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Abstract

Although mobile code systems typically employ run-time code verifiers to secure
host computers from potentially malicious code, implementation flaws in the verifiers
may still leave the host system vulnerable to attack. Compounding the inherent com-
plexity of the verification algorithms themselves, the need to support lazy dynamic
linking in mobile code systems typically leads to architectures that exhibit strong in-
terdependencies between the loader, the verifier and the linker. To simplify verifier
construction and provide improved assurances of verifier integrity, we propose a mod-
ular architecture based on the concept of proof linking. This architecture encapsulates
the verification process and removes dependencies between the loader, the verifier, and
the linker. We also formally model the process of proof linking and establish properties
to which correct implementations must conform. As an example, we instantiate our
architecture for the problem of Java bytecode verification and assess the correctness
of this instantiation. Finally, we briefly discuss alternative mobile code verification
architectures enabled by the proof linking concept.

1 Introduction

Recent years have witnessed a significant growth of interest in mobile code, particularly
in the form of active contents (web-browser applets) and code-on-demand [2]. A key



factor in this growth has been the development of suitable security models for the pro-
tecton of host computer systems against the potential dangers of executing unknown
code. In particular, the Java programming language [10] and its associated support
technology have achieved considerable success through a strong security model imple-
mented within the Java Virtual Machine (JVM). As Java bytecode is downloaded from
an untrusted origin, the JVM subjects it to a verification step [15] in order to ensure
that it cannot affect the host machine in an undesirable way. As some authors have
pointed out, Java security is type safety [18]. As long as the bytecode obeys the typing
rules of Java, a mobile code unit is guaranteed to behave well.

Relying on a run-time verifier to secure a host computer system has the problem
that the verifier itself may be flawed. If so, designers of malicious code may well be
able to exploit the flaw to bypass security checks. In fact, several security breaches
have been discovered in major Java implementations [22, 11, 12]. These flaws may be
attributed, in part, to the inherent complexity of bytecode verification, involving both
data flow analysis and type checking.

Additional complexity in verifier implementation may arise through the combina-
tion of verification in an incremental process with lazy, dynamic linking. This com-
plexity may become manifest in two problematic architectural features of the run-time
system.

1. Interleaved logic. Typical Java implementations interleave bytecode verifica-
tion and loading. Java programs are composed of classes, each being loaded
into the JVM separately. In the middle of verifying a class C', a new class D
may need to be loaded in order to provide enough information for the verifi-
cation of C' to proceed. For example, in order for the verifier to make sure
that a method may throw an “ArithmeticException”, it must check whether
“ArithmeticException” is a subclass of the class “Throwable”. As a result, the
loader has to be invoked to bring in “ArithmeticException” and all its super-
classes. Moreover, since the loader cannot trust the bytecode of “ArithmeticException”
(and its superclasses) to be well-formed, part of the verification work must be car-
ried out by the loader. As a result, verification and loading logic are interleaved
in typical JVM implementations.

2. Delocalized implementation. Typical bytecode verifiers for Java have a four-
pass architecture. Pass one is the verification logic performed by the loader, as
we have briefly mentioned. Passes two and three involve internal verification
performed by the verifier proper at link time. Pass four is invoked at run-time,
whenever symbolic references need to be resolved. Consequently, security checks
are scattered throughout the run-time system, again adding complexity to the
task of analyzing the verification logic.

In the program understanding literature, it is well known that interleaving and de-
localized program plans lead to programs that are difficult to comprehend [21, 14].
This so-called “scattershot security” [18] adds considerable complexity to the task of
implementing, validating and maintaining a reliable verifier.

Nevertheless, one may understand the rationale for current JVM architectures by
considering the need to accommodate a lazy, dynamic linking strategy. Such a strategy
seeks to defer expensive computations that may never be needed. For example, a
class may be parsed but not further analyzed when only its interface is needed (pass



one). Subsequently, its internal structure may be checked when code is linked in
(passes two and three), but external references may be left unresolved in the event they
are not needed. Finally, these external dependencies may be resolved individually as
necessary at run-time (pass four). Although such a strategy is not required by the JVM
specification, the performance advantages should be easy to understand, particularly
for classes with strong static coupling but weak dynamic coupling.

The above analysis reveals a software engineering challenge that is common to all
dynamically-linked languages with both security and efficiency concerns. In particu-
lar, for mobile code systems which incorporate a security system based on link-time
verification, one has to determine how loading, verification, and linking interact with
each other so that the following goals are achieved simultaneously.

1. Laziness: loading, verification, and linking can be deferred as long as possible.

2. Completeness: all necessary verification checks are performed before any code
is executed.

3. Comprehensibility: the resulting system architecture can easily be understood
and thus verified.

As described previously, an ad hoc implementation of laziness dramatically increases
the interleaving and delocalization of program plans within the system. This degrades
comprehensibility, which may in turn lead to the loss of completeness. We argue that
a well-designed mobile code architecture should achieve the goals of completeness and
comprehensibility by localizing all the security-related code into a stand-alone verifier
module free of loading and linking logic. In particular, it should allow one to specify,
craft, understand, and evaluate the mobile code verifier as an individual engineering
component, independent of the loading and linking procedures.

In this paper, we propose a language-independent infrastructure for building dynamically-
linked mobile code systems. Our design results in a run-time environment that localizes
the verification logic in a stand-alone module completely decoupled from loading and
linking, while preserving laziness in dynamic linking. To achieve this, the verifier es-
chews the loading of classes to validate external dependencies. Instead, it converts each
dependency into a proof obligation, which forms a safety precondition for endorsing the
class or method being verified. Proof obligations are submitted to a proof linker, which
is responsible for remembering and discharging them when the required external infor-
mation becomes available as a result of class loading. We use the term proof linking
to refer to the overall process of formulating and discharging verification obligations in
this way.

In support of the proof linking architecture, we also develop a formal model of proof
linking and determine the conditions sufficient for proof linking to behave correctly.
The correctness conditions are expressed in terms of a partial ordering of linking events,
and as properties of a deductive database data model. We demonstrate how one can
formulate Java type checking in our framework, and we also establish the correctness
of this formulation. The correctness results have been formally checked by a theorem
prover.

The architecture for modular verification is described in Section 2. Section 3 de-
velops a theoretical framework in which we can articulate the correctness of modular
verification in the presence of lazy, dynamic linking. Section 4 applies the modulariza-
tion to Java bytecode verification, and demonstrates how the correctness of modular
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Figure 1: Modular Verification

verification can be established. In Section 5, we briefly discuss alternative mobile code
verification architectures enabled by the proof linking concept. The paper concludes
with a discussion of related work and potential extensions. In the appendix, we discuss
our experience with using a specification and verification tool to check the correctness
proof presented in section 4.

2 A Dynamic-Linking Architecture

We assume that a program is composed of one or more code units (modules, classes
and so on), each of which may contain externally visible members (functions, methods,
variables, and so on). Code units and their members are identified by symbolic names.
These names may be used to refer to the units or their members from within other
units. When a program is executed, its code units are loaded, verified, and the symbolic
references are incrementally replaced by actual machine pointers.

In the dynamic-linking architecture presented here, loading, verification, and link-
ing are performed by three separate modules. No module attempts to invoke any other
during its processing, nor will one recursively invoke itself. This poses the following
challenge: Verification requires knowledge of other code units which might not be loaded
yet. How do we remove such dependencies while maintaining the integrity of the ver-
ification process? The problem is addressed by decomposition of verification into two
subtasks: modular verification and proof linking.

2.1 Modular Verification

Figure 1 depicts the setup for modular verification. Untrusted code units are subjected
to static verification after loading. The verifier might need the knowledge of another
code unit in order to decide if the current code unit should be endorsed. Instead of
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Figure 2: Proof Linking

recursively verifying (or even loading) the other code unit, the verifier computes a con-
servative safety precondition that will guarantee the safety of the code unit. The safety
precondition is represented as a conjunctive set of database queries. For example, dur-
ing the verification of a Java classfile, we might find out that an exception of class
ArithmeticException can be raised by the code in the classfile. Since the classfile is
safe only if ArithmeticExceptionis a subclass of the Java class Throwable, the verifier
formulates the query! ?subclass(ArithmeticException, Throwable). The Java ver-
ifier may end up generating many such queries. The conjunctive set of all queries formu-
lated by a verification session becomes the safety precondition for endorsing the classfile
being considered. More specifically, each of the queries describes a safety precondition
of a certain linking action. For example, the query ?subclass(ArithmeticException,
Throwable) is a safety precondition for the action “resolving ArithmeticException
in class C”2. Such queries are said to be the proof obligations for the associated actions,
representing conditions that must be met if the run-time system attempts to safely
perform the corresponding actions in the future. Fach proof obligation is said to be
attached to its associated action. The proof linker stores all obligations in a global
obligation table, which provides a mapping from linking actions to their attached obli-
gations.

In order for the run-time system to discharge proof obligations, the verifier also
computes, for each code unit, a set of clauses called commitments. The commitments
are ground facts that describe the interface properties of the code unit. For example,
during the verification of the Java classfile ArithmeticException, the verifier gener-

ITo differentiate the various roles played by a predicate symbol, we prefix a query by a question mark
(“?”) and an assertion by an exclamation mark (“!”).

2 As later sections will point out, the query ?subclass(ArithmeticException, Throwable) is actually
associated with an action other than the one being mentioned here. We describe a simplified scenario just
to 1llustrate our point.



ates a commitment !'extends(ArithmeticException, Exception) to indicate that
Exception is the immediate superclass of ArithmeticException. The generated com-
mitments are asserted into a global commitment database. When proof obligations are
to be checked, the commitment database provides the set of facts against which the
query can be evaluated.

2.2 Proof Linking

The process by which the run-time system cross-validates the results of verifying dif-
ferent code units is called proof linking. Figure 2 depicts the setup for proof linking.
When the run-time system needs to resolve a symbolic reference to a machine pointer,
it sends the request to a proof linker. The proof linker looks up the obligations that
have been attached to the request, and then posts them to the commitment database
as deductive queries. If the queries are satisfied, the requested action is performed.
Otherwise, a linking exception is raised to signal failure to endorse the consistency of
the code units.

To make proof linking more expressive, arbitrary logic programs can be provided
as an initial theory in the commitment database. For example, recursive queries of
the following form can be supplied to capture the transitive closure of subclassing
relationship:

subclass(X, X).
subclass(X, Y) :- extends(X, Z),
subclass(Z, Y).

If the verifier asserts commitments
lextends (ArithmeticException, Exception)
and
lextends (Exception, Throwable)
then the obligation
?subclass(ArithmeticException, Throwable)

can be deduced.

2.3 Implementation

Although we have used the deductive database model as a means of representing obli-
gations and commitments, we do not propose that an actual system be implemented
this way. Such an implementation would likely be unacceptably slow, as loading and
linking in a mobile code system occurs frequently. Given queries and commitments of
fixed signatures, and given a fixed initial theory, commitment assertion and obligation
verification may be optimized for efficiency. In this case, the committed facts of a code
unit can be encoded inside the code unit itself. The initial theory and the query mech-
anism may be programmed procedurally. For example, to make it efficient to check
if one class is a subclass of another, a class can maintain a pointer to its immediate
superclass, so that subclassing can easily be checked by pointer chasing.



There are two reasons to model proof linking as a series of database updates and
queries. First of all, the database model provides an abstract framework to describe
the general notion of proof linking, without getting into the idiosyncrasies of individual
mobile code systems. Secondly, and more importantly, it allows us to define a formal
model of proof linking and its correctness conditions, a topic to which we now turn.

3 Correctness of Incremental Proof Linking

In this section, we consider the following three correctness conditions for proof linking.

1. Safety: All obligations relevant to the safe execution of a code fragment are
checked before that fragment is executed.

2. Monotonicity: Once an obligation is checked, no subsequently asserted com-
mitment will contradict it.

3. Completeness: All commitments that may be needed to satisfy an obligation
are generated before the obligation is checked. That is, safety of a program will
not be prematurely ruled out.

Our goal is to establish a set of properties to which an implementation of proof linking
must conform in order to ensure that these correctness conditions hold.

3.1 A Model for Lazy Dynamic Linking

The fundamental simplification achieved by our dynamic linking architecture is that
loading, verification and linking may be decomposed into independent primitive ac-
tions. That is, each step of loading or verifying a particular code unit, or resolving
a particular external reference may be considered as a self-contained action indepen-
dent of any other. Thus, we model proof linking as an algorithm over a set of linking
primitives, each of which can be executed at most once during the life-time of the run-
time environment. Although the precise set of primitives that are used in a particular
system may vary, we assume that the following minimal set exists for each code unit

X:
load X: acquire code unit X.
verify X: verify code unit X.

resolve S in X: replace symbolic reference S in code unit X with an actual machine
pointer.

use S in X: symbolic reference S in code unit X is used for the first time.

Associated with each linking primitive p are two linking events, namely, “begin p”
and “end p”, which respectively represent the initiation and termination of the action
p. These events occur asynchronously as the run-time system perform various linking
actions. We assume that events are then queued up in some synchronized event queue,
waiting to be examined by the proof linker. The sequence of linking events that enters
the event queue from the beginning of an execution session to some point of execution
is said to be an ezecution trace of the run-time system in that period of time. We
further assume that, event “end p” can occur in an execution trace only if there is a
corresponding event “begin p” occurring before it.



Given a set P of linking primitives, a linking strategy ¢ = (P, <) is a partial ordering
of the linking primitives in P. Every implementation of a mobile code run-time system
defines a linking strategy. The strategy expresses the order in which linking events are
fired by the run-time system. More precisely, an execution trace 7 is o-conforming if the
following hold: (1) all linking events in 7 initiate or terminate primitives from P, and
(2) if “begin ¢” € 7, then, for all p € P such that p <, ¢, “end p” occurs in 7 before
g. To say that a run-time system implements a linking strategy o is to say that the
run-time system guarantees that all possible execution traces are o-conforming. Notice
that this definition of linking strategy allows primitives to be executed concurrently as
long as the strategy do not explicitly order them.

A linking strategy 7 = (P, <) is a substrategy of another linking strategy o =
(P,<,) iff © <, y implies z <, y for every z,y € P. In English, a substrategy is a
refinement of its superstrategy, the latter imposing fewer ordering constraints on the
primitives.

A strategy is admissible if the following properties hold: Given any code units X
and Y, and a symbol § imported by X from Y, we have

1. Natural Progression Property:
load X < verify X < resolve S in X
2. Import-Checked Property:
verify Y < resolve 5 in X < use S in X

We shall only consider admissible strategies hereafter.

3.2 The Proof Linking Algorithm

The successful completion of every linking primitive generates two sets. The first
is a set of facts (i.e., ground atoms) called commitments. Commitments describe the
information collected as a result of executing a primitive. The second is a set of guards.
A guard is an ordered pair of a linking primitive and a conjunctive set of ground queries.
The queries are said to be the obligations of the associated linking primitives. The
obligations state the preconditions that must be met before the associated primitive
can safely be executed. Notice that obligations can be attached to primitives other
than the resolve primitive.

Figure 3 presents a model proof-linking algorithm in which linking primitives are
consumed from a global event queue. The proof linker maintains two global data struc-
tures, namely, a commitment database (DB) and an obligation table (Obligations[]).
The commitment database is a first-order theory containing both facts and rules. The
obligation table maps each linking primitive to a set of database queries. Initially, the
commitment database contains an initial theory (InitialTheory), and the obligation
table is empty (line 1). The proof linker consumes linking events in the order specified
by the linking strategy (line 4). When the begin event of a linking primitive is removed
from the event queue, its associated obligations are retrieved from the obligation table
(line 7). The verification of these queries is then attempted against the logic program
in the commitment database (line 8). If the obligations are not satisfied, an exception
is raised (line 11) to indicate that the linking primitive is unsafe. Alternatively, when
the end event of a primitive is removed from the event queue, the commitments and



algorithm ProofLinker(InitialTheory):

01: DB « InitialTheory; Obligations[] « {;
02: Ready «+ (); Checked « 0);

03: while (- terminated()) do

04: e « get-next-event();

05: switch e of

06: case “begin p”:

07: for all o € Obligations[p] do

08: if (DB I~ 0) then

09: Checked « Checked U { 0 };

10: else

11: raise exception in the thread that generated event e;
12: end if

13: end for
14: Ready < Ready U { p };
15:  case “end p”:

16: DB « DB U get-commitments(p);
17: for all (o, ¢) € get-guards(p) do
18: Obligations|q] « Obligations[q] U {o};

19: end for
20: end switch
21: end while

Figure 3: The Proof-Linker Model Algorithm



guards for the primitive are collected. The commitments are added to the commitment
database (line 16). The guards associate new obligations to linking primitives. These
new associations are incorporated into the obligation table (lines 17-19). The proof
linker repeats this process until the run-time environment terminates (line 3).

3.3 Formalization of Correctness Conditions

To formalize the correctness conditions of the proof linker, we have introduced two
auxiliary variables into the listing in Figure 3. “Checked” (lines 2 and 9) denotes the
set of obligations that have already been checked at line 8. “Ready” (lines 2 and 14)
denotes the set of primitives that are ready for execution.

Given a fixed, admissible linking strategy o, the proof linker is correct if the fol-
lowing conditions hold:

1. Safety: All obligations are checked before a primitive is executed. For any
linking primitives z and y, if 2 may introduce the guard (o, y), then we require
that <, y. That is, the following invariant must hold at all times:

Vp € Ready . Yo € Obligations[p]| . 0o € Checked

2. Monotonicity: Obligations may not be contradicted by subsequently asserted
commitments. In our system, we confine our database to definite clause programs
and definite queries®. This avoids the problems that could arise if negation by
failure were used. In summary, the following invariant must hold at all times:

Vo € Checked .T' o

3. Completeness: A commitment cis said to support an obligation o if ¢ is required
to make o provable. If a linking primitive p may assert a commitment that
supports o, and if o is attached to linking primitive ¢, then we require that
p <5 q. Thus, if an obligation o of primitive ¢ is eventually provable, then it must
be provable when “begin ¢” is fired.

In summary, the correctness of proof linking depends on (1) the linking strategy o,
(2) the kind of logic we are using, and, (3) the commitments and obligations returned
by each linking primitive. Notice that the framework does not impose a strict policy
on the linking strategy. Either eager linking (linking every code unit at once) or lazy
linking (linking a code unit only when its code is being executed }—or indeed any inter-
mediate strategy—can be tailored to satisfy the correctness conditions. To maximize
the opportunities for laziness, however, we prefer superstrategies to substrategies, so
long as the correctness conditions hold.

4 An Example: Java Bytecode Verification

This section describes an instantiation of our modular verification framework. Specif-
ically, we use Java bytecode verification as an example to illustrate various concepts

3A definite clause, or a Horn clause, is a rule of the form A « By, B, ..., B,, where n > 0, and A, By,
Bs, ..., By, are all atoms (i.e. positive literals). A definite clause program (or a Horn clause program) is a
finite set of definite clauses. A definite query (or definite goal) is a conjunction of atoms. For definition of
these and other logic programming terms used in this paper, consult standard text book like [4].
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discussed in previous sections. In particular, we develop an admissible strategy for
Java proof linking and prove the correctness conditions for an implementation of this
strategy.

4.1 The Java Linking Model

In Java, a class is a code unit. A Java identifier may refer to a class or a member of
a class. A member (a field or a method) of a class is uniquely identified by both the
member’s name and its descriptor (type signature). The descriptor of a field specifies
its type, while that of a method specifies the type of both its formal parameters and its
return value. Class symbols and member symbols are resolved separately. We denote
the linking primitive that resolves, in class X, the member M of class Y with descriptor
S as “resolve Y::M(5) in X7, and we reserve the usual syntax of “resolve Y in X”
for resolution of classes.

We also introduce auxiliary primitives “endorse Y” and “endorse Y ::M(5)”, with
the intuitive semantics of declaring symbolic references as ready for resolution. These
primitives are introduced to impose a desirable ordering among other primitives; they
do not correspond to any actual linking activities. In particular, complex obligations
are attached to them, and supports for such obligations are then forced to be asserted
before the auxiliary primitives are fired?.

We articulate an admissible strategy for Java linking. We first modify the Natural
Progression Property and the Import-Checked Property to accommodate the intro-
duction of new primitives, and then add further properties to capture the linking
dependencies peculiar to Java.

1. Natural Progression Property:

load X < verify X < endorse X < resolve Y in X < resolve Y::M(S5) in X

2. Import-Checked Property:
endorse Y < resolve Y in X
and also

endorse Y < endorse Y::M(5) < resolve Y::M(S5) in X < use Y:M(S5)in X

3. Subtype Dependency Property: If Y is a superclass or a superinterface of X
then

verify Y < endorse X

4. Referential Dependency Property: Sometimes, the knowledge of a class Y
is needed before we can correctly endorse a method X:M(S). In such case, we
say that Y is relevant to the endorsing of X ::M(9), and we require that

endorse Y < endorse X::M(95)

*The actual Java loading model further involves two additional primitives “prepare X” and “initialize
X7, In principle, one can always extend the current framework to include them if such refinement starts to
interact with verification; but since they do not, we ignore them to facilitate our analysis.
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In English, we need to verify all relevant classes before we endorse a method
symbol for resolution. To implement such ordering, relevant classes are identi-
fied during the execution of “verify X”. The latter then asserts an auxilliary
commitment “!relevant(Y, X:: M (5))” toinform the run-time system of the
required ordering of linking events.

4.2 Commitments, Obligations, and Initial Theory for Java
Type Checking

In Java, only the “verify X” primitive generates commitments and obligations. Figure
4 describes the commitments generated by “verify X”. Figure 5 describes the obli-
gations generated by “verify X7 together with the primitives to which the generated
obligations are attached. Figure 6 shows the clauses in the initial theory. The commit-
ments, obligations, and initial theory described here capture Java verification passes 1
to 3. Such arrangement effectively eliminates any need for the verifier to invoke the
loader, and thus completely removes all verification logic from the latter module. In
principle, we could have formulated commitments and obligations related to the check-
ing of resolution errors — the fourth pass of verification [15, chapter 5]. The effect of
which is further elimination of delocalization and interleaving. Since such an exercise
conceptually parallels our endeavor here, and has less of an impact on enabling other
verification protocols (see section 5.2 and 5.3), we omit it to facilitate presentation.

4.3 Correctness of Java Proof Linking — A Proof Sketch

The above arrangement satisfies the sufficient conditions for correct proof linking;:

1. Safety: Only “verify X” generates obligations. According to figure 5, obliga-
tions are only attached to “endorse X”, “endorse X::M(S)”, “resolve Y in
X7, and “resolve Y::M(S5)in X. In any case, the Natural Progression Property
and the Import-Checked Property guarantee that the contributors of obligations
are always fired before the primitives to which the obligations are attached.

2. Monotonicity: The initial theory and the obligations are all definite.

3. Completeness: Consider the obligation ?subclassible(Y) attached to “en-
dorse X7 by “verify X”. Supports of the obligation are asserted by all “verify
/7, where Z is either Y or one of its superclass. It then suffices to show that
“verify Z” < “endorse X”. According to figure 5, the obligation is imposed
only when Y is declared to be a direct superclass of X, and therefore the Sub-
type Dependency Property guarantees that Y and all its superclasses are verified
before X is endorsed. Therefore, the obligation is consistently established.

Consider now the obligation 7assignment_compatible(Y, Z) attached to “en-
dorse X ::M(S)”. Supports of the obligation is asserted by all “verify W”, where
W is Y, Z, or one of their superclasses or superinterface. According to figure 5,
both Y and Z are relevant to X::M(S) if the the obligation is to be asserted.
It then follows from the Referential Dependency Property that the superclasses
and superinterfaces of Y and Z are already verified when the obligation is tested.
Thus, all the supports are already present, and the obligation can be consistently
established.

12



Iclass(X)

X is a non-interface class.
linterface(X)

X is an interface class.
lnon_ final(X)

X is not declared to be final.
lextends (X, Y)

Y is a direct superclass of X.
limplements(X, Y)

Y is a direct superinterface of X.
'member (X, M, 5)

M with descriptor S is a member of X.
'public member(X, M, 5)

The member M with descriptor S is public in X.
'protected member (X, M, 5)

The member M with descriptor S is protected in X.
'private member (X, M, 5)

The member M with descriptor S is private in X.
ldefault member (X, M, S)

The member M with descriptor S has default access in X.
lrelevant (Y, X, M, S)

Inform run-time environment to verify Y and all its superclasses and superin-

terfaces before endorsing X:: M(5).

Figure 4: Commitments that may be asserted by verify X
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?subclassible(Y)
Target: endorse X
Intention: Direct superclass Y of X can be subclassed.

?interface(Y)
Target: endorse X
Intention: Direct superinterface Y of X should be an interface class.

?class(Y)
Target: resolve Y in X
Intention: Y should be a non-interface class.

?interface(Y)
Target: resolve Y in X
Intention: Y should be an interface class.

?throwable (YY)
Target: endorse X::M(S5)
Intention: Relevant to X::M(S), class Y is throwable.

?subclass (Y, 7)
Target: endorse X::M(S5)
Intention: Both relevant to X::M(S), Y is a subclass of Z.

7assignment_compatible(Y, Z)
Target: endorse X::M(S5)

Intention: Both relevant to X::M(S), Y is assignment compatible with 7.
?member(Y, M, S)

Target: resolve Y::M(S) in X

Intention: M (S) is a member of class Y.
?accessible_instancemember (Y, M, S, X, Z)

Target: resolve Y::M(S) in X

Intention: Asserted when a method N(T') of X is verified. It requires that,

being relevant to X::N(T'), Z can be used to reference the member Y:: M (S).
7accessible special member(Y, M, S, X, Z)

Target: resolve Y::M(S) in X

Intention: Asserted when a method N(T') of X is verified. It requires that,

being relevant to X::N(T'), Z can be used to reference the special member

YiM(S).

Figure 5: Obligations that may be asserted by verify X
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;; subclassible(C) : Is C allowed to have subclasses?

subclassible(’java/lang/0Object’).
subclassible(C) :- class(C), non_final(C), extends(C, D), subclassible(D).

;; subclass(C, D) : Is C a subclass of D?

subclass(C, C).
subclass(C, E) :- extends(C, D), subclass(D, E).

;; throwable(C) : Can C be thrown as an exception?

throwable(C) :- subclass(C, ’java/lang/Throwable’).

;; superinterface(C, D) : Is C a superinterface of D7
superinterface(C, C).

superinterface(E, C) :- implements(C, D), superinterface(E, D).
superinterface(E, C) :- extends(C, D), superinterface(E, D).

;; accessible_instance_member(C, M, S, D, R)

HH Can one applies getfield/putfield/invokevirtual in a class D to
M a reference type R in order to access the member C::M(S)

accessible_instance_member(C, M, S, _, _) :- public_member(C, M, S).

accessible_instance_member(C, M, S, D, R) :- protected_member(C, M, S),
subclass(R, D).

accessible_instance_member(C, M, S, _, _) :- private_member(C, M, S).

accessible_instance_member(C, M, S, _, _) default_member(C, M, S).
;; accessible_special_member(C, M, S, D, R)
HH Can one applies invokespecial in a class D to a reference type R
3 in order to access the member C::M(S)

accessible_special _member(_, ’<init>’, _, _, _).
accessible_special _member(C, _, _, C, _).
accessible_special _member(C, M, D, _, _) :- private_member(C, M, D).
accessible_special _member(C, M, D, D, R) :-
subclass(D, C), accessible_instance_member(C, M, S, D, R).

;; assignment_compatible(S, T) : Can S be assigned to T?

assignment_compatible(S, T) :- subclass(S, T).
assignment_compatible(S, T) :- superinterface(T, S).

Figure 6: The Initial Theory
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Using similar argument, one can establish the completeness of the incremental
proof procedure for all obligations.

We have formalized and checked the above reasoning using the PVS specification and
verification tool [3]. For details, please consult the appendix.

4.4 Implementing Commitment and Obligation Genera-
tion

To debug our formulation, we have implemented a stand-alone Java bytecode verifier
that generates the commitments and obligations in figure 4 and 5. Two implementation
details are worth noting.

Meet computation. Java type checking involves dataflow analysis. In the Sun im-
plementation of the dataflow analyzer, merging of two classes Z; and Z; yields
their most specific common superclass [15]. Computation of this superclass in-
volves the recursive loading of all superclasses of Z; and Z;. Our implementation
avoids recursive loading by representing the result of merging algebraically as
Z1 1 Z3y, the semantics of which is that the reference could either be that of Z;
or Z,, and thus any operation on such a reference should be supported by the
type interfaces of both Z; and Z;. All the obligations will then be formulated in
terms of these meet ezpressions®.  Specifically, when the obligation P(Z; N Z3)
is to be imposed, the verifier will generate both P(Z;) and P(Zz). For exam-
ple, if ?subclass(Y, Z; M Z3) is found to be a safety precondition, then the two
obligations ?subclass(Y, Z;) and ?subclass(Y, Z;) will be generated. This ar-
rangement is more relaxed than Sun’s current implementation, but it nevertheless
preserves type safety.

Arrays. Java arrays are classes, and there are special type rules for handling them.
However, all such rules are ultimately formulated in terms of type rules of ordi-
nary classes. For example, an array of A is assignment compatible to an array of
B only if A is assignment compatible to B, and an array of A is always compati-
ble to java.lang.0Object and java.lang.Cloneable. As a result, the modular
verifier can always translate an obligation involving array types into one or more
(conjuctive) obligations that are free of array type. Therefore, our existing veri-
fication system can still manage arrays correctly.

Optimization. Notice that our Java proof linking strategy is more or less fixed, except
for the cases when the relevant fact is committed. Specifically, if the relevant
fact is not committed, less ordering, and thus more laziness, results. To optimize
the linking process, a modular verifier may choose not to assert relevance commit-
ments that may be unnecessary in a particular case. For example, if the modular
verifier attempt to attach ?subclass(X, Y) to “endorse Z”, normally, both X
and Y will need to be declared relevant. But in the case when X = Y, one knows
that 7subclass(X, Y) is trivially true. So, the obligation and its corresponding
relevance commitment need not be generated in this case. Similar optimizations

5Such algebraic representation does not affect the termination of the dataflow analysis since only finitely
many class symbols may appear in a method, and thus the underlying lattice is bounded [13].
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can be adopted for obligations that involve other special case combinations of
rules in the initial theory.

An implementation such as the above is an infrastructure for the work in [5]. An online
demonstration of modular verification and commitment/obligation generation can be
accessed at http://www.cs.sfu.ca/ "pwfong/personal/Research/Verifier.

5 Rethinking Verification

The proof linking concept invites several natural extensions to mobile code verification.

5.1 Replaceable Verifier Module

Since the verifier is completely decoupled from the loader and the linker, it is then
possible for the mobile code verification technology to evolve independently of the
mobile code hosting technology. In the context of Java applet verification, one may
conceive that the bytecode verifier is manufactured as a replaceable component that
can be “plugged” into any browser equipped with a proof linker. Third party vendors
can specialize in producing highly secure verifier modules, while JVM vendors can
concentrate their efforts on producing faster virtual machines. As a result, installation
of a browser of one brand does not preclude the adoption of a Java bytecode verifier
of another brand. We believe this business model may yield higher quality and more
secure mobile code hosting environments.

5.2 Remote Verification

Modularization makes it feasible for mobile code verification to be performed remotely.
The example in section 4 only requires that the verify primitive correctly generates
all commitments and obligations. It does not specify how such commitments and
obligations are generated. Therefore, a remote Java bytecode verifier can analyze a
classfile, generate the corresponding commitments and obligations, and digitally sign
the entire package. Upon acquiring the package, a browser can perform a special
verify primitive that (1) authenticates the signature of the package, and (2) processes
the commitments and obligations as if they were generated locally. To the proof linker,
this special verify primitive looks no different than a normal verify primitive, and will
proof-link the remotely-verified classfile correctly. Had we not modularized verification,
remote verification would not be possible, because the verification of one classfile will
require the knowledge of other classfiles, which may not be accessible at the remote
verifier’s site. Combining modular verification with key-management technologies, and
by employing a physically secure coprocessor to perform verification, Devanbu, Fong,
and Stubblebine [5] produce a distributed mobile code verification architecture that has
various security-related and configuration-management-related benefits. In this way,
verification becomes a service that may be offered by third-party providers.
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5.3 Interoperability of Verification Protocols

Modularization of verification can also provide interoperability among various verifica-
tion protocols. A verification protocol specifies how various concerned parties cooperate
to carry out an overall verification process. There are at least three known verification
protocols in the mobile code literature:

1. Proof-on-demand: The existing implementations of Java bytecode verification
exemplifies this protocol. Verification is performed dynamically whenever a class-
file is linked into the run-time environment. The protocol introduces link-time
overhead, but it allows dynamically-generated code to be verified properly.

2. Proof-carrying code [20]: Verification is performed at the originating site. A
safety proof is attached to a code module when it is shipped. Upon arrival at
the execution site, the safety proof is checked before execution is allowed. Since
proof checking may be substantially easier than proof generation, this protocol
can involve less link-time overhead than proof-on-demand. Furthermore, since
proof generation may now be performed once and for all at compile time, one can
afford to consider difficult-to-prove safety properties, including those that have
to be verified with human assistance.

3. Proof delegation [5]: Code is passed to a trusted program analyzer, which
certifies the safety of the code, and then digitally signs it. Upon arrival at the
execution site, verification is replaced by signature checking. This protocol is
potentially the most efficient when the safety properties can be mechanically
established.

Since each of these protocols has merit, it is worthwhile to avoid premature commit-
ment to a single one. For example, a mobile program may consist of some uncertified
modules, some proof-carrying modules, and some remotely-certified modules, each from
a different source. To make this possible, we need to be able to combine the results
of verification produced by multiple protocols. Proof linking provides an infrastruc-
ture for such interoperability. In particular, each protocol is handled by a specialized
verify primitive. In the case of proof-on-demand, the corresponding verify primitive
will verify an untrusted code unit and generate obligations and commitments as usual.
In the cases of proof-carrying code and proof delegation, an untrusted code unit will
carry commitments and obligations generated by a remote verifier. Upon acquiring
the code unit, the corresponding verify primitives perform either proof checking or
signature authentication, and assert the attached obligations and commitments as if
they were generated locally. Proof linking thus proceeds normally even in the presence
of multiple verification protocols.

6 Related Work

Neither dynamic linking nor modular verification is new. Dynamic linking is, of course,
common in operating systems like UNIX and Windows. The notion of local certifiability
is well known in software engineering [23] and the composability of security features
was studied as early as the 1980’s [16, 17]. The principal contribution of this paper
is the definition of a concept and an architecture that permits modular verification in
the presence of lazy, dynamic linking.
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Safe, dynamic linking of mobile code units has recently been a topic of considerable
interest. Dean considered the problem of type-safe execution of a dynamically-linked
mobile code unit, assuming that the unit was properly type-checked at compile-time.
He showed that mobile code systems must enforce the property of consistent extension
of typing environments in order to ensure safety. In essence, consistent extension means
that type judgments determined at compile time remain valid in any extended envi-
ronment that may be created at run time. In our work, consistency of type extension
is achieved by the monotonicity condition.

Cardelli [1] defined a formal model for type-safe (static) linking in a simply-typed
lambda calculus.  Linking is characterized as a series of substitutions that preserve
type safety invariants. Our verify primitive corresponds to Cardelli’s intra-checking,
while our endorse and resolve primitives could be seen as an incremental version of
inter-checking. Our approach differs substantially in the treatment of typing environ-
ments. In particular, we replace the notion of an import environment as an input to
intra-checking by our notion of obligations produced as output. In essence, obligations
represent a logical specification of all allowable typing environments for which a mod-
ule intra-checks. This technique is key to our implementation of lazy, dynamic linking.
The second distinction in the treatment of typing environments is that we replace the
notion of export environments by the set of commitments produced during module
verification. In this case, however, the replacement is a more-or-less a direct encoding
of the typing environment in logical form.

Building on the work of Cardelli, Glew and Morriset [9] propose the typed object
file as an extension to Typed Assembly Language (TAL) [19]. TAL object programs
may thereby be annotated with type information, to be type checked at load time.
The typed object file provides a means for safe, modular type checking of separately
compiled code units. As the authors note, however, this approach does not naturally
extend to lazy, dynamic linking.

Another related line of research is the work of Drossopoulou et al on formalizing the
Java notion of binary compatibility [8, 6, 7]. Binary compatibility prescribes conditions
under which modified classes can be safely linked with other classes importing the
modified classes. Although the notion has bearing on type-safe, static linking, it does
not directly address the issue of lazy, dynamic linking.

7 Conclusion

We have proposed a modular architecture for language environments in which a static
verification phase is used in conjunction with lazy, dynamic linking. Our architecture
preserves laziness while encapsulating the verifier. Consequently, we avoid the prob-
lems of current commercial architectures in which verification logic is delocalized and
interleaved with the logic of loading and linking. The verifier becomes a standalone
component that can be understood and validated separately.

Our architecture achieves modularity through the notion of proof linking. Rather
than performing recursive loading and verification to deal with intermodule depen-
dencies, the verifier formulates dependency checks as proof obligations that may be
discharged later. These obligations are attached to specific linking events and repre-
sent preconditions to enable those events, if and when they become necessary. We have
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formally characterized the conditions for the correct implementation of proof linking,
and demonstrated the application of these conditions to an implementation of Java
proof linking.

Our modularization also makes it possible consider several alternative architectures
for mobile-code verification. These include the use of third-party verifier “plug-ins”,
remote verification service providers, and heterogenous systems relying on the interop-
erability of verification protocols.
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A Formal Verification of Java Proof Linking

The proof of safety, monotonicity, and completeness as presented informally in section
4.3 can be formally verified using a theorem prover. In particular, we have formally
established the above properties using the PVS specification and verification system®
[3]. In this appendix, we report our experience of such an exercise, in order to (1)
demonstrate that the verification of safety, monotonicity, and completeness can be
performed rigorously with the help of a theorem prover, (2) illustrate the specification
and proof techniques that are found to be helpful in such endeavor, and (3) highlight
the improved understanding of proof linking we gained as a result.

A.1 Model

Before one can specify and prove theorems about the correctness of proof linking, one
has to define a model for the first-order theory that is used in proof linking. Specifically,
one has to define the meaning for predicate symbols like “extends”, “subclass”,
etc. Consequently, properties of the class hierarchy resulted from modular verification
(before the introduction of proof linking) must be specified. Such specification has
to capture not only properties the modular verifier enforces, but also the potential
anomalies that could arise if proof linking is not performed properly.

For instance, a modular verifier can guarantee that the class java/lang/0Object
has no immediate super class, that interfaces have java/lang/0bject as their only
direct super class, and that all other classes have a unique direct super class. However,
confined to examine one code unit at a time, a modular verifier cannot rule out the
possibility of circular subclassing (i.e. two classes are subclasses of each other) and
subclassing from an interface class. Such anomalies must be made possible in our
specification of the model. To capture these, we specify the following:

e class is a non-empty type.

¢ java_lang object is a distinguished object of type class. All other class ob-
jects have type (non_root_class?).

e The set (non_root_class?) is further partitioned into two sets, (interface?)
and (proper_class?).

o Postulate that there is a function parent : [(proper_class?) -> class] that
maps a non-interface class to its unique, direct super class. Notice that circularity
and subclassing from interface class is thus allowed.

¢ In terms of the parent function, a predicate direct_super_class : [class ->
class -> bool] is defined to capture the facts that java/lang/0Object has no
super class and that interfaces extends java/lang/0bject.

Other notions like subclassibility and relevance are completely specified according to
what the modular verifier enforces and allows. As such, this part of the specification
documents the behavior characteristics that the modular verifier must follow in order
for the correctness results to follow.

SDeveloped at SRI, PVS employs higher order logic as a specification language. It also offers an interactive
theorem prover to assists the develpment of proofs for theorems.
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A.2 Strategy

To specify strategies, we define an abstract datatype primitive. A PVS datatype dec-
laration introduces constructors and accessers for each of the subtypes (e.g. verify(C)
is a constructor for the primitive “verify C”). We then define a binary relation before
over primitive to represent the ordering as specified in section 4.1. Notice that the
specification defines the linking strategy in terms of a model of class hierarchy such as
the one we have just defined.

For the sake of clarity and specification economy, before is specified in the following
manner. We capture each of Natural Progression Property, Import Checked Property,
Subtype Dependency Property and Referential Dependency Property in a separate
relation. We then define another binary relation Precede as a union of the four. Also,
we only specify the immediate precedence of primitives, and then define the binary
relation before as a transitive closure of Precede.

When a new strategy is defined, it is imperative to check if it actually defines a
partial ordering over the set of primitives. To illustrate this necessity, consider an
alternative formulation of the Subtype Dependency Property, in which we require

endorse Y < endorse X

for all class X and its direct super class or direct super interface Y. Despite the subtle
difference, this formulation appears to have achieved everthing we want a Subtype
Dependency Property to achieve, namely, forcing all super classes and super interfaces
of X to be verified before X is endorsed. However, such formulation also introduces
inconsistency — the resulting strategy is not well defined. Recall that the modular
verifier cannot rule out circular subclassing. In the case when X and Y are subclasses
of each other, the above formulation places “endorse X” and “endorse Y” before each
other, an impossibility if before is to be a strict order. It is through such articulation
that we have come to adopt our current formulation of Subtype Dependency Property
instead of the alternative we mentioned.

To prove that before is a strict order, one has to show that it is transitive (which
is trivial since before is defined as a transtive closure of Precede) and irreflexive.
The latter can be shown by, firstly, assigning an (integer) ordinal number” to each
primitive and, secondly, show that the ordering of ordinals preserves the ordering of
before. Irreflexivity follows since no integer is less than itself.

A.3 Database

An abstract datatype predicate is defined to capture the signature of the predicate
symbols used in proof linking. A database is represented as a set of predicate. We
also define a mapping model : [predicate -> bool] that correlates a predicate to
the relation it denotes. For example, model (PRED extends(C', D)) maps to the value
of direct_super_class((C) (D).

We represent figure 5 by a relation may_attach?(q) (P)(p) : bool that evalu-
ates to true when primitive ¢ might attach predicate P to primitive p. In addi-
tion, we represent figure 4 by a relation commit?(p) (P) : bool that evaluates to
true when primitive p asserts predicate P as a commitment. Unlike may attach?,

“PVS automatically defines an ordinal number for members of an abstract datatype.
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the relation commit? is defined in terms of the class hierarchy model. For example,
commit? (verify(C)) (PRED_extends(C, D)) holdsiff direct_super_class?(C) (D)
is true in the class hierarchy. This formally captures the condition under which the
modular verifier generates a specific commitment. One can then sanity-check the defi-
nition by proving the following challenge using case analysis:

CONSISTENT_COMMITMENT : CHALLENGE
(V (p: primitive) : V (P : predicate) : commit?(p)(P) = model(P))

We define a state to be a set of primitive. Intuitively, a state describes the
set of primitives that are already terminated at a certain point of the proof linking
process. We then define state database as a mapping from a state to a database
that contains all the predicates committed by members of the given state. We also
define STATE before : [primitive -> state] as a mapping from a primitive to a
state containing all the primitives that are terminated before the initiation of the given
primitive. As a result, the expression state database(STATE before(p)) gives the
database containing all commitments that are guaranteed to be available prior to the
execution of a primitive p.

Query evaluation and the initial theory are captured by an inductively defined rela-
tion provable? : [predicate -> database -> bool], which capturesif apredicate
is provable in a given database. For non recursive queries, provable? simply checks
if the predicate is an element of the database. For recursive queries, provable? un-
folds the query inductively. For instance, provable? (PRED subclassible(C')) (DB)
is true iff ¢' = java_lang object or there is a class D that satisfies the following
conjunction:

provable?(PRED class(C))(DB) A
provable?(PRED non final(C'))(DB) A
provable?(PRED_extends(C, D))(DB) A
provable?(PRED subclassible(D))(DB)

To sanity-check the definition, and to prepare for proving completeness, a general-
ization of the CONSISTENT_COMMITMENT lemma is verified:

MODEL : THEOREM
(V (P : predicate) :
(3 (5 : state): provable?(P)(state.database(.9))) = model(P))

All the definitions ready, we are now in the position to establish the correctness
conditions.

A.4 Correctness Proofs

We skip the discussion of the safety condition, which can be checked by straightforward
case analysis. Monotonicity is captured by the following theorem:

MONOTONICITY : THEOREM
(V (DB1: database) :
V (DB2: database) :
(DB1 C DB2) =
(Y (P : predicate) : provable?(P)(DB1) = provable?( P)(DB2)))

24



It can be proven by induction on the relation provable?.
The completeness condition can be represented in the following theorem:

STRONG_COMPLETENESS : THEOREM
(V (p: primitive) :
V (¢ : primitive) :
V (P : predicate) :
may_attach?(q)(P)(p) =
(3 (5 : state) : provable?(P)(state_database(.5))) =
provable?(P)(state_database(STATE_ before(p))))

Completeness is by far the most challenging proof we have attempted. In order to es-
tablish the above theorem, the following weaker form of completeness is first established
by induction and by applying the MONOTONICITY theorem:

WEAK_COMPLETENESS : LEMMA
(V (p: primitive) :
V (¢ : primitive) :
V (P : predicate) :
may_attach?(¢)(P)(p) = model(P) = provable?( P)(state_database(STATE_ before(p))))

It is then easy to see that the MODEL theorem and the WEAK_COMPLETENESS theorem
together imply STRONG_COMPLETENESS.

This proof illustrates how incremental proof linking works. If an obligation is
provable in some state, then the property it describes will hold in the class hierarchy.
In turn, when a property holds in the underlying class hierarchy, the obligation that
describes it will be provable before the proof linker attempts to check it. As a result,
every potentially provable obligation will be provable when it is discharged by the proof
linker.
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