40

DEFAULT for OxO

VARARG for 0x5

C for Ox1

STDCALL for 0x2

THI SCALL for 0Ox3

FASTCALL for Ox4

SENTI NEL for 0x41 (Seeclause 22.1.15 and Section 14.3)

The first byte of the Signature holds bits for HASTHI S, ExPLI CI TTHI S and calling convention —
DEFAULT, VARARG, C, STDCALL, THI SCALL, or FASTCALL. These are OR’d together.

ParamCount is an integer that holds the number of parameters (O or more). It can be any number
between 0 and Ox1FFFFFFF The compiler compresses it too (see Partition 11 Metadata
Validation) — before storing into the blob (ParamCount counts just the method parameters — it
does not include the method’ s return type)

The RetType item describes the type of the method’ s return value (see clause 22.2.11)

The Param item describes the type of each of the method’ s parameters. There shall be
ParamCount instances of the Param item (see clause 22.2.10).

Thisisthe most complex of the various method signatures. Two separate charts have been combined into one
in this diagram, using shading to distinguish between them. Thus, for the following calling conventions:
DEFAULT (managed), STDCALL, THI SCALL and FASTCALL (unmanaged), the signature ends just before the

SENTI NEL item (these are all non vararg signatures). However, for the managed and unmanaged vararg calling
conventions:

VARARG (managed) and ¢ (unmanaged), the signature can include the SENTI NEL and final Param items (they are
not required, however). These options are indicated by the shading of boxes in the syntax chart.

© 00 ~N O

10

11
12

13
14
15
16

17
18

19
20

21

22
23
24

25
26

27
28
29

30

31
32

- 142 -

22.2.4 FieldSig

A FieldSig isindexed by the Field.Signature column, or by the MemberRef.Signature column (in the case
where it specifies areference to afield, not a method, of course). The Signature capturesthe field’ s definition.
Thefield may be a static or instance field in a class, or it may be aglobal variable. The syntax chart for a
FieldSig lookslike this:

FieldSig

FIELD ¢= Custommhdod '\/. i Type —

This chart uses the following abbreviations:
FI ELD for 0Ox6

CustomMod is defined in clause 22.2.7. Typeisdefined in clause 22.2.12

22.2.5 PropertySig

A PropertySig isindexed by the Property.Type column. It captures the type information for a Property —
essentially, the signature of its getter method:

how many parameters are supplied to its getter method

the base type of the Property — the type returned by its getter method

typeinformation for each parameter in the getter method —that is, the index parameters
Note that the signatures of getter and setter are related precisely as follows:

. The types of a getter’s paramCount parameters are exactly the same as the first paramCount
parameters of the setter

. The return type of a getter is exactly the same as the type of the last parameter supplied to the
setter

The syntax chart for a PropertySig looks like this:

PropertySig

—=| FROFERTY |—=| ParamCourt —fe= Type ¥ o Faram k7—>

This chart uses the following abbreviations:
PROPERTY for 0x8

Type specifies the type returned by the Getter method for this property. Typeisdefined in clause 22.2.12.
Paramisdefined in clause 22.2.10.

ParamCount is an integer that holds the number of index parameters in the getter methods (O or more). (See
clause 22.2.1) (ParamCount counts just the method parameters — it does not include the method’ s base type of
the Property)

22.2.6 LocalVarSig

A LocaVarSig isindexed by the StandAloneSig.Signature column. It captures the type of al the local
variablesin amethod. Its syntax chartis:

© oOo~N O O~ WDN PP

10
11

12
13

14
15
16

17
18

19
20
21
22
23

24
25
26

27

- 143 -

LocalvarSig

—= LOCAL_SIG = Count i\&'—-— Constrairt >’ | BYvREF i | Tuwpe L,

This chart uses the following abbreviations:

LocAL_SI Gfor 0x7, used for the .locals directive, see clause 14.4.1.3
BYREF for ELEMENT_TYPE_BYREF (see clause 22.1.15)

Constraint is defined in clause 22.2.9.

Typeisdefined in clause 22.2.12

Count is an unsigned integer that holds the number of local variables. It can be any number between 1 and
OxFFFE.

There shall be Count instances of the Type in the LocalVarSig

22.2.7 CustomM od

The CustomMod (custom modifier) item in Signatures has a syntax chart like this:

CustomMod

| chOD_OFT | TypelbefEncoded

L =] ChMOD_REQD I TypeRefEncoded

This chart uses the following abbreviations:

CMOD_OPT for ELEMENT_TYPE_CMOD_OPT (See clause 22.1.15)
CMOD_REQD for ELEMENT_TYPE_CMOD_REQD (See clause 22.1.15)
The cvoD_OPT or cMoD_REQD value is compressed, see Section 22.2.

The cvob_oPT or cvob_REQD is followed by a metadata token that indexes arow in the TypeDef table or the
TypeRef table. However, these tokens are encoded and compressed — see clause 22.2.8 for details

If the CustomModifier istagged cvob_oPT, then any importing compiler can freely ignoreit entirely.
Conversely, if the CustomModifier istagged cMoD_REQD, any importing compiler shall ‘understand’ the
semantic implied by this CustomModifier in order to reference the surrounding Signature.

22.2.8 TypeDefOrRefEncoded

These items are compact ways to store a TypeDef or TypeRef token in a Signature (see clause 22.2.12).

Consider aregular TypeRef token, such as 0x01000012. The top byte of 0x01 indicates that this is a TypeRef
token (see Partition V for alist of the supported metadata token types). The lower 3 bytes (0x000012) index
row number 0x12 in the TypeRef table.

The encoded version of this TypeRef token is made up as follows:

© 00 N OO0 AW NP

[
N R O

=
AW

15

16
17
18

19
20
21
22
23

24
25

26
27
28
29

30

31
32

- 144 -

333. encode the table that this token indexes as the least significant 2 bits. The bit values to use are 0,
1 and 2, specifying the target table is the TypeDef, TypeRef or TypeSpec table, respectively

334. shift the 3-byte row index (0x000012 in this example) left by 2 bits and OR into the 2-bit
encoding from step 1

335. compress the resulting value (see Section 22.2). This example yields the following encoded

value:
a) encoded = value for TypeRef table = 0x01 (from 1. above)
b) encoded = (0x000012 << 2) | O0x01
= 0x48 | 0x01
= 0x49
c) encoded = Conpress (0x49)
= 0x49

So, instead of the original, regular TypeRef token value of 0x01000012, requiring 4 bytes of space in the
Signature 'blob’, this TypeRef token is encoded as asingle byte.

22.2.9 Constraint

The Constraint item in Signatures currently has only one possible value — ELEVMENT_TYPE_PI NNED (See
clause 22.1.15), which specifies that the target type is pinned in the runtime heap, and will not be moved by the
actions of garbage collection.

A Constraint can only be applied within aLocalVarSig (not aFieldSig). The Type of the local variable shall
either be areference type (in other words, it points to the actual variable — for example, an Object, or a String);
or it shall include the BYREF item. Thereason isthat local variables are alocated on the runtime stack — they
are never allocated from the runtime heap; so unless the local variable points at an object allocated in the GC
heap, pinning makes no sense.

22.2.10 Param

The Param (parameter) item in Sgnatures has this syntax chart:

Param

¥

4% Custombiod \ /7‘ = BYREF . Type i

p={ TPEDBEYREF

This chart uses the following abbreviations:
BYREF for 0x10 (See clause 22.1.15)
TYPEDBYREF for 0x16 (See clause 22.1.15)

CustomMod is defined in clause 22.2.7. Typeisdefined in clause 22.2.12

22.2.11 RetType
The RetType (return type) item in Signatures has this syntax chart:

o g~ WON -

~

10
11
12
13
14
15
16
17
18
19
20

21
22

23

24
25
26
27
28
29

22.2.

22.2.

- 145 -

RetType

Custombod \\ f p-| BYREF Type i =

| TYPEDEYREF

= WOID

RetType isidentical to Param except for one extra possibility, that it can include the type VOID. This chart
uses the following abbreviations:

BYREF for ELEMENT_TYPE_BYREF (see cl ause 22.1.15)

TYPEDBYREF for ELEMENT_TYPE_TYPEDBYREF (see clause 22.1.15)

va D for ELEMENT_TYPE_VO D (see cl ause 22.1.15)

12 Type

Typeisencoded in signatures as follows (11 is an abbreviation for ELEVENT_TYPE_| 1, €fc., see clause 22.1.15):
Type ::=

BOOLEAN | CHAR | 11| UL | 12| W | 14| V4| 18| UB| RA| RB| I | U|

| VALUETYPE TypeDef Or Ref Encoded

| CLASS TypeDef Or Ref Encoded

| STRING

| OBJECT

| PTR Customibd* VO D

| PTR Cust omivbd* Type

| FNPTR Met hodDef Si g

| FNPTR Met hodRef Si g

| ARRAY Type ArrayShape (general array, see clause 22.2.13)
I

SZARRAY Cust omvbd* Type (single dinmensional, zero-based array i.e. vector)

13 ArrayShape
An ArrayShape has the following syntax chart:

ArrayShape

—| FRank = HumSizes ¥ = Size “—#e NumLoBounds ¥ # LoBound A—P

Rank is an integer (stored in compressed form, see Section 22.2) that specifies the number of dimensionsin the
array (shall be 1 or more). NumSzesis acompressed integer that says how many dimensions have specified
sizes (it shall be 0 or more). Szeisacompressed integer specifying the size of that dimension — the sequence
starts at the first dimension, and goes on for atotal of NumSizesitems. Similarly, NumLoBoundsisa
compressed integer that says how many dimensions have specified lower bounds (it shall be 0 or more). And
LoBound is a compressed integer specifying the lower bound of that dimension — the sequence starts at the first

o~

© 0o N O

10
11
12
13
14
15

16
17

18

19
20

21
22

23
24
25

- 146 -

dimension, and goes on for atotal of NumLoBounds items.
can be skipped, but the number of specified dimensions can be less than Rank.

Here are afew examples, all for element typei nt 32:

None of the dimensionsin these two sequences

Type Rank NumSizes Size NumL oBounds LoBound
[0...2] 14 1 1 3 0
[] 14 7 0 0
[0...3, 0...2,, 14 6 2 4 3 2 0 0
[1...2, 6...8] 14 2 2 2 3 2 1 6
[5 3..5 , 1] I 4 4 2 5 3 2 0 3

Note: definitions can nest, since the Type may itself be an array

22.2.

22.2.

14 TypeSpec

The signature in the Blob heap indexed by a TypeSpec token has the following format —

TypeSpecBl ob : ==

PTR Cust omvbd* VO D
| PTR Cust omVbd* Type
| FNPTR Met hodDef Si g
| FNPTR Met hodRef Si g
| ARRAY Type ArrayShape
| SZARRAY Customibd* Type

For compactness, the ELEVMENT_TYPE_ prefixes have been omitted from thislist. So, for example, “PTR” is
shorthand for ELEMENT_TYPE_PTR. (See clause 22.1.15) Note that a TypeSpecBlob does not begin with a
calling-convention byte, so it differs from the various other signatures that are stored into Metadata.

15 Short Form Signatures

The general specification for signatures leaves some leeway in how to encode certain items. For example, it
appears legal to encode a String as either

long-form:

short-form: ELEMENT_TYPE_STRI NG

(ELEMENT_TYPE_CLASS, TypeRef-to-System.String)

Only the short form isvalid. The following table shows which short-forms should be used in place of each

long-formitem. (Asusual, for compactness, the ELEMENT_TYPE_ prefix have been omitted here — so VALUETYPE

is short for ELEMENT_TYPE_VALUETYPE)

Long Form Short Form
Prefix TypeRef to:

CLASS System String STRI NG
CLASS System bj ect OBJECT
VALUETYPE System Voi d VO D
VALUETYPE Syst em Bool ean BOOLEAN
VALUETYPE Syst em Char CHAR
VALUETYPE System Byte Ul
VALUETYPE System Sbyt e 1
VALUETYPE System | nt 16 12

WN -

[S2 I N

oo~N O

11
12
13

14
15
16
17
18

19

20
21
22

23

- 147 -

VALUETYPE System Ul nt 16 U2
VALUETYPE System | nt 32 14
VALUETYPE System Ul nt 32 07
VALUETYPE System | nt 64 18
VALUETYPE System Ul nt 64 us
VALUETYPE System IntPtr |
VALUETYPE System Ul ntPtr U
VALUETYPE Syst em TypedRef er ence TYPEDBYREF

Note: arrays shall be encoded in signatures using one of ELEVMENT_TYPE_ARRAY OF ELEMENT_TYPE_SZARRAY.
Thereisno long form involving a TypeRef to Syst em Array

22.3 Custom Attributes

A Custom Attribute has the following syntax chart:
CustomAttrib

¥

——»=| Prolog # | Fixedfrg ? g HumMamed *-..- Hamedfrg

All binary values are stored in little-endian format (except PackedL en items — used only as counts for the
number of bytesto follow in a UTF8 string)

CustomAttrib starts with a Prolog — an unsigned int16, with value 0x0001

Next comes a description of the fixed arguments for the constructor method. Their number and typeisfound
by examining that constructor’s MethodDef; thisinfo is not repeated in the CustomAttrib itself. Asthe syntax
chart shows, there can be zero or more FixedArgs. (note that VARARG constructor methods are not allowed in
the definition of Custom Attributes)

Next is adescription of the optional “named” fields and properties. This starts with NumNamed — an unsigned
int16 giving the number of “named” properties or fields that follow. Note that NumNamed shall always be
present. If itsvalueis zero, there are no “named” properties or fields to follow (and of course, in this case, the
CustomAttrib shall end immediately after NumNamed) In the case where NumNamed is non-zero, it is
followed by NumNamed repeats of NamedArgs

FizedAry

Betn

¥
¥

it not SZARRAY

MumElem +

¥

Betn

¥

if SLARRAY

The format for each FixedArg depends upon whether that argument is single, or an SZARRAY —thisis shown in
the upper and lower paths, respectively, of the syntax chart. So each FixedArg is either asingle Elem, or
NumElem repeats of Elem.

(szARRAY isthe single byte Ox1d, and denotes a vector —a single-dimension array with alower bound of zero)

co~NO U1 ~AWN

11

12
13
14

15
16

17
18
19
20

21
22
23

25
26

27

28
29
30

- 148 -

NumElemis an unsigned int32 specifying the number of elements in the szarRrRAY

Elem

simple or enum

Y

Wal

string or type

| SerSiring

Y

boxed valuetype

| FieldOrPropType Wal

Y

)

An Elem takes one of three forms:

if the parameter kind is simple (bool, char, float32, float64, int8, int16, int32, int64, unsigned
int8, unsigned int16, unsigned int32 or unsigned int64) then the 'blob' contains its binary value
(Val). This pattern is also used if the parameter kind is an enum -- simply store the value of the
enum's underlying integer type

if the parameter kind is string or type, then the blob contains a SerString — a PackedLen count of
bytes, followed by the UTF8 characters. (atypeis stored as a string giving the full name of that

type)
if the parameter kind is a boxed simple value type (bool, char, float32, float64, int8, intl6, int32,

int64, unsigned int8, unsigned int16, unsigned int32 or unsigned int64) then the blob contains the
value type's Fiel dOrPropType (see below), followed by its binary value (Val).

Val isthe binary value for asimple type. A bool isasingle byte with value O (false) or 1 (true); char isatwo-
byte unicode character; and the others have their obvious meaning..

NamedArg

[FIELD p—p{ FieldOrPropType

FigldOrPropMame

Fixedfrg |

L]

= PROPERTY

A NamedArg is simply a FixedArg (discussed above) preceded by information to identify which field or
property it represents.

FI ELD is the single byte 0x53

PROPERTY is the single byte Ox54

The FieldOrPropType shall be exactly one of: ELEMENT_TYPE_BOOLEAN, ELEMENT_TYPE_CHAR,
ELEMENT_TYPE_| 1, ELEMENT_TYPE_Ul, ELEMENT_TYPE_I2, ELEMENT_TYPE U2, ELEMENT_TYPE_| 4,
ELEMENT_TYPE_U4, ELEMENT_TYPE_| 8, ELEMENT_TYPE U8, ELEMENT_TYPE_R4, ELEMENT_TYPE_RS,

ELEMENT_TYPE_STRI NG or the constant 0x50 (for an argument of type Type). (See clause 22.1.15)
The FieldOrPropName is the name of the field or property, stored as a SerString (defined above).

The SerString used to encode an argument of type Type includes the full type name, followed optionally by the
assembly where it is defined, its version, culture and public key token. If the assembly name is omitted, the
CLI looksfirst in this assembly, and then the assembly named mscorlib.

N -

PO ©WoOW ~N~Nouk~ W

B

12
13

14
15
16
17
18
19
20

21
22

23
24

25
26

- 149 -

For example, consider the Type string “Ozzy.OutBack.K angaroo+Wallaby, MyAssembly” for aclass
“Wallaby” nested within class “ Ozzy.OutBack.Kangaroo”, defined in the assembly “MyAssembly”.

22.4 Marshalling Descriptors

A Marshalling Descriptor islike asignature—it'sa'blob’ of binary data. It describes how afield or parameter
(which, as usual, covers the method return, as parameter number 0) should be marshalled when calling to or
from unmanaged code via Pinvoke dispatch. The ilasm syntax mar shal can be used to create a marshalling
descriptor, as can the pseudo custom attribute Mar shal AsAttribute -- see clause 20.2.1)

Note that a conforming implementation of the CLI need only support marshalling of the types specified earlier
—seeclause 14.5.4.

Marshalling descriptors make use of constants named NATIVE_TYPE_xxx. Their names and values are listed
in the following table:

Name Value
NATI VE_TYPE_BOOLEAN 0x02
NATI VE_TYPE_I 1 0x03
NATI VE_TYPE_Ul 0x04
NATI VE_TYPE_| 2 0x05
NATI VE_TYPE_U2 0x06
NATI VE_TYPE_| 4 0x07
NATI VE_TYPE_U4 0x08
NATI VE_TYPE_| 8 0x09
NATI VE_TYPE_U8 0x0a
NATI VE_TYPE_R4 0x0b
NATI VE_TYPE_R8 0x0c
NATI VE_TYPE_LPSTR 0x14
NATI VE_TYPE_I NT Ox1f
NATI VE_TYPE_UI NT 0x20
NATI VE_TYPE_FUNC 0x26
NATI VE_TYPE_ARRAY 0x2a

The 'blob' has the following format —
Mar shal Spec :: =

Nativel nstrinsic
| ARRAY ArrayEl eniType ParanNum El emVul t NurEl em
Nativelnstrinsic ::=

BOOLEAN | 11] UL | 12] W | 14| U4] 18] UBB| R4 | RS
| CURRENCY | BSTR | LPSTR | LPWSTR | LPTSTR
| INT| UNT | FUNC| LPVOD

For compactness, the NATI VE_TYPE_ prefixes have been omitted in the abovellists. So, for example, “ARRAY” is
shorthand for NATI VE_TYPE_ARRAY

NumElemis an integer (compressed as described in Section 22.2) that specifies how many elements are in the
array
ArrayEl enType : ==

Nativelnstrinsic | BOOLEAN | 11| UL | 12| U2

©oo N o o b~ WN P

=
o

el e o
aghwWN R

N B R R
© © ©® N O

NDNN
WN P

- 150 -

| 14| U4| 18| UB| RA| RE| LPSTR| INT | UNT | FUNC| LPVOID

ParamNum s an integer (compressed as described in Section 22.2) specifying the parameter in the method call
that provides the number of elementsin the array — see below

ElemMult is an integer compressed as described in Section 22.2 (says by what factor to multiply — see below)

Note:
For example, in the method declaration:
Foo (int ar1[], int sizel, byte ar2[], int size2)

The arl parameter might own arow in the FieldMarshal table, which indexes a Mar shal Spec in the Blob heap
with the format:

ARRAY MAX 210

This says the parameter is marshalled to a NATI VE_TYPE_ARRAY. Thereis no additional info about the type of
each element (signified by that NATI VE_TYPE_MAX). The value of ParamNum s 2, which indicates that
parameter number 2 in the method (the one called “sizel”) will specify the number of elementsin the actual
array — let’s supposeits value on a particular call is42. The value of ElemMult is1. The value of NumElemis
0. The calculated total size, in bytes, of the array is given by the formula:

if ParamNum ==

SizelnBytes = NumElem * sizeof (elem)
else

SizelnBytes = (@ParamNum * ElemMult + NumElem) * sizeof (elem)
endif

The syntax “ @ParamNum” is used here to denote the value passed in for parameter number ParamNum — it
would be 42 in this example. The size of each element is calculated from the metadata for the ar1 parameter in
Foo' s signature — an ELEMENT_TYPE_| 4 (see clause 22.1.15) of size 4 bytes.

O, WN B

10
11

12

13

14
15
16
17

18
19

20
21
22

23

- 151 -

23 Metadata Physical Layout

The physical on-disk representation of metadatais a direct reflection of the logical representation described in
Chapter 21 and Chapter 22. That is, datais stored in streams representating the meta data tables and heaps. The
main complication is that, where the logical representation is abstracted from the number of bytes needed for
indexing into tables and columns, the physical representation has to take care of that explicitly by defining how
to map logical metadata heaps and tables into their physical representations.

23.1 Fixed Fields

Complete CLI components (metadata and CIL instructions) are stored in a subset of the current Portable
Executable (PE) File Format (see Chapter 24). Because of this heritage, some of the fieldsin the physical
representation of metadata have fixed values. When writing these fields they shall be set to the value indicated,
on reading they may be ignored.

23.2 File Headers

23.2.1 Metadata root

Theroot of the physical metadata starts with a magic signature, several bytes of version and other
miscellaneous information, followed by a count and an array of stream headers, one for each stream that is
present. The actual encoded tables and heaps are stored in the streams, which immediately follow this array of

headers.

Offset Size Field Description

0 4 Signature Magic signature for physical metadata : 0x424A5342.
4 2 MajorVersion Major version, 1 (ignore on read)

6 2 MinorVersion Minor version, O (ignore on read)

8 4 Reserved Reserved, always O (see Section 23.1).

12 4 Length Length of version string in bytes, say m.

16 m Version UTF8-encoded version string of length m (ignore on read)
16+m Padding to next 4 byte boundary, say x.

x 2 Flags Reserved, always O (see Section 23.1).

X+2 2 Streams Number of streams, say n.

x+4 StreamHeaders | Array of n StreamHdr structures.

23.2.2 Stream Header

A stream header gives the names, and the position and length of a particular table or heap. Note that the length
of a Stream header structure is not fixed, but depends on the length of its name field (a variable length null-
terminated string).

Offset Size Field Description

0 4 Offset Memory offset to start of this stream from start of the
metadata root (see clause 23.2.1)

4 4 Size Size of this stream in bytes, shall be amultiple of 4.

8 Name Name of the stream as null terminated variable length array

of ASCII characters, padded with \O characters

- 152 -

Both logical tables and heaps are stored in streams. There are five possible kinds of streams. A stream header
with name “#Strings’ that points to the physical representation of the string heap where identifier strings are
stored; a stream header with name “#US’ that points to the physical representation of the user string heap; a
stream header with name “#Blob” that points to the physical representation of the blob heap, a stream header
with name “#GUID” that points to the physical representation of the GUID heap; and a stream header with
name “#~" that points to the physical representation of a set of tables. (see Chapter 22)

Each kind of stream may occur at most once, that is, a meta-data file may not contain two “#US’ streams, or
five “#Blob” streams. Streams need not be there if they are empty.

© O~N OO0~ WNPE

The next sections will describe the structure of each kind of stream in more detail.

10 23.2.3 #Strings heap

11 The stream of bytes pointed to by a“#Strings’ header is the physical representation of the logical string heap.
12 The physical heap may contain garbage, that is, it may contain parts that are unreachable from any of the tables,
13 but parts that are reachable from atable shall contain avalid null terminated UTF8 string. When the #String

14 heap is present, the first entry is always the empty string (ie \0).

15 23.2.4 #US and #Blob heaps

16 The stream of bytes pointed to by a“#US” or “#Blob” header are the physical representation of logical

17 Userstring and 'blob' heaps respectively. Both these heaps may contain garbage, aslong as any part that is

18 reachable from any of the tables contains avalid 'blob'. Individual blobs are stored with their length encoded in
19 thefirst few bytes:

20 . If the first one byte of the 'blob’ is Obs, then the rest of the 'blob' contains the (bs) bytes of actual
21 data.

22 . If the first two bytes of the 'blob' are 10bs and X, then the rest of the 'blob' contains the (bs << 8 +
23 X) bytes of actual data.

24 . If the first four bytes of the 'blob' are 110bs, X, y, and z, then the rest of the 'blob' contains the (bs
25 << 24 + x<< 16 +y << 8 + 2) bytes of actual data.

26 Thefirst entry in both these heap is the empty 'blob’ that consists of the single byte 0x00.

27 23.2.5 #GUID heap

28 The“#GUID” header points to a sequence of 128-hit GUIDs. There might be unreachable GUIDs stored in the
29 stream.

30 23.2.6 #~ stream

31 The“#~" streams contain the actual physical representations of the logical metadata tables (see Chapter 21). A
32 “#~" stream has the following top-level structure:
Offsat Size Field Description
0 4 Reserved Reserved, always 0 (see Section 23.1).
4 1 MajorVersion | Major version of table schemata, always 1 (see Section 23.1).
5 1 MinorVersion | Minor version of table schemata, always O (see Section 23.1).
6 1 HeapSizes Bit vector for heap sizes.
7 1 Reserved Reserved, always 1 (see Section 23.1).
8 8 Valid Bit vector of present tables, et n be the number of bits that are
1
16 8 Sorted Bit vector of sorted tables.

O WNE

35

- 153 -

24 4*n Rows Array of nfour byte unsigned integers indicating the number
of rows for each present table.

24+4*n Tables The sequence of physical tables.

The HeapSizesfield is a bitvector that encodes how wide indexes into the various heaps are. If bit 0 is set,
indexes into the “#String” heap are 4 bytes wide; if bit 1 is set, indexes into the “#GUID” heap are 4 bytes
wide; bit 2 isnot used; if bit 3 is set, indexesinto the “#Blob” heap are 4 byteswide. Conversely, if the
HeapSize hit for a particular heap is not set, indexes into that heap are 2 bytes wide.

Bit position Description

0x01 Size of “#String” stream >= 2"16.
0x02 Size of “#GUID” stream >= 216
0x04 Size of “#Blob” stream >= 2"16.

The Valid field is a 64 bits wide bitvector that has a specific bit set for each table that is stored in the stream;
the mapping of tables to indexes is given at the start of Chapter 21. For example when the Decl Security tableis
present in the logical metadata, bit 0xOe should be set in the Valid vector. It isillegal to include non-existent
tablesin Valid, so all bits above 0x2b shall be zero.

The Rows array contains the number of rows for each of the tables that are present. When decoding physical
metadata to logical metadata, the number of 1'sin Valid indicates the number of elementsin the Rows array.

A crucial aspect in the encoding of alogical tableisits schema. The schemafor each tableisgivenin

Chapter 21. For example, the table with assigned index 0x02 isa TypeDef table, which, according to its
specification in Section 21.34, has the following columns: 4 byte-wide flags, index into the String heap, another
index into String heap, index into TypeDef or TypeRef table, index into Field table, index into Method table.

The physical representation of atable with schema (C,,...,C,.1) with n rows consists of the concatenation of the
physical representation of each of itsrows. The physical representation of arow with schema (C,...,Cy1) is
the concatenation of the physical representation of each of its elements. The physical representation of arow
cell e at a column with type C is defined as follows:

. If eisaconstant, it is stored using the number of bytes as specified for its column type C (i.e. a2
byte bitmask of type PropertyAttributes)

. If eisan index into the GUID heap, 'blob’, or String heap, it is stored using the number of bytes
as defined in the HeapSizes field.

. If eisasimpleindex into atable with index i, it is stored using 2 bytes if table i has less than
2716 rows, otherwise it is stored using 4 bytes.

. If eisacoded index that points into table t; out of n possible tablesty, ...t,.1, thenitis stored as e
<< (log n) | tag{ to, ...tn.1}[ti] using 2 bytes if the maximum number of rows of tablesty, ...t 4, iS
less than 2716 — (log n), and using 4 bytes otherwise. The family of finite maps tag{ to, ...t .1} is
defined below. Note that decoding a physical row requires the inverse of this mapping. [For
example, the Parent column of the Constant table indexes a row in the Field, Param or Property
tables. The actual table is encoded into the low 2 bits of the number, using the values: 0 => Field,
1 => Param,2 => Property.The remaining bits hold the actual row number being indexed. For
example, avalue of 0x321, indexes row number 0xC8 in the Param table.]

TypeDefOrRef: 2 bitsto encode tag Tag
TypeDef 0
TypeRef 1
TypeSpec 2

- 154 -

HasConstant: 2 bitsto encodetag Tag
Fi el dDef 0
Par anDef 1
Property 2
HasCustomattribute: 5 bitsto encodetag Tag
Met hodDef 0

Fi el dDef 1
TypeRef 2
TypeDef 3
Par anDef 4

I nterfacel npl 5
Menber Ref 6
Modul e 7
Per mi ssi on 8
Property 9
Event 10
Si gnature 11
Modul eRef 12
TypeSpec 13
Assenbl y 14
Assenbl yRef 15
File 16
ExportedType 17
Mani f est Resour ce 18
HasFieldMar shall: 1 bit to encode tag Tag
Fi el dDef 0
Par anDef 1
HasDecl Security: 2 bitsto encodetag Tag
TypeDef 0
Met hodDef 1
Assenbl y 2
Member RefParent: 3 bitsto encodetag Tag
Not used 0
TypeRef 1
Modul eRef 2
Met hodDef 3
TypeSpec 4

- 155 -

HasSemantics: 1 bit to encode tag Tag
Event 0
Property 1
MethodDefOr Ref: 1 bit to encodetag Tag
Met hodDef 0
Menber Ref 1
Member Forwarded: 1 bit to encode tag Tag
Fi el dDef 0
Met hodDef 1
Implementation: 2 bitsto encode tag Tag
File 0
Assenbl yRef 1
Export edType

CustomAttributeType: 3 bitsto encodetag Tag
Not used 0
Not used 1
Met hodDef 2
Menmber Ref 3
Not used 4
ResolutionScope: 2 bitsto encodetag Tag
Modul e 0
Modul eRef 1
Assenbl yRef 2
TypeRef 3

15
16
17

18
19

20
21

22

23
24
25
26

27

28
29

- 156 -

24 File Format Extensionsto PE

This contains informative text only

Thefileformat for CLI componentsis astrict extension of the current Portable Executable (PE) File Format.
This extended PE format enables the operating system to recognize runtime images, accommodates code
emitted as CIL or native code, and accommodates runtime metadata as an integral part of the emitted code.
There are also specifications for a subset of the full Windows PE/COFF file format, in sufficient detail that a
tool or compiler can use the specifications to emit valid CLI images.

The PE format frequently uses theterm RVA (Relative Virtual Address). An RVA isthe address of an item
once loaded into memory, with the base address of the image file subtracted from it (i.e. the offset from the
base address where thefileis loaded). The RVA of an item will amost always differ from its position within
the file on disk. To compute the file position of an item with RVA r, search al the sections in the PE fileto find
the section with RVA s, length | and file position p in which the RVA lies, ies<r < s+l. Thefile position of
the item is then given by p+(r-s).

End informative text

24.1 Structure of the Runtime File Format
The figure below provides ahigh-level view of the CLI file format. All runtime images contain the following:
. PE headers, with specific guidelines on how field values should be set in a runtime file.

. A CLI header that contains all of the runtime specific data entries. The runtime header is read-
only and shall be placed in any read-only section.

. The sections that contain the actual data as described by the headers, including imports/exports,
data, and code.

PE Headers

CLI Header

CLI Data : metadata, IL mathod bodies, fu-ups

Mative Image Sections

The CLI header (see clause 24.3.3) isfound using CL1 Header directory entry in the PE header . The CLI
header in turn contains the address and sizes of the runtime data (metadata see Chapter 23 and CIL

see Chapter 24.4) in therest of theimage. Note that the runtime data can be merged into other areas of the PE
format with the other data based on the attributes of the sections (such asread only versus execute, etc.).

24.2 PE Headers

A PE image starts with an MS-DOS header followed by a PE signature, followed by the PE file header, and
then the PE optional header followed by PE section headers.

©

10

11
12
13

24.2.1 MS-DOS Header

The PE format starts with an MS-DOS stub of exactly the following 128 bytes to be placed at the front of the
module. At offset Ox3c in the DOS header is a4 byte unsigned integer offset Ifanew to the PE signature (shall
be “PE\O\0"), immediately followed by the PE file header.

- 157 -

0x4d Ox5a 0x90 0x00 0x03 0x00 0x00 0x00
0x04 0x00 0x00 0x00 OxXFF OxXFF 0x00 0x00
0xb8 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x40 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 | f anew

0x0e Ox1f Oxba 0x0e 0x00 0xb4 0x09 Oxcd
0x21 0xb8 0x01 Ox4c Oxcd 0x21 0x54 0x68
0x69 0x73 0x20 0x70 0x72 0x6f 0x67 0x72
0x61 0x6d 0x20 0x63 0x61 Ox6e Ox6e 0x6f
0x74 0x20 0x62 0x65 0x20 0x72 0x75 Ox6e
0x20 0x69 Ox6e 0x20 0x44 Ox4f 0x53 0x20
0x6d 0x6f 0x64 0x65 Ox2e 0x0d 0x0d Ox0a
0x24 0x00 0x00 0x00 0x00 0x00 0x00 0x00

24.2.2 PE File Header
Immediately after the PE signature is the PE File header consisting of the following:

Offset Size Field Description

0 2 Machine Always Ox14c (see Section 23.1).

2 2 Number of Sections Number of sections; indicates size of the Section Table,
which immediately follows the headers.

4 4 Time/Date Stamp Time and date the file was created in seconds since
January 1% 1970 00:00:00 or 0.

8 4 Pointer to Symbol Table Always 0 (see Section 23.1).

12 4 Number of Symbols Always 0 (see Section 23.1).

16 2 Optional Header Size Size of the optional header, the format is described below.

18 2 Characteristics Flags indicating attributes of the file, see Characteristics.

24.2.2.1 Characteristics

A CIL-only DLL setsflag 0x2000 to 1, while an CIL only .exe has flag 0x2000 set to zero:

Flag Value Description

| MAGE_FILE DLL 0x2000 | Theimage fileis adynamic-link library (DLL).

Except for the 1 Mace_FI LE_DLL flag (0x2000), flags 0x0002, 0x0004, 0x008, 0x0100 and 0x0020 shall all be
set, while all others shall always be zero (see Section 23.1).

=

N

= O ©O ~N O

e

13
14

24.2.3 PE Optional Header
Immediately after the PE Header is the PE Optional Header. This header contains the following information:

- 158 -

Offset Size Header part Description
0 28 Standard fields These define general properties of the PE file, see 24.2.3.1.
28 68 NT-specific fields These include additional fields to support specific features of
Windows, see 24.2.3.2.
96 128 Datadirectories These fields are address/size pairs for special tables, found in
the image file (for example, Import Table and Export Table).
24.2.3.1 PE Header Standard Fields

These fields are required for al PE files and contain the following information:

Offset Size Field Description

0 2 Magic Always 0x10B (see Section 23.1).

2 1 LMajor Always 6 (see Section 23.1).

3 1 LMinor Always 0 (see Section 23.1).

4 4 Code Size Size of the code (text) section, or the sum of all code sections
if there are multiple sections.

8 4 Initialized Data Size Size of theinitialized data section, or the sum of all such
sections if there are multiple data sections.

12 4 Uninitialized Data Size | Size of the uninitialized data section, or the sum of all such
sections if there are multiple unitinitalized data sections.

16 4 Entry Point RVA RVA of entry point , needs to point to bytes OxFF 0x25
followed by the RV A+0x4000000 in a section marked
execute/read for EXEsor O for DLLs

20 4 Base Of Code RVA of the code section, always 0x00400000 for exes and
0x10000000 for DLL.

24 4 Base Of Data RVA of the data section.

This contains informative text only

The entry point RVA shall always be either the x86 entry point stub or be 0. On non-CL| aware platforms, this
stub will call the entry point API of mscoree (_CorExeMain or _CorDIIMain). The mscoree entry point will use
the module handle to load the meta data from the image, and invoke the entry point specified in vthe CLI

header.

End informative text

24.2.3.2

PE Header Windows NT-Specific Fields
These fields are Windows NT specific:

Offset Size Field Description

28 4 Image Base Always 0x400000 (see Section 23.1).
32 4 Section Alignment Always 0x2000 (see Section 23.1).
36 4 File Alignment Either 0x200 or 0x1000.

AW N B

159 -

40 2 OS Mgjor Always 4 (see Section 23.1).

42 2 OS Minor Always 0 (see Section 23.1).

44 2 User Major Always 0 (see Section 23.1).

46 2 User Minor Always 0 (see Section 23.1).

48 2 SubSys Major Always 4 (see Section 23.1).

50 2 SubSys Minor Always 0 (see Section 23.1).

52 4 Reserved Always 0 (see Section 23.1).

56 4 Image Size Size, in bytes, of image, including all headers and padding;
shall be amultiple of Section Alignment.

60 4 Header Size Combined size of MS-DOS Header, PE Header, PE Optional
Header and padding; shall be a multiple of the file alignment.

64 4 File Checksum Always 0 (see Section 23.1).

68 2 SubSystem Subsystem required to run thisimage. Shall be either
IMAGE_SUBSY STEM_WINDOWS_CE_GUI (0x3) or
IMAGE_SUBSYSTEM_WINDOWS_GUI (0x2).

70 2 DLL Flags Always 0 (see Section 23.1).

72 4 Stack Reserve Size Always 0x100000 (1Mb) (see Section 23.1).

76 4 Stack Commit Size Always 0x1000 (4K b) (see Section 23.1).

80 4 Heap Reserve Size Always 0x100000 (1IMb) (see Section 23.1).

84 4 Heap Commit Size Always 0x1000 (4K b) (see Section 23.1).

88 4 Loader Flags Always 0 (see Section 23.1)

92 4 Number of Data Always 0x10 (see Section 23.1).

Directories
24.2.3.3 PE Header Data Directories

The optional header data directories give the address and size of several tables that appear in the sections of the
PE file. Each data directory entry contains the RV A and Size of the structure it describes.

Offset Size Field Description

96 8 Export Table Always 0 (see Section 23.1).

104 8 Import Table RVA of Import Table, (see clause 24.3.1).

112 8 Resource Table Always 0 (see Section 23.1).

120 8 Exception Table Always 0 (see Section 23.1).

128 8 Certificate Table Always 0 (see Section 23.1).

136 8 Base Relocation Table Relocation Table, set to 0 if unused (see
clause 24.3.1).

144 8 Debug Always 0 (see Section 23.1).

152 8 Copyright Always 0 (see Section 23.1).

160 8 Global Ptr Always 0 (see Section 23.1).

168 8 TLS Table Always 0 (see Section 23.1).

wWNE

o ~No ol b~

- 160 -

176 8 Load Config Table Always 0 (see Section 23.1).

184 8 Bound Import Always 0 (see Section 23.1).

192 8 IAT RVA of Import Address Table, (see
clause 24.3.1).

200 8 Delay Import Descriptor Always 0 (see Section 23.1).

208 8 CLI| Header CL I Header with directories for runtime data,
(seeclause 24.3.1).

216 8 Reserved Always 0 (see Section 23.1).

The tables pointed to by the directory entries are stored in on of the PE fil€' s sections; these sections

themselves are described by section headers.

24.3 Section Headers

Immediately following the optional header is the Section Table, which contains a number of section headers.
This positioning is required because the file header does not contain a direct pointer to the section table; the
location of the section table is determined by calculating the location of the first byte after the headers.

Each section header has the following format, for atotal of 40 bytes per entry:

Offset | Size | Field Description

0 8 Name An 8-byte, null-padded ASCII string. There is no terminating null
if the string is exactly eight characters long.

8 4 VirtualSize Total size of the section when loaded into memory in bytes
rounded to Section Alignment. If thisvalue is greater than Size of
Raw Data, the section is zero-padded.

12 4 Virtual Address For executable images thisis the address of the first byte of the
section, when loaded into memory, relative to the image base.

16 4 SizeOfRawData Size of theinitialized data on disk in bytes, shall be a multiple of
FileAlignment from the PE header. If thisisless than Virtua Size
the remainder of the section is zero filled. Because thisfield is
rounded while the VirtualSize field isnot it is possible for thisto
be greater than Virtual Size as well. When a section contains only
uninitialized data, this field should be 0.

20 4 PointerToRawData RVA to section’ sfirst page within the PE file. This shall be a
multiple of FileAlignment from the optional header. When a
section contains only uninitialized data, this field should be 0.

24 4 PointerToRelocations RVA of Relocation section.

28 4 PointerToLinenumbers Always 0 (see Section 23.1).

32 2 NumberOfRelocations Number of relocations, set to 0 if unused.

34 2 NumberOfLinenumbers | Always 0 (see Section 23.1).

36 4 Characteristics Flags describing section’s characteristics, see below.

The following table defines the possible characteristics of the section.

Flag Value Description

I MAGE_SCN_CNT_CODE 0x00000020 Section contains executable code.

I MAGE_SCN_CNT_| NI TI ALl ZED_DATA 0x00000040 Section contains initialized data.

Ok, wW N B

O O oo~

11
12

13
14

15
16

17
18
19
20

21
22
23

- 161 -

I MAGE_SCN_CNT_UNI NI TI ALl ZED_DATA 0x00000080 Section contains uninitialized data.
| MAGE_SCN_MEM EXECUTE 0x20000000 Section can be executed as code.

| MAGE_SCN_MEM_READ 0x40000000 Section can be read.

| MAGE_SCN_MEM W\RI TE 0x80000000 Section can be written to.

24.3.1 Import Table and Import Address Table (IAT)

The Import Table and the Import Address Table (IAT) are used to import the _Cor ExeMai n (for a.exe) or

_Cor DI | Mai n (for a.dll) entries of the runtime engine (mscoree.dll). The Import Table directory entry points to
aone element zero terminated array of Import Directory entries (in agenera PE file there is one entry for each
imported DLL):

Offset Size Field Description

0 4 ImportL ookupTable RVA of the Import Lookup Table

4 4 DateTimeStamp Always 0 (see Section 23.1).

4 4 ForwarderChain Always 0 (see Section 23.1).

12 4 Name RVA of null terminated ASCII string “ mscoree.dll”.

16 4 ImportAddressTable RVA of Import Address Table (thisis the same asthe
RVA of the IAT descriptor in the optional header).

20 20 End of Import Table. Shall be filled with zeros.

The Import Lookup Table and the Import Address Table (IAT) are both one element, zero terminated arrays of
RVAs into the Hint/Name table. Bit 31 of the RVA shall be set to 0. In ageneral PE file thereisone entry in
this table for every imported symbol.

Offset

Size

Field

Description

1

4

Hint/Name Table RVA A 31-bit RVA into the Hint/Name Table. Bit 31

shall be set to 0 indicating import by name.

End of table, shall be filled with zeros.

The AT should be in an executable and writable section as the loader will replace the pointersinto the
Hint/Name table by the actual entry points of the imported symbols.

The Name/Hint table contains the name of the dll-entry that is imported.

Offset Size Field Description
0 2 Hint Shall be 0.
2 variabl e Name Case sensitive, null-terminated ASCII string containing name to

import. Shall be“_CorExeMain” for a .exe file and
“ CorDIIMain” for a.dll file.

24.3.2 Relocations

In apure CIL image, asingle fixup of type IMAGE_REL_BASED_ HIGHLOW (0x3) isrequired for the x86
startup stub which access the IAT to load the runtime engine on down level loaders. When building a mixed
ClL/native image or when the image contains embedded RV As in user data, the relocation section contains

relocations for these as well.

The relocation section contains a Fix-Up Table. The fixup table is broken into blocks of fixups. Each block
represents the fixups for a 4K page and block shall start on a 32-bit boundary. The last fixup block has

PageRVA field set to 0.

0 ~NOoOO

10
11

12

Each fixup block starts with the following structure:

- 162 -

Offset Size Field Description

0 4 PageRVA The RVA of the block in which the fixup needs to be
applied.

4 4 Block Size Total number of bytes in the fixup block, including the
Page RVA and Block Sizefields, aswell asthe
Type/Offset fields that follow.

The Block Size field is then followed by (BlockSize —8)/2 Type/Offset. Each entry isaword (2 bytes) and has
the following structure:

Offset Size Field Description

0 4 hits Type Stored in high 4 bits of word. Value indicating which
type of fixup isto be applied (described below)

0 12 hits Offset Stored in remaining 12 bits of word. Offset from starting
address specified in the Page RVA field for the block.
This offset specifies where the fixup is to be applied.

To apply afixup, adetais calculated as the difference between the preferred base address, and the base where
the image is actually loaded. The fixup applies the deltato the 32-bit field at Offset. If the imageisloaded at its
preferred base, the delta would be zero, and thus the fixups would not have to be applied.

24.3.3 CLI Header

The CLI header contains all of the runtime-specific data entries and other information. The header should be
placed in aread only, sharable section of theimage. This header is defined as follows:

Offset Size Field Description

0 4 Cb Size of the header in bytes

4 2 MajorRuntimeVersion The minimum version of the runtime required to run
this program, currently 2.

6 2 MinorRuntimeVersion The minor portion of the version, currently 0.

8 8 MetaData RVA of the physical meta data (see Chapter 23).

16 4 Flags Flags describing this runtime image. (see
clause 24.3.3.1).

20 4 EntryPointToken Token for the MethodDef or File of the entry point
for the image

24 8 Resources Location of CLI resources. (See Partition V).

32 8 StrongNameSignature RVA of the hash data for this PE file used by the
CLI loader for binding and versioning

40 8 CodeManagerTable Always 0 (see Section 23.1).

48 8 VTableFixups RVA of an array of locationsin the file that contain
an array of function pointers (e.g., vtable dots), see
below.

56 8 ExportAddressTableJumps Always 0 (see Section 23.1).

64 8 MangedNativeHeader Always 0 (see Section 23.1).

1

o~NOO1T b~ W

11
12
13
14

15
16
17

18

19
20

21
22

24.3.3.1 Runtime Flags

The following flags describe this runtime image and are used by the loader.

- 163 -

Flag Value Description

COM MAGE_FLAGS_| LONLY 0x00000001 Always 1 (see Section 23.1).

COM MAGE_FLAGS_32BI TREQUI RED 0x00000002 |mage may On|y be loaded into a 32-bit
process, for instance if there are 32-bit
vtablefixups, or casts from native integersto
int32. CLI implementations that have 64 hit
native integers shall refuse loading binaries
with thisflag set.

COM MAGE_FLAGS_STRONGNAMESI GNED 0x00000008 Image has astrong name Signaturel

COM MAGE_FLAGS_TRACKDEBUGDATA 0x00010000

Always 0 (see Section 23.1).

24.3.3.2 Entry Point Meta Data Token

. The entry point token (see Clause 14.4.1.2) is always a MethodDef token (see Section 21.24) or
File token (see Section 21.19) when the entry point for a multi-module assembly is not in the
manifest assembly. The signature and implementation flags in metadata for the method indicate
how the entry is run

24.3.3.3 Vtable Fixup

Certain languages, which choose not to follow the common type system runtime model, may have virtua
functions which need to be represented in av-table. These v-tables arelaid out by the compiler, not by the
runtime. Finding the correct v-table slot and calling indirectly through the value held in that dot is also done
by the compiler. The VtableFixupsfield in the runtime header contains the location and size of an array of
Vtable Fixups (see clause 14.5.1). V-tables shall be emitted into a read-write section of the PE file.

Each entry in this array describes a contiguous array of v-table dots of the specified size. Each dot starts out
initialized to the metadata token value for the method they need to call. At image load time, the runtime
Loader will turn each entry into a pointer to machine code for the CPU and can be called directly.

Offsat Size Field Description

0 4 Virtual Address RVA of Vtable

4 2 Size Number of entriesin Vtable

6 2 Type Type of the entries, as defined in table below

Constant Value Description

COR_VTABLE_32BI T 0x01 Vtable slots are 32 bits.

COR_VTABLE_64BI T 0x02 Vtable dots are 64 hits.

COR_VTABLE_FROM_UNVANAGED 0x04 Transition from unmanged to manged code.

COR_VTABLE_CALL_MOST_DERI VED 0x10 Call most derived method described by the
token (only valid for virtual methods).

24.3.3.4 Strong Name Signature

This header entry points to the strong name hash for an image that can be used to deterministically identify a
module from areferencing point (see Section 6.2.1.3).

18
19
20
21
22
23
24
25

26
27

28
29

30
31
32
33

35

- 164 -

24.4 Common Intermediate Language Physical Layout

This section contains the layout of the data structures used to describe a CIL method and its exceptions.
Method bodies can be stored in any read-only section of a PE file. The MethodDef (see Section 21.24) records
in metadata carry each method's RVA.

A method consists of a method header immediately followed by the method body, possible followed by extra
method data sections (see Section 24.4.5), typically exception handling data. |f exception-handling datais
present, then CorlLMethod MoreSects flag (see clause 24.4.4) shall be specified in the method header and for
each chained item after that.

There are two flavors of method headers - tiny (see clause 24.4.2) and fat (see clause 24.4.3). The three least
significant bits in a method header indicate which type is present (see clause 24.4.1). The tiny header is 1 byte
long and represents only the method's code size. A method is given atiny header if it hasno local variables,
maxstack is 8 or less, the method has no exceptions, the method size is less than 64 bytes, and the method has
no flags above Ox7. Fat headers carry full information - local vars signature token, maxstack, code size, flag.
Method headers shall be 4-byte aligned.

24.4.1 Method Header Type Values

Thethree |least significant bits of the first byte of the method header indicate what type of header is present.
These 3 bitswill be one and only one of the following:

Value Value Description
Cor | LMet hod_Ti nyFor mat 0x2 The method header istiny (see clause 24.4.2) .
Cor I LMet hod_Fat For mat 0x3 The method header isfat (see clause 24.4.3).

24.4.2 Tiny Format

Tiny headers use a5 bit length encoding. The following istrue for all tiny headers:
. No local variables are allowed

. No exceptions

. No extra data sections

. The operand stack need be no bigger than 8 entries

Thefirst encoding has the following format:

Start Bit Count of Bits Description

0 2 Flags (CorlLMethod_TinyFormat shall be set, see clause 24.4.4).

2 6 Size of the method body immediately following this header.
Used only when the size of the method is less than 26 bytes.

24.4.3 Fat Format

Thefat format is used whenever the tiny format is not sufficient. This may be true for one or more of the
following reasons:

. The method is too large to encode the size

. There are exceptions

. There are extra data sections

. There are local variables

. The operand stack needs more than 8 entries
A fat header has the following structure

AW N BB

QOWoo~N O O

11

13

- 165 -

Offset Size Field Description

0 12 (bits) Flags Flags (CorlLMethod_Fat shall be set, see
clause 24.4.4)

12 (bits) 4 (bits) Size Size of this header expressed as the count of 4-byte
integers occupied

2 2 M axStack Maximum number of items on the operand stack

4 4 CodeSize Size in bytes of the actual method body

8 4 LocalVarSigTok Meta Data token for a signature describing the layout
of the local variables for the method. 0 means there
are no local variables present

24.4.4 Flags for Method Headers

Thefirst byte of a method header may also contain the following flags, valid only for the Fat format, that
indicate how the method isto be executed:

Flag Value Description

Cor | LMet hod_Fat 0x3 Method header isfat.

Cor | LMet hod_Ti nyFor mat 0x2 Method header istiny,

Cor | LMet hod_Mor eSect s 0x8 More sections follow after this header (see
Section 24.4.5).

Cor I LMet hod_I ni t Local s 0x10 Call default constructor on all local variables.

24.4.5 Method Data Section

At the next 4-byte boundary following the method body can be extra method data sections. These method data

sections start with atwo byte header (1 byte flags, 1 byte for the length of the actual data) or afour byte header
(1 byte for flags, and 3 bytes for length of the actual data). The first byte determines the kind of the header, and
what dataisin the actual section:

Flag Value Description

Cor | LMet hod_Sect _EHTabl e Ox1 Exception hand“ng data.

Cor | LMet hod_Sect _Opt | LTabl e 0x2 Reserved, shall be 0.

Cor | LMet hod_Sect _Fat For mat 0x40 Dataformat is of the fat variety, meaning thereisa3
byte length. If not set, the header issmall witha 1
byte length

Cor | LMet hod_Sect _Mor eSect s 0x80 Another data section occurs after this current section

Currently, the method data sections are only used for exception tables (see Chapter 0). The layout of a small
exception header structure asisafollows:

Offset Size Field Description

0 1 Kind Flags as described above.

1 1 DataSize Size of the data for the block, including the header, say
n*12+4.

2 2 Reserved Padding, always 0.

- 166 -

4 n Clauses n small exception clauses (see Section 24.4.6).
% The layout of afat exception header structureis asfollows:
Offset Size Field Description
0 1 Kind Which type of exception block is being used
1 3 DataSize Size of the data for the block, including the header, say
n*24+4.
4 n Clauses n fat exception clauses (see Section 24.4.6).
3
4 24.4.6 Exception Handling Clauses
5 Exception handling clauses also come in small and fat versions.
6 The small form of the exception clause should be used whenever the code size for the try block and handler
7 codeis smaller than or equal to 256 bytes. The format for a small exception clause is asfollows:
Offset Size Field Description
0 2 Flags Flags, see below.
2 2 TryOffset Offset in bytes of try block from start of the header.
4 1 TryLength Length in bytes of the try block
5 2 Handler Offset L ocation of the handler for this try block
7 Handler Length Size of the handler code in bytes
8 4 ClassToken Meta data token for atype-based exception handler
8 4 Filter Offset Offset in method body for filter-based exception handler
g The layout of fat form of exception handling clausesis asfollows:
Offset Size Field Description
0 4 Flags Flags, see below.
4 4 TryOffset Offset in bytes of try block from start of the header.
8 4 TryLength Length in bytes of the try block
12 4 Handler Offset Location of the handler for thistry block
16 4 Handler Length Size of the handler code in bytes
20 4 ClassToken Meta data token for a type-based exception handler
20 4 Filter Offset Offset in method bodly for filter-based exception handler
ﬂ The following flag values are used for each exception-handling clause;
Flag Value Description
COR_I LEXCEPTI ON_CLAUSE_EXCEPTI ON 0x0000 A typed exception clause
COR_I LEXCEPTI ON_CLAUSE_FI LTER 0x0001 An exception filter and handler clause
COR_I LEXCEPTI ON_CLAUSE_FI NALLY 0x0002 A finally clause
COR_I LEXCEPTI ON_CLAUSE_FAULT 0x0004 Fault clause (finally that is called on
exception only)
12

13

Common Language Infrastructure (CL1)

Partition |11
CIL Instruction Set

1.1
1.1.1
1.1.2
1.1.3
1.1.4

1.2
1.2.1

1.3

1.4

1.5

1.6

1.7
1.7.1
1.7.2
1.7.3
1.7.4
1.7.5
1.7.6

1.8
1.8.1

1.9

1.10

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6

Table of Contents

Scope

Data Types

Numeric Data Types

Boolean Data Type

Object References

Runtime Pointer Types
Instruction Variant Table
Opcode Encodings

Stack Transition Diagram
English Description

Operand Type Table

Implicit Argument Coercion
Restrictions on CIL Code Sequences
The Instruction Stream

Valid Branch Targets
Exception Ranges

Must Provide Maxstack
Backward Branch Constraints
Branch Verification Constraints
Verifiability

Flow Control Restrictions for Verifiable CIL
Metadata Tokens

Exceptions Thrown

Prefixes to Instructions
tail. (prefix) — call terminates current method
unaligned. (prefix) — pointer instruction may be unaligned

volatile. (prefix) - pointer reference is volatile

Base Instructions

add - add numeric values

add.ovf.<signed> - add integer values with overflow check
and - bitwise AND

arglist - get argument list

beqg.<length> — branch on equal

bge.<length> — branch on greater than or equal to

o O~ W WL R

NN P R R R R R R R R R R R R
B P O ~N NN OO OO R R R

22
23
24
25

26
27
28
29
30
31
32

3.7
unordered

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28

3.29
detection

3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
3.41
3.42
3.43

bge.un.<length> — branch on greater than or equal to, unsigned or

bgt.<length> — branch on greater than
bgt.un.<length> — branch on greater than, unsigned or unordered

ble.<length> — branch on less than or equal to

ble.un.<length> — branch on less than or equal to, unsigned or unordered

blt.<length> — branch on less than

blt.un.<length> — branch on less than, unsigned or unordered
bne.un<length> — branch on not equal or unordered
br.<length> — unconditional branch

break — breakpoint instruction

brfalse.<length> - branch on false, null, or zero
brtrue.<length> - branch on non-false or non-null

call — call a method

calli— indirect method call

ceq - compare equal

cgt - compare greater than

cgt.un - compare greater than, unsigned or unordered
ckfinite — check for afinite real number

clt - compare less than

clt.un - compare less than, unsigned or unordered

conv.<to type> - data conversion

conv.ovf.<to type> - data conversion with overflow detection

conv.ovf.<to type>.un — unsigned data conversion with overflow

cpblk - copy data from memory to memory

div - divide values

div.un - divide integer values, unsigned

dup — duplicate the top value of the stack
endfilter — end filter clause of SEH

endfinally — end the finally or fault clause of an exception block
initblk - initialize a block of memory to a value
jmp — jump to method

Idarg.<length> - load argument onto the stack
Idarga.<length> - load an argument address
Idc.<type> - load numeric constant

[dftn - load method pointer

Idind.<type> - load value indirect onto the stack

Idloc - load local variable onto the stack

33
34
35
36
37
38
39
40
41
42
43
44
45
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
71

3.44
3.45
3.46
3.47
3.48
3.49
3.50
3.51
3.52
3.53
3.54
3.55
3.56
3.57
3.58
3.59
3.60
3.61
3.62
3.63
3.64
3.65
3.66
3.67

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

Idloca.<length> - load local variable address

[dnull — load a null pointer

leave.<length> — exit a protected region of code

localloc — allocate space in the local dynamic memory pool
mul - multiply values

mul.ovf.<type> - multiply integer values with overflow check
neg - negate

nop — no operation

not - bitwise complement

or - bitwise OR

pop — remove the top element of the stack

rem - compute remainder

rem.un - compute integer remainder, unsigned

ret — return from method

shl - shift integer left

shr - shift integer right

shr.un - shift integer right, unsigned

starg.<length> - store a value in an argument slot
stind.<type> - store value indirect from stack

stloc - pop value from stack to local variable

sub - subtract numeric values

sub.ovf.<type> - subtract integer values, checking for overflow
switch — table switch on value

xor - bitwise XOR

Object Model Instructions

box — convert value type to object reference

callvirt — call a method associated, at runtime, with an object
castclass — cast an object to a class

cpobj - copy avalue type

initobj - initialize a value type

isinst — test if an object is an instance of a class or interface
Idelem.<type> — load an element of an array

Idelema — load address of an element of an array

Idfld — load field of an object

Idflda — load field address

Idlen — load the length of an array

Idobj - copy value type to the stack

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

96
96
97
98
99
100
101
102
104
105
106
107
108

4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30

ldsfld — load static field of a class
Idsflda — load static field address

Idstr — load a literal string

Idtoken - load the runtime representation of a metadata token

Idvirtftn - load a virtual method pointer

mkrefany — push a typed reference on the stack
newarr — create a zero-based, one-dimensional array
newobj — create a new object

refanytype — load the type out of a typed reference
refanyval — load the address out of a typed reference
rethrow — rethrow the current exception

sizeof — load the size in bytes of a value type
stelem.<type> — store an element of an array

stfld — store into a field of an object

stobj - store a value type from the stack into memory
stsfld — store a static field of a class

throw — throw an exception

unbox — Convert boxed value type to its raw form

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

OO NO OPrhWN B

ol
()

iRy
N

B
AW

=
o O

NN R R
= O ©o~

NDNDNN
abrwinN

N
(o))

NN
o ~

N
[{e]

30

31
32
33
34

35
36
37

38
39

40

41
42
43

1.1

1.1.1

Scope

This specification is a detailed description of the Common Intermediate Language (CIL) instruction set, part of
the specification of the Common Language Infrastructure. Partition | describes the architecture of the CLI and
provides an overview of alarge number of issuesrelating to the CIL instruction set. That overview is essential
to an understanding of the instruction set as described here.

Each instruction description describes a set of related CLI machine instructions. Each instruction definition
consists of five parts:

. A table describing the binary format, assembly language notation and description of each variant
of the instruction. See the Instruction Variant Table section.

. A stack transition diagram that describes the state of the evaluation stack before and after the
instruction is executed. See Section 1.3.

. An English description of the instruction. See the English Description section.

. A list of exceptions that might be thrown by the instruction. See Partition | for details. There are
three exceptions which may be thrown by any instruction and are not listed with the instruction:

Execut i onEngi neExcept i on indicates that the internal state of the Execution Engineis corrupted and
execution cannot continue. [Note: in a system that executes only verifiable code this exception is not thrown.]

St ackOver f | owExcept i on indicates that the hardware stack size has been exceeded. The precise timing of this
exception and the conditions under which it occurs are implementation specific. [Note: this exception is
unrelated to the maximum stack size described in clause 1.7.4. That size relates to the depth of the evaluation
stack that is part of the method state described in Partition I, while this exception has to do with the
implementation of that method state on physical hardware.]

Qut O Menor yExcept i on indicates that the available memory space has been exhausted, either because the
instruction inherently allocates memory (newobj , newar r) or for an implementation-specific reason (for
example, an implementation based on just-in-time compilation to native code may run out of space to store the
translated method while executing thefirst cal | or cal | vi rt to agiven method).

. A section describing the verifiability conditions associated with the instruction. See Section 1.8.

In addition, operations that have a numeric operand also specify an operand type table that describes how they
operate based on the type of the operand. See Section 1.5.

Note that not al instructions are included in al CLI Profiles. See Partition |V for details.

Data Types

While the Common Type System (CTS) defines arich type system and the Common Language Specification
(CLS) specifies a subset that can be used for language interoperability, the CLI itself deals with a much ssmpler
set of types. These types include user-defined value types and a subset of the built-in types. The subset is
collectively known asthe “basic CLI types’:

. A subset of the full numeric types (i nt 32, i nt 64, native int, and F)
. Object references (0) without distinction between the type of object referenced
. Pointer types (nati ve unsigned i nt and &) without distinction as to the type pointed to
Note that object references and pointer types may be assigned the value nul | . Thisis defined throughout the
CLI to be zero (a bit pattern of all bits zero)
Numeric Data Types

. The CLI only operates on the numeric typesi nt 32 (4 byte signed integers), i nt 64 (8 byte signed
integers), native int (native size integers), and F (native size floating-point numbers). The CIL
instruction set, however, allows additional data types to be implemented:

=
QUOWoO~N OUMWNEE

N N
b wN R

B
~No

[l
© ™

NN
= O

NN
W N

NN NN
~N o oA~

WWNN
= O O o

wwwwwgww
© 00 ~NO O W N

e
N~ O

AEHERE

B b
© oo

. Short integers. The evaluation stack only holds 4 or 8 byte integers, but other locations
(arguments, local variables, statics, array elements, fields) may hold 1 or 2 byte integers. Loading
from these locations onto the stack either zero-extends (I di nd. u*, | del em u*, €tc.) or sign-
extends (I dind.i*, 1 delemi*, etc.) to a4 byte value. Storing to integers (stind. ul, stel emi 2,
etc.) truncates. Use the conv. ovf. * instructions to detect when this truncation results in a value
that doesn’t correctly represent the original value.

Note: Short integers are loaded as 4-byte numbers on all architectures and these 4-byte numbers must always
be tracked as distinct from 8-byte numbers. This helps portability of code by ensuring that the default
arithmetic behavior (i.e when no conv or conv. ovf instruction are executed) will have identical results on all
implementations.

Convert instructions that yield short integer values actually leave an int32 (32-bit) value on the stack, but it is
guaranteed that only the low bits have meaning (i.e. the more significant bits are all zero for the unsigned
conversions or asign extension for the signed conversions). To correctly simulate the full set of short integer
operations a conversion to the short form is required before the di v, r em shr, comparison and conditional
branch instructions.

In addition to the explicit conversion instructions there are four cases where the CLI handles short integersin a
special way:

336. Assignment to alocal (st oc) or argument (st ar g) whose type is declared to be a short integer
type automatically truncates to the size specified for the local or argument.

337. Loading from alocal (1 dl oc) or argument (I dar g) whose type is declared to be a short signed
integer type automatically sign extends.

338. Calling a procedure with an argument that is a short integer type is equivalent to assignment to
the argument value, so it truncates.

339. Returning a value from a method whose return type is a short integer is modeled as storing into a
short integer within the called procedure (i.e. the CLI automatically truncates) and then loading
from a short integer within the calling procedure (i.e. the CLI automatically zero- or sign-
extends).

In the last two casesit is up to the native calling convention to determine whether values are actually truncated
or extended, as well as whether thisisdonein the called procedure or the calling procedure. The CIL
instruction sequence is unaffected and it is as though the CIL sequence included an appropriate conv
instruction.

. 4 byte integers. The shortest value actually stored on the stack is a 4-byte integer. These can be
converted to 8-byte integers or native-size integers using conv. * instructions. Native-size integers
can be converted to 4-byte integers, but doing so is not portable across architectures. The conv. i 4
and conv. u4 can be used for this conversion if the excess significant bits should be ignored; the
conv. ovf.i4 and conv. ovf. u4 instructions can be used to detect the loss of information.
Arithmetic operations allow 4-byte integers to be combined with native size integers, resulting in
native size integers. 4-byte integers may not be directly combined with 8-byte integers (they must
be converted to 8-byte integers first).

. Native size integers. Native size integers can be combined with 4-byte integers using any of the
normal arithmetic instructions, and the result will be a native-size integer. Native size integers
must be explicitly converted to 8-byte integers before they can be combined with 8-byte integers.

. 8 byte integers. Supporting 8 byte integers on 32 bit hardware may be expensive, whereas 32 bit
arithmetic is available and efficient on current 64 bit hardware. For this reason, numeric
instructions allow int32 and | data types to be intermixed (yielding the largest type used as input),
but these types cannot be combined with int64s. Instead, an native int or int32 must be explicitly
converted to int64 before it can be combined with an int64.

. Unsigned integers. Special instructions are used to interpret integers on the stack as though they
were unsigned, rather than tagging the stack locations as being unsigned.

1 . Floating-point numbers. See also Partition I, Handling of Floating Point Datatypes. Storage
2 locations for floating-point numbers (statics, array elements, and fields of classes) are of fixed
3 size. The supported storage sizes are f | oat 32 and f | oat 64. Everywhere else (on the evaluation
4 stack, as arguments, as return types, and as local variables) floating-point numbers are
5 represented using an internal floating-point type. In each such instance, the nominal type of the
6 variable or expression is either f1 oat 32 or f 1 oat 64, but its value may be represented internally
7 with additional range and/or precision. The size of the internal floating-point representation is
8 implementation-dependent, may vary, and shall have precision at least as great as that of the
9 variable or expression being represented. An implicit widening conversion to the internal
10 representation from f | oat 32 or f 1 oat 64 is performed when those types are loaded from storage.
11 The internal representation is typically the natural size for the hardware, or as required for
12 efficient implementation of an operation. The internal representation shall have the following
13 characteristics:
14 0 The internal representation shall have precision and range greater than or equal to the
15 nominal type.
16 o] Conversions to and from the internal representation shall preserve value. [Note: This
17 implies that an implicit widening conversion from f | oat 32 (Or f | oat 64) to the internal
18 representation, followed by an explicit conversion from the internal representation to
19 float 32 (Or f1 oat 64), will result in avalue that isidentical to the original f | oat 32 (or
20 fl oat 64) value.]
21 Note: The above specification allows a compliant implementation to avoid rounding to the precision of the
22 target type on intermediate computations, and thus permits the use of wider precision hardware registers, as
23 well as the application of optimizing transformations which result in the same or greater precision, such as
24 contractions. Where exactly reproducible behavior is required by alanguage or application, explicit
25 conversions may be used.
26 When afloating-point value whose internal representation has greater range and/or precision than its nominal
27 typeis put in astorage location, it is automatically coerced to the type of the storage location. This may involve
28 aloss of precision or the creation of an out-of-range value (NaN, +infinity, or -infinity). However, the value
29 may be retained in the internal representation for future use, if it is reloaded from the storage location without
30 having been modified. It is the responsibility of the compiler to ensure that the memory location is still valid at
31 the time of a subsequent load, taking into account the effects of aliasing and other execution threads (see
32 memory model section). This freedom to carry extra precision is not permitted, however, following the
33 execution of an explicit conversion (conv. r4 or conv. r 8), a which time the internal representation must be
34 exactly representable in the associated type.
35 Note: To detect values that cannot be converted to a particular storage type, use a conversion instruction
36 (conv. r4, or conv. r 8) and then check for an out-of-range value using ckf i ni t e. To detect underflow when
37 converting to a particular storage type, a comparison to zero is required before and after the conversion.
38 Note: This standard does not specify the behavior of arithmetic operations on denormalized floating point
39 numbers, nor does it specify when or whether such representations should be created. Thisisin keeping with
40 IEC 60559:1989. In addition, this standard does not specify how to access the exact bit pattern of NaNsthat are
41 created, nor the behavior when converting a NaN between 32-bit and 64-bit representation. All of this behavior
42 is deliberately left implementati on-specific.

43 1.1.2 Boolean Data Type

44 A CLI Boolean type occupies one bytein memory. A bit pattern of all zeroes denotes avalue of false. A bit
45 pattern with any bit set (analogous to a non-zero integer) denotes a value of true.

46 1.1.3 Object References

47 Object references (type O) are completely opaque. There are no arithmetic instructions that allow object

48 references as operands, and the only comparison operations permitted are equality (and inequality) between two
49 object references. There are no conversion operations defined on object references. Object references are

50 created by certain CIL object instructions (notably newobj and newar r). Object references can be passed as

51 arguments, stored as local variables, returned as values, and stored in arrays and as fields of objects.

O ~No o~ WN P

=
o

el el
A WNPE

NNNREP R PR R
NPFP O OO~ U

23

24
25
26
27
28
29

30
31

32
33

35
36

37
38
39
40
41
42
43

45
46

1.1.4

1.1.4

1.1.4

Runtime Pointer Types

There are two kinds of pointers. unmanaged pointers and managed pointers. For pointers into the same array or
object (see Partition 1), the following arithmetic operations are defined:

. Adding an integer to a pointer, where the integer is interpreted as a number of bytes, resultsin a
pointer of the same kind.

. Subtracting an integer (number of bytes) from a pointer results in a pointer of the same kind. Note
that subtracting a pointer from an integer is not permitted.

. Two pointers, regardless of kind, can be subtracted from one another, producing an integer that
specifies the number of bytes between the addresses they reference.

None of these operationsis allowed in verifiable code.

It isimportant to understand the impact on the garbage collector of using arithmetic on the different kinds of

pointers. Since unmanaged pointers must never reference memory that is controlled by the garbage collector,
performing arithmetic on them can endanger the memory safety of the system (henceit is not verifiable) but

since they are not reported to the garbage collector there is no impact on its operation.

Managed pointers, however, are reported to the garbage collector. As part of garbage collection both the
contents of the location to which they point and the pointer itself can be maodified. The garbage collector will
ignore managed pointersif they point into memory that is not under its control (the evaluation stack, the call
stack, static memory, or memory under the control of another allocator). If, however, a managed pointer refers
to memory controlled by the garbage collector it must point to either afield of an object, an element of an
array, or the address of the element just past the end of an array. If address arithmetic is used to create a
managed pointer that refers to any other location (an object header or a gap in the allocated memory) the
garbage collector’ s operation is unspecified.

A Unmanaged Pointers

Unmanaged pointers are the traditional pointers used in languages like C and C++. There are no restrictions on
their use, although for the most part they result in code that cannot be verified. While it is perfectly legal to
mark locations that contain unmanaged pointers as though they were unsigned integers (and thisis, in fact, how
they are treated by the CL1), it is often better to mark them as unmanaged pointers to a specific type of data.
Thisisdone by using ELEVENT_TYPE_PTRin asignature for areturn value, local variable or an argument or by
using a pointer type for afield or array element.

Unmanaged pointers are not reported to the garbage collector and can be used in any way that an integer can be
used.

. Unmanaged pointers should be treated as unsigned (i.e. use conv. ovf . u rather than conv. ovf . i,
etc.).

. Verifiable code cannot use unmanaged pointers to reference memory.

. Unverified code can pass an unmanaged pointer to a method that expects a managed pointer. This
issafe only if one of the following is true:

The unmanaged pointer refers to memory that is not in memory managed by the garbage collector
The unmanaged pointer refers to afield within an object
The unmanaged pointer refers to an element within an array
The unmanaged pointer refers to the location where the element following the last element in an
array would be located
.2 Managed Pointers (type &)

Managed pointers (&) may point to alocal variable, a method argument, afield of an object, afield of avalue
type, an element of an array, or the address where an element just past the end of an array would be stored (for
pointer indexes into managed arrays). Managed pointers cannot be nul | . (They must be reported to the garbage
collector, even if they do not point to managed memory)

O N oo A W NP

ol
()

B
AWM

=
(&)}

P
~N o

=
0]

N =
o o

21

22
23
24

25
26
27
28
29

30
31
32
33
34
35

36
37
38
39

1.2

Managed pointers are specified by using ELEMENT_TYPE_BYREF in a signature for areturn value, local variable
or an argument or by using a by-ref type for afield or array element.

. Managed pointers can be passed as arguments and stored in local variables.
. If you pass a parameter by reference, the corresponding argument is a managed pointer.

. Managed pointers cannot be stored in static variables, array elements, or fields of objects or value
types.

. Managed pointers are not interchangeable with object references.

. A managed pointer cannot point to another managed pointer, but it can point to an object
reference or a value type.

. Managed pointers that do not point to managed memory can be converted (using conv. u or
conv. ovf. u) into unmanaged pointers, but thisis not verifiable.

. Unverified code that erroneously converts a managed pointer into an unmanaged pointer can
seriously compromise the integrity of the CLI. This conversion is safe if any of the following is
known to be true:

g. the managed pointer does not point into the garbage collector’s memory area

r. the memory referred to has been pinned for the entire time that the unmanaged pointer isin
use

S. a garbage collection cannot occur while the unmanaged pointer isin use
t. the garbage collector for the given implementation of the CLI is known to not move the
referenced memory
Instruction Variant Table

In Chapter 3 an Instruction Variant Tableis presented for each instruction. It describes each variant of the
instructions. The “Format” column of the table lists the opcode for the instruction variant, along with any
arguments that follow the instruction in the instruction stream. For example:

Format Assembly Format Description
FE OA <unsigned int16> LdargaargNum fetch the address of argument argNum.
OF <unsigned int8> Ldarga.s argNum fetch the address of argument argNum, short form

Thefirst one or two hex numbersin the “Format” column show how thisinstruction is encoded (its “opcode”).
S0, the | dar ga instruction is encoded as a byte holding FE, followed by another holding OA. Italicized type
names represent numbers that should follow in the instruction stream. In this example a 2-byte quantity that is
to be treated as an unsigned integer directly follows the FE OA opcode.

Any of the fixed size built-in types (int8, unsigned int8, int16, unsigned int16, int32, unsigned int32, int64,
unsigned in64, float32, and float64) can appear in format descriptions. These types define the number of bytes
for the argument and how it should be interpreted (signed, unsigned or floating-point). In addition, a metadata
token can appear, indicated as <T>. Tokens are encoded as 4-byte integers. All argument numbers are encoded
|east-significant-byte-at-small est-address (a pattern commonly termed “little-endian”™). Bytes for instruction
opcodes and arguments are packed astightly as possible (no alignment padding is done).

The assembly format column defines an assembly code mnemonic for each instruction variant. For those
instructions that have instruction stream arguments, this column also assigns names to each of the arguments to
the instruction. For each instruction argument, there is aname in the assembly format. These names are used
later in the instruction description.

oo OO~ WN -

1.2.1

Opcode Encodings

CIL opcodes are one or more bytes long; they may be followed by zero or more operand bytes. All opcodes
whose first byte lies in the ranges 0x00 through OXEF, or OXFC through OXFF are reserved for standardization.
Opcodes whose first byte lies in the range OxFO through OxFB inclusive, are available for experimental
purposes. The use of experimental opcodes in any method renders the method invalid and hence unverifiable.

The currently defined encodings are specified in Table 1. Opcode Encodings.

Table 10: Opcode Encodings

0x00 nop
0x01 break
0x02 Idarg.0
0x03 Idarg.1
0x04 Idarg.2
0x05 Idarg.3
0x06 Idloc.0
0x07 ldloc.1
0x08 Idloc.2
0x09 Idloc.3
Ox0a stloc.0
Ox0b stloc.1
0x0c stloc.2
Oxod stloc.3
0x0e Idarg.s
OxOf Idarga.s
0x10 starg.s
0x11 Idloc.s
0x12 Idlocas
0x13 stloc.s
0x14 [dnull
0x15 Idc.i4.ml
0x16 Idc.i4.0
0x17 ldc.i4.1
0x18 ldc.i4.2
0x19 Idc.i4.3
Oxla Idc.i4.4
Ox1b Idc.i4.5
Ox1c Idc.i4.6
Ox1d Idc.i4.7
Oxle Idc.i4.8
Ox1f Idc.id.s

0x20 Idc.i4
0x21 Idc.i8
0x22 Idc.r4
0x23 Idc.rg
0x25 dup
0x26 pop
0x27 jmp
0x28 call
0x29 calli
Ox2a ret
0x2b br.s
Ox2c brfalse.s
Ox2d brtrue.s
Ox2e beg.s
Oox2f bges
0x30 bgt.s
0x31 bles
0x32 bit.s
0x33 bne.un.s
0x34 bge.un.s
0x35 bgt.un.s
0x36 ble.un.s
0x37 blt.un.s
0x38 br

0x39 brfalse
0x3a brtrue
0x3b beg
0x3c bge
0x3d bgt
0x3e ble
0x3f blt
0x40 bne.un
0x41 bge.un
0x42 bgt.un

0x43 ble.un
Ox44 blt.un
0x45 switch
0x46 Idind.i1
0x47 Idind.ul
0x48 Idind.i2
0x49 Idind.u2
Ox4a Idind.i4
Ox4b Idind.u4
Ox4c Idind.i8
Ox4d Idind.i
Ox4e Idind.r4
Ox4f Idind.r8
0x50 Idind.ref
0x51 stind.ref
0x52 stind.il
0x53 stind.i2
0x54 stind.i4
0x55 stind.i8
0x56 stind.r4
0x57 stind.r8
0x58 add
0x59 sub
Ox5a mul
0x5b div
0x5¢c div.un
Ox5d rem
Ox5e rem.un
Ox5f and
0x60 or

0x61 xor
0x62 shi

0x63 shr
0x64 shr.un

0x65 neg

0x66 not

0x67 conv.il

0x68 conv.i2

0x69 conv.i4

Ox6a conv.i8

Ox6b conv.r4

Ox6c conv.r8

Oxed conv.u4

Ox6e conv.u8

Ox6f calvirt

0x70 cpobj

0x71 Idobj

0x72 [dstr

0x73 newobj

Ox74 castclass
0x75 isinst

Ox76 conv.r.un
0x79 unbox

Ox7a throw

0x7b [dfld

0x7c |dflda

0x7d stfld

Ox7e [dsfld

Ox7f Idsflda

0x80 stsfld

0x81 stobj

0x82 conv.ovf.il.un
0x83 conv.ovf.i2.un
0x84 conv.ovf.i4.un
0x85 conv.ovf.i8.un
0x86 conv.ovf.ul.un
0x87 conv.ovf.u2.un
0x88 conv.ovf.u4.un

0x89 conv.ovf.u8.un
Ox8a conv.ovf.i.un
0x8b conv.ovf.u.un
0x8c box

Ox8d newarr
Ox8e [dlen

Ox8f Idelema
0x90 Idelem.il
0x91 Idelem.ul
0x92 Idelem.i2
0x93 Idelem.u2
0x94 Idelem.i4
0x95 Idelem.ud
0x96 Idelem.i8
0x97 Idelem.i
0x98 Idelem.r4
0x99 Idelem.r8
0x9a Idelem.ref
0x9b stelem.i
0x9c stelem.il
0oxod stelem.i2
0x%e stelem.i4
Oxof stelem.i8
Oxa0 stelem.r4
Oxal stelem.r8
Oxa2 stelem.ref
Oxb3 conv.ovf.il
Oxb4 conv.ovf.ul
Oxb5 conv.ovf.i2
0xb6 conv.ovf.u2
Oxb7 conv.ovf.i4
0xb8 conv.ovf.u4
Oxb9 conv.ovf.i8
Oxba conv.ovf.u8

0xc2 refanyval
0xc3 ckfinite
0xc6 mkrefany
0Oxdo Idtoken
Oxd1 conv.u2
0xd2 conv.ul
Oxd3 Conv.i
Oxd4 conv.ovf.i
0xd5 conv.ovf.u
0Oxd6 add.ovf
Oxd7 add.ovf.un
Oxd8 mul.ovf
0xd9 mul.ovf.un
Oxda sub.ovf
Oxdb sub.ovf.un
Oxdc endfinally
Oxdd leave
Oxde leave.s
Oxdf stind.i
0xe0 conv.u
Oxfe 0x00 arglist
Oxfe Ox01 ceq

Oxfe 0x02 cot

Oxfe 0x03 cgt.un
Oxfe Ox04 clt

Oxfe 0x05 clt.un
Oxfe 0x06 |dftn

Oxfe Ox07 Idvirtftn
Oxfe Ox09 Idarg

Oxfe Ox0a Idarga
Oxfe OxOb starg

Oxfe OxOc Idloc

Oxfe Ox0d Idloca
Oxfe OxOe stloc

Oxfe OxOf localloc
Oxfe Ox11 endfilter
Oxfe 0x12 unaligned.
Oxfe O0x13 volatile.
Oxfe Ox14 tail.

Oxfe Ox15 initobj
Oxfe Ox17 cpblk
Oxfe Ox18 initblk
Oxfe Oxla rethrow
Oxfe Ox1c Sizeof
Oxfe Ox1d refanytype

- 10 -

ooo~NoOO1T b~ WN -

10

12

13

14
15
16
17
18

19
20
21
22

23

24
25
26

27

28
29
30

1.3

1.4

1.5

- 11 -

Stack Transition Diagram

The stack transition diagram displays the state of the evaluation stack before and after the instruction is
executed. Below is atypical stack transition diagram.

...,valuel, vaue2 = ..., result

This diagram indicates that the stack must have at least two elements on it, and in the definition the topmost
value (“top of stack” or “most recently pushed”) will be called value2 and the value underneath (pushed prior
to value2) will be called valuel. (In diagrams like this, the stack grows to the right, along the page). The
instruction removes these values from the stack and replaces them by another value, called result in the
description.

English Description

The English description describes any details about the instructions that are not immediately apparent once the
format and stack transition have been described.

Operand Type Table

Many CIL operations take numeric operands on the stack. These operations fall into several categories,
depending on how they deal with the types of the operands. The following tables summarize the valid types of
operand types and the type of the result. Notice that the type referred to here is the type as tracked by the CLI
rather than the more detailed types used by tools such as CIL verification. The typestracked by the CLI are;
int32, int64, nativeint, F, O, and &.

A op B (used for add, di v, mul , rem and sub). The table below shows the result type, for each possible
combination of oparand types. Boxes holding simply aresult type, apply to all five instructions. Boxes marked
= indicate an invalid CIL instruction. Shaded boxesindicate a CIL instruction that is not verifiable. Boxes with
alist of instructions are valid only for those instructions.

Table 11: Binary Numeric Operations

A'sType B'sType
int32 int64 nativeint | F & @)
int32 int32 x native int x & (add) x
int64 x int64 x x x x
nativeint | nativeint x native int x & (add) x
F x x x F x x
& & (add, x & (add, x native int x
sub) sub) (sub)
) x x x x x x

Used for the neg instruction. Boxes marked = indicate an invalid CIL instruction. All valid uses of this
instruction are verifiable.

Table 12: Unary Numeric Oper ations

Operand int32 i nt64 native int |F & ¢}
Type
Result int32 i nt64 native int |F x x
Type

These return a boolean value or branch based on the top two values on the stack. Used for beg, beg. s, bge,
bge. s, bge. un, bge. un. s, bgt, bgt. s, bgt. un, bgt.un.s,ble,ble.s,ble.un,ble.un.s,blt,blt.s,blt.un,

A WNBE

©O© 00 ~NO®

11
12

13
14
15

16
17
18
19
20
21
22

23

24
25
26

-12 -

bl t.un.s, bne.un, bne.un.s,ceq,cgt,cgt.un,clt,clt.un. Boxesmarked v indicate that all instructions are
valid for that combination of operand types. Boxes marked = indicate invalid CIL sequences. Shaded boxes
boxesindicate a CIL instruction that is not verifiable. Boxes with alist of instructions are valid only for those
instructions.

Table 13: Binary Comparison or Branch Operations

int32 int64 nativeint F & 0]
int32 v x v x x x
int64 x v x x x x
native int v x v x Beq[.5, x
bne.un[.g],
ceq
F x x x v x x
& x x beq[.4], x 1 x
bne.un[.s], v
ceq
(@) x x x x x beq[.s] ,
bne.un[.q],
ceq?

340. Except for beq, bne. un (or short versions) or ceq these combinations make sense if both operands
are known to be pointers to elements of the same array. However, there is no security issue for a
CLI that does not check this constraint

Note: if the two operands are not pointersinto the same array, then the result is simply the distance apart
in the garbage-collected heap of two unrelated data items. This distance apart will almost certainly
change at the next garbage collection. Essentialy, the result cannot be used to compute anything useful

341. cgt.un isallowed and verifiable on ObjectRefs (O). Thisis commonly used when comparing an
ObjectRef with null (thereis no “compare-not-equal” instruction, which would otherwise be a
more obvious solution)

These operate only on integer types. Used for and, di v. un, not, or, rem un, xor. Thedi v. un and rem un
instructions treat their arguments as unsigned integers and produce the bit pattern corresponding to the
unsigned result. As described in the CLI Specification, however, the CLI makes no distinction between signed
and unsigned integers on the stack. The not instruction is unary and returns the same type as the input. The shi
and shr instructions return the same type as their first operand and their second operand must be of type native
unsigned int. Boxes marked = indicate invalid CIL sequences. All other boxes denote verifiable combinations
of operands.

Table 14: Integer Operations

int32 int64 nativeint | F &
int32 int32 x native int x x
int64 x int64 x x x
nativeint | nativeint x native int x x
F x x x x x
& x x x x x
(0] x x x x x

Below are the legal combinations of operands and result for the shift instructions: shi , shr, shr_un. Boxes
marked x indicate invalid CIL sequences. All other boxes denote verifiable combinations of operand. If the

- 13 -

“Shift-By” operand is larger than the width of the “ To-Be-Shifted” operand, then the results are
implementation-defined. (eg shift an int32 integer left by 37 bits)

Table 15 : Shift Operations

Shift-By

int32 int64 | nativeint F|&]|O

int32 int32 x int32 x | x | x

int64 int64 x int64 x | x | x

ToBe nativeint nativeint | * native int x | x | x
Shifted F x x x x | x | x
& x x x x | x | x

) x x x x | x | x

~No ok

These operations generate an exception if the result cannot be represented in the target data type. Used for
add. ovf, add. ovf . un, nul . ovf, mul . ovf . un, sub. ovf, sub. ovf . un The shaded uses are not verifiable, while
boxes marked « indicate invalid CIL sequences.

Table 16: Overflow Arithmetic Operations

int32 int64 | nativeint F & @)
int32 int32 x native int x & add. ovf. un x
int64 x int64 | x x x x
nativeint | nativeint x native int x & add. ovf.un x
F x x x x x x
& & x & x native int x

add. ovf . un, add. ovf . un, sub. ovf.un

sub. ovf. un sub. ovf. un
@) x x x x x x

These operations convert the top item on the evaluation stack from one numeric type to another. The result type
is guaranteed to be representable as the data type specified as part of the operation (i.e. the conv. u2 instruction
returns avalue that can be stored in aunsi gned i nt 16). The stack, however, can only store valuesthat are a
minimum of 4 bytes wide. Used for the conv. <to type>, conv. ovf . <to type>, and conv. ovf . <to type>. un
instructions. The shaded uses are not verifiable, while boxes marked « indicate invalid CIL sequences.

Table 17: Conversion Operations

Convert-To Input (from evaluation stack)
int32 int64 nativeint F & (0]
int8 Truncate' | Truncate® | Truncate® | Truncateto x x
unsigned int8 zero?
int16
unsigned int16
int32 Nop Truncate® | Truncate® | Truncateto x x
unsigned int32 zero?
int64 Sign extend | Nop Sign extend | Truncateto Stop GC | Stop GC

zero® tracking | tracking

O~NOO O WNE

11
12
13

14
15

16

17
18
19
20
21
22
23

24

1.6

- 14 -

unsigned int64 Zero extend | Nop Zero extend | Truncateto Stop GC | Stop GC
zero? tracking | tracking

nativeint Signextend | Truncate’ | Nop Truncateto Stop GC | Stop GC
zero? tracking | tracking

nativeunsigned | Zeroextend | Truncate’ | Nop Truncate to Stop GC | Stop GC

int zero? tracking | tracking

All Float Types | ToFloat To Foat To Float Change x x
precision’

342. “Truncate” means that the number is truncated to the desired size; ie, the most significant bytes of
the input value are simply ignored. If the result is narrower than the minimum stack width of 4
bytes, then this result is zero extended (if the target type is unsigned) or sign-extended (if the
target type is signed). Thus, converting the value 0x1234 ABCD from the evaluation stack to an
8-bit datum yields the result OxCD; if the target type were int8, this is sign-extended to give
OXFFFF FFCD; if, instead, the target type were unsigned int8, this is zero-extended to give
0x0000 00CD.

“Trunc to 0" means that the floating-point number will be converted to an integer by truncation
toward zero. Thus 1.1 is converted to 1 and —1.1 is converted to —1.

343.

344. Converts from the current precision available on the evaluation stack to the precision specified by
the instruction. If the stack has more precision than the output size the conversion is performed

using the IEC 60559:1989 “round to nearest” mode to compute the low order bit of the result.

345. “Stop GC Tracking” means that, following the conversion, the item’s value will not be reported to

subsequent garbage-collection operations (and therefore will not be updated by such operations)

Implicit Argument Coercion

While the CLI operates only on 6 types (int32, native int, int64, F, O, and &) the metadata supplies amuch
richer model for parameters of methods. When about to call a method, the CLI performsimplicit type
conversions, detailed in the following table. (Conceptually, it inserts the appropriate conv. * instruction into the
CIL stream, which may result in an information loss through truncation or rounding) Thisimplicit conversion
occurs for boxes marked v'. Shaded boxes are not verifiable. Boxes marked x indicate invalid CIL sequences.
(A compiler isof course free to emit explicit conv. * or conv. *. ovf instructionsto achieve any desired
effect)

Table 18: Signature Matching

Typeln Stack Parameter

Signature i nativeint | int64 F & 0
int8 v v x x x x
unsigned v v x x x x
int8, bool

int16 v v x x x x
unsigned v v x x x x
int16, char

int32 v v x x x x
unsigned v 4 x x x x
int32

int64 x x v x x x
unsigned x x v x x x

0 No 01 AW NBE

11
12
13

14
15
16

17

18
19
20

21

22
23
24
25

26
27
28
29

1.7

1.7.1

- 15 -

int64

nativeint | v Sign v x x x x
extend

native v’ Zero v Zero x x x x

unsigned extend extend

int

float32 x x x Note* x x

float64 x x x Note* x x

Class x x x x x v

Value Type | Note' Note' Note' Note* x x

(Note?)

By-Ref x v Start GC | % x v x

(&) tracking

Ref Any x x x x x x

(Note®)

346. Passing abuilt-in type to a parameter that is required to be a value type is not allowed.

347. The CLI’s stack can contain a value type. These may only be passed if the particular value type
on the stack exactly matches the class required by the corresponding parameter.

348. There are special instructions to construct and pass a Ref Any.

349. The CLI is permitted to pass floating point arguments using its internal F type, see clause 1.1.1.
CIL generators may, of course, include an explicit conv.r4, conv.r4.ovf, or similar instruction.

Further notes concerning this table:

. On a 32-bit machine passing anative int argument to aunsi gned i nt 32 parameter involves no
conversion. On a 64-bit machine it isimplicitly converted.

. “Start GC Tracking” means that, following the implicit conversion, the item’s value will be
reported to any subsequent garbage-collection operations, and perhaps changed as a result of the
item pointed-to being relocated in the heap.

Restrictionson CIL Code Sequences
Aswell as detailed restrictions on CIL code sequences to ensure:
. Valid CIL
. Verifiable CIL

there are afew further restrictions, imposed to make it easier to construct a simple CIL-to-native-code
compiler. This section specifies the general restrictions that apply in addition to this listed for individual
instructions.

The Instruction Stream

The implementation of amethod is provided by a contiguous block of CIL instructions, encoded as specified
below. The address of the instruction block for amethod as well asits length is specified in the file format (see
Partition 11, Common Intermediate Language Physical Layout). Thefirst instruction is at the first byte (lowest
address) of the instruction block.

Instructions are variable in size. The size of each instruction can be determined (decoded) from the content of
the instruction bytes themselves. The size of and ordering of the bytes within an instruction is specified by each
instruction definition. Instructions follow each other without padding in a stream of bytesthat is both alignment
and byte-order insensitive.

O©oo~N OO0 WNBE

17

18
19
20
21

22
23
24
25

26
27
28
29
30

31

32
33
34
35

36

37
38
39
40
41

42
43

45
46
47
48
49

- 16 -

Each instruction occupies an exact number of bytes, and until the end of the instruction block, the next
instruction beginsimmediately at the next byte. It isinvalid for the instruction block (as specified by the
block’ s length) to end without forming a complete last instruction.

Instruction prefixes extend the length of an instruction without introducing a new instruction; an instruction
having one or more prefixes introduces only one instruction that begins at the first byte of the first instruction
prefix.

Note: Until the end of the instruction block, the instruction following any control transfer instruction is
decoded as an instruction and thus participates in locating subsequent instructions even if it is not the target of a
branch. Only instructions may appear in the instruction stream, even if unreachable. There are no address-
relative data addressing modes and raw data cannot be directly embedded within the instruction stream. Certain
instructions allow embedding of immediate data as part of the instruction, however that differs from allowing
raw data embedded directly in the instruction stream. Unreachable code may appear as the result of machine-
generated code and is allowed, but it must always be in the form of properly formed instruction sequences.

The instruction stream can be translated and the associated instruction block discarded prior to execution of the
tranglation. Thus, even instructions that capture and manipulate code addresses, such ascal |, ret , etc. can be
virtualized to operate on translated addresses instead of addresses in the CIL instruction stream.

Valid Branch Targets

The set of addresses composed of the first byte of each instruction identified in the instruction stream defines
the only valid instruction targets. Instruction targets include branch targets as specified in branch instructions,
targets specified in exception tables such as protected ranges (see Partition | and Partition 11), filter, and handler
targets.

Branch instructions specify branch targets as either a one-byte or four-byte signed relative offset; the size of the
offset is differentiated by the opcode of the instruction. The offset is defined as being relative to the byte
following the branch instruction. [Note: Thus, an offset value of zero targets the immediately following
instruction.]

The value of aone-byte offset is computed by interpreting that byte as a signed 8-bit integer. The value of a
four-byte offset is can be computed by concatenating the bytes into a signed integer in the following manner:
the byte of lowest address forms the least significant byte, and the byte with highest address forms the most
significant byte of the integer. [Note: This representation is often called “a signed integer in little-endian byte-
order”.]

Exception Ranges

Exception tables describe ranges of instructions that are protected by catch, fault, or finally handlers (see
Partition | and Partition I1). The starting address of a protected block, filter clause, or handler shall be avalid
branch target as specified in clause 1.7.2. It isinvalid for a protected block, filter clause, or handler to end
without forming a complete last instruction.

Must Provide M axstack

Every method specifies a maximum number of items that can be pushed onto the CIL Evaluation. Thevalueis
stored in the | MAGE_COR | LMETHOD structure that precedes the CIL body of each method. A method that
specifies a maximum number of items less than the amount required by a static analysis of the method (using a
traditional control flow graph without analysis of the data) isinvalid (hence also unverifiable) and need not be
supported by a conforming implementation of the CLI.

Note: Maxstack isrelated to analysis of the program, not to the size of the stack at runtime. It does not specify
the maximum size in bytes of a stack frame, but rather the number of items that must be tracked by an analysis
tool.

Rationale: By analyzing the CIL streamfor any method, it is easy to determine how many items will be pushed
on the CIL Evaluation stack. However, specifying that maximum number ahead of time helps a CIL-to-native-
code compiler (especially a simple one that does only a single pass through the CIL stream) in allocating
internal data structures that model the stack and/or verification algorithm.

o~NOOO1T AWN

9
10

11
12
13

14
15

16
17
18
19

20

21
22

23

24
25
26
27
28

29
30
31
32
33

34
35
36
37
38

39
40
41
42
43
a4
45
46

1.7.5

17 -

Backward Branch Constraints

It must be possible, with a single forward-pass through the CIL instruction stream for any method, to infer the
exact state of the evaluation stack at every instruction (where by “state” we mean the number and type of each
item on the evaluation stack).

In particular, if that single-pass analysis arrives at an instruction, call it location X, that immediately follows an
unconditional branch, and where X is not the target of an earlier branch instruction, then the state of the
evaluation stack at X, clearly, cannot be derived from existing information. In this case, the CLI demands that
the evaluation stack at X be empty.

Following on from thisrule, it would clearly beinvalid CIL if alater branch instruction to X were to have a
non-empty evaluation stack

Rationale: This constraint ensures that CIL code can be processed by a simple CIL-to-native-code compiler. It
ensures that the state of the evaluation stack at the beginning of each CIL can be inferred froma single,
forward-pass analysis of the instruction stream.

Note: the stack state at location X in the above can be inferred by various means: from a previous forward
branch to X; because X marks the start of an exception handler, etc.

1.7.6

1.8

See the following sections for further information:

. Exceptions: Partition |

. Verification conditions for branch instructions: Chapter 3
. Thetail. prefix: Section 3.19

Branch Verification Constraints

Thetarget of al branch instruction must be a valid branch target (see clause 1.7.2) within the method holding
that branch instruction.

Verifiability
Memory safety is a property that ensures programs running in the same address space are correctly isolated
from one ancther (see Partition I). Thus, it is desirable to test whether programs are memory safe prior to
running them. Unfortunately, it is provably impossible to do this with 100% accuracy. Instead, the CLI can test
astronger restriction, called verifiability. Every program that is verified is memory safe, but some programs
that are not verifiable are still memory safe.

It is perfectly acceptable to generate CIL code that is not verifiable, but which is known to be memory safe by
the compiler writer. Thus, conforming CIL may not be verifiable, even though the producing compiler may
know that it is memory safe. Several important uses of CIL instructions are not verifiable, such as the pointer
arithmetic versions of add that are required for the faithful and efficient compilation of C programs. For non-
verifiable code, memory safety is the responsibility of the application programmer.

CIL contains a verifiable subset. The Verifiability description gives details of the conditions under which ause
of an instruction falls within the verifiable subset of CIL. Verification tracks the types of values in much finer
detail than is required for the basic functioning of the CLI, becauseit is checking that a CIL code sequence
respects not only the basic rules of the CLI with respect to the safety of garbage collection, but aso the typing
rules of the CTS. This helps to guarantee the sound operation of the entire CL1I.

The verifiability section of each operation description specifies requirements both for correct CIL generation
and for verification. Correct CIL generation always requires guaranteeing that the top items on the stack
correspond to the types shown in the stack transition diagram. The verifiability section specifies only
requirements for correct CIL generation that are not captured in that diagram. Verification tests both the
requirements for correct CIL generation and the specific verification conditions that are described with the
instruction. The operation of CIL sequences that do not meet the CIL correctness requirements is unspecified.
The operation of CIL sequences that meet the correctness requirements but are not verifiable may violate type
safety and hence may violate security or memory access constraints.

O©ooo~N o0k WN BB

27

28
29
30

31
32
33
34
35

36
37
38
39
40

41
42
43

45
46
47
48

49
50

- 18 -

Flow Control Restrictions for Verifiable CIL

This section specifies a verification algorithm that, combined with information on individual CIL instructions
(see Chapter 3) and metadata validation (see Partition 1), guarantees memory integrity.

The agorithm specified here creates a minimum level for al compliant implementations of the CLI in the sense
that any program that is considered verifiable by this algorithm shall be considered verifiable and run correctly
on all compliant implementations of the CLI.

The CLI provides a security permission (see Partition 1V) that controls whether or not the CLI shall run
programs that may violate memory safety. Any program that is verifiable according to this specification does
not violate memory safety, and a conforming implementation of the CLI shall run such programs. The
implementation may also run other programs provided it is able to show they do not violate memory saf ety
(typically because they use a verification algorithm that makes use of specific knowledge about the
implementation).

Note: While acompliant implementation is required to accept and run any program this verification algorithm
statesis verifiable, there may be programs that are accepted as verifiable by a given implementation but which
this verification algorithm will fail to consider verifiable. Such programs will run in the given implementation
but need not be considered verifiable by other implementations.

For example, an implementation of the CLI may choose to correctly track full signatures on method pointers
and permit programs to execute the calli instruction even though thisis not permitted by the verification
algorithm specified here.

Implementers of the CLI are urged to provide a means for testing whether programs generated on their
implementation meet this portable verifiability standard. They are aso urged to specify where their verification
algorithms are more permissive than this standard.

Only valid programs shall be verifiable. For ease of explanation, the verification algorithm described here
assumes that the program is valid and does not explicitly call for tests of al validity conditions. Validity
conditions are specified on aper-CIL instruction basis (see Chapter 3), and on the overall file format in
Partition 11.

1.8.1.1 Verification Algorithm

The verification algorithm shall attempt to associate avalid st ack st at e with every CIL instruction. The stack
state specifies the number of dotson the CIL stack at that point in the code and for each slot arequired type
that must be present in that slot. Theinitial stack state is empty (there are no items on the stack).

Verification assumes that the CLI zeroes all memory other than the evaluation stack before it is made visible to
programs. A conforming implementation of the CLI shall provide this observable behavior. Furthermore,
verifiable methods shall have the “ zero initialize” bit set, see Partition |1 (Flags for Method Headers). If this bit
isnot set, then a CLI may throw a Verification exception at any point where alocal variable is accessed, and
where the assembly containing that method has not been granted SecurityPermission.SkipVerification

Rationale: Thisrequirement strongly enhances program portability, and a well-known technique (definite
assignment analysis) allows a compiler from CIL to native code to minimize its performance impact. Note that
a CLI may optionally choose to perform definite-assignment analysis— in such a case, it may confirmthat a
method, even without the* zero initialize” bit set, may in fact be verifiable (and therefore not throw a
Verification exception)

Note: Definite assignment analysis can be used by the CL 1 to determine which locations are written before they
are read. Such locations needn'’t be zeroed, since it isn’t possible to observe the contents of the memory as it
was provided by the EE.

Performance measurements on C++ implementations (which does not require definite assignment analysis)
indicate that adding this requirement has almost no impact, even in highly optimized code. Furthermore,
customers incorrectly attribute bugs to the compiler when this zeroing is not performed, since such code often
fails when small, unrelated changes are made to the program.

The verification algorithm shall simulate all possible control flow paths through the code and ensures that a
legal stack state exists for every reachable CIL instruction. The verification algorithm does not take advantage

OO0 N ool A WNE

19

20
21
22

23

24
25
26
27
28

29

30
31

32
33
34
35
36
37

-19 -

of any datavalues during its simulation (e.g. it does not perform constant propagation), but uses only type
assignments. Details of the type system used for verification and the algorithm used to merge stack states are
provided in clause 1.8.1.3. The verification algorithm terminates as follows:

350.
351.

instruction.

352.

Successfully, when all control paths have been simulated.

Unsuccessfully when additional tests specified in this clause fail.

Unsuccessfully when it is not possible to compute a valid stack state for a particular CIL

Thereisacontrol flow path from every instruction to the subsegquent instruction, with the exception of the
unconditional branch instructions, t hr ow, r et hr ow, and r et . Finally, thereis a control flow path from each
branch instruction (conditional or unconditional) to the branch target (targets, plural, for the swi t ch

instruction).

Verification simulates the operation of each CIL instruction to compute the new stack state, and any type
mismatch between the specified conditions on the stack state (see Chapter 3) and the simulated stack state shall
cause the verification algorithm to fail. (Note that verification simulates only the effect on the stack state: it
does not perform the actual computation). The algorithm shall also fail if thereis an existing stack state at the
next instruction address (for conditional branches or instructions within atry block there may be more than one
such address) that cannot be merged with the stack state just computed. For rules of this merge operation, see
clause 1.8.1.3.

1.8.1.2

Verification Type System

The verification algorithm compresses types that are logically equivalent, since they cannot lead to memory
safety violations. The types used by the verification algorithm are specified in clause 1.8.1.2.1, the type
compatibility rules are specified in clause 1.8.1.2.2, and the rules for merging stack states are in clause 1.8.1.3.

1.8.1.2.1

Verification Types

The following table specifies the mapping of types used in the CLI and those used in verification. Notice that
verification compresses the CLI typesto a smaller set that maintains information about the size of those types
in memory, but then compresses these again to represent the fact that the CLI stack expands 1, 2 and 4 byte
built-in types into 4-byte types on the stack. Similarly, verification treats floating-point numbers on the stack as
64-bit quantities regardless of the actual representation.

Arrays are objects, but with special compatibility rules.

Thereisaspecial encoding for nul | that represents an object known to be the null value, hence with
indeterminate actua type.

In the following table, “CLI Type” isthetype asit is described in metadata. The “Verification Type” isa
corresponding type used for type compatibility rulesin verification (see clause 1.8.1.2.2) when considering the
types of local variables, incoming arguments, and formal parameters on methods being called. The column
“Verification Type (in stack state)” is used to simulate instructions that load data onto the stack, and shows the
types that are actually maintained in the stack state information of the verification algorithm. The column
“Managed Pointer to Type”’ shows the type tracked for managed pointers.

CLI Type Verification Type | Verification Type | Managed Pointer to Type
(in stack state)

int8, unsigned int8, bool int8 int32 & int8

intl6, unsigned intl1l6, char intl6 int32 & int1l6

int32, unsigned int32 int32 int32 & int32

int64, unsigned int64 int64 int64 & int64

nat ive int, native unsigned native int native int & native int

I nt

f1 oat 32 f1 oat 32 f1 oat 64 & float32

fl oat 64 fl oat 64 fl oat 64 & fl oat 64

o
RPOWOVO~N O® AW NRE

e = ~ S =S =
o 0o A W N

B
0 ~

N =
o o

N
[y

22

23
24
25
26

27
28
29
30
31

32
33

34
35

36

37

38
39

40
41

- 20 -

Any val ue type Same type Sane type & Sane type
Any obj ect type Sane type Same type & Same type
Met hod poi nter Sane type Same type Not valid

A method can be defined as returning a managed pointer, but calls upon such methods are not verifiable.

Rationale: some uses of returning a managed pointer are perfectly verifiable (eg, returning a referenceto a
field in an object); but some not (eg, returning a pointer to a local variable of the called method). Tracking this
in the general caseis a burden, and therefore not included in this standard.

1.8.1.2.2 Verification Type Compatibility

The following rules define type compatibility. We use s and T to denote verification types, and the notation “s
: = T" to indicate that the verification type T can be used wherever the verification type s can be used, while“s
1:= T" indicates that T cannot be used where s is expected. These are the verification type compatibility (see
Partition |) rules. We use T[] to denote an array (of any rank) whose elements are of type T, and T& to denote a
managed pointer to typeT.

353. [: =isreflexive] For all verification typess, s : = s
354. [:=istransitive] For al verificationtypes s, T,anduifs := Tand T := u, thens : = u.
355. s

T if sisthe base class of T or an interface implemented by T and T is not a value type.

356. s := Tif sand T are both interfaces and the implementation of T requires the implementation of s
357. s := null if sisan object type or an interface
358. s[] := T[] if s : = T and the arrays are either both vectors (zero-based, rank one) or neither isa

vector and both have the same rank.

359. If sand T are method pointers, then s : = T if the signatures (return types, parameter types,
calling convention, and any custom attributes or custom modifiers) are the same.

360. Otherwises ':= T

1.8.1.3 Merging Stack States

Asthe verification agorithm simulates all control flow pathsit shall merge the simulated stack state with any
existing stack state at the next CIL instruction in the flow. If there is no existing stack state, the simulated stack
stateis stored for future use. Otherwise the merge shall be computed as follows and stored to replace the
existing stack state for the CIL instruction. If the merge fails, the verification algorithm shall fail.

The merge shall be computed by comparing the number of sotsin each stack state. If they differ, the merge
shall fail. If they match, then the overall merge shall be computed by merging the states slot-by-slot as follows.
Let T be the type from the slot on the newly computed state and s be the type from the corresponding slot on
the previously stored state. The merged type, U, shall be computed as follows (recall that s : = T isthe
compatibility function defined in clause 1.8.1.2.2):

361. if s : = Tthenu=s
362. Otherwiseif T : = s then u=T

363. Otherwise, if s and T are both object types, then let v be the closest common supertype of sand T
then u=v.

364. Otherwise, the merge shall fail.

1.8.1.4 Class and Object Initialization Rules

The VES ensures that all statics are initially zeroed (i.e. built-in types are O or false, object references are null),
hence the verification algorithm does not test for definite assignment to statics.

An object constructor shall not return unless a constructor for the base class or a different construct for the
object’s class has been called on the newly constructed object. The verification algorithm shall treat thet hi s

14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31

32
33
34
35
36
37
38
39

40

41
42

- 21 -

pointer as uninitialized unless the base class constructor has been called. No operations can be performed on an
uninitialized t hi s except for storing into and loading from the object’ s fields.

Note: If the constructor generates an exception thet hi s pointer in the corresponding catch block is still
uninitialized.

1.8.1.5 Delegate Constructors

The verification algorithm shall require that one of the following code sequences is used for constructing
delegates; no other code sequence in verifiable code shall contain anewobj instruction for a delegate type.
There shall be only one instance constructor method for a Delegate (overloading is not allowed)

The verification algorithm shall fail if a branch target is within these instruction sequences (other than at the
start of the sequence).

Note: See Partition |l for the signature of delegates and avalidity requirement regarding the signature of the
method used in the constructor and the signature of Invoke and other methods on the delegate class.

1.8.1.5.1 Delegating via Virtual Dispatch

Thefollowing CIL instruction sequence shall be used or the verification algorithm shall fail. The sequence
begins with an object on the stack.

dup

ldvirtftn nthd ; Method shall be on the class of the object,
; or one of its parent classes, or an interface
; inmplemented by the object

newobj del egatecl ass::.ctor(object, native int)

Rationale: The dup isrequired to ensurethat it is precisely the same object stored in the delegate as was used
to compute the virtual method. If another object of a subtype were used the object and the method wouldn’t
match and could lead to memory violations.

1.8.1.5.2 Delegating via Instance Dispatch

1.9

1.10

Thefollowing CIL instruction sequence shall be used or the verification algorithm shall fail. The sequence
begins with either nul I or an object on the stack.
I dftn nthd ; Method shall either be a static nethod or

; a method on the class of the object on the stack or

; one of the object’s parent classes

newobj del egat ecl ass::.ctor(object, native int)

Metadata Tokens

Many CIL instructions are followed by a"metadata token". Thisis a4-byte value, that specifiesarow ina
metadata table, or a starting byte offset in the User String heap. The most-significant byte of the token specifies
the table or heap. For example, avalue of 0x02 specifies the TypeDef table; a value of 0x70 specifies the User
String heap. The value corresponds to the number assigned to that metadata table (see Partition |1 for the full
list of tables) or to 0x70 for the User String heap. The least-significant 3 bytes specify the target row within that
metadata table, or starting byte offset within the User String heap. The rows within metadata tables are
numbered one upwards, whilst offsets in the heap are numbered zero upwards. (So, for example, the metadata
token with value 0x02000007 specifies row number 7 in the TypeDef table)

Exceptions Thrown

A CIL instruction can throw arange of exceptions. The CLI can also throw the general purpose exception
called Execut i onEngi neExcept i on. See Partition | for details.

o Ok wWN B

- 22 -

Prefixes to Instructions

These special values are reserved to precede specific instructions. They do not constitute full instructionsin
their own right. It isnot valid CIL to branch to the instruction following the prefix, but the prefix itself isa
valid branch target. It isnot valid CIL to have a prefix without immediately following it by one of the
instructionsit is permitted to precede.

O~NO O W

11
12

13
14

15
16

17
18
19

20
21

22
23
24

25
26
27
28
29

30
31
32

33
34

35

36
37
38
39
40
41

2.1

- 23 -

tail. (prefix) — call terminates current method

Format Assembly Format Description
FE 14 tail. Subsequent call terminates current method
Descri ption:

Thetai | . instruction must immediately precedeacal |, cal I, 0Or cal | virt instruction. It indicates that the
current method’ s stack frame is no longer required and thus can be removed before the call instruction is
executed. Because the value returned by the call will be the value returned by this method, the call can be
converted into a cross-method jump.

The evaluation stack must be empty except for the arguments being transferred by the following call. The
instruction following the call instruction must be ar et . Thus the only legal code sequenceis

tail. call (Orcalli orcallvirt)somewhere
ret

Correct CIL must not branch to thecal I instruction, but it is permitted to branch to ther et . The only values on
the stack must be the arguments for the method being called.

Thetail.call (orcalli orcallvirt) instruction cannot be used to transfer control out of atry, filter, catch,
or finally block. See Partition |.

The current frame cannot be discarded when control is transferred from untrusted code to trusted code, since
this would jeopardize code identity security. Security checks may therefore causethet ai | . to beignored,
leaving a standard call instruction.

Similarly, in order to allow the exit of a synchronized region to occur after the call returns, thetai | . prefix is
ignored when used to exit a method that is marked synchronized.

There may also be implementation-specific restrictions that prevent thet ai | . prefix from being obeyed in
certain cases. While an implementation isfreeto ignorethet ai I . prefix under these circumstances, they
should be clearly documented as they can affect the behavior of programs.

CLI implementations are required to honor tai | . cal | requests where caller and callee methods can be
statically determined to lie in the same assembly; and where the caller is not in a synchronized region; and
where caller and callee satisfy all conditionslisted in the “Verifiability” rules below. (To “honor” thetai |l .
prefix means to remove the caller’s frame, rather than revert to aregular call sequence). Consequently, aCLI
implementation need not honor tail. calli oOrtail. callvirt Sequences.

Rationale: tail. calls allow some linear space algorithms to be converted to constant space algorithms and are
required by some languages. In the presence of | dl oca and | dar ga instructionsit isn't always possible for a
compiler from CIL to native code to optimally determinewhen atai | . can be automatically inserted.

Excepti ons:

None.

Verifiability:

Correct CIL obeys the control transfer constraints listed above. In addition, no managed pointers can be passed
to the method being called if they point into the stack frame that is about to be removed. The return type of the
method being called must be compatible with the return type of the current method. Verification requires that
no managed pointers are passed to the method being called, since it does not track pointersinto the current
frame.

2.2

- 24 -

unaligned. (prefix) — pointer instruction may be unaligned

Format Assembly Format Description

FE 12 <unsigned | unaligned. alignment | Subsequent pointer instruction may be unaligned
int8>

Stack Transition:
.., addr 9 ..., addr

Descri ption:

Unal i gned. specifiesthat address (an unmanaged pointer (&), or nati ve i nt) on the stack may not be aligned
to the natural size of theimmediately following | di nd, stind, | df1d, stfld,|dobj,stobj,initblk, OF cpbl k
instruction. That is, for al di nd. i 4 instruction the alignment of addr may not be to a 4-byte boundary. For

i ni tbl k and cpbl k the default alignment is architecture dependent (4-byte on 32-bit CPUs, 8-byte on 64-hit
CPUs). Code generators that do not restrict their output to a 32-bit word size (see Partition | and Partition 1)
must use unal i gned. if the aignment is not known at compile time to be 8-byte.

The value of alignment shall be 1, 2, or 4 and means that the generated code should assume that addr is byte,
double byte, or quad byte aligned, respectively.

Rationale: While the alignment for a cpbl k instruction would logically require two numbers (one for the
source and one for the destination), there is no noticeable impact on performance if only the lower number is
specified.

Theunal i gned. andvol atile. prefixesmay be combined in either order. They must immediately precede a
I di nd, stind,|dfld,stfld,ldobj,stobj,initblk,Orcpbl k instruction. Only thevol atile. prefix isallowed
for thel dsfld and st sfl d instructions.

Note: See Partition |, 12.7 for information about atomicity and data alignment.

Excepti ons:

None.

Verifiability:

Anunal i gned. prefix shall beimmediately followed by one of the instructions listed above.

2.3

- 25 -

volatile. (prefix) - pointer reference is volatile
Format Assembly Format Description
FE 13 volatile. Subsequent pointer reference isvolatile

Stack Transition:
., addr 9 ..., addr

Descri ption:

vol ati | e. specifiesthat addr isavolatile address (i.e. it may be referenced externally to the current thread of
execution) and the results of reading that location cannot be cached or that multiple storesto that location
cannot be suppressed. Marking an accessasvol ati | e. affectsonly that single access; other accesses to the
same location must be marked separately. Access to volatile locations need not be performed atomically. [see
Partition 1]

Theunal i gned. andvol atile. prefixesmay be combined in either order. They must immediately precede a
I di nd, stind,|dfld,stfld,Idobj,stobj,initblk,Orcpbl k instruction. Only thevol atile. prefix isallowed
for thel dsfld and st sfl d instructions.

Excepti ons:

None.

Verifiability:

A vol atile. prefix should be immediately followed by one of the instructions listed above.

a prwdNh B

- 26 -

Base I nstructions

Theseinstructions form a“ Turing Complete” set of basic operations. They are independent of the object model
that may be employed. Operations that are specifically related to the CTS's object model are contained in the

Object Model Instructions section.

QW oOo~N O 01 AW

3.1

add - add numeric values

- 27 -

Format Assembly Format Description

58 add Add two values, returning anew value
Stack Transition:

... valuel, value2 9 .. result

Descri ption:

The add instruction adds value2 to valuel and pushes the result on the stack. Overflow is not detected for

integral operations (but see add. ovf); floating-point overflow returns +i nf or -inf.

The acceptable operand types and their corresponding result data type is encapsulated in

Table2: Binary Numeric Operations.

Excepti ons:
None.

Verifiability:

See Table2: Binary Numeric Operations.

© oo~N OO O bW

10
11

12
13

3.2

- 28 -

add.ovf.<signed> - add integer values with overflow check

Format Assembly Format Description
D6 add.ovf Add signed integer values with overflow check.
D7 add.ovf.un Add unsigned integer values with overflow check.

Stack Transition:

, valuel, value2 9 ., result

Descri ption:

Theadd. ovf instruction adds valuel and value2 and pushes the result on the stack. The acceptable operand
types and their corresponding result data type is encapsulated in Table 7: Overflow Arithmetic Operations.

Excepti ons:

Over f | owExcept i on isthrown if the result can not be represented in the result type.

Verifiability:

See Table 7: Overflow Arithmetic Operations.

©oo~N OO O W

10
11
12

13
14

3.3

and - bitwise AND

- 29 -

Format Instruction Description
5F And Bitwise AND of two integral values, returns an integral value
Stack Transition:

, val uel, value2 9 .. result

Descri ption:

The and instruction computes the bitwise AND of the top two values on the stack and pushes the result on the

stack. The acceptable operand types and their corresponding result datatype is encapsulated in
Table 5: Integer Operations.

Excepti ons:
None.
Verifiability:

See Table 5: Integer Operations.

3.4

- 30 -

arglist - get argument list

Format Assembly Format | Description

FE 00 arglist return argument list handle for the current method

Stack Transition:
9 ... argLi stHandl e

Descri ption:

Thear gl i st instruction returns an opaque handle (an unmanaged pointer, typenat i ve i nt) representing the
argument list of the current method. This handle isvalid only during the lifetime of the current method. The
handle can, however, be passed to other methods as long as the current method is on the thread of control. The
argli st instruction may only be executed within a method that takes a variable number of arguments.

Rationale: Thisinstruction is needed to implement the C ‘va_*' macros used to implement procedures like
‘printf’. It isintended for use with the class library implementation of System Arglterator.

Excepti ons:

None.

Verifiability:

It isincorrect CIL generation to emit this instruction except in the body of a method whose signature indicates

it accepts a variable number of arguments. Within such amethod its use is verifiable, but verification requires
that the result is an instance of the Syst em Runt i meAr gunent Handl e class.

O©Ooo~N OO O W

10

12

13
14
15

16
17
18

19
20

21
22

23

3.5

- 31 -

beq.<length> — branch on equal

Format Assembly Format | Description
3B <int32> beq target branch to target if equal
2E <int8> beg.starget branch to target if equal, short form

Stack Transition:
... valuel, value2 9

Descri ption:

Thebeq instruction transfers control to target if valuel is equal to value2. The effect isidentical to performing
aceq instruction followed by abrt r ue target. Target isrepresented as asigned offset (4 bytes for beq, 1 byte
for beq. s) from the beginning of the instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfersinto and out of try, catch, fil ter, andfinal I y blocks cannot be performed by this
instruction. (Such transfers are severely restricted and must use the | eave instruction instead; see Partition | for
details).

Excepti ons:

None.

Verifiability:

Correct CIL must observe al of the control transfer rules specified above and must guarantee that the top two
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible
path to the destination instruction. See Section 1.5 for more details.

N

O©Ooo~N OO O W

10
11
12
13

14
15

16
17
18

19
20
21

22
23

24
25
26

3.6

- 32 -

bge.<length> — branch on greater than or equal to

Format Assembly Format | Description
3C<int32> bge target branch to target if greater than or equal to
2F <int8> bge.starget branch to target if greater than or equal to, short form

Stack Transition:
... valuel, value2 9

Descri ption:

The bge instruction transfers control to target if valuel is greater than or equal to value2. The effect isidentical
to performing acl t. un instruction followed by abr f al se target. Target is represented as a signed offset (4
bytesfor bge, 1 byte for bge. s) from the beginning of the instruction following the current instruction.

The effect of a“bge target” instruction isidentical to:
. If stack operands are integers, then : clt followed by abrf al se target
. If stack operands are floating-point, then: clt. un followed by abrfal se target

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfersinto and out of try, catch, filter,andfinal I y blocks cannot be performed by this
instruction. (Such transfers are severely restricted and must use the | eave instruction instead; see Partition | for
details).

Excepti ons:

None.

Verifiability:

Correct CIL must observe al of the control transfer rules specified above and must guarantee that the top two
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible
path to the destination instruction. See Section 1.5 for more details.

N

3.7

- 33 -

bge.un.<length> — branch on greater than or equal to, unsigned or
unordered
Format Assembly Format | Description
41 <int32> bge.un target branch to target if greater than or equal to (unsigned or unordered)
34 <int8> bge.un.starget branch to target if greater than or equal to (unsigned or unordered),
short form

Stack Transition:
.., valuel, value2 9

Descri ption:

Thebge. un instruction transfers control to target if valuel is greater than or equal to value2, when compared
unsigned (for integer values) or unordered (for float point values). The effect isidentical to performing acl t
instruction followed by abr f al se target. Target is represented as a signed offset (4 bytes for bge. un, 1 byte for
bge. un. s) from the beginning of the instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfersinto and out of try, catch, fil ter, andfi nal | y blocks cannot be performed by this
instruction. (Such transfers are severely restricted and must use the | eave instruction instead; see Partition | for
details).

Excepti ons:

None.

Verifiability:

Correct CIL must observe al of the control transfer rules specified above and must guarantee that the top two
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible
path to the destination instruction. See Section 1.5 for more details.

N

O©Ooo~N OO O W

10

12

13
14
15

16
17
18

19
20

21
22

23

3.8

- 34 -

bgt.<length> — branch on greater than

Format Assembly Format | Description
3D <int32> bgt target branch to target if greater than
30 <int8> bgt.s target branch to target if greater than, short form

Stack Transition:
... valuel, value2 9

Descri ption:

Thebgt instruction transfers control to target if valuel is greater than value2. The effect isidentical to
performing acgt instruction followed by abrt rue target. Target is represented as a signed offset (4 bytes for
bgt, 1 bytefor bgt . s) from the beginning of the instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfersinto and out of try, catch, filter, andfinal I y blocks cannot be performed by this
instruction. (Such transfers are severely restricted and must use the | eave instruction instead; see Partition | for
details).

Excepti ons:

None.

Verifiability:

Correct CIL must observe al of the control transfer rules specified above and must guarantee that the top two
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible
path to the destination instruction. See Section 1.5 for more details.

N

QOUWoLo~N O O AW

3.9

- 35 -

bgt.un.<length> — branch on greater than, unsigned or unordered

Format Assembly Format | Description
42 <int32> bgt.un target branch to target if greater than (unsigned or unordered)
35<int8> bgt.un.starget branch to target if greater than (unsigned or unordered), short form

Stack Transition:
... valuel, value2 9

Descri ption:

Thebgt . un instruction transfers control to target if valuel is greater than value2, when compared unsigned (for
integer values) or unordered (for float point values). The effect isidentical to performing acgt . un instruction
followed by abrt rue target. Target is represented as a signed offset (4 bytesfor bgt . un, 1 bytefor bgt . un. s)
from the beginning of the instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfersinto and out of try, catch, filter, andfinal I y blocks cannot be performed by this
instruction. (Such transfers are severely restricted and must use the | eave instruction instead; see Partition | for
details).

Excepti ons:

None.

Verifiability:

Correct CIL must observe al of the control transfer rules specified above and must guarantee that the top two
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible
path to the destination instruction. See Section 1.5 for more details.

©ooo~N O 01 AW

10
11
12
13

14
15

16
17
18

19
20
21

22
23

24
25
26

- 36 -

3.10 ble.<length> — branch on less than or equal to

Format Assembly Format | Description
3E <int32> ble target branch to target if less than or equal to
31 <int8> ble.starget branch to target if less than or equal to, short form

Stack Transition:
... valuel, value2 9

Descri ption:

Thebl e instruction transfers control to target if valuel isless than or equal to value2. Target is represented as a
signed offset (4 bytesfor bl e, 1 bytefor bl e. s) from the beginning of the instruction following the current
instruction.

The effect of a“bl e target” instruction isidentical to:
. If stack operands are integers, then : cgt followed by abrf al se target
. If stack operands are floating-point, then : cgt . un followed by abrf al se target

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfersinto and out of try, catch, filter,andfinal I y blocks cannot be performed by this
instruction. (Such transfers are severely restricted and must use the | eave instruction instead; see Partition | for
details).

Excepti ons:

None.

Verifiability:

Correct CIL must observe al of the control transfer rules specified above and must guarantee that the top two
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible
path to the destination instruction. See Section 1.5 for more details.

Ooo~N O 01 AW

10
11
12
13

14
15

16
17
18

19
20
21

22
23

24
25
26

- 37 -

3.11 ble.un.<length> — branch on less than or equal to, unsigned or unordered

Format Assembly Format | Description

43 <int32> ble.un target branch to target if less than or equal to (unsigned or unordered)

36 <int8> ble.un.starget branch to target if less than or equal to (unsigned or unordered),
short form

Stack Transition:
... valuel, value2 9

Descri ption:

Thebl e. un instruction transfers control to target if valuel is less than or equal to value2, when compared
unsigned (for integer values) or unordered (for float point values). Target is represented as a signed offset (4
bytesfor bl e. un, 1 bytefor bl e. un. s) from the beginning of the instruction following the current instruction.

The effect of a“bl e. un target” instruction isidentical to:
. If stack operands are integers, then : cgt. un followed by abrf al se target
. If stack operands are floating-point, then : cgt followed by abrf al se target

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfersinto and out of try, catch, filter,andfinal I y blocks cannot be performed by this
instruction. (Such transfers are severely restricted and must use the | eave instruction instead; see Partition | for
details).

Excepti ons:

None.

Verifiability:

Correct CIL must observe al of the control transfer rules specified above and must guarantee that the top two
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible
path to the destination instruction. See Section 1.5 for more details.

©Ooo~N OO O W

10

12

13
14
15

16
17
18

19
20

21
22

23

- 38 -

3.12 blt.<length> — branch on less than

Format Assembly Format | Description
3F <int32> blt target branch to target if less than
32 <int8> blt.starget branch to target if less than, short form

Stack Transition:
... valuel, value2 9

Descri ption:

Thebl t instruction transfers control to target if valuel is less than value2. The effect isidentical to performing
acl t instruction followed by abrt r ue target. Target isrepresented as asigned offset (4 bytesfor bl t, 1 byte
for bl t . s) from the beginning of the instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfersinto and out of try, catch, filter, andfinal I y blocks cannot be performed by this
instruction. (Such transfers are severely restricted and must use the | eave instruction instead; see Partition | for
details).

Excepti ons:

None.

Verifiability:

Correct CIL must observe al of the control transfer rules specified above and must guarantee that the top two
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible
path to the destination instruction. See Section 1.5 for more details.

QUOWoWo~N OO U1 W

- 39 -

3.13 Dblt.un.<length> — branch on less than, unsigned or unordered

Format Assembly Format Description
44 <int32> blt.un target Branch to target if less than (unsigned or unordered)
37 <int8> blt.un.starget Branch to target if less than (unsigned or unordered), short form

Stack Transition;
.., valuel, value2 9

Descri ption:

Thebl t. un instruction transfers control to target if valuel is less than value2, when compared unsigned (for
integer values) or unordered (for float point values). The effect isidentical to performing acl t . un instruction
followed by abrt r ue target. Target is represented as a signed offset (4 bytesfor bl t. un, 1 bytefor bit. un. s)
from the beginning of the instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfersinto and out of try, catch, filter,andfinal I y blocks cannot be performed by this
instruction. (Such transfers are severely restricted and must use the | eave instruction instead; see Partition | for
details).

Excepti ons:

None.

Verifiability:

Correct CIL must observe al of the control transfer rules specified above and must guarantee that the top two
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible
path to the destination instruction. See Section 1.5 for more details.

N

QOUWoO~N O O AW

- 40 -

3.14 bne.un<length> — branch on not equal or unordered

Format Assembly Format | Description
40 <int32> bne.un target branch to target if unequal or unordered
33 <int8> bne.un.starget branch to target if unequal or unordered, short form

Stack Transition:
... valuel, value2 9

Descri ption:

Thebne. un instruction transfers control to target if valuel is not equal to value2, when compared unsigned (for
integer values) or unordered (for float point values). The effect isidentical to performing aceq instruction
followed by abrf al se target. Target is represented as a signed offset (4 bytesfor bne. un, 1 bytefor bne. un. s)
from the beginning of the instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfersinto and out of try, catch, filter, andfinal I y blocks cannot be performed by this
instruction. (Such transfers are severely restricted and must use the | eave instruction instead; see Partition | for
details).

Excepti ons:

None.

Verifiability:

Correct CIL must observe al of the control transfer rules specified above and must guarantee that the top two
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible
path to the destination instruction. See Section 1.5 for more details.

N

o~N OO 01 AW

11
12
13

14
15
16
17
18
19
20
21

22
23

24

- 41 -

3.15 br.<length> — unconditional branch

Format Assembly Format Description
38 <int32> br target branch to target
2B <int8> br.starget branch to target, short form

Stack Transition:
T

Descri ption:

Thebr instruction unconditionally transfers control to target. Target is represented as asigned offset (4 bytes
for br, 1 bytefor br. s) from the beginning of the instruction following the current instruction.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfersinto and out of t ry, catch, fil ter, andfinal I y blocks cannot be performed by this
instruction. (Such transfers are severely restricted and must use the | eave instruction instead; see Partition | for
details).

Rationale: While a | eave instruction can be used instead of a br instruction when the evaluation stack is
empty, doing so may increase the resources required to compile from CIL to native code and/or lead to inferior
native code. Therefore CIL generators should use a br instruction in preference to a | eave instruction when
both are legal.

Excepti ons:

None.

Verifiability:

Correct CIL must observe all of the control transfer rules specified above.

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible
path to the destination instruction. See Section 1.5 for more details.

N

o~N OO 01 AW

11
12

13
14
15

16
17

- 42 -

3.16 break — breakpoint instruction

Format Assembly Format | Description
01 break inform a debugger that a breakpoint has been reached.
Stack Transition:

.

Descri ption:

Thebr eak instruction is for debugging support. It signals the CLI to inform the debugger that a break point has

been tripped. It has no other effect on the interpreter state.

The br eak instruction has the smallest possible instruction size so that code can be patched with a breakpoint

with minimal disturbance to the surrounding code.

Thebr eak instruction may trap to a debugger, do nothing, or raise a security exception: the exact behavior is

implementation-defined

Excepti ons:
None.
Verifiability:

Thebr eak instruction is always verifiable.

2

O©Ooo~N OO O W

11

12
13

14
15
16

17
18
19

20
21

22
23

24

- 43 -

3.17 brfalse.<length> - branch on false, null, or zero

Format Assembly Format Description

39 <int32> brfalse target branch to target if valueis zero (false)

2C<int8> brfalse.starget branch to target if value is zero (false), short form

39 <int32> brnull target branch to target if valueis null (aliasfor brf al se)

2C <int8> brnull.s target branch to target if valueisnull (aliasfor brf al se. s), short form
39 <int32> brzero target branch to target if value is zero (alias for brf al se)

2C <int8> brzero.starget branch to target if value is zero (alias for brf al se. s), short form

Stack Transition:
.., val ue 9

Descri ption:

Thebrf al se instruction transfers control to target if value (of typei nt 32, int64, object reference,
managed poi nter, unmanaged pointer or native int)iszero (false). If valueisnon-zero (true) execution
continues at the next instruction.

Target is represented as a signed offset (4 bytesfor brf al se, 1 bytefor brf al se. s) from the beginning of the
instruction following the current instruction.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfersinto and out of try, catch, filter, andfinal I y blocks cannot be performed by this
instruction. (Such transfers are severely restricted and must use the | eave instruction instead; see Partition | for
details).

Excepti ons:

None.

Verifiability:

Correct CIL must observe al of the control transfer rules specified above and must guarantee thereisa
minimum of one item on the stack.

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible
path to the destination instruction. See Section 1.5 for more details.

2

o~N OO 01 AW

11
12

13
14

15
16
17

18
19
20

21
22

23
24

25

- 44 -

3.18 Dbrtrue.<length> - branch on non-false or non-null

Format Assembly Format Description

3A <int32> brtrue target branch to target if value is non-zero (true)

2D <int8> brtrue.starget branch to target if value is non-zero (true), short form

3A <int32> brinst target branch to target if value is anon-null object reference (alias for
brtrue)

2D <int8> brinst.s target branch to target if value is a non-null object reference, short form
(aliasfor brtrue. s)

Stack Transiti
.., val ue 9

Descri ption:

on:

Thebrt rue instruction transfers control to target if value (of typenati ve i nt) isnonzero (true). If valueis
zero (false) execution continues at the next instruction.

If the value is an object reference (type O) then bri nst (an aliasfor brt rue) transfers control if it represents an
instance of an object (i.e. isn't the null object reference, seel dnul 1).

Target is represented as a signed offset (4 bytesfor brtrue, 1 bytefor brtrue. s) from the beginning of the

instruction following the current instruction.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these

prefixes.

Control transfersinto and out of try, catch, filter,andfinal I y blocks cannot be performed by this
instruction. (Such transfers are severely restricted and must use the | eave instruction instead; see Partition | for

details).

Excepti ons:
None.
Verifiability:

Correct CIL must observe al of the control transfer rules specified above and must guarantee thereisa
minimum of one item on the stack.

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible
path to the destination instruction. See Section 1.5 for more details.

N

- 45 -

3.19 call — call a method
Format Assembly Format | Description
28<T> call method Call method described by method

Stack Transition:

.. argl, arg2 ...argn 9 .. retVal (not always returned)

Descri ption:

Thecal I instruction calls the method indicated by the descriptor method. Method is a metadata token (either a
met hodr ef Or met hoddef (See Partition Il) that indicates the method to call and the number, type, and order of
the arguments that have been placed on the stack to be passed to that method as well as the calling convention
to be used. See Partition | for a detailed description of the CIL calling sequence. Thecal | instruction may be
immediately preceded by atai | . prefix to specify that the current method state should be released before

transferring control (see Section 2.1).

The metadata token carries sufficient information to determine whether the call isto a static method, an
instance method, a virtual method, or aglobal function. In all of these cases the destination addressis
determined entirely from the metadata token (Contrast with the cal I vi rt instruction for calling virtual
methods, where the destination address also depends upon the runtime type of the instance reference pushed

before the callvirt; see below).

If the method does not exist in the class specified by the metadata token, the base classes are searched to find

the most derived class which defines the method and that method is called.

Rationale: Thisimplements® call superclass’ behavior.

The arguments are placed on the stack in left-to-right order. That is, the first argument is computed and placed
on the stack, then the second argument, etc. There are three important special cases:

365. Callsto an instance (or virtual, see below) method must push that instance reference (thet hi s
pointer) before any of the user-visible arguments. The signature carried in the metadata does not
contain an entry in the parameter list for thet hi s pointer but uses a bit (called HASTHIS) to
indicate whether the method requires passing the t hi s pointer (see Partition 11)

366. Itislegal to call avirtual method using cal I (rather than cal | vi rt); thisindicates that the
method is to be resolved using the class specified by method rather than as specified dynamically
from the object being invoked. Thisis used, for example, to compile calls to “methods on super

(i.e. the statically known parent class).

367. Note that adelegate’s 1 nvoke method may be called with either the cal | or cal I virt instruction.

Excepti ons:

Securi t yExcepti on may be thrown if system security does not grant the caller access to the called method.
The security check may occur when the CIL is converted to native code rather than at runtime.

Verifiability:

Correct CIL ensures that the stack contains the correct number and type of arguments for the method being

called.

For atypical use of thecal | instruction, verification checks that (a) method refersto avalid net hodr ef or
met hoddef token; (b) the types of the objects on the stack are consistent with the types expected by the method
call, and (c) the method is accessible from the callsite, and (d) the method is not abstract (ie, it has an

implementation)

Thecal I instruction may also be used to call an object’s superclass constructor, or to initialize avalue type
location by calling an appropriate constructor, both of which are treated as special cases by verification. A cal |
annotated by tai | . isalso aspecia case.

- 46 -

If the target method is global (defined outside of any type), then the method must be static.

N

47 -

3.20 calli—indirect method call
Format Assembly Format | Description
29<T> calli callsitedescr Call method indicated on the stack with arguments described by
callsitedescr.

Stack Transition:
.., argl, arg2 ...argn, ftn 9 ...retVal (not always returned)

Descri ption:

Thecal I'i instruction calls ftn (a pointer to a method entry point) with the argumentsar g1 ...ar gn. The types of
these arguments are described by the signature cal | si t edescr . See Partition | for a description of the CIL
calling sequence. Thecal |'i instruction may be immediately preceded by atai | . prefix to specify that the
current method state should be released before transferring control. If the call would transfer control to a
method of higher trust than the origin method the stack frame will not be released; instead, the execution will
continuesilently asif thetai | . prefix had not been supplied.

[A callee of “higher trust” is defined as one whose permission grant-set is a strict superset of the grant-set of
the caller]

The ftn argument is assumed to be a pointer to native code (of the target machine) that can be legitimately
called with the arguments described by callsitedescr (a metadata token for a stand-alone signature). Such a
pointer can be created using the | df t n or | dvi rt f t n instructions, or have been passed in from native code.

The standalone signature specifies the number and type of parameters being passed, as well as the calling
convention (See Partition 1) The calling convention is not checked dynamically, so code that usesacal | i
instruction will not work correctly if the destination does not actually use the specified calling convention.

The arguments are placed on the stack in left-to-right order. That is, the first argument is computed and placed
on the stack, then the second argument, etc. The argument-building code sequence for an instance or virtual
method must push that instance reference (thet hi s pointer, which must not be null) before any of the user-
visible arguments.

Excepti ons:

Securi t yExcepti on may be thrown if the system security does not grant the caller access to the called method.
The security check may occur when the CIL is converted to native code rather than at runtime.

Verifiability:
Correct CIL requires that the function pointer contains the address of a method whose signature matches that

specified by callsitedescr and that the arguments correctly correspond to the types of the destination function’'s
parameters.

Verification checks that ftn is a pointer to afunction generated by 1 df tn or I dvi rtfn.

N

QW O~N OO U1 AW

e el e
w N P

H
a~

B
~N oo

- 48 -

3.21 ceq - compare equal
Format Assembly Format Description
FE 01 ceq push 1 (of typeint32) if valuel equals value2, else 0

Stack Transition:
... valuel, value2 9 ., result

Descri ption:

The ceq instruction compares valuel and value2. If valuel is equal to value2, then 1 (of typei nt 32) is pushed
on the stack. Otherwise O (of typei nt 32) is pushed on the stack.

For floating-point number, ceq will return O if the numbers are unordered (either or both are NaN). The infinite
values are equal to themselves.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.
Exceptions:

None.

Verifiability:

Correct CIL provides two values on the stack whose types match those specified in
Table 4: Binary Comparison or Branch Operations. There are no additional verification requirements.

N

o~N OO 01 AW

11
12

13
14
15

16

17
18

19

- 49 -

3.22 cgt - compare greater than
Format Assembly Format Description
FE 02 cgt push 1 (of typei nt 32) if valuel > value2, else 0

Stack Transition:
... valuel, value2 9 ., result

Descri ption:

Thecgt instruction compares valuel and value2. If valuel is strictly greater than value2, then 1 (of typei nt 32)
is pushed on the stack. Otherwise O (of typei nt 32) is pushed on the stack

For floating-point numbers, cgt returns O if the numbers are unordered (that is, if one or both of the arguments
are NaN).

As per |EC 60559:1989 spec, infinite values are ordered with respect to normal numbers (e.g +infinity > 5.0 > -
infinity).

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.
Exceptions:

None.

Verifiability:

Correct CIL provides two values on the stack whose types match those specified in
Table 4: Binary Comparison or Branch Operations. There are no additional verification requirements.

N

O N o o bW

10
11

12
13

14
15
16
17

18
19

20

- 50 -

3.23 cgt.un - compare greater than, unsigned or unordered
Format Assembly Format Description
FE 03 cgt.un push 1 (of typei nt 32) if valuel > value2, unsigned or unordered,
else0
Stack Transition:
... valuel, value2 9 ., result

Descri ption:

Thecgt . un instruction compares valuel and value2. A value of 1 (of typei nt 32) is pushed on the stack if

. for floating-point numbers, either valuel is strictly greater than value2, or valuel is not ordered
with respect to value2

. for integer values, valuel is strictly greater than value2 when considered as unsigned numbers

Otherwise O (of typei nt 32) is pushed on the stack.

As per |EC 60559:;1989 spec, infinite values are ordered with respect to normal numbers (e.g +infinity > 5.0 > -

infinity).

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

Excepti ons:
None.
Verifiability:

Correct CIL provides two values on the stack whose types match those specified in
Table 4: Binary Comparison or Branch Operations. There are no additional verification requirements.

N

©ooo~N O 01 AW

10
11
12

13
14

- 51 -

3.24 ckfinite — check for a finite real number
Format Assembly Format Description
C3 ckfinite throw Ari t hnet i cException if valueisnot afinite number

Stack Transition:
... val ue 9 ... val ue

Descri ption:

Theckfinit e instruction throws Ari t hneti cExcepti on if value (afloating-point number) is either a“not a
number” value (NaN) or +- infinity value. Ckfi ni t e leaves the value on the stack if no exception is thrown.
Execution is unspecified if value is not a floating-point number.

Excepti ons:

ArithneticException isthrownif valueisnot a‘normal’ number.

Verifiability:

Correct CIL guarantees that value is a floating-point number. There are no additional verification requirements.

N

o~N OO 01 AW

11
12

13
14
15
16

17
18

19

- 52 -

3.25 clt - compare less than
Format Assembly Format Description
FE 04 clt push 1 (of typei nt 32) if valuel < value2, else 0

Stack Transition:
... valuel, value2 9 ., result

Descri ption:
Thecl t instruction compares valuel and value2. If valuel is strictly less than value2, then 1 (of typei nt 32) is
pushed on the stack. Otherwise 0 (of typei nt 32) is pushed on the stack

For floating-point numbers, cl t will return O if the numbers are unordered (that is one or both of the arguments
are NaN).

As per |EC 60559:1989 spec, infinite values are ordered with respect to normal numbers (e.g +infinity > 5.0 > -
infinity).

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

Excepti ons:

None.

Verifiability:

Correct CIL provides two values on the stack whose types match those specified in

Table 4: Binary Comparison or Branch Operations. There are no additional verification requirements.

N

O N o o bW

10
11

12
13

14
15
16
17

18
19

20

- 53 -

3.26 clt.un - compare less than, unsigned or unordered

Format Assembly Format Description
FE 05 clt.un push 1 (of typei nt 32) if valuel < value2, unsigned or unordered,
else0

Stack Transition:

... valuel, value2 9 .., result

Descri ption:

Thecl t. un instruction compares valuel and value2. A value of 1 (of typei nt 32) is pushed on the stack if

. for floating-point numbers, either valuel is strictly less than value2, or valuel is not ordered with
respect to value2

. for integer values, valuel is strictly less than value2 when considered as unsigned numbers

Otherwise O (of typei nt 32) is pushed on the stack.

As per |EC 60559:1989 spec, infinite values are ordered with respect to normal numbers (e.g +infinity > 5.0 > -

infinity).

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

Excepti ons:

None.

Verifiability:

Correct CIL provides two values on the stack whose types match those specified in
Table 4: Binary Comparison or Branch Operations. There are no additional verification requirements.

2

©ooo~N O 01 W

11
12
13
14

15
16
17
18

19
20

21
22

23
24
25

26
27

28

- 54 -

3.27 conv.<to type> - data conversion
Format Assembly Format Description
67 conv.il Convert toi nt 8, pushing i nt 32 on stack
68 conv.i2 Convert toi nt 16, pushing i nt 32 on stack
69 conv.i4 Convert toi nt 32, pushing i nt 32 on stack
6A conv.i8 Convert toi nt 64, pushing i nt 64 on stack
6B conv.r4 Convert to f | oat 32, pushing F on stack
6C conv.r8 Convert to f | oat 64, pushing F on stack
D2 conv.ul Convert to unsi gned i nt 8, pushing i nt 32 on stack
D1 conv.u2 Convert to unsi gned i nt 16, pushing i nt 32 on stack
6D conv.u4 Convert to unsi gned i nt 32, pushing i nt 32 on stack
6E conv.u8 Convert to unsi gned i nt 64, pushing i nt 64 on stack
D3 conv.i Converttonative int, pushingnative i nt on stack
EO conv.u Converttonative unsigned int,pushingnative int onstack
76 conv.r.un Convert unsigned integer to floating-point, pushing F on stack

Stack Transition:
..., val ue 9 ., result

Descri pti on:

Convert the value on top of the stack to the type specified in the opcode, and leave that converted value on the
top of the stack. Note that integer values of less than 4 bytes are extended to i nt 32 (not nat i ve i nt) when they
are loaded onto the evaluation stack, and floating-point values are converted to the F type.

Conversion from floating-point numbers to integral values truncates the number toward zero. When converting
from an float64 to an float32, precision may belost. If value istoo largeto fit in an float32, the IEC
60559:1989 positive infinity (if value is positive) or IEC 60559:1989 negative infinity (if valueis negative) is
returned. If overflow occurs converting one integer type to another the high order bits are silently truncated. If
the result is smaller than an int32, then the value is sign-extended to fill the slot.

If overflow occurs converting a floating-point type to an integer the value returned is unspecified. The

conv. r. un operation takes an integer off the stack, interpretsit as unsigned, and replaces it with a floating-
point number to represent the integer; either af I oat 32, if thisiswide enough to represent the integer without
loss of precision, elseafl oat 64.

No exceptions are ever thrown. See conv. ovf for instructions that will throw an exception when the result type
can not properly represent the result value.

The acceptable operand types and their corresponding result datatype is encapsulated in

Table 8: Conversion Operations.

Excepti ons:

None.

Verifiability:

Correct CIL has at |east one value, of atype specified in Table 8: Conversion Operations, on the stack. The
same table specifies arestricted set of types that are acceptable in verified code.

2

Oooo~N OO O W

11

12
13

14
15
16

17
18
19

- 55 -

3.28 conv.ovf.<to type> - data conversion with overflow detection

Format Assembly Format Description

B3 conv.ovf.il Convert to ani nt 8 (on the stack asi nt 32) and throw an exception
on overflow

B5 conv.ovf.i2 Convert to ani nt 16 (on the stack asi nt 32) and throw an exception
on overflow

B7 conv.ovf.i4 Convert to ani nt 32 (on the stack asi nt 32) and throw an exception
on overflow

B9 conv.ovf.i8 Convert to ani nt 64 (on the stack asi nt 64) and throw an exception
on overflow

B4 conv.ovf.ul Convert to aunsi gned i nt 8 (on the stack asi nt 32) and throw an
exception on overflow

B6 conv.ovf.u2 Convert to aunsi gned i nt 16 (on the stack asi nt 32) and throw an
exception on overflow

B8 conv.ovf.u4 Convert to aunsi gned i nt 32 (on the stack asi nt 32) and throw an
exception on overflow

BA conv.ovf.u8 Convert to aunsi gned i nt 64 (on the stack asi nt 64) and throw an
exception on overflow

D4 conv.ovf.i Converttoannative int (onthestack asnative int) and throw
an exception on overflow

D5 conv.ovf.u Convertto anative unsigned int (onthestack asnative int)
and throw an exception on overflow

Stack Transition:

... value > ., result

Descri pti on:

Convert the value on top of the stack to the type specified in the opcode, and leave that converted value on the
top of the stack. If the value istoo large or too small to be represented by the target type, an exception is

thrown.

Conversions from floating-point numbersto integral values truncate the number toward zero. Note that integer
values of less than 4 bytes are extended to i nt 32 (not nat i ve i nt) on the evaluation stack.

The acceptable operand types and their corresponding result datatype is encapsulated in
Table 8: Conversion Operations.

Excepti ons:

Over f | owExcept i on isthrown if the result can not be represented in the result type

Verifiability:

Correct CIL has at |east one value, of atype specified in Table 8: Conversion Operations, on the stack. The
same table specifies arestricted set of types that are acceptable in verified code.

2

- 56 -

3.29 conv.ovf.<to type>.un — unsigned data conversion with overflow detection

Format Assembly Format Description

82 conv.ovf.il.un Convert unsigned to ani nt 8 (on the stack asi nt 32) and throw an
exception on overflow

83 conv.ovf.i2.un Convert unsigned to ani nt 16 (on the stack asi nt 32) and throw an
exception on overflow

84 conv.ovf.i4.un Convert unsigned to ani nt 32 (on the stack asi nt 32) and throw an
exception on overflow

85 conv.ovf.i8.un Convert unsigned to ani nt 64 (on the stack asi nt 64) and throw an
exception on overflow

86 conv.ovf.ul.un Convert unsigned to an unsi gned i nt 8 (on the stack asi nt 32) and
throw an exception on overflow

87 conv.ovf.u2.un Convert unsigned to an unsi gned i nt 16 (on the stack asi nt 32) and
throw an exception on overflow

88 conv.ovf.ud.un Convert unsigned to an unsi gned i nt 32 (on the stack asi nt 32) and
throw an exception on overflow

89 conv.ovf.u8.un Convert unsigned to an unsi gned i nt 64 (on the stack asi nt 64) and
throw an exception on overflow

8A conv.ovf.i.un Convert unsigned to anative i nt (onthe stack asnative int) and
throw an exception on overflow

8B conv.ovf.u.un Convert unsigned to anati ve unsi gned int (onthe stack as
native int) and throw an exception on overflow

Stack Transition:
..., val ue 9 ., result

Descri pti on:

Convert the value on top of the stack to the type specified in the opcode, and leave that converted value on the
top of the stack. If the value cannot be represented, an exception is thrown. The item at the top of the stack is
treated as an unsigned value.

Conversions from floating-point numbersto integral values truncate the number toward zero. Note that integer
values of less than 4 bytes are extended to i nt 32 (not nat i ve i nt) on the evaluation stack.

The acceptable operand types and their corresponding result datatype is encapsulated in
Table 8: Conversion Operations.

Excepti ons:

Over f | owExcept i on isthrown if the result can not be represented in the result type

Verifiability:

Correct CIL has at |east one value, of atype specified in Table 8: Conversion Operations, on the stack. The
same table specifies arestricted set of types that are acceptable in verified code.

N

©ooo~N OO 01 AW

11
12

13
14
15
16

17
18
19
20
21

22
23

-57 -

3.30 cpblk - copy data from memory to memory
Format Instruction Description
FE 17 cpblk Copy data from memory to memory

Stack Transition:

.., destaddr, srcaddr, size 9

Descri ption:

The cpbl k instruction copies size (of type unsigned int32) bytes from address srcaddr (of typenative int, or
&) to address destaddr (of typenative int, or &). The behavior of cpbl k isunspecified if the source and
destination areas overlap.

cphbl k assumes that both destaddr and srcaddr are aligned to the natural size of the machine (but see the
unal i gned. prefix instruction). The cpbl k instruction may be immediately preceded by the unal i gned. prefix
instruction to indicate that either the source or the destination is unaligned.

Rationale: cpbl k isintended for copying structures (rather than arbitrary byte-runs). All such structures,
allocated by the CLI, are naturally aligned for the current platform. Therefore, there is no need for the
compiler that generates cpbl k instructions to be aware of whether the code will eventually execute on a 32-bit

or 64-bit platform.

The operation of the cpbl k instruction may be altered by an immediately preceding vol atil e. Or unal i gned.

prefix instruction.
Excepti ons:

Nul | Ref er enceExcept i on may be thrown if an invalid address is detected.

Verifiability:

The cpbl k instruction is never verifiable. Correct CIL ensures the conditions specified above.

N

QW 00 N O O AW

N e
N B

I
AW

PR
N o O

B
© 0

W NN N DN N N NDNNDN
O © o NOoOOOlT A W NP O

w w
N

- 58 -

3.31 div - divide values

Format Assembly Format Description

5B div Divide two values to return a quotient or floating-point result

Stack Transition:

... valuel, value2 9 .. result

Descri ption:

result = valuel div value2 satisfies the following conditions:
[result] = |valuel] / Jvalue?|, and

sign(result) = +, if sign(valuel) = sign(value?), or

—, if sign(valuel) ~= sign(value?)

The di v instruction computes result and pushes it on the stack.
Integer division truncates towards zero.

Floating-point division is per |EC 60559:1989 (IEEE 754). In particular division of afinite number by O
produces the correctly signed infinite value and

0/ 0= NaN

infinity / infinity =NaN

X/ infinity =0

The acceptable operand types and their corresponding result datatype is encapsulated in

Table 2: Binary Numeric Operations.

Excepti ons:

Integral operationsthrow Arit hmeti cExcepti on if the result cannot be represented in the result type. This can
happen if valuel is the maximum negative value, and value? is - 1.

Integral operationsthrow Di vi deByZer oExcepti on if value2 is zero.

Floating-point operations never throw an exception (they produce NaNs or infinities instead, see Partition 1).
Exanpl e:

+14div+3 is4

+14div-3is -4

-14div+3 is -4

-14div-3is4

Verifiability:

See Table 2: Binary Numeric Operations.

N

QW Oo~N OO U1 W

- 59 -

3.32 div.un - divide integer values, unsigned

Format Assembly Format Description

5C div.un Divide two values, unsigned, returning a quotient
Stack Transition:

... valuel, value2 9 .. result

Descri ption:

Thedi v. un instruction computes valuel divided by value2, both taken as unsigned integers, and pushes the

result on the stack.

The acceptable operand types and their corresponding result data type are encapsulated in
Table 5: Integer Operations.

Excepti ons:

Di vi deByZer oExcept i on iSthrown if value2 is zero.

Exanpl e:

+5div.un+3

+5div.un-3
-5div.un+3
-5div.un-3

Verifiability:

is 1
is O

is 14316557630 or 0x55555553

is 0

See Table 5: Integer Operations.

N

© 0 N o o1 AW

10

11
12

- 60 -

3.33 dup —duplicate the top value of the stack

Format

Assembly Format

Description

25

dup

duplicate value on the top of the stack

Stack Transition:

, val ue ') ey

Descri ption:

val ue, val ue

The dup instruction duplicates the top element of the stack.

Excepti ons:

None.

Verifiability:

No additional requirements.

N

Oooo~N OO 01 AW

10

12
13

14

15
16
17
18

19
20
21
22
23

24
25
26

27
28

29

- 61 -

3.34 endfilter — end filter clause of SEH
Format Assembly Format | Description
FE 11 Endfilter End filter clause of SEH exception handling

Stack Transition:
.., val ue 9

Descri ption:

Return fromfil ter clause of an exception (see the Exception Handling section of Partition | for adiscussion
of exceptions). Value (which must be of type int32 and is one of a specific set of values) is returned from the
filter clause. It should be one of:

. exception_continue_search (0) to continue searching for an exception handler

. exception_execute_handl er (1) to start the second phase of exception handling where finally
blocks are run until the handler associated with this filter clause is located. Then the handler is
executed.

Other integer values will produce unspecified results.

The entry point of afilter, as shown in the method' s exception table, must be the (lexically) first instruction in
thefilter's code block. Theendfi It er must be the (Iexically) last instruction in the filter’ s code block (hence
there can only beoneendfi | ter for any single filter block). After executing the endfi | t er instruction, control
logically flows back to the CLI exception handling mechanism.

Control cannot be transferred into afi | t er block except through the exception mechanism. Control cannot be
transferred out of afilter block except through the use of at hr owinstruction or executing the final

endfil ter instruction. In particular, it isnot legal to execute aret or | eave instruction within afil ter block.
Itisnot legal to embed atry block withinafilter block. If an exceptionisthrown insidethefilter block, it
isintercepted and avaue of excepti on_cont i nue_sear ch isreturned.

Excepti ons:

None.

Verifiability:

Correct CIL guarantees the control transfer restrictions specified above. Also, the stack must contain exactly
one item (of typei nt 32).

N

- 62 -

3.35 endfinally —end the finally or fault clause of an exception block
Format Assembly Format | Description
DC Endfault End fault clause of an exception block
DC Endfinaly End finally clause of an exception block

Stack Transition:
e

Descri ption:

Return fromthefinal Iy or faul t clause of an exception block; see the Exception Handling section of
Partition | for details.

Signalsthe end of thefinal Iy or faul t clause so that stack unwinding can continue until the exception handler
isinvoked. Theendfi nal I y Or endf aul t instruction transfers control back to the CLI exception mechanism.
This then searches for the next fi nal | y clause in the chain, if the protected block was exited with al eave
instruction. If the protected block was exited with an exception, the CLI will search for the next fi nal Iy or
faul t, or enter the exception handler chosen during the first pass of exception handling.

Anendfinal | y instruction may only appear lexically within afinal | y block. Unliketheendfil ter
instruction, there is no requirement that the block end with an endf i nal 1 y instruction, and there can be as many
endfi nal | y instructions within the block as required. These same restrictions apply to the endf aul t instruction
and thef aul t block, mutatis mutandis.

Control cannot be transferred into afi nal Iy (or faul t block) except through the exception mechanism.
Control cannot be transferred out of afinal 'y (or faul t) block except through the use of at hr ow instruction
or executing the endf i nal I y (Or endf aul t) instruction. In particular, it isnot legal to “fall out” of afinally
(or faul t) block or to execute aret or | eave instruction withinafinal 'y (or f aul t) block.

Note that the endf aul t and endfi nal | y instructions are aliases — they correspond to the same opcode.
Excepti ons:

None.

Verifiability:

Correct CIL guarantees the control transfer restrictions specified above. There are no additional verification
reguirements.

N

O©Ooo~N OO O W

11
12
13

14
15
16
17
18

19
20

- 63 -

3.36 initblk - initialize a block of memory to a value
Format Assembly Format | Description
FE 18 initblk Set ablock of memory to agiven byte

Stack Transition:
.., addr, value, size 9

Descri ption:

Thei ni t bl k instruction sets size (of type unsi gned i nt 32) bytes starting at addr (of typenative int, or &) to
value (of type unsigned int8). i ni t bl k assumes that addr is aligned to the natural size of the machine (but see
theunal i gned. prefix instruction).

Rationale: i ni t bl k isintended for initializing structures (rather than arbitrary byte-runs). All such structures,
allocated by the CLI, are naturally aligned for the current platform. Therefore, there is no need for the
compiler that generatesi ni t bl k instructions to be aware of whether the code will eventually execute on a 32-
bit or 64-bit platform.

The operation of thei ni t bl k instructions may be altered by an immediately preceding vol atile. or
unal i gned. prefix instruction.

Excepti ons:

Nul | Ref er enceExcept i on may be thrown if an invalid address is detected.

Verifiability:

Thei ni t bl k instruction is never verifiable. Correct CIL code ensures the restrictions specified above.

N

o~N OO 01 AW

11
12

13
14
15

16
17

- 64 -

3.37 jmp —jump to method
Format Assembly Format | Description
27 <T> jmp method Exit current method and jump to specified method

Stack Transition:

e

Descri ption:

Transfer control to the method specified by method, which is a metadata token (either anet hodref or
met hoddef (See Partition |1). The current arguments are transferred to the destination method.

The evaluation stack must be empty when this instruction is executed. The calling convention, number and type
of arguments at the destination address must match that of the current method.

The jmp instruction cannot be used to transferred control out of atry, filter, catch, fault or finally block; or out
of asynchronized region. If thisis done, results are undefined. See Partition |.

Excepti ons:

None.

Verifiability:

Thej mp instruction is never verifiable. Correct CIL code obeys the control flow restrictions specified above.

2

- 65 -

Idarg.<length> - load argument onto the stack

Format Assembly Format | Description

FE 09 <unsigned | ldarg num Load argument numbered num onto stack.

int16>

OE <unsigned Idarg.s num Load argument numbered num onto stack, short form.
int8>

02 Idarg.0 Load argument 0 onto stack

03 Idarg.1 Load argument 1 onto stack

04 Idarg.2 Load argument 2 onto stack

05 Idarg.3 Load argument 3 onto stack

Stack Transition:
9 .., val ue

Descri ption:

Thel dar g num instruction pushes the num’th incoming argument, where arguments are numbered 0 onwards
(see Partition 1) onto the evaluation stack. The | dar g instruction can be used to load a value type or abuilt-in
value onto the stack by copying it from an incoming argument. The type of the value is the same as the type of
the argument, as specified by the current method’ s signature.

Thel darg.0,l1darg. 1,1 darg. 2, and | dar g. 3 instructions are efficient encodings for loading any of thefirst 4
arguments. Thel dar g. s instruction is an efficient encoding for loading argument numbers 4 through 255.

For procedures that take a variable-length argument list, the | dar g instructions can be used only for theinitial
fixed arguments, not those in the variable part of the signature. (Seethear gl i st instruction)

Arguments that hold an integer value smaller than 4 bytes long are expanded to type int32 when they are loaded
onto the stack. Floating-point values are expanded to their native size (type F).

Excepti ons:
None.
Verifiability:

Correct CIL guarantees that numis avalid argument index. See Section 1.5 for more details on how
verification determines the type of the value loaded onto the stack.

©oo~N OO O AW

11

12
13

14
15
16

17
18
19

- 66 -

3.39 ldarga.<length> - load an argument address
Format Assembly Format Description
FE OA <unsigned |darga argNum fetch the address of argument argNum.
int16>
OF <unsigned int8> | Idarga.s argNum fetch the address of argument argNum, short form

Stack Transition:
9 ... address of argunment nunber argNum

Descri ption:

The |darga instruction fetches the address (of type &, i.e. managed pointer) of the argNum'’th argument, where
arguments are numbered O onwards. The address will always be aligned to a natural boundary on the target
machine (cf. cpblk and initblk). The short form (Idarga.s) should be used for argument numbers O through 255.

For procedures that take a variable-length argument list, the Idarga instructions can be used only for theinitial
fixed arguments, not those in the variable part of the signature.

Rationale: | dar ga is used for by-ref parameter passing (see Partition 1). In other cases, | darg and st arg
should be used.

Excepti ons:

None.

Verifiability:

Correct CIL ensuresthat argNumis avalid argument index. See Section 1.5 for more details on how
verification determines the type of the value loaded onto the stack.

2

Qwoo~N O O W

S~ S N
W N R

==
[62>N

B
~N o

N B
© © ®

NN
N

- 67 -

3.40 ldc.<type> - load numeric constant

Format Assembly Format | Description

20 <i nt 32> Idc.i4 num Push num of typei nt 32 onto the stack asi nt 32.

21 <i nt 64> Idc.i8 num Push num of typei nt 64 onto the stack asi nt 64.

22 <f| oat 32> Idc.r4 num Push num of typef | oat 32 onto the stack asF.

23 <f| oat 64> Idc.r8 num Push num of typef | oat 64 onto the stack asF.

16 Idc.i4.0 Push 0 onto the stack asi nt 32.

17 Idc.i4.1 Push 1 onto the stack asi nt 32.

18 Idc.i4.2 Push 2 onto the stack asi nt 32.

19 Idc.i4.3 Push 3 onto the stack asi nt 32.

1A Idc.i4.4 Push 4 onto the stack asi nt 32.

1B Idc.i4.5 Push 5 onto the stack asi nt 32.

1C Idc.i4.6 Push 6 onto the stack asi nt 32.

1D Idc.i4.7 Push 7 onto the stack asi nt 32.

1E Idc.i4.8 Push 8 onto the stack asi nt 32.

15 Idc.i4.m1 Push -1 onto the stack asi nt 32.

15 Idc.i4.M1 Push -1 of typei nt 32 onto the stack asi nt 32 (alias for
I dc. i 4. mL).

1F <i nt 8> Idc.i4.s num Push num onto the stack asi nt 32, short form.

Stack Transition:
9 .., NUM

Descri ption:

Thel dc huminstruction pushes number num onto the stack. There are special short encodings for the integers —
128 through 127 (with especially short encodings for —1 through 8). All short encodings push 4 byte integers on
the stack. Longer encodings are used for 8 byte integers and 4 and 8 byte floating-point numbers, as well as 4-
byte values that do not fit in the short forms.

There are three ways to push an 8 byte integer constant onto the stack
368. usethel dc.i 8 instruction for constants that must be expressed in more than 32 bits
369. usethel dc.i4 instruction followed by aconv. i 8 for constants that require 9 to 32 bits

370. use ashort form instruction followed by aconv. i 8 for constants that can be expressed in 8 or
fewer bits

Thereis no way to express a floating-point constant that has a larger range or greater precision than a 64 bit
|EC 60559:1989 number, since these representations are not portable across architectures.

Excepti ons:

None.

Verifiability:

Thel dc instruction is always verifiable.

=
QOWwoo~N O O W

11
12
13
14

15
16
17

18
19
20

21

- 68 -

3.41 Idftn - load method pointer
Format Assembly Format | Description
FE 06 <T> |dftn method Push a pointer to a method referenced by method on the stack

Stack Transition:
9 ., ftn

Descri pti on:

Thel df t n instruction pushes an unmanaged pointer (type nati ve i nt) to the native code implementing the
method described by method (a metadata token, either anet hoddef or net hodr ef ; see Partition 1) onto the
stack. The value pushed can be called using thecal I'i instruction if it references a managed method (or a stub
that transitions from managed to unmanaged code).

The value returned points to native code using the calling convention specified by method. Thus a method
pointer can be passed to unmanaged native code (e.g. as a callback routine). Note that the address computed by
thisinstruction may be to athunk produced specially for this purpose (for example, to re-enter the CIL
interpreter when a native version of the method isn’t available).

Excepti ons:

None.

Verifiability:

Correct CIL requires that method isavalid net hoddef or met hodr ef token. Verification tracks the type of the

value pushed in more detail than the “nati ve int” type, remembering that it is a method pointer. Such a
method pointer can then be used with cal Ii or to construct a delegate.

2

O©Ooo~N OO O W

11
12

13
14
15
16
17

18
19

20
21
22

23
24
25

- 69 -

3.42 ldind.<type> - load value indirect onto the stack

Format Assembly Format Description

46 Idind.il Indirect load value of typei nt 8 asi nt 32 on the stack.

48 Idind.i2 Indirect load value of typei nt 16 asi nt 32 on the stack.

4A Idind.i4 Indirect load value of typei nt 32 asi nt 32 on the stack.

4C Idind.i8 Indirect load value of typei nt 64 asi nt 64 on the stack.

47 Idind.ul Indirect load value of type unsi gned i nt 8 asi nt 32 on the
stack.

49 Idind.u2 Indirect load value of typeunsi gned i nt 16 asi nt 32 on the
stack.

4B Idind.u4 Indirect load value of type unsi gned i nt 32 asi nt 32 on the
stack.

4E Idind.r4 Indirect load value of typef 1 oat 32 asF on the stack.

4C Idind.u8 Indirect load value of type unsi gned i nt 64 asi nt 64 on the
stack (aliasfor | di nd. i 8).

aF Idind.r8 Indirect load value of typef 1 oat 64 asF on the stack.

4D Idind.i Indirect load value of typenative int aSnative int onthe
stack

50 Idind.ref Indirect load value of type obj ect ref asoon the stack.

Stack Transition:
.., addr 9 .., val ue

Descri ption:

Thel di nd instruction indirectly loads a value from address addr (an unmanaged pointer, nati ve int, or
managed pointer, &) onto the stack. The source valueisindicated by the instruction suffix. All of thel di nd
instructions are shortcuts for al dobj instruction that specifies the corresponding built-in value class.

Note that integer values of lessthan 4 bytes are extended to i nt 32 (not nat i ve i nt) when they are loaded onto
the evaluation stack. Floating-point values are converted to F type when loaded onto the evaluation stack.

Correct CIL ensuresthat thel di nd instructions are used in amanner consistent with the type of the pointer.

The address specified by addr must be aligned to the natural size of objects on the machine or a

Nul | Ref er enceExcept i on may occur (but seethe unal i gned. prefix instruction). The results of all CIL
instructions that return addresses (e.g. | dl oca and | dar ga) are safely aligned. For datatypes larger than 1 byte,
the byte ordering is dependent on the target CPU. Code that depends on byte ordering may not run on all
platforms.

The operation of thel di nd instructions may be altered by an immediately preceding vol ati | e. Or unal i gned.
prefix instruction.

Rationale: Sgned and unsigned forms for the small integer types are needed so that the CLI can know whether
to sign extend or zero extend. Thel di nd. us and I di nd. u4 variants are provided for convenience; | di nd. ug is
an aliasfor I di nd. i 8; I di nd. u4 and I di nd. i 4 have different opcodes, but their effect isidentical

Excepti ons:
Nul | Ref er enceExcept i on may be thrown if an invalid address is detected.
Verifiability:

- 70 -

Correct CIL only usesan | di nd instruction in amanner consistent with the type of the pointer.

2

- 71 -

3.43 ldloc - load local variable onto the stack
Format Assembly Format | Description
FE 0C<unsigned Idloc indx Load local variable of index indx onto stack.
int16>
11 <unsigned int8> | Idloc.sindx Load local variable of index indx onto stack, short form.
06 Idloc.0 Load local variable 0 onto stack.
07 Idloc.1 Load local variable 1 onto stack.
08 Idloc.2 Load local variable 2 onto stack.
09 Idloc.3 Load local variable 3 onto stack.

Stack Transition:
9 .., val ue

Descri pti on:

The| di oc indx instruction pushes the contents of the local variable number indx onto the evaluation stack,
where local variables are numbered 0 onwards. Local variables areinitialized to 0 before entering the method
only if theinitialize flag on the method is true (see Partition 1). Thel dl oc. 0, 1 dl oc. 1, I dl oc. 2, and I dl oc. 3
instructions provide an efficient encoding for accessing the first four local variables. Thel di oc. s instruction
provides an efficient encoding for accessing local variables 4 through 255.

The type of the value is the same as the type of the local variable, which is specified in the method header. See
Partition I.

Local variables that are smaller than 4 bytes long are expanded to type int32 when they are loaded onto the
stack. Floating-point values are expanded to their native size (typeF).
Excepti ons:

VerificationException isthrown if thethe“zero initialize” bit for this method has not been set, and the
assembly containing this method has not been granted SecurityPermission.SkipV erification (and the CIL does
not perform automatic definite-assignment analysis)

Verifiability:
Correct CIL ensuresthat indx isavalid local index. See Section 1.5 for more details on how verification

determines the type of alocal variable. For the Idloca indx instruction, indx must lie in the range 0 to 65534
inclusive (specifically, 65535 is not valid)

Rationale: The reason for excluding 65535 is pragmatic: likely implementations will use a 2-byte integer to
track both a local’ sindex, as well as the total number of locals for a given method. If an index of 65535 had
been made legal, it would require a wider integer to track the number of locals in such a method.

Also, for verifiable code, thisinstruction must guarantee that it is not loading an uninitialized value — whether
that initialization is done explicitly by having set the “zero initialize” bit for the method, or by previous
instructions (where the CLI performs definite-assignment analysis)

QOWowo~N O U1 AW

-72 -

3.44 ldloca.<length> - load local variable address
Format Assembly Format | Description
FE OD <unsigned Idloca index L oad address of local variable with index indx
int16>
12 <unsigned int8> | Idloca.sindex Load address of local variable with index indx, short form

Stack Transition:
9 .., address

Descri pti on:

Thel di oca instruction pushes the address of the local variable number index onto the stack, where local
variables are numbered 0 onwards. The value pushed on the stack is aready aligned correctly for use with
instructions like 1 di nd and st i nd. The result is amanaged pointer (type &). Thel di oca. s instruction provides
an efficient encoding for use with the local variables O through 255.

Excepti ons:

Veri ficationException isthrown if thethe “zero initialize” bit for this method has not been set, and the
assembly containing this method has not been granted SecurityPermission.SkipV erification (and the CIL does
not perform automatic definite-assignment analysis)

Verifiability:
Correct CIL ensuresthat indx isavalid local index. See Section 1.5 for more details on how verification

determines the type of alocal variable. For the Idloca indx instruction, indx must lie in the range 0 to 65534
inclusive (specifically, 65535 is not valid)

Rationale: The reason for excluding 65535 is pragmatic: likely implementations will use a 2-byte integer to
track both a local’ s index, as well as the total number of locals for a given method. If an index of 65535 had
been made legal, it would require a wider integer to track the number of locals in such a method.

Also, for verifiable code, thisinstruction must guarantee that it is not loading an uninitialized value — whether
that initialization is done explicitly by having set the “ zero initialize” bit for the method, or by previous
instructions (where the CLI performs definite-assignment analysis)

- 73 -

3.45 Ildnull —load a null pointer
Format Assembly Format | Description
14 Idnull Push null reference on the stack

Stack Transition:
9 .., null value

Descri pti on:

Thel dnul I pushesanull reference (type 0) on the stack. This is used to initialize locations before they become
live or when they become dead.

Rationale: It might be thought that | dnul I isredundant: why not use I dc.i 4.0 or I dc.i 8.0 instead? The
answer isthat | dnul I provides a size-agnostic null —analogousto al dc. i instruction, which does not exist.
However, even if CIL weretoincludeal dc. i instruction it would still benefit verification algorithms to retain
the I dnul I instruction because it makes type tracking easier.

Excepti ons:

None.

Verifiability:

Thel dnul I instruction is always verifiable, and produces a value that verification considers compatible with
any other reference type.

N

- 74 -

3.46 leave.<length> — exit a protected region of code
Format Assembly Format | Description
DD <int32> leave target Exit a protected region of code.
DE <int8> leave.starget Exit a protected region of code, short form

Stack Transition:
Y

Descri ption:
Thel eave instruction unconditionally transfers control to target. Target is represented as a signed offset (4
bytesfor | eave, 1 bytefor | eave. s) from the beginning of the instruction following the current instruction.

Thel eave instruction is similar to the br instruction, but it can beused to exitatry, filter, or cat ch block
whereas the ordinary branch instructions can only be used in such a block to transfer control within it. The

| eave instruction empties the evaluation stack and ensures that the appropriate surrounding f i nal | y blocks are
executed.

Itisnot legal to useal eave instruction to exit af i nal I 'y block. To ease code generation for exception handlers
itislegal fromwithin acat ch block to use al eave instruction to transfer control to any instruction within the
associated t ry block.

If an instruction has one or more prefix codes, control can only be transferred to the first of these prefixes.
Excepti ons:

None.

Verifiability:

Correct CIL requires the computed destination lie within the current method. See Section 1.5 for more details.

N

=
QOwoo~N O O AW

11
12

13

14
15
16
17
18

19
20
21

- 75 -

3.47 localloc — allocate space in the local dynamic memory pool
Format Assembly Format | Description
FE OF localloc Allocate space from the local memory pool.

Stack Transition:
..., Size 9 .., address

Descri ption:

Thel ocal | oc instruction allocates size (type native unsigned int) bytes from the local dynamic memory pool
and returns the address (a managed pointer, type &) of the first allocated byte. The block of memory returned is
initialized to O only if the initialize flag on the method is true (see Partition 1). The area of memory is newly
allocated. When the current method returns the local memory pool is available for reuse.

Addressis aligned so that any built-in data type can be stored there using the st i nd instructions and loaded
using the di nd instructions.

Thel ocal | oc instruction cannot occur within an exception block: filter, catch, finally, or fault

Rationale: Local I oc isused to create local aggregates whose size must be computed at runtime. It can be used
for C'sintrinsic al | oca method.

Excepti ons:

St ackOver f | owExcept i on isthrown if there isinsufficient memory to service the request.
Verifiability:

Correct CIL requires that the evaluation stack be empty, apart from the size item. Thisinstruction is never
verifiable.

N

o~N OO 01 AW

11
12
13
14

15
16

3.48 mul - multiply values

- 76 -

Format Assembly Format Description
5A mul Multiply values
Stack Transition:

... valuel, value2 9 .. result

Descri ption:

Themul instruction multiplies valuel by value2 and pushes the result on the stack. Integral operations silently

truncate the upper bits on overflow (see nul . ovf).

For floating-point types, 0* i nfini ty = NaN.

The acceptable operand types and their corresponding result data types are encapsulated in

Table 2: Binary Numeric Operations.

Excepti ons:
None.
Verifiability:

See Table 2: Binary Numeric Operations.

N

QW oOo~N OO U1 W

- 77 -

3.49 mul.ovf.<type> - multiply integer values with overflow check

Format Assembly Format Description

D8 mul .ovf Multiply signed integer values. Signed result must fit in same size

D9 mul.ovf.un Multiply unsigned integer values. Unsigned result must fit in same
size

Stack Transition:

, valuel, value2 9 ., result

Descri ption:

Themul . ovf instruction multipliesintegers, valuel and value2, and pushes the result on the stack. An
exception isthrown if the result will not fit in the result type.

The acceptable operand types and their corresponding result data types are encapsulated in

Table 7: Overflow Arithmetic Operations.
Excepti ons:

Over f | owExcept i on isthrown if the result can not be represented in the result type.

Verifiability:

See Table 8: Conversion Operations.

N

3.50

- 78 -

neg - negate

Format Assembly Format Description

65 neg Negate value

Stack Transition:
... val ue 9 .., result

Descri ption:

The neg instruction negates value and pushes the result on top of the stack. The return type is the same as the
operand type.

Negation of integral valuesis standard twos complement negation. In particular, negating the most negative
number (which does not have a positive counterpart) yields the most negative number. To detect this overflow
usethesub. ovf instruction instead (i.e. subtract from 0).

Negating a floating-point number cannot overflow; negating NaN returns Nan.

The acceptable operand types and their corresponding result data types are encapsulated in
Table 3: Unary Numeric Operations.

Excepti ons:

None.

Verifiability:

See Table 3: Unary Numeric Operations.

N

© 0 N o 01 AW

10

11
12

- 79 -

3.51 nop — no operation
Format Assembly Format Description
00 nop Do nothing

Stack Transition:

N 2

Descri ption:

The nop operation does nothing. It isintended to fill in space if bytecodes are patched.
Excepti ons:

None.

Verifiability:

The nop instruction is always verifiable.

N

QW O~N OO U1 AW

- 80 -

3.52 not - bitwise complement
Format Assembly Format Description
66 not Bitwise complement
Stack Transition:
... val ue 9 .. result

Descri ption:

Compute the bitwise complement of the integer value on top of the stack and leave the result on top of the

stack. Thereturn type is the same as the operand type.

The acceptable operand types and their corresponding result datatype is encapsulated in

Table 5: Integer Operations.

Excepti ons:
None.

Verifiability:

See Table 5: Integer Operations.

N

QW O~N OO U1 AW

- 81 -

3.53 or - bitwise OR
Format Instruction Description
60 or Bitwise OR of two integer values, returns an integer.
Stack Transition:
, val uel, value2 9 .. result

Descri ption:

The or instruction computes the bitwise OR of the top two values on the stack and leaves the result on the

stack.

The acceptable operand types and their corresponding result data type is encapsulated in
Table 5: Integer Operations.

Excepti ons:
None.

Verifiability:

See Table 5: Integer Operations.

N

© 0 N o o1 AW

10

11
12

- 82 -

3.54 pop —remove the top element of the stack

Format

Assembly Format

Description

26

pop

pop avalue from the stack

Stack Transition:

... val ue 9

Descri ption:

The pop instruction removes the top element from the stack.

Excepti ons:

None.

Verifiability:

No additional requirements.

N

© oOo~N O O bW

10
11
12
13
14
15
16
17

- 83 -

3.55 rem - compute remainder
Format Assembly Format | Description
5D rem Remainder of dividing valuel by value2

Stack Transition:
, valuel, value2 9 ., result

Descri ption:

The acceptable operand types and their corresponding result datatype is encapsulated in
Table 2: Binary Numeric Operations.

For integer operands

result = valuel rem value? satisfies the following conditions:
result = valuel — value2x(valuel div value?), and
0 <|result| < |value?|, and
sign(result) = sign(valuel),
where di v isthe division instruction, which truncates towards zero.
The r eminstruction computes result and pushes it on the stack.

For floating-point oper ands

remis defined is defined similarly, except that, if value? is zero or valuel isinfinity the result is NaN. If value?

18
19
20
21

22
23

24
25

26
27

28
29
30

31
32
33
34
35
36
37

38
39

isinfinity,theresultisvaluel (negated for — nfi ni ty). This definition is different from the one for floating-
point remainder in the IEC 60559:1989 Standard. That Standard specifies that valuel div value? is the nearest
integer instead of truncating towards zero. Syst em Mat h. | EEERerai nder (See Partition 1V) providesthe IEC

60559:1989 behavior.
Excepti ons:
Integral operations throw Di vi deByZer oExcept i on if value2 is zero.

Integral operations may throw Ari t hneti cExcepti on if valuel isthe maximum negative value and value2 is -

1.

Exanpl e:

+10rem+6 is 4 (+10 div +6 =1)

+10rem-6 is4 (+10 div-6 = -1)
-10rem+6 is -4 (-10 div +6 = -1)
-10rem-6 is -4 (-10 div-6 =1)

For the various floating-point values of 10.0 and 6.0, rem gives the same values; Syst em Mat h. | EEERenai nder ,

however, gives the following values.

Syst em Mat h. | EEERemai nder (+10. 0, +6.0) is -2 (+10.0 div +6.0 = 1.666..7)
System Mat h. | EEERemai nder (+10.0,-6.0) is -2 (+10.0 div -6.0 =-1.666..7)
Syst em Mat h. | EEERenai nder (-10.0,+6.0) is 2 (-10.0 div +6.0 =-1.666..7)
System Mat h. | EEERenmi nder (-10.0,-6.0) is 2 (-10.0 div -6.0 = 1.666..7)

Verifiability:
See Table 2: Binary Numeric Operations.

N

0 N o o1 W

11
12

13
14

15
16
17
18
19
20
21
22

23
24

-84 -

3.56 rem.un - compute integer remainder, unsigned
Format Assembly Format | Description
5E rem.un Remainder of unsigned dividing valuel by value2
Stack Transition:
... valuel, value2 9 .. result

Descri ption:

result = valuel rem.un value? satisfies the following conditions:

result = valuel — value2x(valuel div.un value2), and

0 <result < value2,

wheredi v. un isthe unsigned division instruction.. Ther em un instruction computes result and pushes it on the
stack. Rem un treats its arguments as unsigned integers, while r emtreats them as signed integers. Rem un is
unspecified for floating-point numbers.

The acceptable operand types and their corresponding result data type are encapsulated in
Table 5: Integer Operations.

Excepti ons:

Integral operationsthrow Di vi deByZer oExcept i on if value2 is zero.

Exanpl e:

+5remun +3
+5remun-3
-5remun +3

-5remun-3

Verifiability:

is2 (+5 div.un +3 = 1)

isb (+5 div.un-3 = 0)

is2 (-5 div.un +3 = 1431655763 or 0x55555553)
is -5 or Oxfffffffb (-5div.un-3 = 0)

See Table 5: Integer Operations.

N

[
QWO N o o1 W

11
12
13
14
15

16
17
18

19
20

21

- 85 -

3.57 ret —return from method
Format Assembly Format | Description
2A Ret Return from method, possibly returning avalue

Stack Transition:

retVal on call ee eval uation stack (not always present) 9
... retVal on caller evaluation stack (not always present)
Descri ption:

Return from the current method. The return type, if any, of the current method determines the type of value to
be fetched from the top of the stack and copied onto the stack of the method that called the current method. The
evaluation stack for the current method must be empty except for the value to be returned.

Ther et instruction cannot be used to transfer control out of atry, filter, catch, or final Iy block. From
withinatry or cat ch, usethel eave instruction with adestination of ar et instruction that is outside al
enclosing exception blocks. Becausethefilter andfinal I 'y blocks are logically part of exception handling,
not the method in which their code is embedded, correctly generated CIL does not perform a method return
fromwithinafilter orfinally. SeePartition l.

Excepti ons:

None.
Verifiability:

Correct CIL obeys the control constraints describe above. Verification requires that the type of retVal is
compatible with the declared return type of the current method.

N

- 86 -

3.58 shl - shift integer left
Format Assembly Format Description
62 Shi Shift an integer to the left (shifting in zeros)
Stack Transition:

... val ue, shiftAmount 9 .., result

Descri ption:

Theshl instruction shifts value (int32, int64 or native int) left by the number of bits specified by shiftAmount.
shiftAmount is of type int32, int64 or nativeint. The return value is unspecified if shiftAmount is greater than or
equal to the size of value. See Table 15 : Shift Operations for details of which operand types are allowed, and

Qwoo~N OO U1 W

their corresponding result type.

Excepti ons:
None.
Verifiability:

See Table 5: Integer Operations.

N

- 87 -

3.59 shr - shift integer right
Format Assembly Format Description
63 Shr Shift an integer right, (shift in sign), return an integer

Stack Transition:

... val ue, shiftAmount 9 .., result

Descri ption:

Theshr instruction shifts value (int32, int64 or native int) right by the number of bits specified by shiftAmount.
shiftAmount is of typeint32, int64 or nativeint. The return value is unspecified if shiftAmount is greater than or
equal to the width of value. shr replicates the high order bit on each shift, preserving the sign of the original
valuein theresult. See Table 15 : Shift Operations for details of which operand types are allowed, and their
corresponding result type.

Excepti ons:

None.

Verifiability:

See Table 5: Integer Operations.

N

QOwoo~N O U1 AW

N
N R

=
w

el
[S2 N

- 88 -

3.60 shr.un - shift integer right, unsigned
Format Assembly Format Description
64 shr.un Shift an integer right, (shift in zero), return an integer

Stack Transition:

... val ue, shiftAmount 9 .., result

Descri ption:

Theshr. un instruction shifts value (int32, int 64 or native int) right by the number of bits specified by
shiftAmount. shiftAmount is of type int32 or native int. The return value is unspecified if shiftAmount is greater
than or equal to the width of value. shr. un inserts a zero bit on each shift. See Table 15 : Shift Operations for
details of which operand types are allowed, and their corresponding result type.

Exceptions:

None.

Verifiability:

See Table 5: Integer Operations.

N

O©Ooo~N OO O W

11

12
13
14

15
16
17
18

19
20

21

- 89 -

3.61 starg.<length> - store a value in an argument slot
Format Assembly Format | Description
FE OB <unsigned | starg num Store a value to the argument numbered num
int16>
10 <unsigned starg.s num Store a value to the argument numbered num, short form
int8>

Stack Transition:
...val ue 9

Descri ption:

The st ar g num instruction pops a value from the stack and placesit in argument slot num (see Partition). The
type of the value must match the type of the argument, as specified in the current method’ s signature. The
starg. s instruction provides an efficient encoding for use with the first 256 arguments.

For procedures that take a variable argument list, the st ar g instructions can be used only for theinitial fixed
arguments, not those in the variable part of the signature.

Storing into arguments that hold an integer value smaller than 4 bytes long truncates the value as it moves from
the stack to the argument. Floating-point values are rounded from their native size (type F) to the size
associated with the argument.

Excepti ons:

None.

Verifiability:

Correct CIL requiresthat numisavalid argument slot.

Verification also checks that the verification type of value matches the type of the argument, as specified in the
current method'’ s signature (verification types are less detailed than CLI types).

2

- 90 -

stind.<type> - store value indirect from stack

Format Assembly Format | Description

52 stind.il Store value of typei nt 8 into memory at address

53 stind.i2 Store value of typei nt 16 into memory at address

54 stind.i4 Store value of typei nt 32 into memory at address

55 stind.i8 Store value of typei nt 64 into memory at address

56 stind.r4 Store value of typef | oat 32 into memory at address

57 stind.r8 Store value of typef | oat 64 into memory at address

DF stind.i Store value of typenati ve int into memory at address

51 stind.ref Store value of type obj ect ref (type 0) into memory at address

Stack Transition:
.., addr, val 9

Descri ption:

Thest i nd instruction stores avalue val at address addr (an unmanaged pointer, typenati ve i nt, or managed
pointer, type &). The address specified by addr must be aligned to the natural size of val or a

Nul | Ref er enceExcept i on may occur (but see theunal i gned. prefix instruction). The results of all CIL
instructions that return addresses (e.g. | dl oca and | dar ga) are safely aligned. For datatypes larger than 1 byte,
the byte ordering is dependent on the target CPU. Code that depends on byte ordering may not run on all
platforms.

Type safe operation requires that the st i nd instruction be used in a manner consistent with the type of the
pointer.

The operation of the sti nd instruction may be altered by an immediately preceding vol atil e. Or unal i gned.
prefix instruction.

Excepti ons:

Nul | Ref er enceExcept i on isthrown if addr isnot naturally aligned for the argument type implied by the
instruction suffix

Verifiability:

Correct CIL ensuresthat addr be a pointer whose type is known and is assignment compatible with that of val.

2

- 91 -

stloc - pop value from stack to local variable

Format Assembly Format | Description

FE OE <unsigned | stloc indx Pop value from stack into local variable indx.

int16>

13 <unsigned stloc.sindx Pop value from stack into local variable indx, short form.
int8>

0A stloc.0 Pop value from stack into local variable 0.

0B stloc.1 Pop value from stack into local variable 1.

oC stloc.2 Pop value from stack into local variable 2.

oD stloc.3 Pop value from stack into local variable 3.

Stack Transition:
.., val ue 9

Descri ption:

Thesst | oc indx instruction pops the top value off the evalution stack and moves it into local variable number
indx (see Partition 1), where local variables are numbered 0 onwards. The type of value must match the type of
the local variable as specified in the current method' s locals signature. Thest 1 oc. 0, stloc. 1, st oc. 2, and

st oc. 3 instructions provide an efficient encoding for the first four local variables; the st | oc. s instruction
provides an efficient encoding for local variables 4 through 255.

Storing into locals that hold an integer value smaller than 4 bytes long truncates the value as it moves from the
stack to the local variable. Floating-point values are rounded from their native size (type F) to the size
associated with the argument.

Excepti ons:
None.
Verifiability:

Correct CIL requiresthat indx isavalid local index. For the stloc indx instruction, indx must liein the range O
to 65534 inclusive (specifically, 65535 is not valid)

Rationale: The reason for excluding 65535 is pragmatic: likely implementations will use a 2-byte integer to
track both a local’ s index, as well as the total number of locals for a given method. If an index of 65535 had
been made legal, it would require a wider integer to track the number of locals in such a method.

Verification also checks that the verification type of value matches the type of the local, as specified in the
current method’ s locals signature.

N

Ooo~N OO O W

11
12
13
14

15
16

- 92 -

3.64 sub - subtract numeric values
Format Assembly Format Description
59 sub Subtract value2 from valuel, returning a new value
Stack Transition:
..., valuel, value2 9 ., result

Descri ption:

The sub instruction subtracts value2 from valuel and pushes the result on the stack. Overflow is not detected
for the integral operations (see sub. ovf); for floating-point operands, sub returns +i nf on positive overflow, -

i nf on negative overflow, and zero on floating-point underflow.

The acceptable operand types and their corresponding result data type is encapsulated in Table 11: Binary

Numeric Operations.

Excepti ons:
None.

Verifiability:

See Table2: Binary Numeric Operations.

N

- 903 -

3.65 sub.ovf.<type> - subtract integer values, checking for overflow

Format Assembly Format Description

DA sub.ovf Subtract native int from an native int. Signed result must fit in same
size

DB sub.ovf.un Subtract native unsigned int from a native unsigned int. Unsigned
result must fit in same size

Stack Transition:

, valuel, value2 9 ., result

Descri ption:

Thesub. ovf instruction subtracts value2 from valuel and pushes the result on the stack. The type of the values
and the return type is specified by the instruction. An exception isthrown if the result does not fit in the result

type.

The acceptable operand types and their corresponding result datatype is encapsulated in

Table 7: Overflow Arithmetic Operations.

Excepti ons:

Over f | owExcept i on isthrown if the result can not be represented in the result type.

Verifiability:

See Table 7: Overflow Arithmetic Operations.

N

=
Qwoo~N OO U1 W

11
12
13
14

15
16

17
18
19
20
21
22

23
24
25
26

3.66

- 94 -

switch — table switch on value

Format Assembly Format Description

45 <unsigned int32> <int32>... <int32> switch (t1,t2...tn) |[jumptooneof nvaues

Stack Transition:
.., val ue 9

Descri ption:

The swi t ch instruction implements a jump table. The format of the instruction is an unsigned int32
representing the number of targets N, followed by N int32 values specifying jump targets. these targets are
represented as offsets (positive or negative) from the beginning of the instruction following this switch
instruction.

The switch instruction pops value off the stack and compares it, as an unsigned integer, to N. If valueisless
than N, execution is transferred to the value' th target, where targets are numbered from O (ie, a value of 0 takes
thefirst target, avalue of 1 takes the second target, etc). If valueis not less than N, execution continues at the
next instruction (fall through).

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfersinto and out of try, catch, filter,andfinal I y blocks cannot be performed by this
instruction. (Such transfers are severely restricted and must use the | eave instruction instead; see Partition | for
details).

Excepti ons:

None.

Verifiability:

Correct CIL obeys the control transfer constraints listed above. In addition, verification requires the type-

consistency of the stack, locals and arguments for every possible way of reaching all destination instructions.
See Section 1.5 for more details.

N

QW Oo~N OO U1 W

- 95 -

3.67 xor - bitwise XOR
Format Assembly Format Description
61 xor Bitwise XOR of integer values, returns an integer
Stack Transition:

.., valuel, value2 9

Descri ption:

The xor instruction computes the bitwise XOR of the top two values on the stack and leaves the result on the

stack.

The acceptable operand types and their corresponding result data type is encapsulated in Table 14: Integer

Operations.
Excepti ons:
None.

Verifiability:

See Table 14: Integer Operations.

result

G WN -

© 00N

10
11
12
13

14
15

16

17
18

19

20
21

22

23
24

25
26
27
28
29
30
31
32
33

34
35

36

4.1

- 96 -

Object Model Instructions

The instructions described in the base instruction set are independent of the object model being executed. Those
instructions correspond closely to what would be found on areal CPU. The object model instructions are less
built-in than the base instructions in the sense that they could be built out of the base instructions and calls to
the underlying operating system.

Rationale: The object model instructions provide a common, efficient implementation of a set of services used
by many (but by no means all) higher-level languages. They embed in their operation a set of conventions
defined by the common type system. This include (among other things):

Field layout within an object

Layout for late bound method calls (vtables)

Memory allocation and reclamation

Exception handling

Boxing and unboxing to convert between reference-based Objects and Value Types

For more details, see Partition I.

box — convert value type to object reference

Format Assembly Format | Description

8C <T> box val TypeTok Convert valueType to atrue object reference

Stack Transition:
... val ueType 9 ... 0bj

Descri pti on:
A value type has two separate representations (see Partition |) within the CLI:

. A ‘raw’ form used when a value type is embedded within another object or on the stack.

. A ‘boxed’ form, where the data in the value type is wrapped (boxed) into an object so it can exist
as an independent entity.

The box instruction convertsthe ‘raw’ valueType (an unboxed value type) into an instance of type Object (of
type 0). Thisis accomplished by creating a new object and copying the data from valueType into the newly
allocated object. Val TypeTok is a metadatatoken (at yper ef or t ypedef) indicating the type of valueType (See
Partition 1)

Excepti ons:
Qut O Menor yExcept i on isthrown if there isinsufficient memory to satisfy the request.

TypeLoadExcept i on isthrown if class cannot be found. Thisistypically detected when CIL is converted to
native code rather than at runtime.

Verifiability:

Correct CIL ensuresthat valueType is of the correct value type, and that val TypeTok isat yper ef oOr t ypedef
metadata token for that value type.

4.2

-97 -

callvirt — call a method associated, at runtime, with an object

Format Assembly Format | Description

6F <T> callvirt method Call amethod associated with obj

Stack Transition:
... 0Obj, argl, ..argN 9 ... returnVal (not always returned)

Descri ption:

Thecal I vi rt instruction calls alate-bound method on an object. That is, the method is chosen based on the
runtime type of obj rather than the compile-time class visible in the method metadata token. cal | vi rt can be
used to call both virtual and instance methods. See Partition | for a detailed description of the CIL calling
sequence. Thecal | vi rt instruction may be immediately preceded by at ai | . prefix to specify that the current
stack frame should be released before transferring control. If the call would transfer control to a method of
higher trust than the original method the stack frame will not be rel eased.

[A callee of “higher trust” is defined as one whose permission grant-set is a strict superset of the grant-set of
the caller]

method is a metadata token (amet hoddef or met hodr ef ; See Partition I1) that provides the name, class and
signature of the method to call. In more detail, cal 1 vi rt can be thought of as follows. Associated with obj is
the class of which it isan instance. If obj’s class defines a non-static method that matches the indicated method
name and signature, this method is called. Otherwise all classes in the superclass chain of obj’s class are
checked in order. It isan error if no method is found.

cal | vi rt popsthe object and the arguments off the evaluation stack before calling the method. If the method
has areturn value, it is pushed on the stack upon method completion. On the callee side, the obj parameter is
accessed as argument 0, argl as argument 1 etc.

The arguments are placed on the stack in left-to-right order. That is, the first argument is computed and placed
on the stack, then the second argument, etc. Thet hi s pointer (always required for cal I vi rt) must be pushed
before any of the user-visible arguments. The signature carried in the metadata does not contain an entry in the
parameter list for thet hi s pointer, but uses a bit (called HASTHIS) to indiciate whether the method requires
passing the this pointer (see Partition 11)

Note that a virtual method may also be called using the cal I instruction.

Excepti ons:

M ssi ngMet hodExcept i on isthrown if anon-static method with the indicated name and signature could not be
found in obj’ s class or any of its superclasses. Thisistypically detected when CIL is converted to native code,
rather than at runtime.

Nul | Ref er enceExcept i on isthrown if obj isnull.

Securi t yExcept i on isthrown if system security does not grant the caller access to the called method. The
security check may occur when the CIL is converted to native code rather than at runtime.

Verifiability:

Correct CIL ensures that the destination method exists and the values on the stack correspond to the types of
the parameters of the method being called.

Initstypical use, cal I virt isverifiableif (a) the above restrictions are met, (b) the verification type of obj is
consistent with the method being called, (c) the verification types of the arguments on the stack are consistent
with the types expected by the method call, and (d) the method is accessible from the callsite. A cal I virt
annotated by tai | . has additional considerations — see Section 1.5.

QUOWoLO~N OO O AW

e~ e
w N R

=
[S2R >N

=
(e}

el
o ~

N =
o ©o

N
[y

N NN
A WN

4.3

- 908 -

castclass — cast an object to a class

Format Assembly Format | Description

74 <T> castclass class Cast obj to class

Stack Transition:
.. obj = ., obj2

Descri ption:

Thecast cl ass instruction attempts to cast obj (an) to the class. Classis a metadatatoken (at yperef or

t ypedef), indicating the desired class. If the class of the object on the top of the stack does not implement class
(if classis an interface), and is not a subclass of class (if classis aregular class), then an

I nval i dCast Excepti on iSthrown.

Note that:
371. Arraysinherit from System Array
372. If Foo can be cast to Bar, then Foo[] can be cast to Bar[]

373. For the purposes of 2., enums are treated as their undertlying type: thus E1[] can cast to E2[] if E1
and E2 share an underlying type

If obj isnull, cast cl ass succeeds and returns null. This behavior differsfromi si nst.

Excepti ons:
I nval i dCast Excepti on isthrown if obj cannot be cast to class.

TypeLoadExcept i on isthrown if class cannot be found. Thisistypically detected when CIL is converted to
native code rather than at runtime.

Verifiability:
Correct CIL ensuresthat classisavalid TypeRef or TypeDef token, and that obj is aways either null or an
object reference.

QUOWoLo~N O O AW

4.4

- 99 -

cpobj - copy a value type

Format Assembly Format Description

70<T> Cpobj classTok Copy avalue type from srcValObj to destVal Obj

Stack Transition:
... destVal Obj, srcVal bj 9

Descri ption:

The cpobj instruction copies the value type located at the address specified by srcValObj (an unmanaged
pointer, nati ve int, or amanaged pointer, &) to the address specified by destValObj (also a pointer). Behavior
is unspecified if srcValObj and dstValObj are not pointers to instances of the class represented by classTok (a
typeref or typedef), or if classTok does not represent a value type.

Excepti ons:
Nul | Ref er enceExcept i on may be thrown if an invalid address is detected.
Verifiability:

Correct CIL ensuresthat classTok isavalid TypeRef or TypeDef token for avaluetype, aswell as that
srcValObj and destVal Obj are both pointers to locations of that type.

Verification requires, in addition, that srcValObj and destVal Obj are both managed pointers (not unmanaged
pointers).

4.5

- 100 -

initobj - initialize a value type

Format Assembly Format Description

FE 15<T> initobj classTok Initialize avalue type

Stack Transition:
. addrofval o] = ..,

Descri ption:

Thei ni tobj instruction initializes all the fields of the object represented by the address addr OfValObj (of type
native int,or & tonull ora0 of the appropriate built-in type. After this method is called, the instanceis
ready for the constructor method to be called. Behavior is unspecified if either addrOfVValObj is not a pointer to
an instance of the class represented by classTok (at yperef or t ypedef; seePartition |l), or classTok does not
represent avalue type.

Notice that, unlike newobj , the constructor method is not called by i ni t obj . I ni t obj isintended for initializing
value types, while newobj isused to allocate and initialize objects.

Excepti ons:
None.
Verifiability:

Correct CIL ensuresthat classTok isavalid t yperef or t ypedef token specifying avalue type, and that val Obj
isamanaged pointer to an instance of that value type.

4.6

- 101 -

isinst — test if an object is an instance of a class or interface

Format Assembly Format | Description
75<T> isinst class test if obj is an instance of class, returning NULL or an instance of
that class or interface

Stack Transition:
... 0bj 9 .., result

Descri ption:

Thei si nst instruction tests whether obj (type 0) is an instance of class. Classis a metadata token (at yper ef
or t ypedef see Partition |I) indicating the desired class. If the class of the object on the top of the stack
implements class (if classis an interface) or is a subclass of class (if classisaregular class), then it is cast to
the type class and the result is pushed on the stack, exactly asthough cast cl ass had been called. Otherwise
NULL is pushed on the stack. If obj iSNULL, i si nst returnsNULL.

Note that:
374. Arraysinherit from System Array
375. If Foo can be cast to Bar, then Foo[] can be cast to Bar[]

376. For the purposes of 2., enums are treated as their undertlying type: thus E1[] can cast to E2[] if E1
and E2 share an underlying type

Excepti ons:

TypeLoadExcept i on isthrown if class cannot be found. Thisistypically detected when CIL is converted to
native code rather than at runtime.

Verifiability:
Correct CIL ensuresthat classisavalid t yperef or t ypedef token indicating a class, and that obj is always
either null or an object reference

©ooo~N OO 01 AW

11

12
13

14
15

16
17

4.7

- 102 -

Idelem.<type> — load an element of an array

Format Assembly Format | Description

0 Idelem.il L oad the element with typei nt 8 at index onto the top of the stack as
anint32

92 Idelem.i2 L oad the element with typei nt 16 at index onto the top of the stack
asanint32

94 Idelem.i4 L oad the element with typei nt 32 at index onto the top of the stack
asanint32

96 Idelem.i8 L oad the element with typei nt 64 at index onto the top of the stack
asanint 64

91 Idelem.ul Load the element with type unsi gned i nt 8 at index onto the top of
the stack asani nt 32

93 Idelem.u2 Load the element with type unsi gned i nt 16 at index onto the top of
the stack asani nt 32

95 Idelem.ud Load the element with type unsi gned i nt 32 at index onto the top of
the stack asani nt 32

96 Idelem.u8 Load the element with type unsi gned i nt 64 at index onto the top of
the stack asani nt 64 (aliasfor | del em i 8)

98 Idelem.r4 Load the element with typef | oat 32 at index onto the top of the
stack asan F

99 Idelem.r8 Load the element with typef | oat 64 at index onto the top of the
stack asan F

97 Idelem.i Load the element with typenati ve i nt at index onto the top of the
stack asan nati ve int

9A Idelem.ref L oad the element of type object, at index onto the top of the stack as

ano

Stack Transition:

... array, index 9
Descri ption:

val ue

Thel del eminstruction loads the value of the element with index index (of typei nt 32 or nati ve int) inthe
zero-based one-dimensional array array and placesit on the top of the stack. Arrays are objects and hence
represented by avalue of type 0. The return value isindicated by the instruction.

For one-dimensional arrays that aren’'t zero-based and for multidimensional arrays, the array class provides a

Get method.

Note that integer values of lessthan 4 bytes are extended toi nt 32 (not nati ve i nt) when they are loaded onto
the evaluation stack. Floating-point values are converted to F type when loaded onto the evaluation stack.

Excepti ons:

Nul | Ref er enceExcept i on isthrown if array isnull.

I ndexQut Of RangeExcept i on isthrown if index is negative, or larger than the bound of array.

ArrayTypeM smat chExcept i on isthrown if array doesn’t hold elements of the required type.

a brwN -

- 103 -

Verifiability:
Correct CIL code requiresthat array is either null or a zero-based, one-dimensional array whose declared

element type matches exactly the type for this particular instruction suffix (eg 1 del em r4 can only be applied
to a zero-based, one dimensional array of f I oat 32’9)

N

- 104 -

4.8 Idelema — load address of an element of an array
Format Assembly Format | Description
8F <T> Idelema class Load the address of element at index onto the top of the stack

Stack Transition:
... array, index 9 .., address

Descri ption:

Thel del ema instruction loads the address of the element with index index (of typei nt 32 or native int)inthe
zero-based one-dimensional array array (of element type class) and placesit on the top of the stack. Arrays are

Oooo~N OO 01 AW

11
12
13
14
15
16

17
18

19

objects and hence represented by a value of type 0. The return address is a managed pointer (type &).

For one-dimensional arrays that aren’'t zero-based and for multidimensional arrays, the array class provides a
Addr ess method.

Excepti ons:

Nul | Ref er enceExcept i on isthrown if array isnull.

I ndexQut Of RangeExcept i on isthrown if index is negative, or larger than the bound of array.

ArrayTypeM smat chExcept i on isthrown if array doesn’t hold elements of the required type.

Verifiability:
Correct CIL ensuresthat classisatyperef or t ypedef tokento aclass, and that array isindeed always either

null or a zero-based, one-dimensional array whose declared element type matches class exactly.

4.9

- 105 -

Idfld — load field of an object

Format Assembly Format | Description

7B <T> Idfld field Push the value of field of object, or value type, obj, onto the stack

Stack Transition:
.., 0obj 9 ... value

Descri pti on:

Thel df I d instruction pushes onto the stack the value of afield of obj. obj must be an object (type 0), a
managed pointer (type &), an unmanaged pointer (typenative int), or an instance of avalue type. The use of
an unmanaged pointer is not permitted in verifiable code. field is a metadata token (afi el dref or fi el ddef
see Partition 1) that must refer to afield member. The return typeis that associated with field. | df I d pops the
object reference off the stack and pushes the value for the field in its place. The field may be either an instance
field (in which case obj must not be null) or a static field.

Thel df I d instruction may be preceded by either or both of the unal i gned. and vol atil e. prefixes.
Excepti ons:
Nul | Ref er enceExcept i on isthrown if obj isnull and the field is not static.

M ssi ngFi el dExcept i on isthrown if field is not found in the metadata. Thisistypically checked when CIL is
converted to native code, not at runtime.

Verifiability:

Correct CIL ensuresthat field isavalid token referring to afield, and that obj will always have atype

compatible with that required for the lookup being performed. For verifiable code, obj may not be an
unmanaged pointer.

=
QOWoowo~N O O W

11
12

13

14
15

16
17

18

19

20
21

22
23
24

25

- 106 -

4.10 |dflda —load field address
Format Assembly Format | Description
7C<T> Idfldafield Push the address of field of object obj on the stack

Stack Transition:
.., 0bj 9 .., address

Descri pti on:

Thel df I da instruction pushes the address of afield of obj. obj is either an object, type 0, amanaged pointer,
type &, or an unmanaged pointer, typenati ve int. The use of an unmanaged pointer isnot allowed in
verifiable code. The value returned by | df | da is a managed pointer (type &) unless obj is an unmanaged
pointer, in which caseit is an unmanaged pointer (typenative int).

field isametadatatoken (afi el dref or fiel ddef; seePartition |I) that must refer to afield member. The field
may be either an instance field (in which case obj must not be null) or a static field.
Excepti ons:

I nval i dOper at i onExcept i on isthrown if the obj is not within the application domain from which it is being
accessed. The address of afield that is not inside the accessing application domain cannot be |oaded.

M ssi ngFi el dExcept i on isthrown if field is not found in the metadata. Thisistypically checked when CIL is
converted to native code, not at runtime.

Nul | Ref er enceExcept i on isthrown if obj isnull and the field isn't static.
Verifiability:

Correct CIL ensuresthat field isavalid fi el dref token and that obj will always have a type compatible with
that required for the lookup being performed.

Note: Using | df | da to compute the address of a static, init-only field and then using the resulting pointer to
modify that value outside the body of the class initializer may lead to unpredictable behavior. It cannot,
however, compromise memory integrity or type safety so it is not tested by verification.

© oOo~N O 01 ~W

10
11
12

13
14

- 107 -

4.11 Idlen —load the length of an array
Format Assembly Format | Description
8E Idlen push the length (of type native unsigned int) of array on the stack

Stack Transition:
.. array 9 ... length
Descri ption:

Thel dI en instruction pushes the number of elements of array (a zero-based, one-dimensional array) on the

stack.

Arrays are objects and hence represented by avalue of type o. Thereturn valueisanative unsigned int.

Excepti ons:

Nul | Ref er enceExcept i on isthrown if array isnull.

Verifiability:

Correct CIL ensuresthat array isindeed always either null or a zero-based, one dimensional array.

- 108 -

4.12 |dobj - copy value type to the stack
Format Assembly Format Description
71<T> Idobj classTok Copy instance of value type classTok to the stack.

Stack Transition:

. addrOfval Obj = .., val Obj

Descri ption:

Thel dobj instruction copies the value pointed to by addrOf\Val Obj (of type managed pointer, &, or unmanaged
pointer, nati ve unsigned int) tothetop of the stack. The number of bytes copied depends on the size of the
class represented by classTok. ClassTok is a metadata token (at yper ef or t ypedef; see Partition |)

QUOUWoO~N OO U1 AW

representing a value type.

Rationale: Thel dobj instruction isused to pass a value type as a parameter. See Partition |.

It is unspecified what happens if addr OfValObj is not an instance of the class represented by ClassTok or if
ClassTok does not represent a value type.

The operation of thel dobj instruction may be altered by an immediately preceding vol ati | e. Or unal i gned.

prefix instruction.
Excepti ons:

TypeLoadExcept i on isthrown if class cannot be found. Thisistypically detected when CIL is converted to

native code rather than at runtime.

Verifiability:

Correct CIL ensuresthat classTok is a metadata token representing a value type and that addrOfValObj isa
pointer to alocation containing a value of the type specified by classTok. Verifiable code additionally requires

that addrOfVal Obj is a managed pointer of a matching type.

O©Ooo~N OO O W

10
11
12
13

14
15

- 109 -

4.13 ldsfld — load static field of a class
Format Assembly Format Description
7E <T> ldsfld field Push the value of field on the stack

Stack Transition:
) 9 .., val ue
Descri pti on:

Thel dsf I d instruction pushes the value of a static (shared among al instances of a class) field on the stack.
field isametadatatoken (afi el dref or fiel ddef; seePartition Il) referring to a static field member. The

return typeis that associated with field.

Thel dsf I d instruction may have avol atil e. prefix.

Excepti ons:
None.
Verifiability:

Correct CIL ensuresthat field is avalid metadata token referring to a static field member.

- 110 -

4.14 ldsflda — load static field address
Format Assembly Format Description
7F <T> ldsfldafield Push the address of the static field, field, on the stack

Stack Transition:
. 9 .., address

Descri pti on:

Thel dsf I da instruction pushes the address (a managed pointer, type &, if field refers to atype whose memory
is managed; otherwise an unmanaged pointer, typenati ve int) of astatic field on the stack. field is a metadata
token (afiel dref orfiel ddef; seePartition |l) referring to astatic field member. (Note that field may be a
static global with assigned RV A, in which case its memory is unmanaged; where RV A stands for Relative
Virtual Address, the offset of the field from the base address at which its containing PE file isloaded into
memory)

Excepti ons:

M ssi ngFi el dExcept i on isthrown if field is not found in the metadata. Thisistypically checked when CIL is
converted to native code, not at runtime.

Verifiability:

Correct CIL ensuresthat field is a valid metadata token referring to a static field member if field refersto atype
whose memory is managed.

Note: Using | dsf | da to compute the address of a static, init-only field and then using the resulting pointer to
modify that value outside the body of the class initializer may lead to unpredictable behavior. It cannot,
however, compromise memory integrity or type safety so it is not tested by verification.

o~N OO 01 AW

11
12

13
14
15

16
17

- 111 -

4.15 |dstr —load a literal string
Format Assembly Format Description
72 <T> Idstr string push a string object for the literal string

Stack Transition:

.

Descri ption:

Thel dst r instruction pushes a new string object representing the literal stored in the metadata as string (that
must be a string literal).

Thel dst r instruction allocates memory and performs any format conversion required to convert from the form
used in the file to the string format required at runtime. The CLI guarantees that the result of two | dstr
instructions referring to two metadata tokens that have the same sequence of characters return precisely the
same string object (a process known as “string interning”).

Excepti ons:

None.

Verifiability:

Correct CIL requiresthat mdToken isavalid string literal metadata token.

© 00 N o O bW

10
11
12
13
14

15
16

-112 -

4.16 |dtoken - load the runtime representation of a metadata token
Format Assembly Format | Description
DO<T> Idtoken token Convert metadata token to its runtime representation

Stack Transition:
9 .., RuntineHandl e

Descri pti on:
Thel dt oken instruction pushes a RuntimeHandle for the specified metadata token. The token must be one of

A net hoddef Or et hodr ef : pushesaRunti meMet hodHandl e

A typedef Ortyperef : pushesaRunti meTypeHandl e

Afielddef orfieldref : pushesaRunti neFi el dHandl e

The value pushed on the stack can be used in calls to Reflection methods in the system class library
Excepti ons:

None.

Verifiability:

Correct CIL requires that token describes a valid metadata token.

=
QuOUwowo~N O U1 W

11
12
13
14

15
16
17

18
19
20
21

22

- 113 -

4.17 ldvirtftn - load a virtual method pointer
Format Assembly Format | Description
FEOQ7 <T> [dvirtftn mthd Push address of virtual method mthd on the stack

Stack Transition:
... obj ect 9 .. ftn

Descri pti on:

Thel dvi rt ft n instruction pushes an unmanaged pointer (type nati ve i nt) to the native code implementing
the virtual method associated with object and described by the method reference mthd (a metadata token, either
anet hoddef Or met hodr ef ; See Partition I1) onto the stack. The value pushed can be called using thecal I i
instruction if it references a managed method (or a stub that transitions from managed to unmanaged code).

The value returned points to native code using the calling convention specified by mthd. Thus a method pointer
can be passed to unmanaged native code (e.g. as a callback routine) if that routine expects the corresponding
calling convention. Note that the address computed by this instruction may be to athunk produced specialy for
this purpose (for example, to re-enter the CLI when anative version of the method isn’t available)

Excepti ons:

None.

Verifiability:

Correct CIL ensuresthat mthd isavalid net hoddef or net hodr ef token. Also that mthd references a non-static
method that is defined for object. Verification tracks the type of the value pushed in more detail than the

“native int” type, remembering that it is amethod pointer. Such a method pointer can then be used in verified
codewithcal I'i or to construct adelegate.

N

- 114 -

4.18 mkrefany — push a typed reference on the stack

Format Assembly Format | Description

C6 <T> mkrefany class push atyped reference to ptr of type class onto the stack

Stack Transition:
.. ptr 9 ... typedRef

Descri ption:

The nkr ef any instruction supports the passing of dynamically typed references. Ptr must be a pointer (type &,
or native int) that holds the address of a piece of data. Classisthe classtoken (atyperef ortypedef; see
Partition I1) describing the type of ptr. Mr ef any pushes a typed reference on the stack, that is an opaque
descriptor of ptr and class. The only legal operation on atyped reference on the stack isto passit to a method
that requires atyped reference as a parameter. The callee can then usether ef anyt ype and r ef anyval
instructions to retrieve the type (class) and address (ptr) respectively.

Excepti ons:

TypeLoadExcept i on isthrown if class cannot be found. Thisistypically detected when CIL is converted to
native code rather than at runtime.

Verifiability:
Correct CIL ensuresthat classisavalid t yperef or t ypedef token describing some type and that ptr isa

pointer to exactly that type. Verification additionally requires that ptr be a managed pointer. Verification will
fail if it cannot deduce that ptr is a pointer to an instance of class.

N

- 115 -

4.19 newarr — create a zero-based, one-dimensional array
Format Assembly Format | Description
8D <T> newarr etype create anew array with elements of type etype

Stack Transition:
, nunEl ems 9 ., array

Descri ption:

Thenewar r instruction pushes a reference to a new zero-based, one-dimensional array whose elements are of
type elemtype, a metadata token (at yperef or t ypedef; seePartition I1). numElems (of type native int)
specifies the number of elementsin the array. Valid array indexes are 0 < index < numElems. The elements of
an array can be any type, including value types.

Zero-based, one-dimensional arrays of numbers are created using a metadata token referencing the appropriate
value type (Syst em | nt 32, €tc.). Elements of the array areinitialized to O of the appropriate type.

One-dimensional arraysthat aren’t zero-based and multidimensional arrays are created using newobj rather
than newar r . More commonly, they are created using the methods of System Array classin the Base
Framework.

Excepti ons:

Qut OF Menor yExcept i on isthrown if there isinsufficient memory to satisfy the request.
Over f | owExcept i on isthrown if numElemsis< 0

Verifiability:

Correct CIL ensuresthat etypeisavalidtyperef or typedef token.

N

=
QUOWoLO~N O O AW

11
12
13
14

15
16

17
18

19
20
21
22

23
24

25
26

27

28
29
30
31

32

- 116 -

4.20 newobj — create a new object
Format Assembly Format | Description
73<T> newobj ctor allocate an uninitialized object or value type and call ctor

Stack Transition:
.. argl, ...argN 9 ... 0bj

Descri ption:

The newobj instruction creates a new object or anew instance of avalue type. Ctor is a metadata token (a

met hodr ef Or met hodef that must be marked as a constructor; see Partition |1) that indicates the name, class and
signature of the constructor to call. If a constructor exactly matching the indicated name, class and signature
cannot be found, M ssi ngMet hodExcept i on isthrown.

The newobj instruction allocates anew instance of the class associated with constructor and initializes all the
fieldsin the new instance to O (of the proper type) or nul | as appropriate. It then calls the constructor with the
given arguments along with the newly created instance. After the constructor has been called, the now
initialized object reference is pushed on the stack.

From the constructor’s point of view, the uninitialized object is argument 0 and the other arguments passed to
newobj follow in order.

All zero-based, one-dimensional arrays are created using newar r, not newobj . On the other hand, all other
arrays (more than one dimension, or one-dimensional but not zero-based) are created using newobj .

Value types are not usually created using newobj . They are usually allocated either as arguments or local
variables, using newar r (for zero-based, one-dimensional arrays), or as fields of objects. Once allocated, they
areinitialized using i ni t obj . However, the newobj instruction can be used to create a new instance of avalue
type on the stack, that can then be passed as an argument, stored in alocal, etc.

Excepti ons:
Qut O Menor yExcept i on isthrown if there isinsufficient memory to satisfy the request.

M ssi ngMet hodExcept i on isthrown if a constructor method with the indicated name, class and signature could
not be found. Thisistypically detected when CIL is converted to native code, rather than at runtime.

Verifiability:
Correct CIL ensuresthat const ruct or isavalid net hodr ef or met hoddef token, and that the arguments on the
stack are compatible with those expected by the constructor. Verification considers a delegate constructor as a

specia case, checking that the method pointer passed in as the second argument, of typenative int, does
indeed refer to amethod of the correct type.

N

© 00 N o 01 AW

- 117 -

4.21 refanytype —load the type out of a typed reference
Format Assembly Format | Description
FE 1D Refanytype Push the type token stored in atyped reference

Stack Transition:

... TypedRef 9
Descri pti on:

type

Retrieves the type token embedded in TypedRef . See the nkr ef any instruction.

Excepti ons:
None.
Verifiability:

Correct CIL ensures that TypedRef is avalid typed reference (created by a previous cal to nkr ef any). The
ref anyt ype instruction is always verifiable.

N

O©Ooo~N OO O W

- 118 -

4.22 refanyval —load the address out of a typed reference
Format Assembly Format | Description
C2<T> refanyval type Push the address stored in atyped reference

Stack Transition:
... TypedRef > .., address

Descri pti on:

Retrieves the address (of type &) embedded in TypedRef . The type of referencein TypedRef must match the
type specified by t ype (a metadatatoken, either atypedef or atyperef; seePartition Il). Seethe nkr ef any
instruction.

Excepti ons:

I nval i dCast Excepti on isthrown if typeisnot identical to the type stored in the TypedRef (ie, the class
supplied to the nkr ef any instruction that constructed that TypedRef)

TypeLoadExcept i on isthrown if type cannot be found.

Verifiability:

Correct CIL ensuresthat TypedRef is avalid typed reference (created by a previous cal to nkr ef any). The
ref anyval instruction isaways verifiable.

N

© oOo~N OO O bW

10
11

12
13
14

15

- 119 -

4.23 rethrow —rethrow the current exception
Format Assembly Format Description
FE 1A rethrow Rethrow the current exception

Stack Transition:

.

Descri ption:

Ther et hr owinstruction is only permitted within the body of acat ch handler (see Partition 1). It throws the

same exception that was caught by this handler.

Excepti ons:

The original exception isthrown.

Verifiabili

Correct CIL uses thisinstruction only within the body of acat ch handler (not of any exception handlers
embedded within that cat ch handler). If arethrow occurs elsewhere, then an exception will be thrown, but
precisaly which exception is undefined

ty:

- 120 -

4.24 sizeof —load the size in bytes of a value type
Format Assembly Format | Description
FE1C<T> sizeof valueType Push the size, in bytes, of avaluetype asaunsi gned i nt 32

Stack Transition:
9 ... Size (4 bytes, unsigned)

Descri pti on:

Returnsthe size, in bytes, of avalue type. ValueType must be a metadata token (at yperef or t ypedef; see
Partition 1) that specifies avalue type.

Rationale: The definition of a value type can change between the time the CIL is generated and the time that it
isloaded for execution. Thus, the size of the type is not always known when the CIL is generated. The si zeof
instruction allows CIL code to determine the size at runtime without the need to call into the Framework class
library. The computation can occur entirely at runtime or at ClL-to-native-code compilation time. si zeof
returnsthe total size that would be occupied by each element in an array of this value type — including any
padding the implementation chooses to add. Specifically, array elementslie si zeof bytesapart

Excepti ons:

None.

Verifiability:

Correct CIL ensuresthat val ueType isatyperef or t ypedef referringto avaluetype. Itisaways verificable.

1
2

-121 -

4.25 stelem.<type> — store an element of an array
Format Assembly Format | Description
9C stelem.il Replace array element at index with the i nt 8 value on the stack
9D stelem.i2 Replace array element at index with the i nt 16 value on the stack
9E stelem.i4 Replace array element at index with thei nt 32 value on the stack
9F stelem.i8 Replace array element at index with thei nt 64 value on the stack
A0 stelem.r4 Replace array element at index with thef | oat 32 value on the stack
Al stelem.r8 Replace array element at index with thef | oat 64 value on the stack
9B stelem.i Replace array element at index with thei value on the stack
A2 stelem.ref Replace array element at index with ther ef value on the stack

Stack Transition:
... array, index, value 9

Descri ption:

The st el eminstruction replaces the value of the element with zero-based index index (of typei nt 32 or nat i ve
i nt) in the one-dimensional array array with value. Arrays are objects and hence represented by a value of type
o

Notethat st el em ref implicitly casts value to the element type of array before assigning the value to the array
element. This cast can fail, even for verified code. Thusthe st el em ref instruction may throw the
I nval i dCast Excepti on.

For one-dimensional arrays that aren’t zero-based and for multidimensional arrays, the array class provides a
StoreElement method.

Excepti ons:

Nul | Ref er enceExcept i on isthrown if array isnull.

I ndexQut Of RangeExcept i on isthrown if index is negative, or larger than the bound of array.

ArrayTypeM smat chExcept i on isthrown if array doesn’t hold elements of the required type.
Verifiability:

Correct CIL requiresthat array be a zero-based, one-dimensional array whose declared element type matches

exactly the type for this particular instruction suffix (eg st el em r4 can only be applied to a zero-based, one
dimensional array of f I oat 32’s); also that index lies within the bounds of array

N

O©Ooo~N OO O W

10
11
12

13
14

15

16
17

18
19
20

21

-122 -

4.26 stfld — storeinto a field of an object
Format Assembly Format | Description
7D <T> stfld field Replace the value of field of the object obj with val

Stack Transition:
... 0bj, value 9

Descri ption:

Thest f1 d instruction replaces the value of afield of an obj (an O) or viaapointer (typenative int, Or &)
withval ue. fi el d isametadatatoken (afiel dref or fi el ddef; see Partition I1) that refersto afield member
reference. st f I d pops the value and the object reference off the stack and updates the object.

Thest fI d instruction may have aprefix of either or both of unal i gned. andvol atile. .
Excepti ons:
Nul | Ref er enceExcept i on isthrown if obj isnull and the field isn't static.

M ssi ngFi el dExcept i on isthrown if field is not found in the metadata. Thisistypically checked when CIL is
converted to native code, not at runtime.

Verifiability:

Correct CIL ensuresthat field is avalid token referring to afield, and that obj and value will always have types
appropriate for the assignment being performed. For verifiable code, obj may not be an unmanaged pointer.

Note: Using st f I d to change the value of a static, init-only field outside the body of the class initializer may
lead to unpredictable behavior. It cannot, however, compromise memory integrity or type safety so it is not
tested by verification .

N

O©Ooo~N OO O W

11

12
13

14

15
16

17

18
19
20
21

-123 -

4.27 stobj - store a value type from the stack into memory
Format Assembly Format Description
81<T> stobj classTok Store a value of type classTok from the stack into memory

Stack Transition:
. addr, valonj = .,

Descri ption:

Thest obj instruction copies the value type valObj into the address specified by addr (a pointer of typenati ve
i nt, or &). The number of bytes copied depends on the size of the class represented by cl assTok. O assTok isa
metadata token (at yperef or typedef; see Partition Il) representing avalue type.

It is unspecified what happens if val oj is not an instance of the class represented by c assTok or if cl assTok
does not represent avalue type.

The operation of the st obj instruction may be altered by an immediately preceding vol ati |l e. Of unal i gned.
prefix instruction.

Excepti ons:

TypeLoadExcept i on isthrown if class cannot be found. Thisistypically detected when CIL is converted to
native code rather than at runtime.

Verifiability:
Correct CIL ensuresthat cl assTok is a metadata token representing a value type and that val Obj isapointer to

alocation containing an initialized value of the type specified by cl assTok. In addition, verifiable code requires
that val abj be amanaged pointer.

N

©ooo~N O 01 AW

10
11

12
13
14

15
16

17
18
19

20

- 124 -

4.28 stsfld — store a static field of a class
Format Assembly Format Description
80 <T> stsfld field Replace the value of field with val

Stack Transition:

... val 9

Descri ption:

Thesst sf I d instruction replaces the value of a static field with avalue from the stack. field is a metadata token
(afieldref orfiel ddef; seePartition Il)that must refer to astatic field member. st sf1 d pops the value off
the stack and updates the static field with that value.

The st sf I d instruction may be prefixed by vol atil e. .

Excepti ons:

M ssi ngFi el dExcept i on isthrown if field is not found in the metadata. Thisistypically checked when CIL is

converted to native code, not at runtime.

Verifiability:
Correct CIL ensuresthat field isavalid token referring to a static field, and that value will always have atype
appropriate for the assignment being performed.

Note: Using st sf | d to change the value of a static, init-only field outside the body of the class initializer may
lead to unpredictable behavior. It cannot, however, compromise memory integrity or type safety so it is not
tested by verification.

QW oOo~N O U1 AW

=

o e
w N R

el
o oA

- 125 -

4.29 throw —throw an exception
Format Assembly Format Description
TA throw Throw an exception

Stack Transition:
... 0Object 9

Descri ption:

Thet hr ow instruction throws the exception object (type O) on the stack. For details of the exception
mechanism, see Partition |.

Note: While the CLI permits any object to be thrown, the common language specification (CLS) describes a
specific exception class that must be used for language interoperability.

Excepti ons:

Nul | Ref er enceExcept i on isthrown if obj isnull.

Verifiability:

Correct CIL ensuresthat classavalid TypeRef token indicating a class, and that obj is always either null or an
object reference, i.e. of type o

N

0 N o o1 W

11
12
13
14

15
16
17

18

19
20

21

22
23

24

25
26

27

- 126 -

4.30 unbox — Convert boxed value typetoitsraw form
Format Assembly Format | Description
79 <T> unbox valuetype Extract the value type data from obj, its boxed representation

Stack Transition:
... 0bj 9 ... valueTypePtr

Descri ption:
A value type has two separate representations (see Partition I) within the CLI:

. A ‘raw’ form used when a value type is embedded within another object.

. A ‘boxed’ form, where the data in the value type is wrapped (boxed) into an object so it can exist
as an independent entity.

The unbox instruction converts obj (of type 0), the boxed representation of avalue type, to valueTypePtr (a
managed pointer, type &), its unboxed form. Valuetype is a metadata token (at yper ef or t ypedef) indicating
the type of value type contained within obj. If obj is not a boxed instance of valuetype, or, if obj is aboxed
enum and valuetype is not its underlying type, then this instruction will throw an | nval i dCast Except i on

Unlike box, which isrequired to make a copy of avalue type for usein the object, unbox is not required to copy
the value type from the object. Typically it simply computes the address of the value type that is already
present inside of the boxed object.

Excepti ons:

I nval i dCast Except i on isthrown if obj isnot aboxed valuetype (or if obj is aboxed enum and valuetype is not
its underlying type)

Nul | Ref er enceExcept i on isthrown if obj isnull.

TypeLoadExcept i on isthrown if class cannot be found. Thisistypically detected when CIL is converted to
native code rather than at runtime.

Verifiability:

Correct CIL ensuresthat valueTypeisat yperef or t ypedef metadata token for some value type, and that obj is
always an object reference, i.e. of type o, and represents a boxed instance of a valuetype value type.

Common Language Infrastructure (CL1)
Partition 1V:
Profilesand Libraries

2.1
2.2
2.3

3.1
3.2

4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.1.7
4.1.8

5.1
5.2
5.3
5.4
5.5
5.6
5.7

7.1

Table of contents

Overview

Libraries and Profiles
Libraries
Profiles

Structure of the Standard

The Standard Profiles
The Kernel Profile

The Compact Profile

Kernel Profile Feature Requirements
Features Excluded from Kernel Profile
Floating Point

Non-vector Arrays

Reflection

Application Domains

Remoting

Varargs

Frame Growth

Filtered Exceptions

The Standard Libraries
Runtime Infrastructure Library
Base Class Library

Network Library

Reflection Library

XML Library

Extended Numerics Library

Extended Array Library

Implementation-Specific Modifications to the System Libraries

Semantics of the XML Specification

Value Types as Objects

wWw N NN

o O O O o o1 o1 o1 0o O

© N ~N N N ~N NN

10
16

©Ooo~NOOUhr~,WwW N P

o S S
w N R O

ol
[S21F >N

=
(e}

NN B PR
= O w©o =~

NN DN
A WN

Overview

Note:

While compiler writers are most concerned with issues of file format, instruction set design, and a common
type system, application programmers are most interested in the programming library that is available to them
in the language they are using. The Common Language Infrastructure (CL1) specifiesa Common Language
Specification (CLS, see Partition 1) that shall be used to define the externally visible aspects (method
signatures, etc.) when they are intended to be used from a wide range of programming languages. Since it isthe
goal of the CLI Libraries to be available from as many programming languages as possible, all of its
functionality is available through CL S-compliant types and type members.

The CLI Libraries are designed with the following goals in mind:
* Wide reach across programming languages

» Consistent design patterns throughout

e Features on parity with the ISO C library of 1990

» Features for more recent programming paradigms, notably networking, XML, runtime type
inspection, instance creation, and dynamic method dispatch

» Factoring into self-consistent libraries with minimal interdependence

This document provides an overview of the CLI Libraries and a specification of their factoring into Profiles and
Libraries. A companion document, considered to be part of this Partition but distributed in XML format,
provides details of each class, value type, and interfacein the CLI Libraries. While the normative specification
of the CLI Librariesisin XML form, it can be processed using an X SL transform to produce easily browsed
information about the Class Libraries

Partition V contains an informative annex describing programming conventions used in defining the CLI
Libraries. These conventions, while not normative, can significantly simplify the use of libraries. Implementers
are encouraged to follow them when creating additional (non-Standard) Libraries.

RPOWOW O~NOOT hWN BB

el = [l
w N

= e
(2 BN

B
o~ o

NNNDNE
WNEFL, OO

WNNNDNNN
Qowowo~NO O~

w W w
WN P

34

35
36
37
38
39

40
41
42
43

45
46

2

2.1

2.2

Libraries and Profiles

Libraries and Profiles, defined below, are constructs created for the purpose of standards
conformance/compliance. They specify a set of features that shall be present in an implementation of the
Common Language Infrastructure (CL1) and a set of types that shall be available to programs run by that CLI.

Note: There need not be any direct support for Libraries and Profilesin the Virtual Execution System (VES).
They are not represented in the metadata and they have no impact on the structure or performance of an
implementation of the CLI. Libraries and Profiles may span assemblies (the deployment unit), and the names of
typesin asingle Library or Profile are not required to have a common prefix (“namespace”).

Thereis, in general, no way to test whether afeature is available at runtime, nor away to enquire whether a
particular Profile or Library isavailable. If present, however, the Reflection Library makesit possible to test at
runtime for the existence of particular methods and types.

Libraries
A Library specifies three things:
377. A set of types that shall be available, including their grouping into assemblies.
378. A set of features of the CLI that shall be available.

Note: The set of features required for any particular Library is a subset of the complete set of CLI
features. Each Library described in Chapter 5 has text that defines what CL1 features are required
for implementations that support the Library.

379. Modifications to types defined in other Libraries. These modifications are typically the addition
of methods and interfaces to types belonging to the other Library, and additional exceptions that
may be thrown by methods of the other Library’s types. These modifications shall provide only
additional functionality or specify behavior where it was previously unspecified; they shall not be
used to alter previously specified behavior.

Exanmpl e (i nformative): Consider the Extended Nunerics Library. Since
it provides a new base data type, Double, it al so specifies that the
met hod ToDouble be added to the System Convert class that is part of the
Base Class Library. It also defines a new exception,

Syst em Not Fi ni t eNumber Exception, and specifies existing methods in other

Li brari es methods that throw it (as it happens, there are no such

met hods) .

Inthe XML specification of the Libraries, each type specifies the Library to which it belongs. For those
members (e.g., Consol e. Wi t eLi ne(fl oat)) that are part of one Library (Extended Numerics) but whose type
isin another Library (BCL), the XML specifies the Library that defines the method. See Chapter 7.

Profiles

A Profileis simply a set of Libraries, grouped together to form a consistent whole that provides a fixed level of
functionality. A conforming implementation of the CLI shall specify a Profile it implements, as well as any
additional Librariesthat it provides. The Kernel Profile (see Section 0) shall be included in all conforming
implementations of the CLI. Thus, all Libraries and CLI features that are part of the Kernel Profile are available
in al conforming implementations. This minimal feature set is described in Chapter 0.

Rationale: The rulesfor combining Libraries together are complex, since each Library may add membersto
types defined in other libraries. By standardizing a small number of Profiles we specify completely the
interaction of the Libraries that are part of each Profile. A Profile provides a consistent target for vendors of
devices, compilers, tools, and applications. Each Profile specifies a trade-off of CLI feature and
implementation complexity against resource constraints. By defining a very small number of Profiles we
increase the market for each Profile, making each a desirable target for a class of applications across a wide
range of implementations and tool sets.

~No o b~

2.3 Structure of the Standard

This standard specifies two Standard Profiles (see Chapter 0) and 7 Standard Libraries (see Chapter 5). The
following diagram shows the rel ationship between the Libraries and the Profiles:

E
X XML Network Rﬁgic'
t . .
E . Library Library Library
X
t n
e d
n e
g d Runtime Infrastructure
Library
d N
A u
r m
r e
a r
y i
L ¢ -
i S Base Class Library
b
r L
a I
r b
y r
a
r Kernel Profile
y
Compact Profile

The Extended Array Library and the Extended Numerics Library are not part of either Profile, but may be
combined with either of them. Doing so adds the appropriate methods, exceptions, and interfaces to the types
specified in the Profile.

O ~Nooul ~AWN B

el
()

el N e
oA WN

17

18
19

20

21

22
23
24

25

3

3.1

3.2

The Standard Profiles

There are two Standard Profiles. The smallest conforming implementation of the CLI isthe Kernel Profile,
while the Compact Profile contains additional features useful for applications targeting a more resource-rich set
of devices.

A conforming implementation of the CLI shall throw an appropriate exception (for example, Syst em Not -
I mpl enent edExcepti on, System M ssi ngMet hodExcepti on, OF Syst em Executi onEngi neExcepti on) when it
encounters a feature specified in this Standard but not supported by the particular Profile (see Partition 111).

Note: Implementers should consider providing tools that statically detect features they do not support so users
have an option of checking programs for the presence of such features before running them.

Note: Vendors of compliant CLI implementations should specify exactly which configurations of Standard
Libraries and Standard Profiles they support.

Note: “Features’” may be something like the use of afloating point CIL instruction in the implementation of a
method when the CLI upon which it is running does not support the Extended Numerics Library. Or, the
“feature” might be a call to a method that this Standard specifies exists only when a particular Library is
implemented and yet the code making the call is running on an implementation of the CLI| that does not support
that particular library.

The Kernel Profile

This profile is the minimal possible conforming implementation of the CLI. It contains the types commonly
found in a modern programming language class library plus the classes needed by compilers targeting the CLI.

Contents: Base Class Library, Runtime Infrastructure Library

The Compact Profile

This Profileis designed to allow implementation on devices with only modest amounts of physical memory yet
provides more functionality than the Kernel Profile alone. It also contains everything required to implement the
ECMA Script compact profile proposed within Standard ECMA-327.

Contents. Kernel Profile, XML Library, Networking Library, Reflection Library

OCoO~NOUTR_rWN -

10

11
12

13

14
15

16
17
18
19
20

21
22

23

24

25
26
27

28
29

30
31
32

33

34

35
36

37
38

39
40
41

42

4

4.1

Kernel Profile Feature Requirements

All conforming implementations of the CLI support at least the Kernel Profile and consequently all CLI
features required by the Kernel Profile must be implemented by all conforming implementations. This section
defines that minimal feature set by enumerating the set of features that are not required, i.e., aminimal
conforming implementation must implement all CLI features except those specified in the remainder of this
section. The feature requirements of individual Libraries as specified in Chapter 5 are defined by reference to
restricted items described in this section. For ease of reference, each feature has a name indicated by the name
of the section heading. Where Libraries do not specify any additional feature requirement, it shall be assumed
that only the features of the Kernel Profile as described in this Section are required.

Features Excluded from Kernel Profile

Thefollowing internal data types and constructs, specified elsewhere in this Standard, are not required of CLI
implementations that conform only to the Kernel Profile. All other CLI features are required.

4.1.1 Floating Point

Thefloating point feature set consists of the user-visible floating-point data typesf | oat 32 and f | oat 64, and
support for an internal representation of floating-point numbers.

If omitted: The CIL instructions that deal specificaly with these data types throw the

Syst em Not | npl enent edExcept i on exception. These instructions are; ckfinite, conv. r. un, conv. r4,
conv.r8,ldc.r4,ldc.r8,ldelemr4,ldelemr8,ldind.r4,ldind.r8,stelemr4,stelemr8,stind.r4,
stind. r 8. Any attempt to reference a signature including the floating-point data types shall throw the

Syst em Not | npl enent edExcept i on exception. The precise timing of the exception is not specified.

Note: These restrictions guarantee that the VES will not encounter any floating-point data. Hence the
implementation of the arithmetic instructions (add, etc.) need not handle those types.

Part of Library: Extended Numerics (see Sectionb.6)

4.1.2 Non-vector Arrays

The non-vector arrays featur e set includes the support for arrays with more than one dimension or with lower
bounds other than zero. This includes support for signatures referencing such arrays, runtime representations of
such arrays, and marshalling of such arrays to and from native data types.

If omtted: Any attenpt to reference a signature including a non-vector array shall throw the
Syst em Not | npl enent edExcept i on exception. The precise timing of the exception is not specified.

Note: The generic type System Array ispart of the Kernel Profile and is available in all conforming
implementations of the CLI. An implementation that does not provide the non-vector array feature set can
correctly assume that all instances of that class are vectors.

Part of Library: Extended Arrays (see Sectionb.7).

4.1.3 Reflection

Thereflection featur e set supports full reflection on datatypes. All of its functionality is exposed through
methods in the Reflection Library.

If omitted: The Kernel profile specifies an opaque type, Syst em Type, instances of which uniquely represent
any type in the system and provide access to the name of the type.

Note: With just the Kernel profile there is no requirement, for example, to determine the members of the type,
dynamically create instances of the type, or invoke methods of the type given an instance of Syst em Type. This
can simplify the implementation of the CLI compared to that required when the Reflection Library is available.

Part of Library: Reflection (see SectionQ).

o gk WN BB

~

©O

10
11

12
13

14
15
16
17
18

19

20
21

22
23

24

25
26

27
28
29

30

4.1.4 Application Domains

The application domain feature set supports multiple application domains. The Kernel profile requires that a
single application domain exist.

If omitted: Methods for creating application domains (part of the Base Class Library, see Section 5.2) throw
the Syst em Not | npl enent edExcept i on exception.

Part of Library: (none)

4.1.5 Remoting

Theremoting featur e set supports remote method invocation. It is provided primarily through special
semantics of the class Syst em Mar shal ByRef Obj ect as described in Partition |.

If omitted: The class Syst em Mar shal ByRef Obj ect shall be treated as a simple class with no special meaning.

Part of Library: (none)

4.1.6 Varargs

The varargsfeature set supports variable length argument lists and runtime typed pointers.

If omitted: Any attempt to reference a method with the var ar gs calling convention or the signature encodings
associated with varargs methods (see Partition I1) shall throw the Syst em Not I npl enent edExcept i on
exception. Methods using the CIL instructions ar gl i st , r ef anyt ype, nkr ef any, and r ef anyval shall throw the
Syst em Not | npl enent edExcept i on exception. The precise timing of the exception is not specified. Thetype
Syst em TypedRef er ence need not be defined.

Part of Library: (none)

4.1.7 Frame Growth

The frame growth featur e set supports dynamically extending a stack frame.

If omitted: Methods using the CIL | ocal | oc instruction shall throw the Syst em Not | npl enent edExcept i on
exception. The precise timing of the exception is not specified.

Part of Library: (none)

4.1.8 Filtered Exceptions

Thefiltered exceptionsfeature set supports user-supplied filters for exceptions.

If omitted: Methods using the CIL endfi | ter instruction or with an except i onent ry that contains a non-null
filterstart (SeePartition|) shall throw the Syst em Not I npl enent edExcept i on exception. The precise timing
of the exception is not specified.

Part of Library: (none)

G WN -

Qowoo~N O

12

13

14
15
16
17

18
19

20

21
22

23
24

25

26
27

28
29

30

31
32
33

34
35

36

37
38
39
40

5.1

5.2

5.3

54

5.5

5.6

The Standard Libraries

The detailed content of each Library, in terms of the types it provides and the changes it makes to typesin other
Libraries, is provided in XML form. This section provides an informative description of each Library’s purpose
aswell as specifying the features of the CLI required by each Library beyond those required by the Kernel
Profile.

Runtime Infrastructure Library

The Runtime Infrastructure Library is part of the Kernel Profile. It provides the services needed by a compiler
to target the CLI and the facilities needed to dynamically load types from a stream in the file format specified
in Partition 11. For example, it provides Syst em Badl mageFor mat Except i on, which is thrown when a stream
that does not have the correct format is loaded.

Name used in XML : Runtimelnfrastructure TC39/TG

CLI Feature Requirement: None

Base Class Library

The Base Class Library is part of the Kernel Profile. It isasimple runtime library for amodern programming
language. It serves as the Standard for the runtime library for the language C# (Standard ECMA-yyy) aswell as
one of the CL| Standard Libraries. It provides types to represent the built-in data types of the CLI, simplefile
access, custom attributes, security attributes, string manipulation, formatting, streams, collections, and so forth.

Nameused in XML: BCL

CLI Feature Requirement: None

Network Library

The Network Library is part of the Compact Profile. It provides simple networking services including direct
access to network ports aswell as HTTP support.

Name used in XML: Networking

CLI Feature Requirement: None

Reflection Library

The Reflection Library is part of the Compact Profile. It provides the ability to examine the structure of types,
create instances of types, and invoke methods on types, all based on a description of the type.

Name used in XML : Reflection
CLI Feature Requirement: Must support Reflection, see Section 0.

XML Library

The XML Library is part of the Compact Profile. It providesasimple “ pull-style” parser for XML. Itis
designed for resource-constrained devices, yet provides a simple user model. A conforming implementation of
the CLI that includes the XML Library shall also implement the Network Library (see Section 5.3).

Nameused in XML: XML

CLI Feature Requirement: None

Extended Numerics Library

The Extended Numerics Library is not part of any Profile, but can be supplied as part of any CLI
implementation. It provides the support for floating-point (Syst em Si ngl e, Syst em Doubl e) and extended-
precision (Syst em Deci nal) datatypes. Likethe Base Class Library, this Library is directly referenced by the
C# Standard (ECMA-yyy).

0 ~Noouoh~,wDNER

10
11
12

13

5.7

Note: Programmers who use this library will benefit if implementations specify which arithmetic operations on
these data types are implemented primarily through hardware support.

Rationale: The Extended Numerics Library is kept separate because some commonly available processors do
not provide direct support for the data types. While software emulation can be provided, the performance
differenceis often so large (1,000 fold or more) that it is unreasonable to build software using floating-point
operations without being aware of whether the underlying implementation is hardware-based.

CLI Feature Requirement: Floating Point, see clause 0.

Extended Array Library

This Library is not part of any Profile, but can be supplied as part of any CLI implementation. It provides
support for non-vector arrays. That is, arrays that have more than one dimension, and arrays that have non-zero
lower bounds.

CLI Feature Requirement: Non-vector Arrays, see clause 0.

0 NO OORrrWN

11

12
13

14
15

16

17
18
19
20
21
22

23
24

25
26
27

28
29
30

31
32
33
34
35

Implementation-Specific Modifications to the System Libraries

Implementers are encouraged to extend or modify the types specified in this Standard to provide additional
functionality. Implementers should notice, however, that type names beginning with “syst em ” and bearing the
special Standard Public Key are intended for use by the Standard Libraries: such names not currently in use
may be defined in afuture version of this Standard.

To allow programs compiled against the Standard Libraries to work when run on implementations that have
extended or modified the Standard Libraries, such extensions or modifications shall obey the following rules:

. The contract specified by virtual methods shall be maintained in new classes that override them.

. New exceptions may be thrown, but where possible these should be subclasses of the exceptions
already specified as thrown rather than entirely new exception types. Exceptions initiated by
methods of types defined in the Standard Libraries shall be derived from Syst em Excepti on.

. Interfaces and virtual methods shall not be added to an existing interface. Nor shall they be added
to an abstract class unless the class provides an implementation.

Rationale: An interface or virtual method may be added only where it carries an implementation. This
allows programs written when the interface or method was not present to continue to work.

. I nstance methods shall not be implemented as virtual methods.

Rationale: Methods specified as instance (non-static, non-virtual) in this standard are not permitted to be
implemented as virtual methods in order to reduce the likelihood of creating non-portable files by using
implementation-supplied libraries at compile time. Even though a compiler need not take a dependence on the
distinction between virtual and instance methods, it is easy for a user to inadvertently override a virtual method
and thus create non-portable code. The alter native of providing special files corresponding to this Sandard for
use at compiletime is prone to user error.

Note: The following common extensions are permitted by these rules.

» Adding new members to existing types.

» Concrete (non-abstract) classes may implement interfaces not defined in this standard.
e Adding fields (values) to enumerations.

e Animplementation may insert a new type into the hierarchy between atype specified in this
standard and the type specified as its base type. That is, this standard specifies an inheritance
relation between types but does not specify the immediate base type.

Rationale: An implementation may wish to split functionality across several typesin order to provide non-
standard extension mechanisms, or may wish to provide additional non-standard functionality through the new
base type. Aslong as programs do not reference these non-standard types they will remain portable across
conforming implementations of the CLI.

QW 0O~N OO0l A WN BB

=

el e
WN PP

H
N

B R
N o o

[o
©

NN
RO

NNN
HWN

N
(6]

NN
~N o

W W W NN
N kB O ©

W W
AW

w
a1

ww
~N O

B W W
o © o

ADBD
WN -

& R

A D
~NOo

-10 -

Semantics of the XML Specification

The XML specification conforms to the Document Type Definition (DTD) in Figure 7-1. Only typesthat are
included in a specified library areincluded in the XML.

There are three types of elementd/attributes:

. Normative: An element or attribute is normative such that the XML specification would be
incomplete without it.

. Informative: An element or attribute isinformative if it specifies information that helps clarify the
XML specification, but without it the specification still stands alone.

. Rendering/Formatting: An element or attribute is for rendering or formatting if it specifies
information to help an XML rendering tool.

The text associated with an element or an attribute (e.g. #PCDATA, #CDATA) is, unless explicitly stated
otherwise, normative or informative depending on the element or attribute with which it is associated, as
described in the figure.

[Note: Many of the elements and attributesin the DTD are for rendering purposes.]

Figure 7-1: XM. DTD
<?xm version="1.0" encodi ng="UTF-8"?>
<! ELEMENT Assenbl yCul t ure (#PCDATA)>

(Normative) Specifies the culture of the assembly that defines the current type. Currently this value is always “none”. It is
reserved for future use.

<! ELEMENT Assenbl yl nfo (Assenbl yName, Assenbl yPublicKey, Assenbl yVersion,
Assenmbl yCul ture, Attributes)>

(Normative) Specifies information about the assembly of a given type. These correspond to sections of the metadata of an
assembly as described in Partition Il and include information from the AssemblyName, AssemblyPublicKey, AssemblyV ersion,
AssemblyCulture and Attributes elements.

<! ELEMENT Assenbl yNane (#PCDATA) >

(Normative) Specifies the name of the assembly of which a given type is a member. For example, all of the typesin the BCL
are members of the “mscorlib” assembly.

<! ELEMENT Assenbl yPubl i cKey (#PCDATA) >

(Normative) Specifies the public key of the assembly. The public key is represented as a 128-bit value.

<! ELEMENT Assenbl yVersi on (#PCDATA) >

(Normative) Specifies the version of the assembly in the form 1.0.x.y, where x is a build number and y is a revision number.
<! ELEMENT Attribute (AttributeName, Excluded, ExcludedTypeNanme?, ExcludedLi braryName?)>

(Normative) Specifies the text for a custom attribute on a type or a member of atype. This includes the attribute name and
whether or not the attribute type itself is contained in another library.

<! ELEMENT Attribut eNanme (#PCDATA) >

(Normative) Specifies the name of the custom attribute associated with a type or member of atype. Also contains the data
needed to instantiate the attribute.

<! ELEMENT Attributes (Attribute*)>
(Normative) Specifies the list of the attributes on a given type or member of atype.
<! ELEMENT Base (BaseTypeNanme?, ExcludedBaseTypeNane?, ExcludedLi braryName?)>

(Normative) Specifies the information related to the base type of the current type. Although the ExcludedBaseTypeName and
ExcludedL ibraryName elements are rarely found within this element, they are required when a type inherits from a type not
found in the current library.

<! ELEMENT BaseTypeNane (#PCDATA) >
(Normative) Specifies the fully qualified name of the class from which atype inherits (i.e. the type’s base class).

<! ELEMENT Docs (sunmary?, altmenmber?, altconpliant?, parant, returns?, value?,
exception*, threadsafe?, remarks?, exanple?, perm ssion?, platnote*, exanple?)>

O©oO~N® 01 AW N -

1

o

- 11 -

(Normative) Specifies the textual documentation of a given type or member of atype.
<! ELEMENT Excl uded (#PCDATA) >

(Normative) Specifies, by a‘0’ or ‘1’, whether a given member can be excluded from the current type in the absence of a given
library. ‘0’ specifies that it cannot be excluded.

<! ELEMENT Excl udedBaseTypeNanme (#PCDATA) >

(Normative) Specifies the fully qualified name of the type that the current type must inherit from if a given library were present
in an implementation. The library name is specified in the ExcludedL ibraryName element. An example is the System.Type
class that inherits from System.Object, but if the Reflection library is present, it must inherit from
System.Reflection.Memberlnfo.

<! ELEMENT Excl udedLi brary (#PCDATA) >

(Normative) Specifies the library that must be present in order for a given member of atype to be required to be implemented.
For example, System.Console.WriteLine(double) need only be implemented if the ExtendedNumerics library is available.

<! ELEMENT Excl udedLi braryName (#PCDATA) >

(Normative) This element appears only in the description of custom attributes. It specifies the name of the library that defines
the described attribute. For example, the member that is invoked when no member name is specified for
System.Text.StringBuilder (in C#, this is the indexer) is called “chars”. The attribute needed for thisis
System.Reflection.DefaultMemberAttribute. This is found in the Runtimel nfrastructure library. This element is used with the
ExcludedTypeName element.

<! ELEMENT Excl udedTypeNane (#PCDATA) >

(Normative) Specifies the fully qualified name of the attribute that is needed for a member to succesfully specify the given
attribute. This element is related to the ExcludedL ibraryName element and is used for attributes.

<!l ELEMENT Interface (InterfaceName, Excluded)>

(Normative) Specifies information about an interface that a type implements. This element contains sub-elements specifying the
interface name and whether another library is needed for the interface to be required in the current library.

<! ELEMENT | nt er faceName (#PCDATA) >
(Normative) Represents the fully-qualified interface name that a type implements.
<I ELEMENT Interfaces (lnterface*)>

(Normative) Specifies information on the interfaces, if any, atype implements. There is one I nter face element for each
interface implemented by the type.

<! ELEMENT Li braries (Types+)>

(Normative) This is the root element. Specifies all of the information necessary for all of the class libraries of the standard.
Thisincludes all of the types and all children elements underneath.

<! ELEMENT Menmber (Menber Signature+, Menber Type, Attributes?, ReturnValue, Paraneters,
Menber Val ue?, Docs, Excluded, Excl udedLibrary*)>

(Normative) Specifies information about a member of atype. This information includes the signatures, type of the member,
parameters, etc., all of which are elementsin the XML specification.

<! ATTLI ST Menber
Menber Name NMTOKEN #REQUI RED
(Normative) M ember Name specifies the name of the current member.
>
<! ELEMENT Menber Of Li brary (#PCDATA) >
(Normative) PCDATA is the name of the library containing the type.
<! ELEMENT Menber Si gnature EMPTY>
(Normative) Specifies the text (in source code format) for the signature of a given member of a type.
<! ATTLI ST Menber Si gnat ure
Language CDATA #REQUI RED

(Normative) CDATA is the programming language the signature is written in. All members are described in both ILASM
and C#.

Val ue CDATA #REQUI RED

(Normative) CDATA is the text of the member signature in a given language.

00 N o 0o AW NP

©

e
RO

I e e e N -
O © O N U WNDN

NNN
WN -

N N DNDNDN
0 N O O &

WN
[@X{e}

w w
N

W W W
abhw

hhhﬁhhhbwwww
~N O O W NP O O 0N O

-12 -

<! ELEMENT Menber Type (#PCDATA) >

(Normative) Specifies the kind of the current member. The member kinds are: method, property, constructor, field, and

event.

<! ELEMENT Menber Val ue (#PCDATA) >
(Normative) Specifies the value of a static literal field.

<! ELEMENT Menbers (Menber*)>

(Normative) Specifies information about all of the members of a given type.

<!l ELEMENT PRE EMPTY>

(Rendering/Formatting) This element exists for rendering purposes only to specify, for example, that future text should be

separated from the previous text

<! ELEMENT Paraneter (Attributes?)>

(Normative) Specifies the information about a specific parameter of a method or property.

<! ATTLI ST Par anet er
Name NMTOKEN #REQUI RED
(Normative) Specifies the name of the parameter.
Type CDATA #REQUI RED

(Normative) Specifies the fully-qualified name of the type of the parameter.

>

<! ELEMENT Paraneters (Paranmeter*)>

(Normative) Specifies information for the parameters of a given method or property. The information specified isincluded in
each Parameter element of this element. This element will contain one Parameter for each parameter of the method or

property.
<! ELEMENT ReturnType (#PCDATA) >

(Normative) Specifies the fully-qualified name of the type that the current member returns.

<! ELEMENT ReturnVal ue (ReturnType?)>

(Normative) Specifies the return type of amember. ReturnType shall be present for all kinds of members except constructors.

<! ELEMENT SPAN (#PCDATA | paranref | SPAN | see |

bl ock) *>

(Rendering/Formatting) This element specifies that the text should be segmented from other text (e.g. with a carriage return).
References to parameters, other types, and even blocks of text can be included within a SPAN element.

<! ELEMENT Thr eadi ngSaf et ySt at ement (#PCDATA) >
(Normative) Specifies a thread safety statement for a given type.

<! ELEMENT Type (TypeSi gnature+, Menber Of Li brary,
Thr eadi ngSaf et ySt at ement ?, TypeKi nd, Docs, Base,
TypeExcl uded) >

(Normative) Specifies all of the information for a given type.
<! ATTLI ST Type
Name NMTOKEN #REQUI RED

Assenbl yl nf o,
Interfaces, Attributes?, Menbers,

(Informative) Specifies the simple name (e.g. “ String” rather than “ System.String”) of a given type.

Ful | Name NMTOKEN #REQUI RED
(Normative) Specifies the fully-qualified name of a given type.
Ful | NameSP NMTOKEN #REQUI RED

(Informative) Specifies the fully-qualified name with each ‘." of the fully qualified name replaced by an ‘.

>
<! ELEMENT TypeExcl uded (#PCDATA) >
(Normative) PCDATA shall be ‘0’.

<! ELEMENT TypeSi gnature EMPTY>

© 00N O O W NP

e < =
g b W DN RO

B
o~NO

N
o ©

NN
N

N N
NN

NN
ool

N N
o0

WN
(@)e]

w
i

ww
wWN

W W W W w
0 N o 0o b~

BwW
O

-b-b-bﬁ-b-b-b
N o o @Ww N P

- 13 -

(Normative) Specifies the text for the signature (in code representation) of a given type.
<I ATTLI ST TypeSi gnat ure

Language CDATA #REQUI RED

(Normative) Specifies the language the specified type signature is written in. All type signatures are specified in both
ILASM and C#.

Val ue CDATA #REQUI RED
(Normative) CDATA is the type signature in the specified language.
>
<!I ELEMENT Types (Type+)>
(Normative) Specifies information about all of the types of alibrary.
<I ATTLI ST Types
Li brary NMIOKEN #REQUI RED
(Normative) Specifies the library in which all of the types are defined. An example of such alibrary is“BCL".
>
<! ELEMENT al tconpl i ant EMPTY>

(Informative) Specifies that an alternative, CLS compliant method call exists for the current non-CLS compliant method.
For example, this element exists in the System.|O.TextWriter.WriteLine(ulong) method to show that
System.|O.TextWriter.WriteLine(long) is an alternative, CLS compliant method.

<! ATTLI ST al t conpl i ant
cref CDATA #REQUI RED

(Informative) Specifies the link to the actual documentation for the alternative CLS compliant method. [Note: In this
specification, CDATA matches the documentation comment format specified in Appendix E of the C# Language specification.]

>
<! ELEMENT al t menber EMPTY>

(Informative) Specifies that an alternative, equivalent member call exists for the current method. This element is used for
operator overloads.

<! ATTLI ST al t menber
cref CDATA #REQUI RED

(Informative) Specifies the link to the actual documentation for the alternative member call. [Note: In this specification,
CDATA matches the documentation comment format specified in Appendix E of the C# Language specification.]

>
<! ELEMENT bl ock (#PCDATA | see | para | paranref | list | block | ¢ | subscript | code
| sup | pi)*>

(Rendering/Formatting) Specifies that the children should be formatted according to the type specified as an attribute.
<! ATTLI ST bl ock
subset CDATA #REQUI RED
(Rendering/Formatting) This attribute is reserved for future use and currently only has the value of ‘none’.
type NMIOKEN #REQUI RED

(Rendering/Formatting) Specifies the type of block that follows, one of: usage, overrides, note, example, default,
behaviors.

>
<! ELEMENT c (#PCDATA | para | paranref | code | see)*>
(Rendering/Formatting) Specifies that the text is the output of a code sample.
<! ELEMENT code (#PCDATA) >
(Informative) Specifies the text is a code sample.

<! ATTLI ST code

| ang CDATA #| MPLI ED

© 00 N ool A W N

e el
w N P O

e
(62 >N

e
o N o

N =
Qo

NN
N

NN
AW

W W W W N DNDNDNDN
W NPFP, OO 00N O O

W W
gabs

B W W W W
O © 0 N O

D
NP

£

Py
(24 é)]

N
\l

- 14 -

(Informative) Specifies the programming language of the code sample. This specification uses C# as the language for the
sampl es.

>
<! ELEMENT codel i nk EMPTY>

(Informative) Specifies a piece of code to which alink may be made from another sample. [Note: the XML format specified
here does not provide a means of creating such alink.]

<! ATTLI ST codel i nk
Sanpl el D CDATA #REQUI RED
(Informative) SamplelD is the unique id assigned to this code sample.
Sni ppet | D CDATA #REQUI RED
(Informative) SnippetID is the unique id assigned to a section of text within the sample code.
>
<! ELEMENT description (#PCDATA | paranref | para | see | ¢ | permille | block | sub)*>

(Normative) Specifies the text for a description for a given term element in a list or table. This element also specifies the
text for a column header in atable.

<! ELEMENT exanpl e (#PCDATA | para | code | ¢ | codelink | see)*>
(Informative) Specifies that the text will be an example on the usage of a type or a member of a given type.
<! ELEMENT exception (#PCDATA | paranref | see | para | SPAN | bl ock)*>

(Normative) Specifies text that provides the information for an exception that can be thrown by a member of atype. This
element can contain just text or other rendering options such as blocks, etc.

<! ATTLI ST exception
cref CDATA #REQUI RED

(Rendering/Formatting) Specifies alink to the documentation of the exception. [Note: In this specification, CDATA
matches the documentation comment format specified in Appendix E of the C# Language specification.]

>
<! ELEMENT i (#PCDATA) >
(Rendering/Formatting) Specifies that the text should be italicized.
<l ELEMENT item (term description*)>
(Rendering/Formatting) Specifies a specific item of alist or atable.
<l ELEMENT list (listheader?, itent)>
(Rendering/Formatting) Specifies that the text should be displayed in alist format.
<V ATTLI ST | i st
type NMIOKEN #REQUI RED

(Rendering/Formatting) Specifies the type of list in which the following text will be represented. Values in the
specification are: bullet, number and table.

>
<!l ELEMENT |istheader (term description+t)>
(Rendering/Formatting) Specifies the header of all columnsin a given list or table.
<! ELEMENT onequarter EMPTY>
(Rendering/Formatting) Specifies that text, in the form of %, is to be displayed.

<! ELEMENT para (#PCDATA | see | block | paranref | c | onequarter | superscript | sup |
permlle | SPAN | list | pi | theta | sub)*>

(Rendering/Formatting) Specifies that the text is part of what can be considered a paragraph of its own.
<! ELEMENT param (#PCDATA | paranref | see | block | para | SPAN)*>

(Normative) Specifies the information on the meaning or purpose of a parameter. The name of the parameter and a textual
description will be associated with this element.

<! ATTLI ST param

©O© 00 N O O WN P

I T
N B O

o
O]

=
o Ol

e
oo~

N NN DN BB
w N P O ©

NN
(621>

W W W NN NN
N P O © 0 N O

ww
~W

W W W
~N O O

wWw
©O 00

-b-bﬁ-b-b-b-b
o O W N P O

- 15 -

name CDATA #REQUI RED
(Nomrative) Specifies the name of the parameter being described.
>
<! ELEMENT par anr ef EMPTY>
(Rendering/Formatting) Specifies a reference to a parameter of a member of a type.
<! ATTLI ST par anr ef
name CDATA #REQUI RED
(Rendering/Formatting) Specifies the name of the parameter to which the paramref element is referring.
>
<! ELEMENT perm |l e EMPTY>
(Rendering/Formatting) Represents the current text is to be displayed as the ‘%’ symbol.
<! ELEMENT perm ssion (#PCDATA | see | paranref | para | block)*>

(Normative) Specifies the permission, given as a fully-qualified type name and supportive text, needed to call a member of a
type.

<! ATTLI ST perm ssion
cref CDATA #REQUI RED

(Rendering/Formatting) Specifies alink to the documentation of the permission. [Note: In this specification, CDATA
matches the documentation comment format specified in Appendix E of the C# Language specification.]

>
<! ELEMENT pi EMPTY>

(Rendering/Fomatting) Represents the current text is to be displayed as the ‘n’ symbol
<! ELEMENT pre EMPTY>

(Rendering/Formatting) Specifies a break between the preceding and following text.

<! ELEMENT remar ks (#PCDATA | para | block | list | ¢ | paranref | see | note | pre |
SPAN | code | PRE)*>

(Normative) Specifies additional information, beyond that supplied by the summary, on atype or member of atype.
<! ELEMENT returns (#PCDATA | para | list | paranref | see)*>

(Normative) Specifies text that describes the return value of a given type member.
<! ELEMENT see EMPTY>

(Informative) Specifies a link to another type or member.
<I ATTLI ST see

cref CDATA #l MPLI ED

(Informative) cref specifies the fully-qualified name of the type or member to link to. [Note: In this specification,
CDATA matches the documentation comment format specified in Appendix E of the C# Language specification.]

| angwor d CDATA #| MPLI ED
(Informative) langword specifies that the link is to alanguage agnostic keyword such as “null”.
qual i fy CDATA #| MPLI ED

(Informative) Qualify indicates that the type or member specified in the link must be displayed as fully-qualified. Value of
this attribute is ‘true’ or ‘false’, with a default value of ‘false’

>
<! ELEMENT sub (#PCDATA | paranref)*>

(Rendering/Formatting) Specifies that current piece of text isto be displayed in subscript notation.
<! ELEMENT subscri pt EMPTY>

(Rendering/Formatting) Specifies that current piece of text isto be displayed in subscript notation.
<I ATTLI ST subscri pt

t erm CDATA #REQUI RED

© 0 NO Ok~ W DNPE

e L o e
NOoO U0l WN RO

N
Qwom

NN
N

23

24
25
26

27
28
29

7.1

- 16 -

(Rendering/Formatting) Specifies the value to be rendered as a subscript.
>

<! ELEMENT summary (#PCDATA | para | see | block | list)*>
(Normative) Specifies a summary description of a given type or member of atype.
<! ELEMENT sup (#PCDATA | i | paranref)*>
(Rendering/Formatting) Specifies that the current piece of text is to be displayed in superscript notation.
<! ELEMENT superscript EMPTY>
(Rendering/Formatting) Specifies that current piece of text is to be displayed in superscript notation.
<I ATTLI ST superscri pt
t erm CDATA #REQUI RED
(Rendering/Formatting) Specifies the value to be rendered as a superscript.
>
<! ELEMENT term (#PCDATA | block | see | paranref | para | ¢ | sup | pi | theta)*>
(Rendering/Formatting) Specifies the text isalist item or an item in the primary column of a table.
<! ELEMENT t heta EMPTY>
(Rendering/Formatting) Specifies that text, in the form of ‘0’, is to be displayed.
<! ELEMENT t hreadsafe (para+t)>

(Normative) Specifies that the text describes additional detail, beyond that specified by ThreadingSafetyStatement, the
thread safety implications of the current type. For example, the text will describe what an implementation must do in terms of
synchronization.

<! ELEMENT val ue (#PCDATA | para | list | see)*>

(Normative) Specifies description information on the “value” passed into the set method of a property.

Value Types as Objects

Throughout the textual descriptions of methodsin the XML there are places where a parameter of type object
or an interface type is expected, but the description refers to passing a value type for that parameter. In these
cases, the caller shall box the value type before making the call.

ECMA

114 Rue du Rhoéne
CH-1204 Geneva
Switzerland

Fax: +41 22 849.60.01
Email: documents@ecma.ch

Files of this Standard can be freely downloaded from the ECMA web site (www.ecma.ch). This site gives full
information on ECMA, ECMA activities, ECMA Standards and Technical Reports.

