UNIVERSITY OF CALIFORNIA
Santa Barbara

Modeling, Predicting and Reducing Energy
Consumption in Resource Restricted Computers

A Dissertation submitted in partial satisfaction
of the requirements for the degree of
Doctor of Philosophy
in
Computer Science
by

Selim Qirun

Committee in Charge:
Professor Chandra Krintz, Chair
Professor Rich Wolski

Professor Tim Sherwood

March 2007



The Dissertation of
Selim Qiriin is approved:

Professor Rich Wolski

Professor Tim Sherwood

Professor Chandra Krintz, Committee Chairperson

March 2007



Modeling, Predicting and Reducing Energy Consumption in Resoldestricted

Computers

Copyright © 2007

by

Selim Qirlin



To my parents, Mehmet and Fatm&@n,



Acknowledgements

| dedicate this dissertation to numerous people who sup@pttained and taught me
during my entire professional and academic life. Withowrtisupport, | could have
never achieved this stage of my career.

First off, | would like to thank my advisor, Prof. Chandra Knfor her relentless
motivation, almost infinite patience and tremendous suppduring the many years
that she mentored me, she always let me explore a wide arr@gedrch objectives; at
the same time, she also made sure that | had enough time tyimgjife in beautiful
Santa Barbara. | will make every effort to become a professarraentor as good as
Chandra. For everything she has done for me, | am and will a&veaygrateful.

| would like to especially thank Professors Rich Wolski andhTsherwood for
serving in my committee. In spite of their incredibly busyhedule, they not only
found time to read my dissertation and gave precious fedcllihey also helped me
shape my future career goals.

| also would like to thank all my friends in Racelab and Mayhena. Priya, for
being a great climbing partner. To Hussam, for our loud, ynbsckgammon games,
and for finding the title of my dissertation. To Sunil, Ling, land Ye, for always being
around, giving expert advices, and for helping me to focusngiresearch. To newer

students in our lab, for their help in refining my dissertatideas. | also want to thank



our department staff, especially to Mary Jane (now retirad)anda and Bee Jay, for
their incredible support.

| want to thank all my friends for making my life here much mergoyable, and
productive. Ahmet, Alphan, Aysu, @das, Emre, Erkan, Fatih, Isil, Orha@zdr,
Mustafa, Tolga and others. | will always miss the lunches spetial dinners that we
used to have. They created a community that is hard to refseatleere.

Finally, my deepest thanks go to my family. To Fatos, for sigpport and com-
forting during the ups and downs of a long Ph.D. education.mjoparents, Fatma
and Mehmet @rin, for their lifetime dedication to education and well+igiof their
children. To my brother and sisters for their endless pagawithout their love and

support, none of this could ever be possible.

Vi



Curriculum Vitee

Selim Girlin

Education

2006 Doctor of Philosphy in Computer Science, University dffGa
nia, Santa Barbara, CA

1999 Master of Science in Computer Science, Rensselaer Blohyte
Institute, Troy, NY.

1997 Bachelor of Science in Computer Science, Middle Eastrifech
cal University, Ankara, Turkey.

Experience

2002 — 2006 Graduate Research Assistant, University of CaiépSanta Bar-
bara, CA

2000 — 2002 Software Engineer, Ericsson Inc, Santa Barbara, CA

1998 — 1999 Graduate Teaching Assistant, Rensselaer Huhytelnstitute,
Troy, NY.

Publications

Selim Gurun, Chandra Krintz and Rich Wols®lWSLite: A Light-Weight Prediction
Utility for Mobile Devices(Extended version of Mobisys’04 work). Under submission
in ACM Transactions on Embedded Systems

Selim Gurun and Chandra KrintzA Run-Time, Feedback-based Energy Estimation
Model for Embedded DevicéBxtended version of Codes-ISSS’06 work). Under sub-
mission in ACM Transactions on Embedded Systems

Selim Gurun, Priya Nagpurkar and Ben Zh&mergy Consumption and Conservation
in Mobile Peer-to-peer Systemis the proceedings of first International Workshop on
Decentralized Resource Sharing in Mobile Computing and Nedwg (MobiShare),
September, 2006

Selim Gurun and Chandra KrintzA Run-Time, Feedback-based Energy Estimation

Vil



Model for Embedded Devicek the proceedings of ACM International Conference on
Hardware Software Codesign and System Synthesis (Codeg;IS&8ber, 2006.

Ye Wen, Rich Wolski and Selim Gurur§2DB: A Novel Simulation Based Debugger
for Sensor Network Applicationtn the proceedings of ACM International Conference
on Embedded Software (EMSOFT), October, 2006.

Ye Wen, Selim Gurun, Navraj Chohan, Rich Wolski and ChandratKrifrull Sys-

tem Cycle-Close Simulation of the Stargate Sensor Networkneiate Nodeln the

proceedings of IEEE International Conference on EmbeddedpOtan Systems: Ar-
chitectures, Modeling and Simulation (IC-SAMOS) July, 2006

Chandra Krintz and Selim GuruRemote Performance Monitoringn the proceedings
of Schloss Dagstuhl Workshop on Automatic Performance ysisl December, 2005.

Selim Gurun and Chandra KrintzAutoDVS: An Automatic, General-Purpose, Dy-
namic Clock Scheduling System for Hand-Held Devidaghe proceedings of ACM
International Conference on Embedded Software (EMSOFPteBaoer, 2005.

Selim Gurun, Chandra Krintz and Rich WolsIWSLite: A Light-Weight Prediction
Utility for Mobile Devices In the proceedings of Mobile Systems, Applications and
Services (MOBISYS), June, 2004.

Selim Gurun. Addressing the Energy Crisis in Mobile Computing with Develgpi
Power Aware SoftwareUCSB Computer Science Technical report, 2003

(Book Chapter) Selim Gurun and Boleslaw Szymangkitomating Internet Routing
Behavior Analysis Using Public WWW Traceroute ServiGsmpter in Managing QoS
in Multimedia Networks and Services,J. Neuman de Souza amb&aba, Springer,
2000

Selim Gurun and Boleslaw Szymanskhitomating Internet Routing Behavior Analysis
Using Public WWW Traceroute Servicés Proceedings of the third International Con-
ference on Management of Multimedia Networks and Servib#d$N), September,
2000.

viii



Abstract

Modeling, Predicting and Reducing Energy Consumption in
Resource Restricted Computers

Selim Qirlin

Recently, mobile, battery-powered embedded devices supkrasnal digital as-
sistants (PDAs), smartphones, and cellular devices, hagerbe ubiquitous and in-
creasingly capable. Worldwide, approximately 42 millionastphones and PDAs are
shipped in the first half of 2006, and the predictions indidhiat their sales will in-
crease more than 57 percent by 2007. Given the proliferatnohimportance of these
devices, users demand more capability from, and execufiamcoeasingly complex
applications on, these devices.

A key limitation on the utility of these devices is the bagteBince it is extremely
difficult to increase battery supply, the best option foreexting battery life is to use
software techniques and systems that are power aware. Thenost important tech-
niques that reduce energy consumption are computatioradffig and dynamic volt-
age scaling. In our work, we extend these techniques andtigege novel software
solutions to enable power-awareness for real devices ahdottware.

The goal of both offloading and DVS systems is to extend batifer without im-

pacting negatively the user’s perception of program parérce. Unfortunately, extant



approaches to both of these systems fall short in doing se.pfimary reason for this
is due to inaccuracies both in the measurement of past energgumption and in the
prediction of future program and workload behavior and uese availability. Thus, it
is the goal of our work to devise novel techniques and infuastires to improve the
efficacy of these two power-aware optimizations.

In our work, we first develop techniques that measure enayggumption of tasks
accurately. Our approach provides task energy estimatighs very low error margin
(3.8% to 4.6%) Second, we present a set of prediction toalsstnategies that make
accurate forecasts of future application and resourcevo@mha-inally, we show how
these techniques can be used to enable more effective offtpé2i7% to 56% less
wasted energy when compared to its competitors, and DVS ({8148% savings of
that has been previously possible). In all of our work, wesider real devices in use

today and popular software systems and workloads.

Professor Chandra Krintz
Dissertation Committee Chair



Contents

Acknowledgementé \Y
Curriculum Vitee Vil
Abstract IX
List of Figures Xiv
List of Tables XVi
1 Introduction 1
2 Background 7
2.1 Computation Offloading . . . . . . ... ... ... ... ..... 8
2.2 Dynamic Voltage Scaling. . . .. ... ... 11
2.2.1 Interval Schedulitﬁg ...................... 14

2.2.2 Interactive Task Scheduling. . . . . . .. ... ... ... 15

2.3 Our Hardware And Software Se&up ................. 19
231 VPerfmon. . . . . ... 23

3 Modeling Energy Consumption 26
3.1 HPMs To Model Program Power Behavior . . . . . . .. ... .. 28
3.2 Modeling Methodolody ........................ 30
3.3 Linear Regression For Modeling Computational Power Copsiom. 34
3.3.1 Problem Encountered In Model\ing ............. 39

3.4 Modeling Communication Energy Consumpﬁion .......... 46
3.5 MValidation . . . .. .. ... 49
3.5.1 ComputationModel . . . . . . ... ... ... 50

Xi



Predicting Energy Consumption at Run-Time

4.1 Extant OS Support For Measuring Energy Use. . . . . . . . . ..

4.2 Proposed Run-time Energy Prediction Mechanism . . . . .. ..
4.3 Evaluation Methodology . . . . . . .. ... ... ... ......

4.4 Resulﬂs

44.1

Decay Factorvs. Accuracy . . . . . . . . . . .. ... ..

4.4.2

Update Period . . . . . . . . . ... ...

4.4.3
4.4.4

Benefits From Offline Profiling. . . . . . . . ... ... ..
Battery Monitor Error Rate vs. Accuracy . . . . . . . . ..

4.4.5

Performance Of Complex Model . . . . . . . . ... ...

4.4.6

Performance Of Compact Model . . . . ... .......

4.4.7

ExecutionCost. . . . . . . . . ...

45 WhyRLS-ED? . . . o oo

4.6 RelatedWork . . . . . . .

4.7 Summaﬁy ...............................

Predicting System Resources For Reducing Energy Consumpti
5.1 Extant Resource PredictionSystems. . . . . . .. ... ... ..

5.2 Proposed Non-parametric Resource Prediction Tool . . . . . . .

5.3 Design Rationale . . . . . .. ...

\5.4 Validation . . . . . . ..

Experimental methodology . . . . . . .. ... ... ...

Evaluation Metrid:s ......................

5.4.1
5.4.2
5.4.3

Predictor Accura&y ......................

5.4.4 Computational Cost Of Prediction. . . . . . ... ... ..

5.4.5 \ValidationSummary . . . . .. ... ... L.

55 Summaﬁy ...............................

Improving Computation Offloading

6.1 Resource Prediction in Remote Execution . . . . . . . .. .. ..

6.2 Methodology. . . . . . . . . ..

6.3 SimulationResults . . . . . . . . ...

6.4 Summaﬁy ...............................

Xii

86
87
95
96
105
106
108
110
115
117
121

123
124
126
132



7 Improving Dynamic Voltage Scaling
7.1 Predicting User Interactivity ForDVS . . . . . . . . . . . . . ...

7.22 CPULoadSensor . . . . . ... .. .. ... .......
7.2.3 Platform Specific Design Constraints. . . . . .. .....
7.3 Collecting User Interactivity Traces . . . . . . . . . ... .. ...
7.4 EvaluationMetrics . . . . . . . . ...
7.5 Resulﬂs .................................
7.5.1 Interactive Workloads . . . . . .. ... ... ... ... .
7.5.2 ConcurrentWorkloads. . . . . . . . ... ... ... ...

7.5.3 Integrating PACE . . . . . . .
7.6 SUMMANY . . o o oo

8 Conclusions
\8.1 Directions For Future Research. . . . . . . . . . . .. ... ...

Bibliography

Xiii



List of Figures

2.1 Components of a typical remote execution sybtem .........
2.2 PXA-270 power consumption for different voltage-freqay pairs. .

2.3 CPU performance scaling on a typical embedded processar. . .
2.4 Test b)ad ................................

3.1 Error rate for the computationmodel.. . . . . . . ... ... ...
3.2 Error rate for the communicationmodel. . . . . . . . . . ... ..

4.1 Block diagram of proposed run-time power predictionenyfst Ce
4.2 Decayfactorvs.accuracy . . . . . . . . ...
4.3 Staticvs. adaptivemodels. . . . . .. ...
4.4 RLS-ED update frequency vs. accuracy . . . . . . . .. ... ..
4.5 Benefit from an offline profiler . . . . . . ... ... ...,
4.6 RLS-ED execution COSt. . . . . .. .. ...............
4.7 Recursive least squares memory shaping . . . . . . ... .. ..

5.1 Error matrixforarealinput. . . . . .. ... ... .. ... ....
5.2 Costmatrixforarealinput. . . . . ... ... ... ... . ....
5.3 NWSLite relative errorrate. . . . . . . . ... ...
5.4 NWSLite predictor predictability. . . . . .. ... ... ... ...
\5.5 Forecaster cost as number of instructions executed. . . . . . . .

6.1 Pseudocode for Scenariol Decision Manager. . . .. ... ...
6.2 Percentage of wrong decisions . . . . . . . .. .. ...
6.3 Costofwrongdecisions . . . . . . . . ...

\7.1 GUI event inter-arrival times for Solitaire . . . . . . . . . ... ..
7.2 GUI event inter-arrival times for Tetrix. . . . . . . . . . ... ...
7.3 GUI event inter-arrival times for Opieplayer. . . . . . . .. .. ..

Xiv



7.4 AutoDVS policy stack and arbiterrules . . . . . . . ... .. ... 149
7.5 iPAQ H3800 clock scaling requesttiming. . . . . . ... ... .. 152
7.6 Performance of AutoDVS and IDEAL for interactive worltls . . . 165
7.7 CPU dtilizationinCheckers . . . . . . . ... ... ... . .... 166
7.8 Performance of AutoDVS for interactive and soft-remidiworkloads 168
7.9 Simulated energy savings ratio with respect to AutoDVS . . . . . 172
8.1 Power management using Foxton technology . . . . . . . . . .. 178

XV



List of Tables

3.1 Training and reference benchmarks. . . . . . . .. ... ... ..
3.2 Coefficient and fit statistics for the computation model. . . . . . .
3.3 Correlation among model parameters. . . . . . . .. .. ... ..
3.4 Principalcomponents. . . . . ... ...
3.5 Coefficient and fit statistics for improved models. . . . . . . . ..
3.6 Communicationenergymodel. . . . . . .. ... ... ... ...
4.1 Inputvariables in derived power models . . . . . .. ... .. ..
4.2 Predictionbenchmarks. . . . . . . .. .. ... ... ... ...
4.3 Comparison of model error rates, updating eyegy 100 intervals.

4.4 Comparison of model error rates, updating evegy 200 intervals.

4.5 Comparison of model error rates, updating eyesy 400 intervals.

5.1 NWS forecasters and the approximate costs ofeach . . . . . . .
5.2 Datasets used for evaluation. . . . . . .. .. ... .. ... ...
5.3 NWSLite evaluation benchmarks . . . . . . .. .. ........
5.4 Error deviation for a set of representative traces. . . . . . . . ..
5.5 Execution cost comparison per prediction . . . . . . ... .. ..
5.6 NWSLite Resultsinsummary . . . . . . .. .. ... ... ....
6.1 Power consumption of iPAQ under different scenario$\[88 C
6.2 Overviewof3-Dobjects.. . . . . . ... ... ... ... . ....
6.3 Expected penalty forawrong decision . . . . . . ... ... ...
7.1 Interactive events that we monitor. . . . . . ... ... ... ...
7.2 Intel SA1100 parameters. . . . . . . . ... ...
7.3 AutoDVS evaluation benchmarks and eventtraces . . . . . . . .
7.4 PPACE simulation parameters. . . . . . ... ... ... ... ..

XVi

37
39
43
45
48

65
67
75
76
77

98
105
107
111
116
118

130
132
138



Chapter 1

Introduction

Recently, mobile, battery-powered embedded devices symtragnal digital assistants
(PDASs), smartphones, and cellular devices, have beconmpiitdiis and increasingly
capable. Worldwide, approximately 42 million smartphoaed PDAs are shipped in
the first half of 2006, and the predictions indicate thatrthales will increase more than
57 percent by 2007 [83]. Concurrently with the proliferateomd growing importance
of these devices, users demand more capability from, ancugga of increasingly
complex applications on, these devices.

A key limitation on the utility of these devices is the baytefhere are three ways to
increase the battery lifetime in these devices: by increplsattery supply, by decreas-
ing battery demand, or both [4, 14, 71, 18, 53, 59, 17, 16, 8]L, 8nfortunately, it is
very difficult to add to battery supply. The capacity of a battdepends on the chem-
ical properties of the material that the battery is made oéwNnaterials with more

energy capacity are only made possible through complexresige and time consum-



Chapter 1. Introduction

ing research. The capacity of the most efficient battery nésincreased 3 to 4 times
in the last three decades despite significant effort [14}edktively, it is possible to
extend battery capacity by simply adding more batteriehefdame type, however,
this is highly undesirable since doing so increases the s@#, and the weight of the
device, which reduces devices mobility and cost-effeotss.

To reduce the demand placed on the battery, we can reduceedesidware (ca-
pability) or use software techniques to optimize battemy. i8educing energy demand
by cutting back hardware functionality is undesirable. Terket trend and consumer
interest continue to be towards devices that are more capdp]. Newer and higher
performance hardware components (which consume the Yaitter faster rate), such
as short and long range wireless interfaces, high capaeith fstorages, and 32-bit
CPUs are becoming increasingly common in mobile devices. ekistence of these
components is critical in many, key applications.

Thus, the best option for extending battery life is to useveafe techniques and
systems that angower aware Effective software approaches have become increasingly
common in an effort to address this mobile computing energgisc In our work,
we extend these techniques and investigate novel softwéwgans to enable power-
awareness for real devices and real software.

In particular, this dissertation focuses on the infradtriesto support and enable the

two most effective, extant, software optimizations for rggye Computation offloading



Chapter 1. Introduction

and dynamic voltage scaling [77, 28, 17, 18, 53, 26, 65, 41688 Computation of-
floading is a technigue for executing parts of an applicationotely on a more capable
or wall-powered computer. This application uses reachadn@puter systems to extend
the battery life and capability of resource-constrainedbireadevices. The importance
of this approach comes from the fact that offloading can recaewer consumption
potentially with no performance degradation. Thus, it isnguitable for applications
such as wearable computing, augmented reality, image gsimcg and speech recog-
nition [53, 41].

However, the benefits of remote execution are highly depgratenumerous vari-
ables including computational complexity of the offloadaskt performance and inter-
activity expectations of the user, suitability of local aredhote computation platforms,
and network capacity. Offloading systems must measure pdgiradict future behav-
ior, resource availability, and energy consumption for demiange for resources: task
execution and response time, network bandwidth, netwaekné&y, and CPU load and
performance of the local and remote computer systems. Isareenent or prediction
is inaccurate, offloading systems can degrade performago#icantly and consume
additional energy.

Dynamic voltage scaling (DVS) is the process of changingdioek frequency
and voltage of the mobile device during execution of prograand workloads [77,

28,17, 26, 41, 88, 64]. DVS trades off performance for ensagyngs. By reducing



Chapter 1. Introduction

the voltage and the frequency of the CPU, we can have a quae@fédict on energy
reduction. As a result, dynamic voltage scaling has theniatiefor reducing energy
consumption significantly. However, to ensure that DVSasi$parent to the user, we
must use it in a way that best balances performance for esangggs. In particular,
we must predict when the future CPU demand and unused CPU tapaables us to
reschedule the CPU clock without any perceived executi@néat As is the case for
computation offloading, the prediction of these resourcespgogram behaviors must
be very accurate for DVS to be useful.

The goal of both offloading and DVS systems is to extend batier without im-
pacting negatively the user’s perception of program parérce. Unfortunately, extant
approaches to both of these systems fall short in doing se.pfimary reason for this
is due to inaccuracies both in the measurement of past egerggumption and in the
prediction of future program and workload behavior and uese availability. Thus, it
is the goal of our work to devise novel techniques and infuastires to improve the
efficacy of these two power-aware optimizations. First, dentify and develop new
techniques for accurate measurement of energy consump8arprisingly, the only
mechanisms available on existing mobile devices for energgisurement are coarse-
grain battery monitors that are highly inaccurate. Witlcmaate measurements of past
consumption behavior, it is virtually impossible to makewate predictions of future

behavior. Second, we present a set of prediction tools aatkgtes that can be used on



Chapter 1. Introduction

resource-constrained devices, with low overhead, thaeraakurate forecasts of future
application and resource behavior, including task exeauime, interactivity session
length, wired and wireless network bandwidth and latenegt, @PU load and availabil-
ity. Accurate forecasts for these behaviors and resoureesital for the efficacy and
thus, wide-spread use of computation offloading and DVS ddeer, we provide these
forecasts in a unified prediction framework that requiresnpat, calibration, offline
execution of programs, or any other type of user partiogpatiNo such system exists
that does so to our knowledge, prior to our work. Finally, \Wwevg how our approaches
and energy-aware software systems can be used to enableffeate/e offloading and
DVS that has been previously possible. In all of our work, wasider real devices in
use today and popular software systems and workloads.

We organize the dissertation as follows. Chapter 2 presbet®i¢cessary back-
ground of our work and overviews existing systems on whichbwid and extend.
This section describes two power saving strategies on whk&focus: dynamic volt-
age scaling and computation offloading in greater detail. e use this section to
describe the characteristics of our empirical evaluatiatfgrm and to and present the
energy metrics that we use. Chapter 3 discusses novel wayammadel energy con-
sumption to enable accurate measurement of energy consunmpt battery-powered,
mobile and resource-constrained devices. Chapter 4 peeaenn-time, dynamic en-

ergy estimation mechanism for these systems. Chapter 5sdissyrediction mecha-



Chapter 1. Introduction

nisms that exist in current systems and shows how they campmved. Chapter 6
and 7 discuss how we extend battery life by using our measmeand prediction
techniques for offloading and dynamic voltage scaling. IRin€hapter 8 concludes

the dissertation presents a summary of our key contribsition



Chapter 2

Background

While there are many strategies to reducing energy consampfian application,
two have proven to be the most effective in doing so: Compatatiffloading and
dynamic voltage scaling (DVS) [77, 28, 17, 18, 53, 26, 65,88,,64]. In this disser-
tation, we present the infrastructure and support systemmpoove and enable these
optimizations to achieve energy saving levels that areifsagntly higher that those
that are available today. In this chapter, we overview edthese complementary op-
timizations and their related work to expose the infragtirenecessary to enable their
efficacy in extending battery lifetime in battery-poweregsource-constrained devices.
We also overview the target platforms on which we focus andildde empirical eval-

uation setup that we use (Section 2.3).



Chapter 2. Background

2.1 Computation Offloading

Computation offloading (which is also known as remote exeauin the litera-
ture) extends the computational power and battery life ¢ttebgpowered devices by
partially executing tasks on more suitable computers [5964, 41, 88]. Offloading
systems attempt to reduce power consumption potentiatly ma performance degra-
dation. Thus, it is very suitable for interactive tasks andtimedia applications with
soft deadlines that impose implicit performance restiitdi on hardware. Offloading
has been shown to be effective for reducing demand on thédegae and extending
battery life for applications such as wearable computingnaented reality, and speech
recognition [53, 41, 18, 65, 64].

The benefits of remote execution are dependent on numeroables which in-
clude the computational complexity of the offloaded task, glerformance and inter-
activity expectations of the user, the suitability of thadoon the local and remote
computation platforms, and the network capacity. Consettyyehnot executed ap-
propriately, remote execution can lead to decreased peaioce and increased energy
consumption.

Figure 2.1 depicts the general design of a remote execuwgtem. A remote exe-
cution system offloads application tasks from battery-pedenobile devices to wall-

powered, higher-performance servers. To decide whethartecylar task should be



Chapter 2. Background

MOBILE DEVICE A VR (ED

RESOURCE RESOURCE
SUPPLY DEMAND

Memory Application

SUPPLY

— Execution
Time
CcPU — Fidelity CPU

Battery Memory

Network Bandwidth / Latency.

Figure 2.1: Components of a typical remote execution system. The decmiocess
includes forecasting the available resource supply botthaitclient and server and
application resource demand.

offloaded, a remote execution system must first computeeth@urce demandf the
application task. Demand can be defined using differentiosesuch as CPU cycles,
network bandwidth, memory pages, etc., according to theathgoals of the system.
To determine how best to accommodate demand, a remote xesystem must
evaluate how best to employ gsipply— the set of resources, local and remote, that it
has available to it for task execution. The system computestiver computation off-
loading will be beneficial, according to its set of consttsjmising a cost model. When
cost of local execution exceeds that of remote executiansyistem off-loads work to
the server. The cost model must consider both the task ezaaitaracteristics as well
as the highly-variable performance of the underlying resesithat dictate computation
and communication performance. However, constructingcantecost function is non-
trivial since hardware components have many shared resssech as buses and DMA

devices, that implement specific arbitration and prioribiges.



Chapter 2. Background

While computation offloading is a powerful technique that caduce computa-
tional requirements and power consumption significanttyabuse can easily lead to
counterproductive results. When the cost of network trarnisf®o high, or when the
remote server is too loaded, the cost of offloading can extteeaost of local exe-
cution. To prevent this, we have to identify and compute thergy cost of major
offloading cost constituents; offloading to remote serveiting for remote computa-
tion, and bringing the results back to local machine. We ha#see to compute the local
energy consumption, so we can compare which path (offloadintpcal execution) is
best.

Computing the local and remote cost requires predictingl land remote CPU
availability and demand, network state (latency and badthyj and energy consump-
tion of tasks. In Chapter 4, we discuss how to measure taskjgeensumption. In
Chapter 5, first we describe how extant systems measure agidtmesources that are
important for computation offloading (Section 5.1), andtne& suggest an adaptive,
dynamic resource prediction technique for these resoyf®estion 5.2). Finally, in
Chapter 6, we discuss how much extra power savings are ppssita result of extra

accuracy that our prediction technique provides.

10



Chapter 2. Background

2.2 Dynamic Voltage Scaling

In modern, embedded-device CPUs, a significant portion afggrie dissipated in
the form of dynamic power consumption [67, 51]. Dynamic poisa function of CPU

voltage and frequency and is approximated by:
Px V2f (2.1)

Thus, reducing the voltage level provides energy savingsdhe proportional to the
square of the voltage reduction.

As the above equation indicates, it is possible to reducespaansumption of a
general-purpose processor by reducing its clock speedetmyweducing clock speed
alone does not conserve energy since any reduction in CPQrperhce are offset
by a proportional increase in task execution time. Key todieamic clock scaling
is the dependency between voltage and clock speed; the CRageatan be lowered
in proportion to CPU clock frequency. This provides substdsaivings —executing a
task ina 0.75V setting instead of 1.5V one reduces CPU energguenption by almost
75%. In practice, the savings are slightly less becauseatt $¢akage.

Figure 2.2 shows the power consumption of an Intel PXA-270 (3at different
voltage/frequency settings. The x-axis shows CPU frequehlog y-axis shows CPU
power consumption. The numbers in the plot area show canespg CPU core volt-

age for each frequency level. The upper and lower boundafibe gray area show the

11



Chapter 2. Background

Power (mW)

13 104 208 312 312 416 520 624
Clock Frequency (mHz)

Figure 2.2: PXA-270 power consumption for different voltage-frequepairs. The

x and y axis show CPU frequency and power, respectively. Timebeus in the plot
area show corresponding CPU core voltage for each frequewney. I The upper and
lower boundaries of the gray area show the typical and idéeggnconsumption for the
CPU, for each power/frequency pair. There are two 312 MHanggtone with lower

bus speed, and the other with a higher one.

12



Chapter 2. Background

925mwW |
Task A at 624 Mhz
Idle Power Cons.
o)
o 3
)
375mW Q
Task A ati312 Mhz

Time t 2t

Figure 2.3: CPU performance scaling on a typical embedded processocukng
Task A at full performance level causes it to finish well befthre deadline, using more
energy. Executing same task at lowered performance leesl less energy, and still
completes the task before its deadline. We took the powerbemnfrom PXA-270

manual [32].

typical and the idle energy consumption for each powernlfeagy pair. There are two
312 MHz settings, one with a lower bus speed, and the othéranigher one. For in-
creasingly higher performance levels, the idle energy @waommsion is significantly less
than typical active energy consumption level.

Scaling of the voltage requires scaling the frequency irstimae proportion to meet
signal propagation delay requirements [62]. Frequenclrggaand thus voltage scal-
ing, results potentially in linear performance loss andioedl system responsiveness.

Figure 2.3 illustrates how dynamic voltage scaling attemmiptreduce power con-
sumption without imposing a perceivable performance |losthe application or work-

load. When the CPU has more CPU cycles available than a task depmatecuting

13



Chapter 2. Background

the task at a lower performance level uses less energy, angdletes the task before
its deadline, while executing the task at full performar®esl uses more energy for
executing the task and while idling.

To minimize perceivable negative performance impact aneintable energy con-
servation of voltage scaling, DVS policies must estimateriiworkload and choose
the most appropriate CPU level. Accurately predicting fetworkload is challenging
yet vital for efficacy and widespread use of DVS systems. pediction can result in
setting the CPU level too high, curtailing power savingsnaetting the CPU level too
low, producing an unresponsive system. There are two majstirey approaches that

address this challenge; interval schedulers and inteeatask scheduling.

2.2.1 Interval Scheduling

Interval schedulers [77, 28, 26, 72, 3] divide the workloatb ifixed-length time
intervals. These techniques use measurement historyitoagdstthe workload in a fu-
ture interval. For example, the PAST interval schedulet p8sumes that the load in
the next interval will be same as that in the last intervag /Gy interval sched-
uler [77, 28] assumes that the next interval is an exponemiiing average (using
a decay factor) of the N previous intervals. Other internchleslulers use observation
heuristics [26] and more sophisticated statistical egtonamethods [72] to estimate

workload.

14



Chapter 2. Background

The efficacy of interval scheduling however, has proven tdirbged in practice.
Extant approaches use fixed-length, short intervals,1-60ms, to accommodate for
responsiveness requirements of interactive applicatidt®vever, for most applica-
tions the utilization pattern is visible only when deplayifunctions that span a larger
period. For example, for an MPEG application, this patteay mot be visible even
with a one second moving average [28].

Another limitation of prior approaches to interval scheéwdlglis that they require a
very short voltage switch latency (on the order of hundrddsioroseconds) [28, 16].
Even though this rate is achievable in high-end specialiBUs, e.g., the Transmeta
Crusoe, most low-end handheld devices such as the HP iPAQ wsle sirmpler hard-
ware. Moreover the operating system must alert all synéheonperipheral devices
that CPU speed is changing. These implementations can seymify increase the time
required to complete a switch between frequency levels.nEkeugh the improve-
ments in CPU/hardware technology mitigate this problemntle Iiit, it may still be an

important issue in practical implementations.

2.2.2 Interactive Task Scheduling

Prior DVS studies have focused on classifying tasks intéent groups, each
with a customized policy. [17] suggests three groups: auive, periodic, and back-

ground tasks. For interactive tasks, the system computgesghmum performance

15



Chapter 2. Background

factor (OPF). The OPF is the fraction of CPU speed requiretbtoptete a task no

later than the user perception threshold. [17] defines ltheshold as 50 milliseconds.
The system in this prior work estimates the CPU load for a algr task in an inter-

active episode using an average of past CPU demand of theatagited by episode
duration.

A periodic task consists of a producer-consumer pair. Tlséesy schedules a pe-
riodic task using an estimate of the time period between dmeptetion of a producer
and the start of a consumer. The system computes CPU speethatiphoducer ends
immediately prior to when the consumer starts; the systess tlee same CPU speed
for both the producer and consumer.

Vertigo [16] is a refined and simplified implementation ofstlapproach. Instead
of categorizing tasks as producer and consumer, Vertigataias individual CPU uti-
lization statistics for each task. It recomputes CPU utilcraeach time it attempts to
reschedule a task. To identify interactive tasks, Vertigmitors GUI events. When
an event arrives, it marks the window manager and the retipieGUI event as in-
teractive. If any task communicates with an interactivé tdertigo marks it also as
interactive. The interactive period continues until allrkeal tasks are pre-empted by
other tasks. Marking can be quite complex to implement, slisstaan use a variety of
methods to communicate. Unfortunately, the implementatietails and source code

of Vertigo are not publicly available.

16



Chapter 2. Background

Lorch et al. suggest an approach that specifically targetsinteractivity [49]. The
system labels a user event with the type of GUI event thaates it, e.g., a key-press,
mouse-click, or drag event. Each event type has a separafefdolcy. The authors
of this approach compute the CPU schedule using PACE [48]. PA@HEheuristic that
the authors have proven to be optimal for computing CPU spdeshwa) CPU can
change frequency on a continuous scale, (b) all task dessdéire known, and (c) the
cumulative distribution function (CDF) of task CPU demandns\n.

All approaches that target user interactivity must overedhe challenge of de-
termining when a task will complete without assistance ftomapplication. The ap-
proachin[17] requires task completion time to update tasketion time; the approach
in [49] uses task completion time to compute task CDF and deadlhe former so-
lution is precise, but is inherently complex; it requiresmtoring system calls and
communication between threads. The latter solution suggesevent is complete if a
new event is posted or the idle thread is running and no I/@ge®mg. Even though this
second approach can occasionally mis-classify a task apletenit is more attractive
due to its simplicity.

For the dynamic voltage scaling to be beneficial, we must makethat, (1) energy
cost of task execution at reduced performance level is Idlagar executing the task at
higher performance level, (2) extra execution latency ateloperformance level is

transparent (or at least acceptable) to the user. While bssiple to compute (1) by

17



Chapter 2. Background

approximating the energy cost using Equation 2.1, achigf@hrequires measuring and
predicting task demand, CPU availability and user expeaxtat{tolerance to latency).
In achieving (2), the techniques above use past resourceuregaents to predict the
future, using exponential smoothing techniques. Chaptés&udses these prediction
techniques. Here, we also discuss our own approach to piregfature state of CPU,
both for demand and availability.

The interactive scheduling techniques do not try to preaicacceptable user la-
tency (which is hard), instead, they assume a fixed deadlser (perception threshold
of 50 milliseconds [69]) for each user interactive task acitkslule the tasks such that
they execute within the deadline. However, task demand dag tknown. They do
this either using cumulative distribution function, or filiag, or at run-time, dynami-
cally. Furthermore, they have to measure and predict CPUbaénigty to compute task
execution latency. Section 5.1 of Chapter 5 discusses thageat detail.

Interactive tasks are not the only type of tasks in an interasystem; there are
batch tasks that are executed either in association witintaective ones, or as stand
alone (MP3 decoding, OS daemons, etc). An interactive D\&%esy has to combine
both to successfully schedule task execution in a powectafeeway. In Chapter 7,
we discuss the design, and validation of such a system in al@ogesource-restricted

computer.

18



Chapter 2. Background

PowerTool

o High-precision
=" Data Acquisition Device

Figure 2.4: Test bed

2.3 Our Hardware And Software Setup

Accurately understanding and characterizing energy behe\critical for the tech-
niques that are developed and evaluated in this dissertaii@ do this using a state-
of-the-art test bed. The test bed includes a high-precisgmilloscope, a variety of
embedded computers, a power supply and a desktop compaterditects and ana-
lyzes data.

Figure 2.4 shows the the test and measurement setup. ltdeghitightly integrated

suite of four tools to monitor program energy, power, and Cetiggpmance.

19



Chapter 2. Background

e A device driver and Linux kernel patches, called VPerfmbat £nable and con-

trol HPM, power, and energy profiling.

e A user program, called VPMon, that executes a submittedrproginder the

control of VPerfmon.

e A user program, called SCL, that dynamically switches CPUueagy level.

o A Windows XP GUI program called the PowerTool, that monitansl controls
the lab equipment (oscilloscope and power supply), andteetexperimental

parameters.

The test setup monitors program power consumption at a veey dranularity
(thousands of times/second) and high accuracy (1mW reésojuising the data ac-
quisition device. The setup can measure the energy consumgdtthe device and its
PCMCIA cards (the wireless card and the compact flash) indegetlyd and concur-
rently.

VPMon executes on a Linux-operatedget device It acts as the user interface to
the target device that executes the submitted program amdot®and collects hard-
ware performance monitors (HPM) data by interacting withexffon. VPMon and
VPerfmon are portable to any platform that runs Linux andlengents hardware per-

formance counters.

20



Chapter 2. Background

Our target device is the Stargate sensor network interfeedi@ade. The Stargate
is representative of modern battery-powered, resourcst@ned devices as it imple-
ments the recent PXA-255 XScale processor and a wide rangepoiar 1/0O devices.
Architecturally, and it terms of computational resourdéss similar to an HP iPAQ
H5550 without any LCD display. Both devices have 400 MHz CPU, BARAM,
and can operate under same Linux operating system. TheaSdrgwever, has its
power supply pins exposed. Thus, it is more suitable for nm&&g computation and
communication power consumption.

The test setup consists of an Agilent N54621A deep-memanijl@scope that mon-
itors the current passing through a high-precision resistmnected to the Stargate
power supply. The oscilloscope has a connection to a wdrstéhrough a general
purpose interface bus (GPIB). The PowerTool executes on tiikstation and reads,
analyzes, and saves the collected data. The PowerTool @tmls a high-precision,
programmable power supply, the Agilent E3648A. In power sneament setups that
are powered by battery or wall power, fluctuations in supifage introduce an ad-
ditional error. The Agilent E3648A minimizes these erroysfdroviding a precise,
constant voltage supply to the embedded test board.

The oscilloscope samples the voltage drop on the resistt®@Q mes per second
and records the measurements in its memory in real time. Y&ethe waveform at

offline by interpolating measurements after we downloadntfi®m the oscilloscope

21



Chapter 2. Background

to our local machine. We use the interpolated data to meanesyy consumption
at a particular time. Mapping this information to operatsygtem/software threads
requires knowing when these tasks were executing —in osctlpe time (since the en-
ergy samples were collected using oscilloscope timestanipgortunately, the oscil-
loscope and our target embedded board operate their onegpendent clock domains,
thus this information is not readily available. We solvesthroblem by synchronizing
oscilloscope clock. By connecting one oscilloscope chatmeh output port of the
embedded computer, we signal the enter/exit times of dpgraystem threads to the
oscilloscope. We then use this information to identify wiagtask entered and exited,
and how much energy it consumed. Again, this computatioomedt offline, with no
overhead to run-time system.

The SCL driver scales the CPU speed of the Stargate if desiteel STargate pro-
cessor, the PXA-255, has a very flexible CPU clock implemenmahat users can
configure to set memory, bus, and CPU core speed independ€&hdye are currently
five valid configurations (due to timing constraints). SCLlara users to manipulate
the configurations at runtime and compiles a log of the newdjpaevice, and the time

at which it implemented the changes the clock speed (usingosecond resolution).

22



Chapter 2. Background

2.3.1 VPerfmon

VPerfmon is the control center for program profiling. VPeofmprovides virtual
hardware performance counters to each application. ThedH®BMefault count global
CPU events, i.e. they do not track events at the program oadhevel. VPerfmon
provides a layer that multiplexes the counters and thatleaaelective monitoring of
particular programs and threads. VPerfmon implementstaatimstruction per cycle
(IPC) counter by tracking instructions (cycles are trackgd&fault on most devices).
The virtual counters are 64bits in size to reduce overflovbl@ms. It is possible to
selectively enable/disable sampling during the monitprifhis functionality is similar
to the middlewares like PAPI [58]. However, the extant m&ldhre does not support
our target CPU at present.

In our target device, the Stargate processor, the PXA-2Bpleiments three 32-bit
event counters; the hardware uses one to monitor dynantk cieles. VPerfmon sets
the remaining counters to any two of the 14 events suppoiked.VVPerfmon virtual
counters reflect the same architecture ( (i.e. extended bit§y it uses one counter to
count CPU clock cycles and the other two to monitor events.

VPerfmon interfaces to and monitors other system eventsct@ase the accuracy
of the HPM profiles. When the VPMon initiates a new programoittacts VPerfmon.
The VPerfmon driver allocates a set of virtual counters Fa& hew task. Similarly,

VPerfmon allocates a set of virtual counter when a procedsuhe control of VPerf-

23



Chapter 2. Background

mon forks a child process. When the kernel performs a contextis to a task under
VPerfmon control, VPerfmon configures and enables the epsntWhen the task is
suspended or terminates, VPerfmon stores the virtual HPMs.

To isolate application and operating system performanoe, MPerfmon kernel
patch disables HPMs on interrupt entry and re-enables theexi. This operation
requires a read-modify-write cycle that is equal to threea8 instructions. As a re-
sult, the patch does not significantly increase interrugiiey.

VPerfmon facilitates interval-based data collection i@ &PIO pin on the develop-
ment board. Initially the GPIO pin is reset to logic O on prgrstart. During program
execution, VPerfmon toggles the pin’s value at then end efyeinterval. VPerfmon,
as mentioned above tracks interval lengths (arbitrary edfixising some performance
event specified by the user. For the data in this paper, wengs@iction counts as the
event and fixed-length intervals of 10 million instructioii$ie oscilloscope is equipped
with two channels. One channel monitors the voltage shwtar to measure power
consumption. The second channel monitors the GPIO pin tRatfvhon toggles. Us-
ing this setup, our setup is able to log and track power, gnargl performance data at
interval boundaries.

We use the described setup to measure task energy consaojrptidevelop our
power models and to validate our results. In Chapter 3 and €hdptwe discuss

energy modeling, measurement and prediction at run-tinexe@ping and validating

24



Chapter 2. Background

these models require collecting an enormous amount of detiaiding thousands of
samples over a large number of benchmarks (given in respectiapters). Having
such a setup reduced the overhead of data collection timdisantly while improving

the accuracy of the collected data.

25



Chapter 3

Modeling Energy Consumption

Understanding and accurately characterizing energy copson is key to opti-
mizing energy consumption of resource-restricted deviégsergy consumption of a
program is highly variable depending on executed instoactype, CPU performance
level, memory and I/O activity. In order to optimize powehbeior effectively, power
aware systems have to know how much a program task costsns tdrenergy. While
it is possible to define this cost using program executiore ti@PU cycles, or simi-
lar metrics, these metrics cannot capture the variatiomognam power consumption.
Power must be measured using its own metric, Watts and Joules

There are extant tools that measure program energy consumaaicurately. How-
ever, these tools require highly specialized setups. Psmope [21] and JouleTrack [73]
are two of these. Using very precise lab equipment, and psinarlators, they create
profiles that attribute program energy consumption to iiddial tasks and threads. De-

velopers can use this information to identify and optimize tasks that consume sig-

26



Chapter 3. Modeling Energy Consumption

nificant amounts of energy. The progenitors of these toals Baown that significant
power savings are possible from optimizing tasks duringyam development.

Without similar tools however, we cannot accurately measagsk power consump-
tion on the device itself while it executes applicationsislib because, current device
technology exports only inaccurate, coarse-grained tydtkeel information. This data
can only be detected at large measurement intervals (jgieglattributing energy con-
sumption to fine-grained program activities such as instvas). Moreover, this data
fluctuates, is non-monotonic, and inaccurate due to enwviesrial and chemical effects
and to efforts to keep the cost of batteries low. Unfortulyateccurate, online mea-
surement is key to enabling dynamic optimization techrsqimat extending battery
life. Such techniques use dynamic profile information of la¢tery consumption of
a task or program to estimate future energy consumption@rakntify opportunities
for optimization [87, 65, 55, 86, 47]. If the measuremengadzittask activity is coarse-
grained and inaccurate, these techniques will make incodecisions that limit their
energy savings or actually cause the system consume magyehan it saves.

The goal of this chapter is to analyze and understand theuwlifes in modeling
full system energy consumption. While its main goal is to piéaeeway to a dynamic,
run-time power prediction system (which we present in négipter), this chapter lim-
its itself to exploring challenges in a static, offline mad&his chapter starts with a

discussion of use of hardware performance monitors in nroglehergy consumption.

27



Chapter 3. Modeling Energy Consumption

It proposes that these counters should be complementedaitthare counters for high
level energy estimation. Section 3.2 presents modelingnodetogy. Section 3.3 dis-
cusses modeling computational energy consumption anémisea way to resolve the
dependency related problems within the linear model. 8e&i4 discusses how to
model I/0O devices that do not have hardware performancetorsniSection 3.5 evalu-
ates the proposed ideas by comparing model output to measaote collected using a
real device. Section 3.6 discusses other modeling appesa8ection 3.7 gives related

work. Finally, Section 3.8 discusses our findings and catedithe chapter.

3.1 HPMs To Model Program Power Behavior

Most modern processors have a hardware performance magitanit (HPM) that
capture CPU performance data and make it available to dexeslaggnd users. The
monitoring unit has a set of accumulator registers. Whenledathese registers count
the occurrence and duration of major hardware events, i€hB misses, cache hits,
branch mispredictions, etc.

HPM events provide significant insight into program beheviodeed, these events
have been used successfully to model CPU energy consumptivary studies [7, 12,
36, 35, 39]. These studies develop models for energy consoumpf the CPU alone

and CPU and memory subsystem in isolation. Their findings sthaw first-order,

28



Chapter 3. Modeling Energy Consumption

linear models that map HPM events into CPU power consumptonachieve high
accuracy. In our study, we use HPM counters to model fullesygiower consumption.

Modeling full-system energy consumption is more comple@ntimodeling CPU en-
ergy consumption. First of all, itis hard to monitor memocyiéty accurately [12, 39].
The challenge in memory is that, at present, HPM events gedittle insight into mem-
ory behavior —there is no direct HPM event that monitor mgnamcess rate in most
CPUs. In addition there are no hardware events that provsighhinto 1/0O activ-
ity. Many 1/O devices have their own firmware or microcodet iten asynchronously
change their power states. These state changes are cdynpimtsparent to CPU and
the HPM unit. Furthermore, large 1/0O data transactions gglyeuse direct memory
access (DMA), —the HPMs cannot capture these.

Even though these micro level transactions cannot be aptay HPM counters,
[46] shows that macro level changes (i.e. a lower instrastiper clock cycle, higher
data stalls, etc.) in program behavior are enough to mo@epbtwer consumption.
The study in [46] is developed using a device with a SCSI didkey8] memory hier-
archy and a MIPS CPU. It uses a static, customized linear segme model for each
individual operating system routine, and demonstrategla jmediction accuracy.

Unfortunately, modeling each 1/O call individually is noivtal. There are numer-

ous I/O devices and same /O call (such as read, write) casdto access a number

29



Chapter 3. Modeling Energy Consumption

of different devices. Modeling and maintaining a power mddeeach 1/0O device and
an operating system call is not scalable.

This chapter proposes a different approach to monitor 1/€gynconsumption.
Here, our approach is to capture 1/0O behavior with a cangftlliosen combination of
software and hardware performance counters and combirighiawarefully chosen set
of HPM counters to predict full system energy consumptiohe Test of this chapter
substantiates this approach. The next section developshputational model using
only hardware counters. It only models energy consumpti@oe components; CPU
and memory. Next, Section 3.4 develops a communicatiorggreansumption model

to evaluate the idea of monitoring I/O energy consumption.

3.2 Modeling Methodology

To explore the relationship between program behavior am@gpoonsumption, We
use the Stargate platform instead of the iPAQ handheldsn Eaaugh, both platforms
are similar in their hardware and software capabilitiesydite has many advantages
over iPAQ for such a study. In Stargate, the power supply pirth the main board
and PCMCIA cards are easily accessible without breaking dpartievice, which is
not the case for iIPAQs. Furthermore, the Stargate has reulfip ports that become

quite handy in designing a power measurement setup.

30



Chapter 3. Modeling Energy Consumption

The experimental setup includes multiple Stargate senstwank gateways and
H5550 iPAQs running Linux 2.14.19, an Agilent 54621A ossttope and an Agilent
E3648A variable power supply. The oscilloscope profilesgneonsumption of one
of the Stargates. We monitor energy consumption in fixedtkeirgervals of 10 mil-
lion instructions. A device driver on the Stargate configutee hardware performance
counters, (i.e. HPM), to generate an interrupt after eatdrval. The interrupt han-
dler collects HPM data and forces a logic transition on ampwuport. The Agilent
oscilloscope records these transition times and voltageyot data at a rate of 10000
samples/second. Offline, we analyze this data to extracletigth of each interval,
peak and average power consumption, and total energy cqisum

To validate the idea of using software counters for modetmgmunication device,
we profile the energy consumption of a Netgear 802.11b dwingless communica-
tion. In the setup, there is a Netgear 802.11b network caehcoh Stargate; the iPAQs
have their own internal 802.11b cards. We configure all tretdhto the 11MB/s ad-hoc
mode, in direct line of sight of each other.

We construct two models to evaluate the counter-basedipmpiilea. The first one
profiles the energy consumption of software when 1/O is natrecern. The second one
profiles 1/0 heavy applications. When there is no 1/O prestna,software counters

do not provide any additional information. Therefore thetfinodel uses only HPM

31



Chapter 3. Modeling Energy Consumption

Training Benchmark Set Reference Benchmark Set
Application | Description Application | Description
basicmath | Math Test gsmdecode | GSM decoder
dijkstra Dijkstra shortest path gsmencode | GSM encoder
matmult Matrix multiplication jpegdecode | JPEG decoder
stringsearch String search jpegencode | JPEG encoder
memri* Memory read in-cache mpegdecode | MPEG decoder
memro* Memory read out-of-cache| mpegencode | MPEG encoder
memwi* Memory write in-cache em3d (Java) | Graph processing
memwo* Memory write out-of-cache bisort (Java) | Sorting
reg* Register operations treeadd (Java) Recursive depth-first
traversal
scps secure file send scps secure file send
scpr secure file receive scpr secure file receive
netpipe network analyzer game of life | MPI life game
pvnx MPI solver (small)
pVvkx MPI solver (medium)
pvkxb MPI solver (large)

Table 3.1: Training and reference benchmarks. Training benchmasdfy (farame-
terize the model and Reference (right) benchmarks evalbhatadcuracy of it. The
benchmarks above the line are to model/evaluate compuntahose below for com-
munication. The applications with asterisks are home-grow

counters to predict computational energy. The second asehah. We call the former
the computation modaind the lattethe communication model

To develop these models, we use a large set of applicatidesfirBt suite, to which
we refer to as the training set, we use to define our model. @bensl suite, to which
we refer to as the reference set, we use for the empiricaliatrah of the accuracy of
our model. We present the suites and their brief descriptidrable 3.1. The left half

of the table is the training set and the right is the refereseteWe use the benchmarks

32



Chapter 3. Modeling Energy Consumption

above the line to model/evaluate computation and thosewfelocommunication. We
execute all programs from RAM drive to minimize the effect asth read/write latency.
The wireless network card is on for all experiments regasite whether it is used or
not.

The applications come from popular benchmark suites (e.gedidBench [45],
Mibench [29], and Java-Olden [5]). The communication bematks include the se-
cure copy protocol (scp) receive and transmit and netpifg [Bor scp, we transfer a
1.7 MB file. Netpipe is a network analyzer. We also includeriisted (message pass-
ing interface (MPI)) applications: Game of life [24], pvrpykx and pvkxb [75]. MPI
is typically employed for distributed computing applicats in larger systems. These
MPI applications have moderate computation requireméiatsatre within the limits of
the Stargate.

The characteristics of the MPI applications are analogou$i¢ requirements of
high-performance sensor network applications. For exanmmplife, the first processor
divides the problem space into subspaces and distributes tih the other processors.
Once the other processors complete the execution, thesnrite results back to the
first processor. Then the first processor combines the sesuit reiterates the process
if necessary. This mechanism is very similar to recent qypeogessing and vehicle
tracking architectures for sensor networks. For instan¢@d], the nodes are organized

in a tree structure. The root node distributes a query to¢heark. Each node partially

33



Chapter 3. Modeling Energy Consumption

processes the query and returns the results to the pareatihaxthe parent node which
combines the results. In [76], the remote sensor nodescooliée with a central sensor
node for airport security and tracking moving objects. Teémote nodes do partial
stream processing and filtering using computationally egjye algorithms, while they
continuously exchange updates with a central node. Theatamide produces the
results.

A device driver collects profile information of these apptions during their exe-
cution. We develop and validate our proposed power profiliraglel using this data.

The next section describes the model in detalil.

3.3 Linear Regression For Modeling Computational Power

Consumption

A linear regression equation models the relation betweeyugut (response) vari-

abley and input (explanatory) variables, x,, ..., z; using:
y = Po+ bir1 + Bowa + ... + Brxy, (3.2)

Here; are model coefficients. Assume we observe the physicaiorlaetween, and
x;, n times:

34



Chapter 3. Modeling Energy Consumption

Yy 1 ) Tk
Yy Tin T21 ... TRl
Y2 T12 T2 ... Tg2
Yn T1in Lon o Tkp

We can rewrite this relation using the matrix fogn= X3 + ¢ and solve it using
b= (X'X)"'X'y [52]. Here,b is the least squares (LSQ) estimator for linear model
coefficientss. In our model,x; are hardware and software event counts that are highly
influential in energy consumption angare the energy measurements (in Joules). We
experiment with different model sizéds We collect event counts and energy mea-
surements by sampling program execution every 10 millistructions. LSQ models
are simple and robust and they do not require a priori knogéeaf the distribution
associated with the observations [23].

Our proposed energy estimation model consists of a compntahd a communi-
cation component. This chapter only describes the compuatatodel. The communi-
cation model is described in Section 3.4. The computatiodehestimates the energy
consumption on average per instruction for tasks that dbaneg any significant persis-
tent storage access or communication behavior. In othetdsytine computation model
models the energy consumption of three most important @#t;J, memory, and the
memory bus.

To understand the relation between hardware events andother gonsumption,

we designed a large model that contains all major poweraglavents. This model

35



Chapter 3. Modeling Energy Consumption

employs 6 parameters: cycles per instruction (Cl]),(instruction cache misses,),
instructions not deliveredzf), data stalls £4), instruction TLB missesa(;) and data
TLB misses {¢). These and similar events has been shown to be effectiveoiwer
estimation of the CPU and memory [12, 36, 34]. The power mdu#l Wwe use is as
follows;

E(nanojoules) = ag + ayrq + aoxa + ... + apxg (3.2)

wherez’s are the model input and thes are the weights determined by the model.
The model inputs are expected number of events for an avarsigection, for instance
x5 gives the expected number of cache misses during the eaearitian instruction.
We compute this value by dividing the number of event countan interval by the
interval length (10 million). The model outputs the estiathenergy consumption of
an instruction on average, in nanojoules. We estimate treeneter weights using least
squares linear regression (i.e. LSQ) as we described above.

Since the XScale processor is only able to monitor two evaintsice, we execute
the same program many times to monitor the different everte. measurement data
can differ across runs (of the same program/input) as atresbhrdware state or op-
erating system events. To be able to better understand thet@f such perturbations,
we monitor each event 5 times. Howeveince averaging causes linear regression to

look stronger than it really i§23], We only use the3" dataset for each event. We

36



Chapter 3. Modeling Energy Consumption

Computation Energy Consumption Model

Description Coefficient| T-stat| P-Value
ap | Constant —0.19 | —0.73 0.46
oy | CPI 7.06 | 38.78 0.00
oy | Inst. Miss 678.07 0.55 0.58
as | Inst. Not Dlvrd —4.28 | —1.61 0.11
ay | Data Stalls —1.07 | —5.99 0.00
as | Inst. TLB Miss 686.06 | —0.02 0.98
g | Data TLB Miss| —593.39 | —8.33 0.00

R? 0.99
Average Error 3.80%

Table 3.2: Coefficient and fit statistics for the computation model.

use the remaining 4 observations to evaluate the impactobf gerturbations on model
accuracy.

The benchmarks that we use are significantly different iir therations. Since we
do not want any single benchmark to be represented moretthahare in our model,
we choose an equal number of observations from each benkhifitaextend the range
of possible behaviors, we select the first, middle, and lagttervals from each profile.

Table 3.2 presents the coefficients of model and evaludieatsthe training bench-
mark. The top portion of the table shows the coefficients &mheof the HPMs. The
bottom portion of the table shows the fit statistics. We eat@uhe accuracy of compu-
tation model for the reference set in Section 3.5.

The coefficient of determination, i.e., the fit statistic, indicates the amount of

variation that the model explains. Under most circumstanites a reliable indicator

37



Chapter 3. Modeling Energy Consumption

of model goodness. Thi? varies between 0 and 1, and larger values are better. The
high R? value of presented model is a positive indicator of its highliy.

The average error statistic shows the absolute model dgimerror. We compute
this value usingl/n x > (|measured- estimatey measureg x 100, wheren is the
number of measurements. The model fits very well to the data avi average error
of 3.8%. The rightmost two columns show the statistical ificgnce for the model
coefficients. The t-statistic values show whether we cagctehe null hypothesis that
the coefficient of the parameter is zero. The larger valudisate that we have a better
chance of rejecting the hypothesis. The final column shoegtbbability of having
null hypothesis true (not reject) (i.e. the coefficient hdsgh probability that it does
not influence the model output variable). It is equaPo(|t| > ¢ — stat), where tis
a student’s t-distributed random variable with (n-k) degref freedom. Here, n is the
number of observations k is the number of regressors. In xjperenent, n is equal
to 260, and k is 6, since there are 6 regressors includingnteecept. The t-statistic
values indicate that only three of the coefficients in our elp€PI, DSTALL, and
DTLBMISS are statistically significant (have a high probapibf being different than
0).

There are two problems with the presented power consumptadel. The minor
one is that the model requires more input parameters thahinteh XScale can moni-

tor at a given time. However since more sophisticated psmraslike Pentium IV, can

38



Chapter 3. Modeling Energy Consumption

CPI | IMISS | INDLVR | DSTALL | ITLBMISS | DTLBMISS
CPI 1.00
IMISS -0.04| 1.00
INDLVR -0.14]1 0.89 | 1.00
DSTALL 0.71 | -0.05 | -0.15 1.00
ITLBMISS | -0.04| 0.97 | 0.84 -0.04 1.00
DTLBMISS | 0.74 | -0.03 | -0.11 0.05 -0.03 1.00

Table 3.3: Correlation among model parameters. The darker entries skients that
have strong correlations.

easily support monitoring a dozen or more events at a tims,highly possible that
future embedded processors will have the same functigndlite second problem is
more serious. Most of the coefficients that the model geesrate negative —which is
perfectly fine from a regression point of view, but highlytdiking since energy con-
sumption cannot be negative. To understand the root reasomyestigate the model,

its parameters and their dependency relations. The netxosetetails this.

3.3.1 Problem Encountered In Modeling

Our approach to negative coefficients problem is two-folidstFwe use statistically
valid ways to reduce the number of parameters in power copgommodel. Here,
the goal is to develop a model that is accurate but that erapgogmall number of
parameters. A smaller model is more attractive since it eailyeexpose the complex

relationship between parameters and let me validate themod

39



Chapter 3. Modeling Energy Consumption

To eliminate model parameters, we first analyze the stedistorrelations between
the events. Table 3.3 shows the correlation data. A coiwelabefficient that is close
to 1.0 means that event pairs are highly correlated.

The correlation matrix shows that CPI, data stalls (DSTALhJ @ata TLB misses
(DTLBMISS) have high correlation. Among those three, weirethe CPI, since it
has the highest t-statistic, and discard the others. Fumitre, the instruction cache
(IMISS, INDLVRD) and instruction TLB miss (ITLBMISS) eventdsa have strong
correlation. Using similar reasoning, we retain IMISS anmscdrd ITLBMISS and
INDLVRD events. Next, we form a model from IMISS and CPI daté tha refer to as
MMISS Furthermore, we also form a modMCPI, which uses the CPI metric alone.

Our second method focuses on enabling the extraction of imgfahinformation
from the coefficients of the model. That is, we would like todi#e to understand
the contribution of each component on model output. By domg becomes possi-
ble to estimate energy consumption of each hardware evedtitanay be easier to
understand why some are negative.

An interesting phenomenon in HPM data is the existencauficollinearity. Mul-
ticollinearity indicates that some linear relationshipséx between the model param-
eters. For example, data cache misses are related to dé$a #ta the amount of

linearity increases between metrics, the stability of thefficient estimates decreases

40



Chapter 3. Modeling Energy Consumption

precluding us from extracting useful information from treefficients in computation
model [23].

If the purpose of regression is only to estimate a varigblesing a set of model
inputsz;, without assigning any particular meaning to the values ahulticollinearity
is not a significant problem and model predictions will sti# accurate. However,
if the goal is to understand how much eacheffectsy, then multicollinearity can
lead to misleading results. Models that suffer from multinearity have much larger
confidence intervals in parameter estimations, that isjpdrameter estimations can
shift substantially when there are small changes in inputotAer side effect of such
wide confidence intervals is that the t-statistic value diuidual parameters cannot be
used confidently to remove arbitrary parameters from theahod

Our approach for reducing multicollinearity is to applyrmipal component anal-
ysis [37] to transform the correlated variables into a sematumber of uncorrelated
variables called as principal components. The first pracgopmponent captures as
much of the variability in the data as possible, and the siog components capture
the rest of the variability.

As a first step to PCA, we standardize the dataset, that is, ateasti sample mean
from each observation, and then divide the result by stahdewviation of each param-

eter.

41



Chapter 3. Modeling Energy Consumption

Let the variables:;; are model inputs,( i.e the explanatory variables), suchitha
is equal toj'" observation of,;, variable. The variable; gives the observed mean of

variablez; that isz; = >} z;;/n, ands; is the sample standard deviationzgfthat is

si= /> 1 (xi; — ;)?/(n — 1). In both formulasy is the number of observations.
After standardization, the goal is to find the coefficieptghat best fit to the linear
equation:

Vi = Y0+ 7+ v sty o+ 6Ty (3:3)

In the equation abovey;; are the standardized observations of HPM countgyss
called the response variable or model output and here isgh& energy consumption
per instruction. The is the error term (which we assume to be normally distributed

One can rewrite Equation 3.3 as

y=v+X°v+¢ (3.4)

whereX? is ann x 6 matrix whose columns(;? are standardized HPM observations,
xo, X1, ..., T; Fespectivelysy is a column vector of sizé and its entries are coefficients
Y05 Y15 --5 Vi

Our goal is to transform the model explanatory variablgs, into a new set of
uncorrelated variables, which are the principal companenhtthe correlation matrix

X X*. We then remove the components that explain the least anudumtriance.

42



Chapter 3. Modeling Energy Consumption

Coefficients of Principal Components

1 2 3 4 5 6
0.17 | 0.68 | 0.00 | 0.10 | 0.02 | -0.71
-0.57 | 0.18 | -0.02 | -0.25| -0.77| -0.02
-0.55|0.08 | 0.01 | 0.81 | 0.16 | 0.06
0.14 | 0.47 | -0.72 | 0.02 | 0.00 | 0.48
-0.56 | 0.18 | -0.02 | -0.52| 0.62 | -0.02
0.12 | 0.50 | 0.69 |-0.01|0.00 | 0.51
% of Variance Explained

47.61\ 33.44\ 15.77\ 2.75 \ 0.40 \ 0.04

Table 3.4: Principal components. Table shows the coefficients of ppailcomponents
and the amount of variance explained. Principal comporsamtsd in decreasing order,
wrt. variance explained.

By doing so, we can decrease the effect of multicollineaaityd therefore narrow the
confidence interval in our coefficient estimates.

As X*¥X* is a square matrix, one can decompose it into its eigenwettoand
eigenvalues\; such that(X*X* — )\, I)V; = 0, where | is the identity matrix. The
eigenvectors are orthonormal, thatlid; = 0 for i # j. Let eigenvector matrix be
V = [W,V,,...V5]. Again, as eigenvectors are orthonormidly’ gives the identity

matrix I. Thus, one can rewrite Equation 3.4 as:

Y= +XVV'y+e

One can substitut& *V with Z andV"’~ with 6:

y="+20+c¢ (3.5)

43



Chapter 3. Modeling Energy Consumption

The normalized eigenvectois of squared matrixX ' X* give the coefficients of
principal components. In other words, the principal comgraa matrixZ is equal to the
product of parameter observatioAs with eigenvector matrix’. After computing the
principal components of the data, one can remove the mllitiearity by discarding
the components that account only a fraction of the totakslity. The penalty however
is a decrease in model accuracy in exchange of an increasafidence level of model
parameter estimations. The eigenvalues show this vamiatiet V; is an eigenvector
and ); is the corresponding eigenvector. The ratig Ef A, gives the amount of
variation that the corresponding principal component &xgl. Figure 3.4 shows the
principal components of the data and the amount of varianaethey explain (the
largest first). As the figure suggests, the first three pralapmponents account for
more than 95% of model variability. Hence, we retain the tinsée components and
discard the rest.

Next, we do regression using the principal componéhtnd compute the coeffi-
cients of principal components, that is the column veétorhe estimated regression
coefficients are free from the correlation (and thus, areenstable). Using, we com-

pute the coefficients of standardized HPM counters,
=V

However, they gives the coefficients of the standardized HPM countersallyinas

described in [52], We transform the coefficients back to thgimal HPM variables.

44



Chapter 3. Modeling Energy Consumption

Computation Energy Consumption Models

Description MPCA Coefficients| MMISS Coefficients) MCPI coefficients
Constant 6.6 1.90 1.90
CPI 2.8 5.74 5.74
Inst. Miss 2814.5 180.0 ——
Inst. Not Divrd —18.6 —— ——
Data Stalls 3.05 —— ——
Inst. TLB Miss 83039.4 —— ——
Data TLB Miss 1055.8 —— ——
R? 0.99 0.99 0.99
Average Error 12.9% 5.81% 5.88%

Table 3.5: Coefficient and fit statistics for improved models.

We do this using:

a=2l1<i<6
S;

6 _
_ Yili
o = Yo —
5 Si
=1

We call this modeMPCA

We develop MMISS and MCPI using the same method that we appleadously in
Section 3.3. Table 3.5 summarizes the new models and theficents. As expected,
the removal of three principal components reduces the acgwfMPCAmodel, and
consequently its error rate increase$2®%. However, this model enables us to extract
information about the impact of each component in the motlee. MPCA coefficients
provide significant insight into memory and CPU energy corgion. We find that,
(1) an instruction miss is approximately 1000 times moreeespr/e than a clock cycle,

(2) a data stall cycle (a clock cycle where pipeline stalld waits for data) is slightly

45



Chapter 3. Modeling Energy Consumption

more expensive than an instruction execution cycle (priybdibe to memory access
activity), and (3) an instruction TLB miss is 75 times mor@ensive than a data TLB
miss. However, the most interesting coefficient is instauns not delivered, which has
a negative coefficient. A negative coefficient here does rezma flaw in the method-
ology, but it indicates that the CPU (and memory) energy congion drops below

average level, which is the sum of constant factor, CPU clackter and other events
that the power model includes. This indicates that the CPUleppeveral techniques
such as clock gating to reduce its energy consumption ompedipe is stalled.

The MCPI and MMISS model perform similarly and both are moreuaate than
MPCA. However, the t-statistic for the IMISS event is only @which indicates that
this parameter is not significant. We therefore, remove MBMI®m our model set.

The results show that CPI is a significant metric in the estomadf energy con-
sumption. This is similar to the findings of prior study [7,]18ection 3.5 evaluates

these models using a reference benchmark suite.

3.4 Modeling Communication Energy Consumption

We next introduce our model for wireless interface costsThodel is independent
from the computation model to enable portability, i.e., vaa swap the model for

others for comparison or to improve accuracy. We combinertbdels via arithmetic

46



Chapter 3. Modeling Energy Consumption

addition of the two estimates. Modeling the network integfés more challenging than
modeling the processing unit because the network intergagignificantly impacted by
external effects such as RF interference, network congestgymmetric links due to
badly calibrated hardware, etc. We do not consider thesaitbams since our goal is to
explore the challenges of combining software counters hattdware counters.

As we did for the computation model, we employ a wide rangengbieical obser-
vations from benchmarks to develop our communication mode¢ wireless network
includes a set of 6 hosts, including PDAs and laptop comput&he network load
varies from idle to a few megabits/second and is susceptbileterference from two
separate wireless networks. Wireless speed rate is fixed\iiis/sec.

The communication model is a linear parametric functior ltke computation
model, and has four parameters: transmit byie& 8), receive bytesTX B), trans-
mit packets T X P), and receive packetf(X P). The model uses these parameters as

follows:
E.(Joules) =TXBf + RXBfSy, +TXPp;3+ RXPB, + K

The communication training benchmark suite considersethliferent scenarios:
(i) upload heavy communications (ii) download heavy comioaitions and (iii) almost
symmetrical, mesh type communications. For the first twamades, we use the scp
benchmark. To collect behavior from the symmetric commations, we use the net-

pipe benchmark to generate network load. Typically, netpipnsfers are ping-pong

47



Chapter 3. Modeling Energy Consumption

Communication Energy Consumption Model

Coef. | Description | Bytes+Packets Bytes
TXB | TX bytes 240 x 1070 6.29 x 1076
RXB | RX bytes —4.78 x 1077 | —1.69 x 1076

TXP | TX packets | —2.90 x 1073
RXP | RX packets| 5.50 x 1073

K Constant 2.37x 1072 | 2.00 x 107!
R? 0.972 0.796
Average 26.9% 208%
95" Percentile 59.6% 470%

Wireless Idle Powef 562 + 146 mWatts

Table 3.6: Communication energy model. The energy consumption of essetard as
a function of transferred bytes and packets.

like, it transfers one packet to a server and receives anp#uket before continuing.
This forces the network to transmit every single packethaut opportunity to stream
multiple small packets together. Netpipe also exposesyicrasies that result from
the internal hardware buffer, by re-evaluating each paskat using a constant per-
turbation factor. There are four transfer size categorigysmall: < 100 bytes; (2)
medium: 100 to 1000 bytes; (3) large: 1000 to 4000 bytes; dhadry large: 4000
bytes to 200KB. We repeat each transfer 100 times for the lfireetcategories and 10
times for the last category.

We consider two different models, one that considers botbdgnd packets trans-
fered and one that only considers bytes transferred. Wetretiee former as (Bytes+Packets)
and the latter as (Bytes). We present the LSQ coefficientsdtr models as well as

the fit statistics for the training data set for the selectéerivals in Table 3.6.

48



Chapter 3. Modeling Energy Consumption

Both models exhibit much higher error rates than those franettmputation model.
The error is due to the difficulty of capturing external etfecHowever, these results
are for energy consumption of the wireless card only. Théuat@n section discusses
benchmarks that perform both computation and communicatibe error for the latter
will impact overall estimation depending on the amount ahoaunication performed
by the application.

Interestingly, these results show that it is very importantonsider both packet
count and bytes transfered to produce an accurate model.tBydrg the byte model
to include the packet counts, we improve the error rate ofntloelel by almost an
order of magnitude. The low accuracy of byte model refleasitn-linearity between
transfer sizes and packet sizes. Small packets have a pspomately large overhead

due to protocol headers.

3.5 Validation

Here, we evaluate the efficacy of the proposed techniques.cdfaparison pur-
poses, we use the closest published energy consumptionl,nbdewas described
in [12]. We refer to this model as MCPUMEM.

MCPUMEM was developed for the same Intel XScale CPU and memony ¢

figuration and uses similar HPM-based techniques. One pyimidference is that

49



Chapter 3. Modeling Energy Consumption

MCPUMEM is limited to modeling and measuring memory and CPUgneonsump-
tion; it does not consider the full system. In contrary, owasurements and model in-
clude all I/0 devices and other system components that exifte embedded device.
Thus, some divergence in the results is normal. Howevercdngparison of the two
models are extremely useful in understanding and visuglimodeling challenges.

To correct and better understand the behavior of MCPUMEM, Wyadd the idle
power consumption of wireless card to MCPUMEM (a constaniofadcand (2) ana-
lyze MCPUMEM's mean error and its deviation. Deviation irates how much the
mean prediction error varies from one benchmark to anotAermean error can be
affected by the idle energy consumption of hardware compisnéhe deviation of the
estimations better describes the quality of model. TheWahg subsections discuss

the models in detail.

3.5.1 Computation Model

Figure 3.1 shows the error rate for the reference benchnesfioisproposed mod-
els. These models include MLARGE - the original model withthg removal of
multicollinearity; MPCA — the original model that uses piiple component analy-
sis for multicollinearity removal; MCPI — the original modeith HPM metrics CPI;
MCPUMEM - the CPU-only HPM-based model. MCPI and MLARGE perfoim-s

ilarly with an average error of 7%. The error is slightly lawler the MediaBench

50



Chapter 3. Modeling Energy Consumption

70%

60%

50% -

EMCPI
OMPCA
OMLARGE
E MCPUMEM

40%

30% A

% Prediction Error

20% -

10% +

0% - =

kS (o] ] @ @ @ @ @ O <
Q\é’ é@’ c}ob c)ot’ c)ob Ooé c)oé c,ob szb <
F & F & F & &L
& E S S <
¥ 9 ¥ ¥ & ¥

Figure 3.1: Error rate for the computation model.

benchmarks than for the Java benchmarks, this is becaudsettavior of the Java
benchmarks is much more variable due to benchmark actgatjpage collection, class
loading, interpretation, and other factors.

MPCA produces an average error of 22% making it unsuitablehergy estima-
tion of computation-bound tasks. As explained previousdynoving some principal
components can reduce model accuracy while improving thenpeter estimates. On
the other hand, MPCA error rate is particularly low for two blemarks, jpegencode
and jpegdecode. These two benchmarks are less data irteargvmore processor
bound than the other benchmarks. Collected HPM data inditia#t jpeg executes one
instruction per data stall. The MPCA is particularly sucéalse modeling processor

than the memory —the lack of a memory access counter rediscagemory model-

51



Chapter 3. Modeling Energy Consumption

ing accuracy. However, since we remove some principal corpis from the model
to improve model coefficient estimations, MPCA looses sigaiit information about
memory access cost.

MCPUMEM produces an average error rate of 30%. Moreoverriits eates vary
from 20% to 40% across benchmarks, with a standard devidtains twice that of the
other models. The reason for this is that MCPUMEM is desigoextimate the power
consumption of the CPU alone and not the full system.

A significant result is the success of MCPI model. The MCPI haayeor rate close
to the MLARGE model, using a single model input -the clock eggber instruction.
On XScale, one can gather this information accurately bgingethe two hardware per-
formance monitors; the clock cycle counter and the instaatounter. This can lead
to a run-time power model since an ordinary XScale is alrezahable of collecting

this information using its two HPM counters.

3.5.2 Communication Model

We next integrate the computation and communication maukésaluate the accu-
racy of the combined model. We estimate the energy consamp8§ingE; = E, + E,,
whereFE; is the total energy consumptiof; is the computation model output ark}
is the network model output. We use the names of the compuatatiodels that was

discussed in the prior section to identify the integratediet®in this section.

52



Chapter 3. Modeling Energy Consumption

70%

60% -

u
Q
o~

EMCPI
OMPCA
OMLARGE
E MCPUMEM

40% A

30% A

% Prediction Error

20% -

10% =

0% -

¢ ¢ &
Q¢

Figure 3.2: Error rate for the communication model.

Figure 3.2 shows the percent error for all the models. MCPIMbARGE perform
similarly with an average error rate of 11%. The error rat88% on average for
MCPUMEM.

Interestingly however, in communication dataset the MPCAssaccurate as the
other models, with an average error of 13%. The predictiooreaf MPCA is below
25% for all programs. MPCA is significantly different than ather models. As Ta-
ble/3.5 shows, MPCA gives much higher weight to instructigmepne events (TLB
miss, instruction not delivered, etc) than the other modaige to frequent I/O between
wireless card and CPU, such events play a significant role soriteng program en-
ergy consumption. Hence, MPCA is important as it addresseddficiencies in other

models.

53



Chapter 3. Modeling Energy Consumption

3.6 Why Linear Regression?

In this chapter, we limit ourselves to a linear model to expthe relation between
power consumption and hardware (and software) events. her atords, given the

eventse; and energy consumptiafi
E = [y + fix1 + Paza + ... + By (3.6)

we develop our models based on the assumption that the parameare linear. Here,
we do not consider non-linear models. Our reasoning is ta-fFirst of all, a large
body of extant work has already demonstrated highly acelirsar models for various
hardware components including memory [39], CPU [7, 38, 7838912], and I/O [46].
Second, as we show in Section 3.3, the hitfrof our model is a strong indication that
our linearity assumption is true.

An alternative way of estimating linear model parameteosnfrobserved data is
maximum likelihood [9]. The goal of maximum likelihood isfiad the parameters that
make the observed data most likely. This method assumesdadbservation vector
x, and defines a functioh(6|z) which shows the likelihood of parametérgiven the
observations:.. A maximum likelihood estimator faf(x) is a value that maximizes the
value of L(¢|z) for the given observations.

To explain this better, imagine a coin toss experiment uaitigased coin. Here,

let 6 is the probability of having heads as experiment outcomeelbbserve 60 heads

54



Chapter 3. Modeling Energy Consumption

and 40 tails in 100 experiments, we can find the likelihoodadilhg model parameter

6 = 0.5 (a fair coin) using binomial distribution:

100!
L(0 = 0.5]z) = ool 20] 0.50.5% = 0.01

Even though maximum likelihood is known to perform well whte sample size
is large, its estimators are biased when sample size is .skaithermore, maximum
likelihood is rather complicated when multiple parametams involved in the model
and an efficient run-time implementation of it is not obvidasis (which is our major
goal as we discuss in next section), given the constrairgsiafarget platform. For this
reason, we do not evaluate this approach further in thiedesson, and leave it as a

future direction.

3.7 Related Work

This chapter discusses full system energy consumption lngder low power de-
vices. It models the Stargate sensor network gateway aseastady. The models it
proposes use hardware and operating system monitors noeg¢stihe power consump-
tion of a sensor network gateway. The work most related t® ithion HPM-based
models for CPU and memory energy estimation [7, 38, 78, 3913p,In recent work,
Bircher et al. [7] presents a power model for the Pentium-B&slof processors. They

develop their power model using least squares regressieQ)[23] and show that two

55



Chapter 3. Modeling Energy Consumption

hardware counters are enough to model energy consumptitheitarget architecture.
However, they do not consider memory, and memory bus in ttedy.

In embedded systems, the most similar study to our appraably Contreras et
al. [12]. In this work, the authors use LSQ to develop a powedeh for an Intel
XScale processor attached to a development board. Usisignibilel, the authors are
able estimate CPU energy consumption with a 4% error rate.ederytheir efforts to
construct a memory power model did not perform as well dudeddck of hardware
counters in the CPU that count memory events. Here, we contpirélPM model
to estimate full system energy consumption by employingwsoe counters. This
model considers a larger set of components including mermodymemory bus and

demonstrates a lower error rate.

3.8 Summary

This chapter presents a system for estimating full-systemep consumption of
Crossbow Stargate sensor network device. It couples gtatistchniques that employ
empirical data from hardware and software performance tamto model the com-
putation and communication of executing tasks. The resullisate that metrics like
instruction execution rate, memory access rate and datafénarate are quite effec-

tive in predicting energy consumption of the full systemfinds that the model that

56



Chapter 3. Modeling Energy Consumption

predicts energy consumption does not necessarily havelaodeefor better precision.
Furthermore it demonstrates that larger models are moetyliw suffer from higher
error rates due to multicollinearity -the linear dependembetween model parameters.
Multicollinearity reduces coefficient estimation stafyiland prevents extracting use-
ful information about the contribution of the model compotse Finally this chapter
shows that principle component analysis can reduce militiearity in the model data

at a cost in accuracy.

57



Chapter 4

Predicting Energy Consumption at
Run-Time

The previous chapter claimed that a run-time power measmesgystem is neces-
sary for new power optimizations, and it explored the cimgess of modeling energy
consumption using hardware performance monitors andrimeggession. This chapter
proposes a run-time power estimation mechanism for lowgppovesource-restricted
embedded computers. Section|4.1 describes extant powesuneezent methods and
discusses their advantages and disadvantages. Sectieséribes the high-level ideas
behind the proposed power profiling system, Section 4.3ritescevaluation method-
ology, and Section 4.4 validates it on a popular embeddefopta. Section 4.5 dis-
cusses why we choose our model, and compares it to alteznapiproaches. Sec-

tion 4.6 presents related work. Finally, Section 4.7 givearamary and concludes.

58



Chapter 4. Predicting Energy Consumption at Run-Time

4.1 Extant OS Support For Measuring Energy Use

Current operating systems provide little support for rumetienergy profiling. Usu-
ally, a simple operating system interface provides acaessdevice that controls the
battery charge/recharge cycles. This device has a vol&gsosfor continuously mon-
itoring charge level to prevent any over-charge. By comggtfre output of this sensor
to a set of voltage measurements collected at known chavgés)eperating system
can roughly estimate the current battery charge and theofaeergy use. However,
this information is too coarse and imprecise for almost ang kf energy profiling.

A recent, second-generation battery monitoring unit [RBa(BMU) enables much
higher fidelity. The battery monitoring unit continuouslhonitors the voltage drop
across a high-precision current sense resistor to competeurrent flow. The voltage
drop, when divided by the value of the sense resistor, givesristantaneous current
flowing into and out of the battery. The battery monitor iptates these measure-
ments over time to compute the net charge that is left in tletya An internal accu-
mulator holds the result of this computation. By reading tbeuanulator state before
and after the execution of a software task, a user applicatm compute the rate of
energy use.

Even given these significant improvements in energy measenmetechnology, they

still only enable coarse-grained and inaccurate readifdee latency of the system

59



Chapter 4. Predicting Energy Consumption at Run-Time

makes measurement possible at only large intervals (10slliisenonds), precluding
our ability to attribute energy consumption to only behasiand tasks with long dura-
tion (on the order of seconds) [13]. Moreover, the low regotuof the A/D converter
and the limited width of the internal registers restrict pgprecision. In addition, the
relatively long, slow, serial path between the applicatibmough, the operating sys-
tem, to the battery pack, prevents us from extracting balésels in real time (e.g. the
instant a task completes) and thus, increases the gragwad decreases the accuracy
of the energy measurements that we make.

In order to better understand the capability of these deymse analyze one such
advanced battery monitoring unit. Using [13], we can coraplé energy consumption
from timet; to timet, by reading the accumulator register and battery voltagereMo
specifically, let {1, ac;) and (-, acs) be voltage anédccumulated currentreadings at

timet, andt,. The energy consumption &t [#,] is:
E = (v1 +v2)/2 X (ac; — acy) x 3600 sec/hours

This equation does not include time sineeis the accumulated current and not the
average current. The multiplier, 3600 sec/hours, conveetsesult to microjoules.

In [13], each current reading may be uptas milliAmpere-hours (mAh) different
than the actual charge in battefy25 mAh is equal to the aggregated electrical charge
when a current 06.25 milli-amperes passes through battery terminals for a pgesio

one hour. Interms of energy, this is equabi®4 joules (i.e.3600 x 0.25 x 3.6) at the full

60



Chapter 4. Predicting Energy Consumption at Run-Time

battery charge leveB(6 Volts). This is a very small error for battery lifetime esétion
but it is rather high for software profiling. Indeed, a fullyalded iPAQ uses less than
half of this energy in a second. Thus, only the tasks thatxremely long (i.e. tens of
seconds) can be power-profiled using a battery monitoriitg However, even then, the
lengthy communication latency does not allow collecting thformation accurately.
As a workaround, extant systems use execution time and CPldscia estimate
energy cost. These metrics can be measured quickly andgehgasing operating sys-
tem clock. However, execution time and CPU cycles are hardiyetated to power
consumption. For example, on a Pentium-1V processor, theepoonsumption varies
from 30 Watts to 90 Watts depending on the type of instrudid&iy. Energy consump-
tion also changes depending on the processor voltage, fugsirmance settings of

other components, etc. Thus energy should be measuredyiveitenever possible.

4.2 Proposed Run-time Energy Prediction Mechanism

Figure 4.1 reveals the high-level overview of proposed pgwefiling mechanism.
The proposed mechanism contains a model that maps hardn@usoéiware counter
values into power values. The model is adaptive; it can oaotisly improve itself by
monitoring its error rate. Although a static method is moesichble from a computa-

tional point of view, it cannot adapt to the dynamics of tha-tume power behavior.

61



Chapter 4. Predicting Energy Consumption at Run-Time

Smarti Battery Run-Time, Feedback Directec
Monitor Power Model

mAh, V lHPM

Power Model
Construction

‘Ofﬂine Analysis

Model Coefficient L Iterative Model L e
Determination ! ?Coef. Update New Coef
| - -
Offline Profiler | Runtime Profiler

|
Offline , Coef. - . .
Nt e — ™| Fine Grain Energy Real-Time
W Prediction Joules > Energy Data

Power Estimator

Figure 4.1: Block diagram of proposed run-time power prediction system

A static model may produce incorrect results if there is gdarthange in workload
characteristics, or if hardware power/performance ggdtare altered. To attack this
challenge, we propose a progressive model; one that carntondtsi prediction error
using feedback from battery monitor and can adapt over time.

The heart of our system is the run-time profiler. The profildigthe battery mon-
itoring unit that we described in Section 4.1 and accumslaaues from software
and hardware counters periodically. After each period ptiodiler updates the model
parameter coefficients iteratively to improve its prediotiaccuracy and to adapt to
potential changes in power behavior. We call each such ghamoodel update periad

Due to its stability, robustness, adaptivity and modestmpatational demand, we
userecursive least squares linear regression with exponedeahy{85] (i.e. RLS-ED

to update model coefficients iteratively. The RLS-ED is a reise implementation of

62



Chapter 4. Predicting Energy Consumption at Run-Time

the well-known least squares linear regression. Using ayd&ctor, it exponentially
reduces the weight of the oldest measurements. With theurerasntsy,, at timek,

and the decay factoy, RLS-ED weights the measurements using:
u + yuk — 1) + 72u(/<: —2) + ...+ 7Fuyg

The ~ adjusts the adaptiveness of the algorithm< 1.0). A smallery means the
model is more responsive to changes in the input data butrdsdgent to noise. In
Section 4.4.1, we discuss the effectobn regression accuracy and stability.
Internally, RLS-ED maintains a matrix of sizex n (n is equal to the number of
model parameters) to retain the state information betwaeh éeration. Each RLS-ED
iteration involves eight matrix multiplications, each ohieh requires approximately
one hundred floating point operations when= 2. Even though this may not be
a significant cost on high-end machines, these floating mgatations can consume
significant resources on many resource-constrained phasfoTo reduce this cost, we
explore policies to reduce RLS-ED iteration frequency, mtlext section. In addition,
since the asymptotic complexity of the algorithm i:¢)( the model must be as small
as possible to keepsmall and the computational cost of the algorithm low. Weass
RLS-ED execution period (i.e. model update period) and ex@tgost in next section.
The power estimatouses hardware and software counters and model coefficients
to estimate corresponding power consumption. To estirhatemergy consumption of

atask (i.e. here, we use intervals of 10 million instrucsiorstead of software tasks), a

63



Chapter 4. Predicting Energy Consumption at Run-Time

software component has to collect the values of these cimenediately before and
after the execution of the task. This can easily be done mgusid extending portable
middleware systems like PAPI [58]. Since the LSQ models\eatise have only a few
inputs, each estimation in our model requires fewer thanddifig point operations.
The offline profileris the only optional component of our system. As the RLS-ED

algorithm is recursive, it requires an initial state to si@riterations. Without the exis-
tence of an offline profiler, the error rates can be high umglglgorithm reaches a stable
state. While the offline profiler has the potential to improvedel accuracy consider-
ably, the extra effort associated with profiling makes itesicable. The forthcoming

section discusses the extra accuracy such a profiler cardprov

4.3 Evaluation Methodology

Our approach to model evaluation is empirical. We colleal ppwer measure-
ments using the setup and benchmarks described in previapser (i.e. Section 3.2),
inject error to them as would be expected in real battery toomneasurements, and
evaluate the models on these data by varying their parasnafée then compare pre-
diction results to real measurements. This section dissudge power models. The

next one describes the evaluation in depth.

64



Chapter 4. Predicting Energy Consumption at Run-Time

Computation] Communication
Cpu Cycles Cpu Cycles
Compact Data Stalls Tx Bytes
Rx Bytes
Cpu Cycles Cpu Cycles
Inst. Miss Tx Bytes
Complex Inst. NDlvr Rx Bytes
Data Stalls Tx Packets
Inst TLB Miss Rx Packets
Data TLB Miss

Table 4.1: Input variables in derived power models

Table 4.1 shows the two models that we derive. The first onehtoh we refer as
complex model, has a computatiof.j and communicationi,) subcomponent. The
components are defined as:

E.(Joules) = ap + aqz1 + asxs + ... + a6

En(Joules) = a1y + By + Braff2 + Pufls + Praffs + K

wherez;’s arecore clock cycles, instruction cache misses, instructiooisdeliv-
ered, data stalls, instruction TLB missesxddata TLB missegespectively. Ther's
are computed as described in Section 3.3. In complex conuation model, B;,),
and (B,.), specify the transmitted and received bytes as we definéidred,, and P,
are the transmitted and received packet counts, resplgctive

The computation model is same as the large model in previoaster. We choose

this since it has the lowest error across all benchmarks.cohenunication model is

65



Chapter 4. Predicting Energy Consumption at Run-Time

different, however. Unlike the previous static model, theursive, RLS-ED model is
very sensitive to any increase in parameter size due #d)@pmputational cost. Thus
to limit parameter size, we define the communication modal@smbination of MCPI
(which was shown to be the second most effective model) ackipdyte counters.
The second model, to which we refer as compact model, alssistsrof compu-
tation and communication components. The computation hextenates the energy
consumption of tasks that execute without any communicati@ny significant access

to persistent storage. This model includes three parameter

E.(Joules) = ag + aqx1 + asxs (4.1)

wherez;’s are core clock cycles and data stalls, respectively. dhaxaunication model
uses twasoftware performance countergansmit bytes ,.), receive bytesB®,,) and
one hardware counter, core clock cycles. Again, we do ndudlecother HPM events

to reduce the cost of RLS-ED iterations. The compact comnatioic model is:

E.(Joules) = a1z + 1By + Bo By + K (4.2)

Here, o, is the weight of core clock cycles antis are weights of transmit and re-
ceive bytes. At present, the models do not incorporate lowl leard state (idle, etc.)
information, as we favor a simpler model at the expense oftanpially higher error

rate.

66



Chapter 4. Predicting Energy Consumption at Run-Time

Computation Benchmark SetCommunication Benchmark Set
Application Time (s) || Application Time (s)
gsmdecode 1.0 | game of life (MPI) 9.02
gsmencode 1.1 | pvkxb (MPI) 35.2
jpegdecode 5.4 | pvnx (MPI) 37.78
jpegencode 17.1|| pvkx (MPI) 69.36
mpegdecode 72.9

mpegencode 91.7

em3d (Java) 12.1

bisort (Java) 20.4

treeadd (Java 3.8

Table 4.2: Prediction benchmarks. The set to the left are to modeliet@lcomputa-
tion; the rest are for communication.

We validate our model using the benchmarks described ind®eg2. We only use

the benchmarks in the reference set; Table 4.2 reminds thesenvenience.

4.4 Results

This section evaluates the models that were presentedpltires the performance
of models in terms of accuracy, under various factors, saclpdate rate, mesaurement
error and agility (RLS-ED decay factor). In addition, it disses the execution cost of

both run-time computation, and battery monitor access.

67



Chapter 4. Predicting Energy Consumption at Run-Time

120%

100% -

80% -

—-05
= 0.7
—+-0.9

-1

60% -

Error %

40%

” ,Aé
e e
0% T T 7 7 7 : : 7 T T T : :

O @ P ® 2 . @ 2 & S
FEFFEFEE S 3&@@9 & K

S
F &L S

N S o o8
g ¢ ¢ ¢ & &

Figure 4.2: Decay factor vs. accuracy. A lowergives exponentially greater weight
to most recent data. However, this makes the algorithm malreevable to noise. The
results show that RLS-ED algorithm works best wheis betweer.9 and1.0.

4.4.1 Decay Factor vs. Accuracy

We first explore the relationship between decay factpgnd accuracy. In this ex-
periment, we do not consider execution overhead, hencepdate@ model coefficients
after each interval. We initialize the coefficients diffietlg for computation and com-
munication models. For the former, we use the values desgtiiito previous chapter
(i.e. Chapter 3). For the latter, we monitor a secure file fear(se. scp) of 17MB file
across the wireless network multiple times and run the effprofiler to generate the
initial values.

Figure 4.2 shows evaluation results for= 0.5,0.7,0.9 and 1. When the decay

factor is 1, the algorithm becomes ordinary recursive lsgsares regression and does

68



Chapter 4. Predicting Energy Consumption at Run-Time

not decay any of the previous values. Conversely, when thaydied.5, the algo-
rithm effectively remembers only the most recent four measents. For each bench-
mark, we show the average estimation error, which we comsiteg |measured —
estimated|/measured x 100. The error rates vary from 0.5% to 10% in general, giv-
ing an average error of 2.6% for> 0.9, and increasing up to 13.7% when= 0.5.

As expected, the error rate is higher for the communicatemchmarks. We have
encountered a few atypical cases and in one of the benchriarksror rate was equal
to almost 100%, which means the predictions were off by a margual to the real
value. These atypical cases were specific to low decay featat to the pvkx bench-
mark. Pvkx is an MPI program that includes a lot of short comitvation and com-
putation phases. These phases generate sudden, trahsiegés in program behavior.
When the decay factor is very low, RLS-ED remembers a very s$hsdry and reacts
much faster than necessary, generating erroneous estimaatn other cases, the error
rates are much lower. Overall, moderate decay providesdsierbsult.

In Figure 4.3, we compare the adaptive modek; 0.9, to the case when the model
is completely static. The dynamic model provides much loesimation errors in
general (2.6% to 5.6%). The only benchmark for which the dyisanodel generates
higher error is pvkxb (6.5% vs. 4.7%). Pvkxb is similar to ghwkx benchmark, how-
ever, it is much shorter. As a result, pvkxb offers very feyuatinent opportunities to

RLS-ED algorithm.

69



Chapter 4. Predicting Energy Consumption at Run-Time

20%

18% 1
16% 1
14%

12%

10% 809
W Static

Error %

8% A

6% -
4% A
2% A

0% -

N o o AR
MR &é\oe@&e&& & o ¢ VEL
§F § f % &L v

Figure 4.3: Static vs. adaptive models. Figure compares the error fatee@daptive

model with a static one. The adaptive model generates befteits in almost every
benchmark.

120%

=
100%

80% -

60% -

Error %

40% -

0% - ——

Figure 4.4: RLS-ED update frequency vs. accuracy. Figure compares the rate
of 4 update policies. 1 means that the system updates thel @ibeleevery interval,

5 means that the system accumulates the monitored statistic intervals before
updating, etc.

70



Chapter 4. Predicting Energy Consumption at Run-Time

4.4.2 Update Period

Figure 4.4 shows the error rate when RLS-ED algorithm rofisquentlyto reduce
its computation overhead. The update policy combimesnsecutive intervals into a
single super-interval and updates the model once for eaoletker, we estimate en-
ergy consumption after every interval as we did in our priggeziment. We experiment
with p = 1,5, 10 and20 and use a decay factor 0.

As expected, the average error rate across all benchmamiesases as we increase
the value ofp. However, the increase ot linearand produces surprising results, es-
pecially for the network applications. For pvkx and treedtd error rate exceeds 50%
whenr = 5 at a single point. For pvkxb, which was our most challengiagdhmark
in many cases, the error rate tafi®)% whenp = 10 and decreases when we increase

ther to 20.

4.4.3 Benefits From Offline Profiling

We next investigate the efficacy of using the offline profieréduce model error
rate during the initial warm-up period of the RLS-ED algomithFigure 4.5 shows the
results across benchmarks for= 0.9. The light colored bars show the error rate when
we use an offline profiler, the dark colored bars show the eatar when we do not.
For the offline profiler, we determine the coefficients as wiirmaiin Section 4.4.1. In

the absence of the offline profiler, we initialize all the ¢méénts to0.

71



Chapter 4. Predicting Energy Consumption at Run-Time

18% @ with offline profiling
B w/o offline profiling

Error %
~
<
o~
Il

2%
0% -

O @ @ M @ W@ @ @ F 0O & O
@%0{\&‘(5 S FF PSP F

& &S & & T & T LY
e@b «° e.Qé & &’b & N N @Q/
¥ ¥ § R &L

Figure 4.5: Benefit from an offline profiler. The offline profiler reducesogmate 2.5%
in average.

The offline profiler reduces the error rates for all cases. bereefits are more clear
for the shorter benchmarks such as gsmdecode, gsmencabdigearThe offline pro-
filer only marginally effects the network benchmarks suchws(, pvnx and pvkxb. In
contrast to the life application, these three benchmarndg tie transfer smaller amounts
of data between their computation period, and are more ptisketo variations in

network latency. Overall, profiling reduces error rate fror2% to 2.7%.

4.4.4 Battery Monitor Error Rate vs. Accuracy

A novel feature of our proposed model is the use of the battenyitor as feedback
to adjust the model coefficients at runtime. The internal BMblyever, is imprecise,

and introduces a much higher error rate than that of our etgnigh-precision, equip-

72



Chapter 4. Predicting Energy Consumption at Run-Time

ment. In our target platform, the energy readings are widh&8m\olts and 0.25mAh
(milliampere-Hours) of real voltage and current flow of thetbry pack. We assume
that the battery voltage stays stable between two readiecgsuse of the short period,
hence we only consider the current flow measurement errors.

Two other factors, although not directly related to the aacy of BMU readings,
significantly influence our design. The first factor is retate the BMU access over-
head. The BMU and CPU is connected through a seoia-wirelink and frequent
accesses incur an overhead. The second factor is the cdiopat@ost of the RLS-ED
algorithm. Therefore, we combineconsecutive intervals into a single super-interval
and update the model once for each. In this section, we aeatgveral factors gb
and algorithm accuracy.

The BMU datasheet [13] does not provide any details about mneaent error
distribution. In this case, we assume a uniform distribusoich that the difference
between real values and the observed values can be in the[ramd25, 0.125] mAh.
To explore the effect of this error, we injected artificialagrinto the current flow mea-
surements immediately prior to running the RLS-ED algorithde call this amount of
error1X precision

To capture future improvements in battery monitoring texdbgy, We also inves-
tigate three other precision leveX, 4X, and 8XThe prefix beforeX is the ratio of

reduction in error rate, for exampl2X has an error range-0.062, 0.062] mAh. We

73



Chapter 4. Predicting Energy Consumption at Run-Time

compare these results tgeecisebattery monitoring unit, which has a precision that is

equal to that of our external measurement equipment (niccatierror).

4.4.5 Performance Of Complex Model

Tables 4.3, 4.4, and 4.5 show the results for three RLS-EDtapolriods,p =
100, 200, and400, respectively. As the unit of is instructions executed, the exact
length of update period in wall clock time is somewhat adritr However, in an Intel
XScale CPU running at 400 MHz, the updates are separated ®astt 10 seconds
(much more in practice) whem= 400, and less for the other cases. In each table, we
group the results by and then divide each group into columns of precision. Xhe
the column header shows the precision levgl.means that the precision is equal to
the external equipment. The tables show results for botledhgact and the complex
models.

We set the decay factoy, to 0.9. The offline profiler warms-up the coefficients by
running a benchmark once, and then repeatedly runs the tvemkuntil we monitor at
least 2000 intervals. By repeatedly executing them, we camtorchow the feedback
and adaptiveness mechanism of the algorithm behaves eviégrefoenchmarks that are
shorter than one period.

As the results show, there is a large discrepancy betweemgtrecise(i.e. 1X to

8X) and theprecisecases. When no measurement errors are present, the RLS-ED algo

74



Chapter 4. Predicting Energy Consumption at Run-Time

1X 2X 4X 8X | oo

bisort 460.2| 232.0| 61.3| 58.6| 3.7
em3d 1004.4| 498.7| 184.7| 126.2| 5.4
gsmdecode 7.0 4.1 3.4 35| 3.0

gsmencode 693.0| 295.6| 229.3| 86.9| 0.7
jpegdecode 79.9| 107.8| 31.6 99| 14
jpegencode 45.8| 19.3| 14.0 6.1 1.2
life 149.9| 72.3| 40.7| 19.9| 4.3
mpeg2decode 18.2| 14.2| 5.7 24| 04
mpeg2encod¢ 30.8| 21.1| 11.9 50 3.7

pvkx 69.4| 29.9| 195| 13.1| 94
pvkxb 49.4| 35.1| 219| 174 16.1
pvnx 24.0| 29.3| 13.2 6.9| 5.8
treeadd 77.8| 33.0] 18.7| 10.0f 1.0

(a) Complex Model

1X 2X | 4X 8X | o
bisort 5.9 28| 2.3 24| 1.8
em3d 165.8| 130.1| 64.8| 114.6| 2.7
gsmdecode 2.5 1.1, 0.8 0.7| 0.3
gsmencode | 136.3| 90.3|17.9| 19.3| 0.3
jpegdecode 87.4| 23.6|23.0 99| 1.0
jpegencode 325| 104| 7.4 71| 4.1
life 145.3| 50.2|19.6| 23.3| 4.7
mpeg2decod¢ 10.7 28| 1.9 15 0.3
mpeg2encod¢ 16.9| 10.7| 6.1 50 2.0

pVvkx 16.6| 14.3|13.2 9.7| 8.7
pvkxb 32.7| 31.1|19.6| 20.6|20.2
pvnx 13.1| 7.2| 36 25| 1.1
treeadd 28.4| 14.4| 87 43| 21

(b) Compact Model

Table 4.3: Comparison of model error rates, updating evyery 100 intervals.

75



Chapter 4. Predicting Energy Consumption at Run-Time

1X 2X 4X 8X | o0

bisort 1348.9| 353.7| 273.6| 169.2| 5.1
em3d 709.9| 248.0| 101.5| 91.7| 4.3
gsmdecode 7.0 7.1 6.3 6.0/ 5.9

gsmencode 728.6| 315.3| 183.5| 91.3|1.0
jpegdecode 49.7| 40.6| 34.8 6.6| 0.7
jpegencode 255| 240, 10.1| 40|14
life 127.8| 48.6| 42.6| 17.8| 3.8
mpeg2decode 22.4| 9.6| 4.7 29|04
mpeg2encod¢ 34.0| 37.1 7.0 56| 5.6

pvkx 66.7| 19.6| 14.7| 12.5| 8.2
pvkxb 33.9| 28.2 7.9 8.1/6.8
pvnx 12.1 9.2 6.0 6.0 54
treeadd 91.1| 42.6| 158| 121|114

(a) Complex Model

1X 2X | 4X | 8X | o0
bisort 11.3] 38| 21| 23|19
em3d 280.9| 58.8|46.3| 16.3| 2.2
gsmdecode 2.9 1.4, 09| 07|05
gsmencode | 298.4| 118.6| 49.1| 20.5| 0.4
jpegdecode 19.6| 228| 9.1(14.2| 1.2
jpegencode 23.5 44| 3.7| 3.3|20
life 90.1| 445|17.0|10.6| 4.8
mpeg2decode 5.0 28| 1.7 09|03
mpeg2encod¢ 10.0| 5.7 4.0| 4.2|4.3

pVKkx 40.1] 12.2]14.1| 98| 7.2
pvkxb 51.4| 22.0/10.2| 7.8|6.6
pvnx 16.0| 53| 27| 18|1.2
treeadd 456| 115| 7.7| 33|21

(b) Compact Model

Table 4.4: Comparison of model error rates, updating evyery 200 intervals.

76



Chapter 4. Predicting Energy Consumption at Run-Time

1X 2X 4X 8X | oo
bisort 31.9| 241 7.9 69| 54
em3d 387.7|148.1| 96.8| 51.3| 3.6
gsmdecode 12.6| 12.2| 11.8| 11.7|11.6
gsmencode | 1411.3| 447.9| 419.7| 177.7| 0.7
jpegdecode 458 13.6| 21.2 58| 0.7
jpegencode 24.7| 10.9 51 39| 16
life 106.0/ 16.6f 8.1| 15.1| 3.7
mpeg2decode 3.1 0.8 0.7 06| 04
mpeg2encod¢ 26.8| 17.4 6.2 51| 4.0

pvkx 33.5| 12.9| 10.9 99| 8.2
pvkxb 31.3 8.9 8.6 72| 55
pvnx 6.7 6.4 5.7 58| 6.0
treeadd 81.5| 43.8| 234| 115| 1.8

(a) Complex Model

IX | 2X| 4X | 8X |
bisort 78| 46| 56| 33|29
em3d 91.9(79.2| 85| 78|25
gsmdecode 21| 12| 12| 09|08
gsmencode || 43.4|58.3| 6.6|34.5| 05
jpegdecode | 18.7| 47.6| 25.6| 12.0| 0.9
jpegencode | 20.2| 5.7| 48| 6.0| 29
life 88.7| 7.2129.2| 93|44
mpeg2decod¢ 19| 1.0/ 05| 0.4)0.3
mpeg2encode¢ 11.8| 84| 6.0, 56|54

pvkx 36.0| 24.0| 12.2| 85/ 7.3
pvkxb 14.9| 18.2| 7.7| 6.8|5.2
pVNX 37| 57| 25| 15|13
treeadd 88.9| 25.2| 8.0| 4.2]22

(b) Compact Model

Table 4.5: Comparison of model error rates, updating evyery 400 intervals.

77



Chapter 4. Predicting Energy Consumption at Run-Time

rithm converges quickly, providing estimations that aréhwi 10% of the real values.

When measurement errors are present, the estimation etesrinarease significantly.
This increase is more apparent for some applications sugjsraencode and em3d.
These applications have short, sudden changes in thegyenensumption behavior.
For instance, gsmencode is a very short benchmark with asreopth execution pat-
tern except the very first few intervals. During these iniésythe energy consumption
increase sharply. When these spikes coincide with energguneaents, the RLS-
ED detects an immediate increase in energy consumption\ardsiimates the model
parameters.

The effect ofp on the total system is less obvious, because a higimaposes two
different effects. First, ap increases, the relative magnitude of measurement errors
asymptomatically decrease. This is a result of the congtant factor that the bat-
tery monitor imposes. For instance when precisionX§ the expected error rate is
(0.25)/E. As a highep means a larger observation periddbecomes larger and error
rate becomes smaller. Second, a high@neans less frequent model updates, giving
the model less chance to react when program behavior chaB®gesesults show that

p = 400 is better, however, the bestvaries from one benchmark to another.

78



Chapter 4. Predicting Energy Consumption at Run-Time

4.4.6 Performance Of Compact Model

The tables above also show the same results for the compaletl miche compact
model error rate shows a significant improvement over theptexnmodel especially
when there are feedback errors. For example, when100 and precision id X the
average error rate is 208% for complex model and 53.3% fompeatmodel. We find
that the compact model error rate is less than 3% when thenecaieedback errors.

The poor performance of complex model is a resulnodticollinearity, which was
described in Section 3.3.1. In the presence of linear depwredbetween the variables,
the recursive estimates of the RLS-ED algorithm convergmglgland produces inac-
curate parameter estimations [85]. The presence of emdratiery monitor readings
and a largep further complicates the model and reduces the accuracy.cdimpact
model, since it has fewer (and many fewer related) parasetiees not suffer from
this phenomenon.

The results indicate that the accuracy of the algorithm ghllyi dependent on the
feedback error rate. At the levels of precision availabbefBMUs in current devices
(i.,e. 1X) , feedback errors have a significant adverse effactlgorithm accuracy.
However, once the precision levels improvests, or more, the increase in estimation
accuracy improves the quality of energy estimates. When BMidipion level is 8X,

the error rate drops to less th&®% for p = 200 andp = 400.

79



Chapter 4. Predicting Energy Consumption at Run-Time

B BMU access
O Processing

milliseconds
n
o

compact compact complex complex
computation network network computation

Figure 4.6: RLS-ED execution cost. The bars show the average CPU time osed f
each RLS-ED iteration.

We also find that the selection pfis an important factor in model accuracy. Some
benchmarks, like em3d and gsmencode, are highly sensititteet value ofp. This
is a result of short, sudden changes in program behaviortfyrahsring initialization)
that coincide with the RLS-ED updates to the model. Even thoug do not evaluate
it in the scope of this paper, an application specific sedactif p may provide better

convergence in these cases.

4.4.7 Execution Cost

Figure 4.6 shows the cost of executing our model on our tagigétorm. We im-
plemented this model in C as a user-space application. Tighthef each bar shows
the average execution time for a single iteration. The dal&red portion of the bars

shows the BMU access time, including the cost of reading data hardware to ker-

80



Chapter 4. Predicting Energy Consumption at Run-Time

nel space and then transferring to user space. The BMU adoesgstin average 22.7
milliseconds, and same for all models. The light colorediporof the bars shows
the RLS-ED execution time. For the compact computation magelmeasured each
iteration to consume 2.9 milliseconds of CPU time. The RLS-BBX ¢s proportional
to the square of model parameter count, and increases upZoridiseconds for the
complex computation model. However, these results shotwthiealominant cost is the

battery monitor access time and not the RLS-ED computation.

4.5 Why RLS-ED?

To update linear model parameters at run-time, we choosgsige least squares
algorithm because of its robustness, stability, adagtatd modest computational de-
mand. Our evaluation shows that this method continues tmmernvell even in the
presence of model errors and parameter dependencies.

As Figure 4.1 shows, the recursive update forms a discretibfck system which
may also be seen as a low-pass filter [85]. When there is no exgiahdecay, each new
measurement has gradually less effect on model updatee asdtel considers all the
past measurements. The model converges fast when the raatiionary. In contrary,
our system is not necessarily stationary. As the time pasises€nergy consumption

behavior of the system may change because of changes inoadrkharacteristics

81



Chapter 4. Predicting Energy Consumption at Run-Time

last k measurements .
- . Sample Weight

.
n-k
Most Recent Samples

(a) Moving Rectangular

Sample Weight

- = : -

n Most Recent Samples

(b) Exponential Decaying

Figure 4.7: Recursive least squares memory shaping

(which we also want to capture). The recursive least squalgesithm provides two
methods to handle time varying situations: a rectanguléa deeighting algorithm,
and an exponential data weighting [23]. Figure 4.7 illussahese two methods. In
the first one, the most recehtsamples are given equal weight, and all the previous
data are forgotten; in the second one, the weights of the sll@ples are decreased
exponentially. Here, we use the second approach since dtislear (to us) how to
decide the size of window at run-time. Furthermore, theamggtilar sliding window is
less appealing since it requires remembering all past sdhs are in the window.
Instead of recursive least squares, we could also use iectahgradient descent [66]
to update linear model parameters. In gradient descentpdate the linear model pa-

rameters in small steps until we achieve a point where th&ieal does not improve

82



Chapter 4. Predicting Energy Consumption at Run-Time

any more. Letr is a vector of parameterg, is the target output (corresponding to
hardware event counts and power measurements, respgcénels are the parameter
weights. The predicted linear model output is givensay In incremental (stochastic)

gradient descent, we update model parameter weights fomeae sample;,+ 1 using:

Biv1 = Bi + n(Yis1 — BiTit1)Tis1

Here, n is the step size. Higher values gfmakes the model forget the past more
rapidly. The linear gradient descent is computationallgagrer than recursive least
squares regression, however, it is not as robust. The locainas, plateaus, and high

steep changes may cause it to oscillate. In our power estimagsign, since the model

power measuremenishas an error term involved, robustness is particularly irgu

for us. Thus, we do not pursue this option anymore, and ldaga future direction.

4.6 Related Work

This chapter presents a runtime, feedback-based fullsystergy estimation model
for battery powered devices. The run-time system maps reedand software coun-
ters to power consumption values using first order, linegression equations. The
most closely related work is on HPM-based, static, lineadem®for CPU and memory
energy estimation [7, 38, 78, 39, 35, 12]. These have alrbady described in previous

chapter.

83



Chapter 4. Predicting Energy Consumption at Run-Time

One of the primary challenges in this study is to find an optimaet of parameters
that explain power consumption, however, simulating eaxssible parameter combi-
nation is hard since there are a large number of factors hiagesCPU power behavior.
In [44], Lee et al. suggests an efficient and statically soapproach that reduces
design space-size considerably. In their simulationy, deenonstrate that their regres-
sion models can estimate CPU energy consumption with a 4.886 rate. However,
their model does not use any feedback and is evaluated onby igpothetical CPU.
Like all the other studies above it does not explore anygyditem energy consumption
challenges. Lee et al.'s approach is complementary to ouk @a® it provides a way
for our to design better regression models that uses fekdizan battery management
unit.

The static models above are undoubtedly useful in charaictgrmprogram energy
consumption, however they are limited by the static woritlteat they are developed
on. This study proposes a novel approach to dynamically ireote estimate energy

consumption on low-power embedded devices.

4.7 Summary

This chapter presents an adaptive, feedback-based erstigyaton model for low-

power embedded devices such as HP hand-held computersagdt8tsensor network

84



Chapter 4. Predicting Energy Consumption at Run-Time

devices. The presented model estimates full system energgumption of programs
using hardware and software counters. The system staftsanitinitial model and

gradually improves it using dynamic feedback from the lgtbeonitoring unit within

the device. We evaluate our model using a large set of apipinsa and discuss its
stability in the presence of measurement errors. Our eshibw that the proposed
model can predict energy consumption with 1.0% error ratedmputational bound
programs and 6.6% error rate for tasks that are both commatimicand computation

bound.

85



Chapter 5

Predicting System Resources For
Reducing Energy Consumption

Previous chapters discussed modeling and predicting greamgsumption. They
presented challenges, and proposed novel solutions. Twgtons demonstrated
that fine-grain energy cost determination of tasks is ptessiith a carefully designed
model coupled with a battery monitoring unit. Future poweage operating systems
and applications like [55, 65, 87, 86] can be coupled witls¢henodels to detect and
optimize the tasks that are most energy expensive. Thesatopesystems use differ-
ent strategies to reduce energy consumption of tasks. Toentygt important strategies
are computation offloading and dynamic voltage scalingctviwe described in detalil
in Chapter 2.

Key to the efficacy of dynamic voltage scaling and computatitioading is the low
cost of their use and accurate prediction of future appboatworkload, and resource

behavior. Techniques that optimize energy use must estithademand and the supply

86



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

of resources to determine which optimization to apply an@énvhf the estimates are
incorrect or the application of the optimization introdscggnificant overhead, the
techniques may be unable to extend battery life or actublhyten it.

This chapter discusses predicting demand and supply o¢ tteseurces and pro-
poses a non-parametric, time-series approach to estihwtduture values using their
past behavior. The next section presents extant resournardkand supply predic-
tion systems. Section 5.2 presents the high level ideantehir proposed approach.
Section 5.3 details the design. Section 5.4 validates thyegsed model. Finally, Sec-

tion 5.5 summarizes the chapter and concludes.

5.1 Extant Resource Prediction Systems

Prediction of resource availability and performance is delj studied field of re-
search. This section overviews representatives of comesmurce prediction methods
that are employed by studies that target energy consumgtiémcuses on techniques
that are online, require no modification to the applicatanmg that are executexh the
deviceitself, for which the overhead of the approach is as impaormarthe accuracy it
achieves. This section describes each prediction stratefg context of the particular

resources (CPU, network bandwidth, etc.) for which they aezlu

87



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

CPU Availability

Systems employ CPU availability prediction to estimate th&@me a process or
sub-process task consumes [19, 28]. These predictionsadhy the execution envi-
ronment to guide task scheduling and processor scalingidesi[77, 26, 60, 41, 19,
28]. A common technique for estimating CPU load is one thdtgyatload statistics via
various operating system utilities and interfaces, suchnad at andt op in UNIX.
CPU estimation techniques range from very simple to compieixiaus vary in agility,
overhead, and accuracy. Agility is the degree to which aiptied utility can react to
and adjust for variance in measured, history data.

PAST scheduling [77] assumes that the CPU load in the nextvaltevill be the
same as the most recent CPU load measurement. This foreisagtey agile since it
immediately responds to changes in CPU load. However, suekponse can have a
negative effect on accuracy when recent CPU spikes are mutli@ise and short lived,
i.e., not good estimates of future behavior.

To overcome such limitations, other CPU prediction techegjilter out noise with
more sophisticated techniques. The Odyssey predictioersysepresents such sys-
tems. Odyssey estimates CPU availability by first assumiag@RU cycles are evenly

distributed among all processes. It then uses an expoheéetay technique (i.e., a

88



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

smoothing filter) to filter out noise. The Odyssey CPU predittnodel is:

Sepy = ~—— (5.1)

whereP is the processor clock speell,is the number of runnable processes &pgd
is the available CPU cycles. Odyssey uses a smoothing filestimate the number of

processes in the next interval:

Niy1 = aNg+ (1 — a)n(p) (5.2)

In this equatiom is a function of observed number of processes in the cumésrval

and defined as:

n, —1 If pis runnable
n(i) =

ny, Otherwise

wheren,. is the number of runnable processes at time t.

The AV G, policy [77] is another popular CPU prediction technique ttha¢ctly
decays the measured CPU load over theAastervals. Since this policy is simply an
extension to PAST policy, it inherits the same weaknesses gtatic, parameterized).
AV G, policy is less agile than PAST but it is more resilient to eais the network.
The BEST [3] policy estimates the CPU demand using a similahar@sm. It predicts
the periods of multimedia tasks as a weighted average ofpthevious task periods. It
truncates periods that are longer than a threshold value. TRi68cy adds predicted

period to current time to find the task deadline, and schedbketask that has earliest

89



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

deadline. There are also several other CPU load predictotmigues that are based on
observation heuristics [26]. Such techniques, howeverems general since they have
many parameterized heuristic rules designed to optimideeance on the particular
workload that they are intended for.

A more recent study [72] indicates that a single, paranetdrimethod may not
be the best choice across different workloads. In theiryst8thha et al. compared
four CPU load prediction techniques, including exponergmbothing, moving aver-
aging, least mean squaring and a purely probabilistic igciencalled expected work-
load state, using three real workloads. Their results sddwat least mean squaring
was better than the others, in average. However, the bedicpyevaried from one

workload to another [71].

Network Latency and Bandwidth

Many embedded systems employ prediction techniques favamktlatency and
bandwidth. Two common uses of such techniques are task slagdior distributed
devices and computation offloading. Computation offloadéng technique in which
the system executes processes or tasks on more capablelqowaled computer
systems to conserve the battery power or extend the cayatilmobile, resource-

constrained devices [20, 55, 40, 2].

90



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

To estimate network latency, extant prediction systemspassive observations of
RPC packets to compute the round-trip time and throughpuetfark [55]. Since,
network performance is highly variable, noise can sevedelyrade the accuracy of
network bandwidth estimations. To improve accuracy, ofinediction systems use an

exponential smoothing filter much like that used above for (&3

new = y(measured) + (1 — v)old (5.3)

The value of the exponential decay factgy (letermines the agility of the method. A
smaller value increases the responsiveness, but decthageshnique’s ability to filter
out noise. Thus the accuracy of the method is highly depearatethe choice of the
parameter. Since network latency and bandwidth exhibieint performance char-
acteristics, users must identify multiple parameteraati¢y) for the filter function of
each. Moreover, for a single metric (latency or bandwidimg,filter requires different
parameterizations fatifferentnetwork technologies to achieve the best accuracy.
To overcome the limitations of a large number of paramed¢ions and instability,
researchers have developed a network performance estithatomplements two ex-
ponential smoothing functions in a single forecastingeays}40], a so-called flip-flop
predictor. The parameters used by this predictor are cortynadopposite ends of the
spectrum to capture the benefits of both agility and smogthdoth predictors execute

concurrently, however, the estimator uses the one wittettger parameter (that enables

91



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

more smoothing) as long as the approximate standard daviatithe predicted value
is in a predetermined range with respect to the smoothed .nféenestimator switches
to the agile version otherwise. This design has an impoddwantage over previous
models as it is more accurate and can adapt more effectvelyrtamic changes in the

system.

Power Consumption

In resource restricted systems, because of the lack of aanesh that can mea-
sure power consumption (which we address in the previoushapters), the energy
consumption of a task is rarely used as a direct cost metme &xception is Remote
Processing Framework. The Remote Processing Framework (BEBFpredicts the
energy consumption of future tasks as a function of thewviptes energy consumption
cost. It uses this to determine whether a task should be wctacally on the device
or remotely on a wall-powered server, i.e., whether contpartal offloading should be
performed. RPF does not detail how to collect these measutsieowever, it sug-
gests that the Advanced Power Management (APM) interfatieeobperating system

can be used. To estimate task power consumption RPF usesiibisrsng filter:

Z:’L:nfk Ui

I +axf, (5.4)

fn+1 - (1 - Oé) *

92



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

where f; is the forecasted value; is the measured value arids the measurement
index. o andk determine how conservative the forecaster is: A simatbmbined with
a largea will result in higher responsiveness to recent changes.

Note that the RPF smoothing filter (Equation|5.4) is the sant@@gquation for
CPU prediction prediction (Equation 5.2) wher= 1. In addition, the smoothing filter
is the same as the bandwidth and latency prediction funati@uyssey (Equation 5.3)

whenk =1anda=1—1~.

Application CPU Demand

The CPU demand of an application is highly dependent on ther@atf the ap-
plication itself. However, when no application-specifioirmation is available or its
collection is infeasible, prediction systems can estinG&) demand using application
history logs. The prediction system described in [54] empplsuch a methodology.
This methodology is popular and likely to be successful fobedded devices, since it
does not require any effort by the user or application pnognar, access to program
source code, or no modification to the program.

In such systems, an online, learning predictor maintaingam-specific coeffi-
cients that are used to model the CPU demand of the applidati@aparticular input
dataset. Computing thiaitial values of coefficients requires off-line training unfor-

tunately. However, once the initial values are set, theesystpdates the coefficients

93



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

using recursive least squares regression with exponeletialy (LSQ). Given the char-
acteristics of exponential decay, LSQ gives more weighthéarécent observations.

LSQ can efficiently predict the valuewhen it is dependent on a set of parameters
x such thaty = Ax + w, andw is the measurement error or noise. The general formula

for recursive LSQ to estimate CPU load of tasks is:

Ap = Ap—1 — Po{apa) A1 — mrye}
Pk = {Pk,1 — Pk,ll'k[Oé + l’{Pk,liEk]ill'ng,l}/Oé

whereq is the decay factor angl. is the measurement at timie In the equation above,
Y41 IS predicted byA, . x,. The P, matrix is commonly referred to as tlmestory or
filtering factor[85].

This technique performs well for augmented reality appitce — a popular appli-
cation domain for mobile devices. Such programs rendeuggstas a camera scans a
set of scenes. Since commonly scenes overlap, their ti@rsiire smooth. That is,
the resource consumption behavior for the generation okaests similar to that of
a neighboring scene. As a result, the performance datasvemeothly from scene to
scene, enabling a prediction system that uses exponemitaithing to produce accu-
rate predictions of CPU demand. As mentioned previouslymédtion of recursive
least mean squaring is that numerical computation erransacaumulate after each

recursion causing algorithm to become unstable and dij8ige

94



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

5.2 Proposed Non-parametric Resource Prediction Tool

All extant prediction methodologies require user-spegifiarameterizations to fore-
cast the cost of various resources. Users must identify pipeogriate parameters
through empirical evaluation or using a complex, off-liearning process. Unfortu-
nately, the parameters are specific not only to the execatppdication but also to
individual tasks within an application. As a result, thegraeterization may not work
well across applications or even across the tasks of a sapgpécation. There are
also methods that mitigate this problem by requiring momr-usr application- feed-
back [18]. Moreover, existing systems use a number of diffeprediction strategies
(each requiring training and parameterization) for défeérresource types (e.g. CPU,
network performance, and power consumption).

We address the problem of resource prediction using a timessapproach; that
is we assume the resource demand and supply measuremeamtek time have an
internal relation —such as autocorrelation, exponent&dd, etc., and we exploit this
relation for predicting future behavior. Obviously, thesamption may not always hold
true, or the relation between the time series data may ndtdiebvious to exploit. In
these cases, using custom heuristics may be a better apploaaddition, it is some-
times better to model resource demand using data-depefuhations [53], however,

this approach requires (sometimes substantial) devetdfmet.

95



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

A time series approach has significant advantages. Consatenrk bandwidth.
The future availability of a network link depends on both gig/sical characteristics
of the medium, and the machines that share and use it. Forthey the protocols
that use the network have their own characteristics. Itid kmaccount for each such
parameter in a model. In this case modeling network bandtivéisla time-series reduces
complexity significantly.

Time series approaches have been used successfully, agWm@g section shows.
The extant time-series predictors are parametric andcst@ur time-series approach
is complemetely different. Specifically, it is one thatnisn-parametric, automatic,
adaptive, and agnostic of resource type and applicatiorabeh. That is, it is a single
system that makes accurate predictions of any resourcddypeay application — with-
out requiring application modification or participation bgers for parameterization
and off-line training. Moreover, it is appropriate for resce-constrained, mobile, sys-
tems, i.e., it consumes few device resources to make aecomradictions. The system

is calledNWSLite

5.3 Design Rationale

NWSLite is an extension of the Network Weather Service (NW3),[& freely

available toolkit [56], originally developed for theomputational grid[22, 6]. The

96



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

computational grid is a computing paradigm for the develephof software systems
that enables dynamic acquisition of resources from a hgéereous and non-dedicated
resource pool. Grid systems are high-performance, largkesdistributed systems that
require applications to adapt to the dynamically changiygiesns on which they are
executed as well as to highly-variable resource performafo extract performance
from these systems, application schedulers must use fediof future resource be-
havior to determine how the application can best use théadlairesources.

The NWS operates a distributed set of performance sensons vitich it periodi-
cally, and unobtrusively, collects performance measurgsnd he sensors apply a set of
statistical forecasting techniques to individual perfance histories and generate fore-
cast reports for the resources being monitored. The NWSrdiesg¢es these reports via
a number of different APIs in near-real-time [81]. Currentlye NWS provides sen-
sors for end-to-end TCP/IP bandwidth and latency, avail@Blel and memory, battery
power, and disk storage, and is used in a large number ofeliff€rid technologies.

NWS prediction uses a mixture-of-experts approach to ptiedicnstead of relying
on a single model. It implements a large set of models, eagindpés own parameter-
ization. Given a performance history of observed measunenadues, it generates a
forecast for each measurement. NWS ranks each predictombgudng the prediction
errors (the difference between measured and forecastadsjalEach time a forecast

is requested, NWS recalculates the ranking across all poggliasing the most recent

97



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

Name Average Cost
Last Value 0
Running Mean
5% Exp Smooth
10% Exp Smooth
15% Exp Smooth
20% Exp Smooth
30% Exp Smooth
40% Exp Smooth
50% Exp Smooth
10 || 75% Exp Smooth
11 || 90% Exp Smooth 3
12 | 5% Exp Smooth, with 0.1% trend 10
13 || 10% Exp Smooth, with 0.1% trend 10
14 || 15% Exp Smooth, with 0.1% trend 10
15 || 20% Exp Smooth, with 0.1% trend 10
16 || 30% Exp Smooth, with 0.1% trend 10

O©CoOoO~NOOUITE WNPE
WWWwWwwwwww

17 | Median Window 31 88
18 | Median Window 5 16
19 | Sliding Median Window 31 124
20 || Sliding Median Window 5 26

21 || 30% Trimmed Median Window 31 106
22 || 30% Trimmed Median Window 51 169
23 || Adaptive Median Window 5-21 171
24 || Adaptive Median Window 21-51 455

Table 5.1: NWS forecasters and the approximate costs of each. The castumn
three is given in units of floating point operations perfodne

98



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

history and chooses the most-accurate model. The impleti@mtof NWS that we
extended uses the 24 prediction models shown in Table 5.1.

This mixture-of experts method achieves its accuracy byleyimg wide range of
statistical models, each of which may be most appropriategaten time, for a given
resource. This method also has other important advantdgiest, even though the
individual NWS models may be parametric, the overall systemot. The only input
to the system is the measurement history, i.e., the NWS isstigraf the resource to
which the measurement belongs. Second, NWS can easily adgi$tto changes in
the characteristics of the data series by switching to amatiodel. Third, it can be
used on any type of data for which measurements can be madee iBmo distinction
between CPU availability and network bandwidth, for example

Because the NWS was originally designed to support high-peegnce applica-
tions in wired settings, its designers put a premium on spedcdxtensibility. As such,
it consumes significant resources to perform a single ptiedisince many models
are evaluated at once. Th&erage Costolumn shows the number of floating point
instructions executed for each predictor (all are compémwe@ach forecast made) on
average. To enable its use in resource-restricted enveatsnwe have significantly
reduced this consumption without sacrificing appreciablieacy. Here, we use dy-

namic floating point instructions as the cost metric becafisieeir high cost.

99



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

Given a history of measurements and their predicted valmegimmon way of

measuring the prediction error is using the square of therr

B =) (fi—v)’ (5.5)

where f; is the output of the predictog; is the measurement andis the length of
history.

Since the NWS uses a mixture-of-experts approach, all fstecsmare invoked log-
ically in parallel and a single winner is selected and usedHe next estimation. We

use zero-one integer variablgs to denote the winning forecaster:

( )
1 If model; is used to predict

Sij = measurement

0 Otherwise
\ y,

Specifically, if s, ; is 1, the i forecast is made using predictgr If s, ; is 0, the

predictor is not the winner for th&” forecast. Let be the number of models in NWS,
using ( 5.5), the prediction error of NWS is:
n k
E=Y)"

i=1 j

(fz' - Ui>23i,j (5.6)

1

Similarly, it is possible to compute the cost of using the nimrg forecasters (in

terms of floating point instructions) as:

100



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

n k

C=>"> c¢si (5.7)

i=1 j=1

Theoretically, NWS can be optimized by running it with a diffiet combination
of internal models on a set of representative data and theavieg the least efficient
ones. However, the search space is prohibitive: There aabadf 22* combinations.
To reduce the search space, we use a heuristic that evahmtesnuch the total com-
putation cost and error would change if one substitutes ecéstery with another
forecastew throughout the series.

The formal definition of this process is:

( 3\

1 If model j is winner forecaster
for measurementand; # u
/ . .. .
s;; =4 1 if modelj is not winner forecaster,

for measurementand; = v

\ 0 Otherwise )
whereF, , andC,, are Equations (5.6) and (5.7), usiklg instead ofs; ;.

We employ real measurement data (i.e. performance trazes)pirically evaluate
the overhead and accuracy of each NWS predictor from varimimedded system re-

sources: Wireless and wired network bandwidth and late®By) load, and task CPU

demand. We comput®&, , andC,,, for every pair ofu andv using a set of six rep-

101



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

o o o o VT o
2| 0.138 0 0.001 0.001 0.0110.01 0.04¢
3| 0.2830.069 O 0 0.0340.0390.09¢
4| 0.2670.084 O 0 0.026 0.0330.087%
=

22| 0.0040.001 O 0 0 0 0.001
23| 0.0030.004 O 0 0 0 0
24| 0 0 0 0 0 0 0

Figure 5.1: Error matrix for a real input. The matrix shows the changeriorein
percentages when forecaste(in rows) is substituted with forecaster(in columns).
For example, substituting forecaster 2 (Running Mean) atsté 23 (Adaptive Median
Window-51) increases error rate only 0.1%.

resentative traces and record the results in a matrix widts the rows ana@ as the
columns.

This representation provides a very compact form to evaltie efficiency of each
model: Every column of the matrix shows how much the erroe ctanges if one
usesv instead ofu. For exampleE,; shows the new error fast valuetakes place
of running mean Thus, if theE,; is smaller than original NWS’s error rate fatfl
the trace files, then we considest valueto be a better predictor thaannning mean
Similarly, if in an extreme case, all the values of column & smaller than original
NWS’s error rate, then theinning mearoutperforms the original NWS. Even though,

this is theoretically possible, we did not come across amg@kaof such a case.

102



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

1 2 3 4 W 22 23 24
1 0 0 0 0 139 373 03
2| -0.02 0 0 0 3.05 819 0.7
3| -005 O 0 0 343 924 08
4/ -0.06 0 0 0 0.12 0.33 0.0
=
22| -0.06 -0.06 -0.06 -0.06 0 0.1 -0.05
23| -0.18 -0.17 -0.17 -0.17 -0.11 0 -0.16
24| 0 0 0 0 0 0 0

Figure 5.2: Cost matrix for a real input. The matrix shows the change irt gos
percentages when forecaste(in rows) is substituted with forecaster(in columns).
For example, substituting forecaster 2 (Running Mean) atsté 23 (Adaptive Median
Window-51) provides a 6% decrease in cost.

Figure 5.1 and 5.2, show the error and cost matrices for amgbeadataset. The
numbers to the leftmost and topmost of the matrices showrthmeration of forecast-
ers (given in Table 5/1). The numbers in the matrices showchiamge in error and
cost in percentages after substituting a forecastén rows) with a forecaster (in
columns). For example, substituting Adaptive Median Wimekill (number 23-shaded
row) with Running Mean (number 2-shaded column) increase&ttor by 0.1% and
decreases the cost by 6%.

Given the evaluation matrices, we employ a set of empiridaisrto eliminate fore-

casters. Basically, we remove any model

e that has more than 1% error rate across all traces,

103



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

e for which there is another model with significantly lower tthgat can replace it

with a small increase in errok(5%), and

e for which there is a combination of other models that enaldiendlar error rate.

Rule 1 eliminates many models immediately. For exampleapd 30% trimmed
median window 3With running mearresults in an error increase by at most 0.2%. On
the other hand, fomedian window 3lreplacing it with therunning meanncreases
error rate less than 0.2% in 5 of the 6 traces. In the remainagg,median window 5
produces the same error raterasdian window 31As such, we includeunning mean
andmedian window @and omit30% trimmed median window 3Using this process
iteratively, we identify five predictors (shown in bold infla/5.1). These techniques
trade off cost and prediction error most effectively.

This methodology for discovering the five NWSLite forecastisr similar to off-
line, profile-based optimization for which researchersarse set of program inputs to
collect profile information and to guide optimization, andi#ierent set of inputs to
evaluate the performance of their approach [43, 74, 42]. ¥éesix traces to identify
NWS forecasters that enable high accuracy at low cost. WeiaeaNWSLite using

over 300 traces that are different from these six.

104



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

Bandwidth [56]

750476 predictions

Name Trace Size Description
Application 20 traces Interactive, 3-D rendering application CPU
17870 predictions | demand. Measurements are CPU time from
user request to program response.
Network 132 traces Observations of 64Kb-1Mbyte TCP data

transfers. 3 configurations: UIUC LAN
(inter-cluster), UIUC campus-wide network
(intra-cluster), and cross-country Internet
(UIUC-UCSD)

CPU load [56]

59 traces
6000697 predictions

5 User process can obtain. Observations are

Fraction of CPU occupancy time a standard

in 10 seconds intervals.

Network
Latency [56]

134 traces
750305 predictions

Round trip time of TCP. Transferring 4 byt¢
and measuring acknowledge time.
Granularity levels same as

network bandwidth.

D
(72}

Wireless
Bandwidth [70]

1 trace
3028 predictions

4 access points on same subnet. Traces
include 195 users, 300000 flows and 4.6 GB
of network traffic. Bandwidth measured in
1 minute intervals.

Table 5.2: Datasets used for evaluation

5.4 Validation

To empirically evaluate the efficacy of NWSLite, we perforngegberiments using

a wide range of datasets, applications, and metrics. Thafimlg subsection describe

the experimental methodology (datasets and applicatioBgktion 5.4.2 details the

metrics, and Section 5.4.3 presents the results.

105



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

5.4.1 Experimental methodology

To empirically compare the resource forecasting system NN&Sb extant ap-
proaches to resource performance forecasters, we calléetees from a wide range
of resource types: CPU demand (execution time) of applicatieks, wired and wire-
less network bandwidth, wired network latency, and CPU abdity. We then used
the NWSLite and competitive approaches to make predictisimguhe trace data. In
total, we performed experiments on 346 traces which pratimeere than 7 million
predictions. All of the traces, with the exception of apation execution times, were
made freely available via web-sites of research groupsnartiue country [56, 1, 27].
We provide the details on the different datasets in Tabl@Bd®we refer to each of the
different types of data sets (application execution tin@Rl availability, bandwidth,
latency, etc.) as “groups”.

We generated execution time traces, i.e., CPU demand, usang-D rendering
applications used in similar studies [54, 53]. The appiwet and inputs are shown in
Table 5.3.

GLVU [25] allows navigating inside a 3-D scene by renderihg scene from any
viewpoint of user. From an augmented reality view, Radiat8f fFomplements GLVU
by computing the lighting effects for a given scene. Both mapions can easily be
divided intooperationg[54], which is a suitable unit for remote execution and figeli

adjustment. An operation (which this chapter also referast@a task) is the smallest

106



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

Applications

Input Scene Scene Size (bytes) GLVU | Radiosity
castle 385391 Yes

cessna 200553 Yes Yes
chevy 678806 Yes

cloister 7816848 Yes

cup 97113 Yes
dragon 3382396 Yes
ground-table-land 640939 Yes Yes
ground-riverain-valley 634007 Yes
shuttle 15658 Yes Yes
venus 3483433 Yes

Table 5.3: NWSLite evaluation benchmarks. We collected 10 trace filespplication
(3-D scene rendering programs) using different inputs aadgation paths. Empty
entries indicate that the application failed to procesgptréicular scene; "Yes” entries
are those inputs we employed for this study. We processeé sgts multiple times
(to total 10) using different navigation paths.

user-visible execution unit, such as viewpoint change ieradering operation. For
each application we rendered a set of 10 scenes which produtdal of 17870 oper-
ations. Table 5.3 shows these inputs. Since some scenestarempatible with both
applications, we used some inputs multiple times usingdfit navigation paths. We
consider the prediction performance for applications tthieeaccuracy with which the
prediction system forecasts the CPU demand of each task.

The bandwidth, CPU availability, and latency data were ctdlé as a part of the
NWS project [56]. NWS network sensors use active network maobeollect TCP/IP
latency and bandwidth data on a group of geographicallyibiged hosts connected

via local, wide area, and Internet networks. Each probébsiees a TCP connection,

107



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

transmits a fixed amount of data, and tears down the conmectietwork sensors
measure network bandwidth using a 64 KByte data transfer atvdonk latency using
a 4 byte data transfer.

The NWS CPU sensors combine the information from Unix systelitieg vmstat
anduptimewith periodic active CPU occupancy tests to provide measentsrof CPU
availability. Theuptimeutility reports the average number of processes in the rengu
over the last one, five and fifteen minutes. The sensor usesénage load over the one
minute period and computes the CPU availability by using tie, iuser, and system
time output fromvmstatutility. The CPU availability is measured as the fraction of
CPU occupancy time a standard user process can obtain.

The wireless bandwidth traces were collected during theC®X@M’01 conference
and made publicin [70]. The conference building was coveunigufour 802.11b access
points. The traces span a 3 day period capturing 300000 flewsrgted by 195 users

consuming a total of 4.6 GB of bandwidth.

5.4.2 Evaluation Metrics

This section evaluates NWSLite and its competitors in terfiisoth accuracy and
computational cost. It uses three metrics to evaluate gi@daccuracy and instruction

count (both total and floating point) to evaluate predictustc

108



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

The first of the three evaluation metricseisor deviation:

n

)2
MSE: Zi:1<x’t yZ)

n

Error deviation= VM SE (5.8)

wherez is the set ofn predictions and, is the set ofn corresponding observations.
The mean square error (MSE) is the average square predationover then pairs,
(z,y). The error deviation is the square root of the mean squaoe. dfrror deviation
describes the error in absolute terms and represents (ioggNahestandard deviation
of the errors with respect to tlexpectatiorconstituted by the forecast. Error deviation
accounts for outliers and is more sensitive to incorredliptens than i@bsolute error

in which the absolute value of the error is used.

However, the error deviation is most meaningful when commgathe performance
of predictors on the same time series. To provide a compagswoss different series,
we use the ratio of error deviation over the average obserake, i.e., theelative
error rate :

MSE

Relative error rate= (5.9)
observed_mean

This metric provides insight into how severe the error iseinrts of the magnitude of
the average measured value. For example, an error of 2Mlaigisin a 10Mb/s link,

but may not be significant in a 100Mb/s link.

109



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

The third metric is similar to relative error rate, howevestead of using the mean
as the expected value, it uses the absolute value of theafstre@his metric, called
predictability , indicates how predictable the series is relative to thedasts it gen-
erates. It differs from theelative errorin that it treats each forecast aganditional
expectatiorthat it uses to normalize the error, instead of using theadMereasurement

mean. Its definition is:

(5.10)

5.4.3 Predictor Accuracy

This section presents the results from empirical compaitstween NWSLite and
competing prediction systems: The Network Weather SerfNB&S), Odyssey (LSQ
and ODY-BW,LAT), and the Remote Processing Framework (RPF)infig@emented
all of forecasters as efficiently as possible using the Cuagg; we compiled each
using gcc and -O2 optimization. Unlike NWSLite and the NWS, %) and RPF
methods are parametric models and hence, require pararaéter. For each model,
we created a pool of parameter settings, that included thésped values [54, 20,
55] as well as our own values, resulting in 18 different fasters. For conciseness,
we selected the best performing parameterization for easehall of the datasets we

considered.

110



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

| Description \ Units | Avg | NWSLite |
APP1 - best 148845.000 5287.856
APP2 - median msecs| 9179.390, 1322.139
APP3 - worst 169753.000 135125.056
BW1 - within cluster 65.801 17.161
BW?2 - cross-cluster | Mbits/sec 76.522 13.308
BWa3 - cross-country 4.536 0.878
CPUL - best 1.992 0.016
CPU2 - median CPU 0.543 0.017
CPU3 - worst fraction 1.391 2.672
LAT1 - within cluster 13.936 16.873
LAT?2 - cross-cluster msecs 2.345 8.309
LAT3 - cross-country 77.217 14.295
WBW Kbits/sec 206.674 193.782

(a) MSE of NWSLite across benchmarks

| Description \ NWS | LSQ | RPF|
APPL1 - best 5358.179] 8180.561 22013.694
APP2 - median 1329.372| 2385.072] 5702.085
APP3 - worst 138064.335 145384.166 186430.176
BW1 - within cluster 16.958 52.112 17.191
BW?2 - cross-cluster 13.329 59.279 13.507
BW3 - cross-country 0.859 78.063 1.164
CPUL - best 0.016 13.905 0.029
CPU2 - median 0.017 14.451 0.049
CPUS3 - worst 2.684 3.113 2.661
LAT1 - within cluster 16.890 41.121 17.048
LAT2 - cross-cluster 8.319 46.829 8.337
LAT3 - cross-country 12.753 81.820 13.149
WBW 194.498 255.254 261.744

(b) MSE of competitors across benchmarks

Table 5.4: Error deviation for a set of representative traces. Theltbtmumn of (a) is
the average of the measured values. The remaining colunomstble error deviation
for predictors. The APP and CPU datasets are sorted withcegperror deviation /

average and best, median and worst cases are shown. For the BW and ltAdeds, the
average error deviation within cluster, across clusteramndss country are reported.

111



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

Table 5.4 compares thegror deviation (Equation 5.8) of the predictors using three
representative traces, for brevity. In the applicationPABnd CPU availability (CPU)
datasets, we sorted the traces with respect tetioe deviation / averagef NWSLite
and selected the best, worst, and median, which we repdneitable. For the wired
network data (bandwidth (BW) and latency (LAT)), we insteagdorg data for three
different types of links: intra-cluster, inter-clustendainter-campus (across country).
For wireless (WBW), we only have a single trace and thus showaddyefor it.

The first three columns of the table shows the descripti@tetname, and value
units for each trace. The third column, Avg, shows the awe@served value. The
final four columns show the error deviation for each of ther foredictors: NWSLite,
NWS, LSQ, and RPF. LSQ and RPF are parameterized as describectiorts.1, and
identify the best-performing, converging parameteraagiof each technique.

The NWS and NWSLite have almost identical error deviations/grgcase. LSQ
performs well for applications (as was shown in prior work])5 but it is the worst-
performing predictor for all other types of data. NWSLitefpems better than LSQ and
RPF in almost every case, and is significantly better than b8t and RPF in most
cases. For example, in the application group, for l=thttleand cloister NWSLite
performs 3 times better than RPF. The wireless dataset isiafipechallenging. All

the forecasters show a high error rate.

112



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

4_
3_
= NWSLite
2 = NWS
m LSQ
= RPF
. ﬂ
0_

APPL BW CPU LAT WBW

Figure 5.3: NWSLite relative error rate (Equation 5.9). This metric sedvow severe
the error is with respect to the average measured value. Ahéas the highest relative
error rate among all forecasters, however, as most lateloegreations are very small
(around 1 msecs), the absolute error is small.

Figure 5.3 shows theelative error rate of the predictors across all of the traces in
each group. The information in the graph confirms the resil®ble 5.4. NWSLite
performance is very similar to that of the NWS; in all groupentbles the best pre-
diction error. LSQ is ineffective for the bandwidth, CPU, datency groups. RPF
performs quite well for the CPU and bandwidth groups; and edseNWSLite per-
formance for network latency by 1.5%. RPF is the worst predibbwever, for the
application and wireless groups. For the application grae average error rate of
RPF is 86% higher than that of NWSLite.

We also compared the performance of predictors with Odysspgcialized smooth-

ing filters for bandwidth and latency, which we refer to as GBW and ODY-LAT

113



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

5_

4

3 mm NWSLite
m NWS
m | SQ

2 = RPF

1 —

O_

APPL BW CPU LAT WBW

Figure 5.4: Predictor predictability (Equation 5.10). Due to high aion among
forecasters, the values are normalized to NWSLite for eaahyyrThe lower the value,
the more accurate the forecaster.

(omitted for clarity). ODY-BW performed 25% worse than NW&Land ODY-LAT
performed 19% worse than NWSLite.

Figure 5.4 shows thpredictability (Equation 5.10) of the series given each pre-
dictor. This metric assumes that predictor is a valid coodél expectation that can be
used to normalize the error at each point of the trace. Therdle value the more
accurate the forecaster. Since the variance of the resutiggh, we normalized the
results to NWSLite for each group.

The predictability results support the previous finding&igure 5.3. NWSLite is
as accurate as NWS in all cases, and it performs significaethgibthan the parame-
terized forecasters in most cases. The single exceptitie igtency dataset, in which
RPF is the winner. However, the difference between RPF and NYW® very small.

In contrast, the accuracy of RPF is significantly worse than MNitéSor the applica-

114



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

tion, CPU, and wireless bandwidth data, emphasizing thecditfi of finding a good
parameterization for the general case. These resultslatsothat, with the exception
of the application dataset, LSQ always performs worse tharptedictors based on
smoothing-filters. In the application dataset, LSQ is apipnately 40% more accurate
than RPF, however, it is still significantly worse than NWSLiBhe predictability of
NWSLite is considerably higher than even the highly tunedijoters ODY-LAT and
ODY-BW (not shown in figure). For the latency dataset, ODY-Li&T13% less pre-
dictable than NWSLite; whereas in bandwidth dataset, NWSlates 21% better than
ODY-BW.

An interesting case is the behavior of RPF in Figures 5.3 asideven though the
relative error rate of RPF is small, its predictability is ndhis is due to the character-
istics of CPU dataset - the CPU availability values are in timgedo0, 1), or (0, n) if
there aren processors. As such, most of the time the values are a fractid. This
results in a small value for the sum of square errors evengtindloe errors are high

relative to the expected value.

5.4.4 Computational Cost Of Prediction

In addition to studying prediction error, we also considettee cost of performing
prediction on a resource-restricted device. Prior stutfiasuse prediction on mobile

devices do not consider the resource consumption of thegioesl themselves, how-

115



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

2000
1750
1500
1250 == FPOINT
1000 == TOTAL

750

500
250
0 =t e

NWSLite NWS LSQ RPF

Number of instructions

Figure 5.5: Forecaster cost as number of instructions executed, (ftp@iint
(FPOINT) and TOTAL) per Prediction

Prediction| Floating Total Execution time
System Point | Instructions| (microsecs)
NWSLite 55 592 381.34
NWS 2626 9388 10231.31
LSQ 42 138 295.27
RPF 8 50 154.9

Table 5.5: Execution cost comparison per prediction

ever, this cost may be significant especially on processdtout any floating point
CO-processors.

Here, we first compare the predictors in terms of instrusti@guired for one pre-
diction. We extracted this information by using the Simal&r [10] simulator. Fig-
ure 5.5 shows the average cost of each predictor. NWSLiteASsésating point in-
structions per forecast. Even though this is more than teeafdRPF and LSQ, which
use 8 and 42, respectively, the accuracy of NWSLite exceeitisdfighese predictors

significantly.

116



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

As most resource-restricted devices lack a floating poirproecessor, floating
point instructions are very expensive. We break down theuingon counts into floating-
point and non-floating-point instructions in the first twdwans of Table 5.5.

We also executed the predictors on a real resource-restra¢vice: An iIPAQ
H3800 hand-held computer from Compagq [30]. The iPAQ has a 2Bi& Mtel Stron-
gArm CPU and runs Familiar Linux version 0.5.3. The executiores (in microsec-
onds) are shown in the final column of the table. These timeade the cost of 10 to
read the trace file from flash memory and to print the results.

The execution time of NWSLite is approximately 4% that of NW$dmnables pre-
diction accuracy that is nearly equivalent. Given thatdfriees only 381 microseconds
to execute a prediction, including the 10, NWSLite is a moteaative solution for on-
line forecasting using resource-restricted devices, thaparametric and less accurate

models of Odyssey and the RPF.

5.4.5 Validation Summary

Table 5.6 summarizes the results of this chapter. To makesthdts comparable to
prior studies [54], it reports summary performance in teahpercentile error. Here,
the X percentile errorFy, is the maximumabsoluteerror for X% of the experiments.
For example, for the bandwidth datasEt; of NWSLite is25.6 meaning thaf5% of

the time the prediction error of NWSLite is with2zb.6 kilobits/second. The reason

117



Chapter 5.

Predicting System Resources For Reducing Energyi@ptisn

E95
APP BW | CPU | LAT WBW

NWSLite | 7336.000 | 25.699| 0.043| 24.566| 351.090

NWS 7459.000 | 25.580| 0.038| 24.502| 358.798
LSQ 13305.338 28.459| 0.115]| 26.867| 422.977
RPF 38696.700 25.561| 0.209| 24.915| 533.047

ODY-LAT | 8806.945 | 39.717| 0.094 | 29.848| 335.172
ODY-BW | 7894.141 | 42.541| 0.079| 31.494| 354.560

(a) 95 percentile error

E90
APP BW | CPU | LAT WBW

NWSLite | 3319.000 | 10.271| 0.019| 15.772| 198.130

NWS 3343.000 | 9.601 | 0.018| 15.801| 202.771
LSQ 5866.552 | 14.105| 0.058 | 16.415| 230.591
RPF 17147.400 10.596| 0.080| 16.187| 326.340

ODY-LAT | 3759.839 | 9.923 | 0.025| 16.318| 197.429
ODY-BW | 3458.320 | 7.384 | 0.021| 16.883| 192.992

(b) 90 percentile error

Table 5.6: Results in summary: Percentile Error. We define the X pereeatior, Fx,
as the maximum absolute error for X% of the experiments. @hketcompares they,
and Ey; of all forecasters for all 5 datasets and prediction systtodied.

118



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

we use absolute rather than relative error is to avoid skedata in CPU and latency
datasets. we report the results for NWS, NWSLite, LSQ, RPF aksasdbr the two
other smoothing filters that was included, ODY-LAT (the Qslyssnetwork latency pre-
dictor) and ODY-BW (the Odyssey network bandwidth predictor

The results show that NWS and NWSLite are general enough thgtpgarform
well in all datasets. Even though parameterized forecast@n match NWSLite in
some datasets, they fail in others. As an example, the pedioce of ODY-BW is
close to NWSLite in APP dataset, but it is significantly highreBW, CPU and LAT
datasets. The same pattern also exists for ODY-LAT and RPF.rRi@€hes NWSLite
in BW and LAT, but it is significantly worse in APP and CPU dataset

Another pattern in the results is that both NWS and NWSLiteqrerfbetter than
all others when a higher percentage of predictions consitd&rhis suggests that, NWS
and NWSLite can better adjust themselves to sudden changesformance patterns
by switching to another model; the other models must simely on their static pa-
rameters.

The wireless bandwidth dataset is significantly differdrart other datasets. The
error rates are very high, i.efy, is around 200Kbits/sec on a 11Mbits/sec link, hence
none of the forecasters performed at a satisfactory leyas @mphasizes the need for

additional study of novel forecasters for wireless netwmatkdwidth data.

119



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

The success of NWSLite results from its capability to dynaaifycswitch between
a carefully chosen set of competing models based on prdyiobserved accuracy. If
the dynamics of the observed dataset changes over time, N&/&amn adapt to the
new conditions; the prediction systems of Odyssey and RPRatas such are data
(input) dependent. For example, exponential smoothing aigain of 0.05 can be the
most accurate predictor at some point, however, a transrepérmanent change can
occur so that the running mean can become the most accunatas lcase, NWSLite
will respond by switching to running mean if the change issgent enough to cause
the aggregate error ranking to change. Odyssey and RPF &oalstaconfigured by
a set of pre-determined parameters. Thus, even thoughdheiadividual cases that
other predictors can match the accuracy of NWSLite, they aable to do well across
dynamically changing series and to different types resoperformance data.

The flip-flop filter extension to Odyssey [40], described igt®a 5.1, incorporates
some adaptivity by using two different parameter settimgsi exponential smoothing
predictor. However, exponential smoothing cannot alwagsiypce the best prediction
accuracy (given any gain parameters). NWSLite incorporatg®nential smoothing
using two different gain factors but is more general and adaphan this filter since
it considers a wide range of other prediction techniques ¢ha enable significant

improvements in accuracy at low computational cost.

120



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

5.5 Summary

This chapter presents a light-weight, computationallyceffit, prediction utility for
mobile devices called NWSLite. NWSLite is an extension of tlegvdork Weather Ser-
vice (NWS), a dynamic measurement and forecasting toollsigteed and developed
for adaptive application scheduling in Computational Gnidimnments (performance-
oriented distributed systems). We identify 5 of the 24 NWXdbasters for NWSLite
implementation, that trade-off computational cost fordictor accuracy most effec-
tively.

We evaluate NWSLite using over 300 different traces of apfibe execution times,
CPU availability, wired network bandwidth and latency, andeless bandwidth. In
addition, we compare NWSLite to the NWS and to two other extantiate execu-
tion prediction systems. We find that NWSLite consistentlfpeuforms the latter and
achieves prediction accuracy similar to that of the NWS. HaxeNWSLite achieves
this level of accuracy at a significantly lower executiont¢ban the NWS.

We show the utilization of NWSLite on a computation offloadpigtform, by eval-
uating it for resource supply and demand prediction using ¢amputation offload-
ing scenarios. In the first scenario, NWSLite beats two populedictors, RPF and

LSQ, by 67% and 14% fewer wrong decisions, consecutivelyhénsecond scenario,

121



Chapter 5. Predicting System Resources For Reducing Energyi@ptien

NWSLite beats those predictors even with a higher margin: 8bét73% fewer wrong

decisions. NWSLite achieves this rate without any signifitacrease in cost.

122



Chapter 6

Improving Computation Offloading

NWSLite can adapt itself to the changes in data conditiongydag using the dy-
namic predictor selection mechanism that it employs. Ouliriigs, which we gather
using statistically sound metrics, show that NWSLite outgrens its competitors sig-
nificantly on a wide range of datasets. However, a key queskiat is remaining is
how much this improvement in accuracy translates into demnergy savings. Here,
we answer this question by evaluating NWSLite in a computatifioading setting.

The next section discusses the components required for @eexecution system
and detail the significant parameters. Section 6.2 descabecomputation offloading
setting. Section 6.3 discusses the results. Finally, @ &i4 summarizes the chapter

and concludes.

123



Chapter 6. Improving Computation Offloading

6.1 Resource Prediction in Remote Execution

Offloading computation to remote, wall-powered, resouick-servers can provide
significant power savings. Computation offloading has to astmphe cost of local
execution and remote execution before offloading the coatjout to a remote server.
To utilize the power consumption as efficiently as possithle,system should offload
computation only when remote execution is expected to issedrergy than local ex-
ecution. In order to achieve this, the cost model must cendidth the task execution
characteristics as well as the highly-variable perforneamicthe underlying resources
that dictate computation and communication performancedigting the future state of
these resources and application demand requires a higityqualdiction mechanism.
Chapter 2.1 describes remote execution in more detail.

Since the scope of this chapter is to compare NWSLite to otrestigtors, we em-
ploy a general cost model that assumes no 1/O overlappingcdfvgute the available
CPU cycles using the Odyssey model, which we give in Equatibn\&e compute the

local and remote execution cost as:

o D cpu
S lepu
D tx D cpu D

L, = = + DS, 6.2
St:c * Srcpu * Sm: * et ( )

L (6.1)

whereL; and L, stand for local and remote execution latenby,,, is the number of

CPU cycles that the application requires to complete thedask.,,, is the available

124



Chapter 6. Improving Computation Offloading

CPU cycles on local machine, averaged in a period of one seddm&remote cost is

the sum of four constituent operations:

1. The time required for network transfer given the size efdemand for network
send, and any needed program codg, ] and given the available bandwidth

(S;.) between the device and server;

2. The execution time at the server given the average nunili&P0 cycles avail-

able at the serverSt.,.);

3. The time for transfer of results, e.g., data, status,emuigraphics, etc., back
to the device given the available bandwidth between theesamnd devicelgjf);

and;

4. The time required for handshake to establish connecgjmen the number of

packet exchanges between local and mobile devigg X and network latency

(Srtt)'

Since (4) commonly consists of very short packet commuitiodietween the device
and the server, the handshake operation is impacted bytdrejain the network link
between the client and servep (;S,:;). L; andL, can be enhanced to compute power,

to integrate computation fidelity or battery lifetime intost functions.

125



Chapter 6. Improving Computation Offloading

int likely _offload()
{/I'returns 1 if remote execution chosen, 0 otherwise
L;, = predictlocal latency();

if (L < 50 milliseconds)

return O;
¥
Ly = predictremotelatency();
if (L > Lg) {
return 1,
} else{
return O;
}

}

Figure 6.1: Pseudocode for Scenariol Decision Manager

6.2 Methodology

To better understand how much the improved accuracy enalgl®dVSLite mat-
ters to a real remote execution system, we constructed temasios and simulated
those scenarios using the principles that we describedgusgy. In our simulation, we

limited the computation offloading scenarios to one mobéeice and one remote ex-

126



Chapter 6. Improving Computation Offloading

ecution server. We assumed that the local device is an HP H2&D0 and the remote
device is an IBM T23 laptop. The former machine has a 206MHargArm CPU,
while the latter one uses a 1132MHz Pentium Ill. We assumielibitn machines are
not executing any other task.

The scenarios simulate computation offloading systemdtnag different goals. In
Scenariol, the goal is to provide optimal user-interatgtillany mobile applications,
such as augmented reality applications, and games arentsexetive by their design,
making response time a critical design parameter. For splications, computation
offloading is a viable option not only to improve responseetlt also to improve func-
tionality [54, 41]. In Scenario2, the goal is to reduce pow@nsumption as much as
possible and to extend battery life. Scenario2 does notidensxecution performance
(latency) in offloading decisions.

The simulator reads the measured values of each of the catigpubffloading
parameters, — CPU demand, local and remote CPU supply, andnkelatency and
bandwidth —, from a file and predicts their future values hyning separate instances
of predictors for each type of data. Once the system compldsiture values, it calls
the decision manager, which determines whether local (arretalue of 0) or remote
computation (a return value of 1) will be used. The simulatiso computes what
the “right” or “best” decision is, once it reads the actudlres, and computes various

statistics for our use in the evaluation.

127



Chapter 6. Improving Computation Offloading

Figure 6.1 shows the pseudocode for the Scenariol decisginee The engine,
which exists on the mobile device, offloads the task to theotermachine if the fore-
casted local execution time is more than 50 millisecond$ émd the forecasted remote
execution time is smaller than that of the forecasted lagatetion time. The tasks that
are estimated to have an execution time less than 50 ms age oivaded, since the
human perception system can not recognize delays thatsaréhian 50 ms [11]. Thus,
Scenariol favors local execution, when appropriate, tacedhe stress on shared re-
sources, such as the network and remote server. We discugnplications of this
choice on predictor efficacy in the next section.

In Scenario2, the decision process estimates power congmipr both local and
remote execution and chooses the location that leads to fmeveer consumption. Un-
like Scenariol, this scenario does not favor either localeonote execution (i.e. it
does not take execution latency into consideration). eantlore, its power computa-
tion function assumes that the local CPU and the wirelesgfamie are in the idle state
during remote execution. We detail the computation of pavegsumption later in this
section.

We simulated Scenariol using GLVU and Scenario2 using Riyglio&s we ex-
plained in Section 5.4.1, both of these applications carplieisto tasks that can be
offloaded to a remote server or executed locally. To measwdask CPU demand

(i.e. D), we captured the task execution times, in microseconasutssn, as a user

128



Chapter 6. Improving Computation Offloading

was navigating 3-D scenes on a dedicated IBM T23 Linux lapWp.then computed
the demand, in CPU cycles, &%, = t x f wheref is the CPU clock speed of the
machine and is the task execution time. Even though,, is not completely accu-
rate and portable across architectures due to differemncesche sizes and other CPU
parameters (i.e. lack of floating point coprocessor in $ffom), we ignore such dis-
crepancies as our focus is the accuracy of predictors, eaffitiency of computation
offloading.

In our simulations, we assume that only the input data isstratted across the
network. This is similar to prior approaches in [41, 64, 1Bjth GLVU and Radiosity
tasks operate on an object file that contains the currenes&ince the size of this file
is known beforehand, there is no need to predict network deresaparately.

Prior to the data transfer, the client and the server hasitiatana session. In our
model, the initial handshake, which includes a single ngessxchange, and the data
transfer are done reliably, using the TCP protocol. Othedementations tend to be
more complex [18] and use protocols like remote procedulie lcavever we do not
discuss these for conciseness.

Each offloading decision requires prediction of four resear network latency,
network bandwidth, and local and remote CPU availability.twek latency is used
to compute the cost of protocol handshake. Network bandiwsdbheeded to estimate

cost of data transfer. CPU availability is used to computectist of local and remote

129



Chapter 6. Improving Computation Offloading

Parameter Power (mWatts) Description

Didie 550 CPU idle- Wireless interface off

Dousy 1150 CPU highly busy - Wireless interface off
Dix 2200 Data send over wireless

Drz 2100 Data receive over wireless

Table 6.1: Power consumption of iPAQ under different scenarios [88]

computation. We use separate predictor instances on dsttaribs to estimate next
values of each of these resources.
We use Equations 6.1 and 6.2 to compute local and remote tixedatencies in

Scenariol. In Scenario2, to compute power consumption,xtend these equations

such that:
D
C) = P us
l Slcpupb Yy
Dtx Dc U Dmc
C’r':_ w+—pie+_rm+Dr S’r T
S, Pr Smpup dl S p ttOrit Pt

In the first equation abové€;; stands for local execution energy consumption. We com-
pute it by multiplying local execution latency with,,s,, which is the average power
consumption of a highly loaded handheld computer. Simiaf.t; C,, the energy

consumption during remote execution, is a sum of four factor

1. The energy required for network transfer, which is nekataansfer time multi-

plied byp;., the average power consumption during wireless transmit;

130



Chapter 6. Improving Computation Offloading

2. The energy consumption while waiting for execution atgbever, which is re-
mote processing time multiplied by;,., the average power consumption in sleep

state;

3. The energy required for network receive, which is netwadeive time multi-

plied byp,., the average power consumption during wireless receiva; an

4. The energy required for handshake to establish conmeetitich given the num-
ber of packet exchanges between local and mobile deviceual ég network

latency multiplied by ;).

Table 6.1 gives the actual values;gfas measured by Li et al. [88] on real handheld
devices.

We simulated each scenario using 3 input scenes. We choseédhes arbitrarily,
from Table 5.3, however, we were careful to choose one simiadl, medium and one
large scene. For GLVU, we used Castle, Shuttle and Grounkk-Tand. For Radios-
ity, we used Cessna, Venus and Ground-Table-Land. We eedleach scene using 32
different TCP bandwidth, network latency and CPU availapilieasurements that we
describe in Sectian 5.4.1. We report the average results.

In each scenario, we compared the efficacy of NWSLite with RRFLEBQ using
the best performing parameterization as we described itidde6.4.3. We did not

include NWS in our evaluations due to its high cost.

131



Chapter 6. Improving Computation Offloading

Object Features | Number of | % of Offloading Decisions
Size | Complexity | Decisions | RPF | LSQ | NWSLite

N (KB)

.§ Castle 385 | Medium 78528 32.37| 32.23| 32.39

g Shuttle 15 Low 14080 64.32| 66.82| 65.00

Q")l Ground-Table| 640 | High 26496 48.12| 49.32| 48.65

2 | cessna 200 | Medium | 12736 28.33| 31.83| 29.72

g Venus 3483 | Very High | 2720 9.63 | 12.21| 16.58

& | Ground-Tablel 640 | High 5152 27.93| 34.71| 28.13

Table 6.2: Overview of 3-D objects.

6.3 Simulation Results

In this subsection, we evaluate how prediction effects #rdopmance of the de-
cision engine. There are two ways that the decision engindaihfor a given task:
(1) the decision engine chooses local execution even thoemgbte execution is more
beneficial (2) the decision engine chooses remote execetien though local execu-
tion is more beneficial. We refer to the formena®ng locals and the latter asrrong
remotes We usewrong decisiongo refer to the sum of both wrong locals and wrong
remotes.

Table 6.2 gives a brief overview of all the 3-D objects thatused. The first part of
the table describes object features, including size, int&dyand complexity, in scales
that change from “low” to “very high”. A higher complexity grt has more vertexes

and edges per unit area, and more details such as 3-D informaind color. Such

132



Chapter 6. Improving Computation Offloading

increase in complexity requires more network demand, buhaocessarily more CPU

demand, because rendering algorithms can intelligentiggoout many details, such as
the vertexes that are not visible, during processing. Famgpte, even though Ground-
Table is almost two times larger than Castle, its averagesramgicost is approximately

the same as that of the Castle.

The rest of the table gives the total number of task offloadstats and the per-
centage of offload decisions given by each predictor. A higilmer of task offload
decisions shows that the user navigated the object for alotgration, generating a
larger number of tasks. This is typically the case for the GLiMsks in Scenariol,
since the tasks are shorter than the computationally demgmhdiosity tasks. The
ratio of tasks that the predictors chose to offload varienft©% ( Venus in Scenario2)
to 64% (Shuttle in Scenariol), depending on task charatitesi However, these num-
bers show only the degree to which predictors utilized lacal remote execution, and
does not indicate whether these decisions are correct.

In Figure 6.2, we compare each predictor in terms of wrongsitats. Each bar
shows the percentage of wrong decisions. The striped ardisaitions represent the
wrong remotes and wrong locals consecutively. For exanipl&€;astleapproximately
2.6% of all decisions were wrong, and the ratio of wrong Isaaid wrong remotes
were approximately equal. The last three bars show the geek&e compute average

by equally weighing all benchmarks; for example, if a scea® 460 wrong offloading

133



Chapter 6. Improving Computation Offloading

mm RPF
mm LSQ
== NWSLite

o 5.0
(@)
g
c
g 2.5
)
o
0.0 —
Castle Shuttle Ground-Table Average
(a) Scenario 1
10.0 mm RPF
mm LSQ

== NWSLite

Percentage
N
ol

0.0

Cessna Venus Ground-Table Average

(b) Scenario 2

Figure 6.2: Percentage of wrong decisions. The striped and solid paas svrong
remote and local execution decisions, consecutively. NWStheats other predictors
in each benchmark.

134



Chapter 6. Improving Computation Offloading

decisions among its 900 tasks, and another scene has 10 wiftoagling among 100
tasks, we compute the average of wrong offloading decisi®@9%, not 23%.

In a remote execution system, the computation offloadingsaets show a boolean
characteristic. Once the decision is wrong, it does noten&itbw close the predicted
and the real value is. The possibility of a wrong decisionmeases when the gap be-
tween the cost of local and remote execution is small. Thaeuse the small gap
cannot compensate any prediction errors. An example is3/en8cenario2. \Venus is
an extremely sophisticated scene. Due to its size, remetsuérn is very costly, how-
ever, local execution is not (i.e. even though Venus is apprately 5 times larger than
Ground-Table-Land, the CPU demand is only 2.2 times largeverage). The large
margin between the cost of local and remote execution cosgtes most prediction
errors; therefore all the predictors can achieve very feangrdecision rates<{( 1%).

Overall, the wrong decision rate was less than 10% for altherarks. NWSLite
was always better than the other predictors. In Scenat@&lthte wrong decision rate
for NWSLite, LSQ and RPF were 4.1%, 5.1% and 7.5%, consecuytitelScenario2,
NWSLite performed even better. The rate was 2.3% for NWSLitel 47%, 5.2%
for LSQ and RPF. This corresponds to 67% fewer wrong decigttars RPF and 14%
fewer wrong decisions than LSQ for the first scenario. In theosd scenario, the
difference between NWSLite and other predictors is everelafyWSLite gave 95%

and 73% fewer wrong decisions than RPF and LSQ, consecutively

135



Chapter 6. Improving Computation Offloading

The wrong decisions were almost equally distributed amonglland remote exe-
cution except th&round-Table-Landenchmark in Scenario2. In Ground-Table-Land,
only for the LSQ predictor, wrong locals were dominant. Atpdd cost function un-
veils an interesting phenomenon: even though remote areaudst is stable, there are
frequent, steep changes (i.e. dips) in local execution. cd8ten such a dip occurs,
LSQ tends to over-correct its parameters resulting a steegdaction (i.e. an underes-
timation) in local cost estimation, resulting in many wrdagal execution decisions.

In Figure 6.3, we compare the cost of wrong decisions. We cenfhe cost as
> ¢i/n; whereg; is the cost of avrong decisioni, andn is the number of all tasks.
We computer; as the amount of extra response time -or extra energy corgmp
depending on the scenario- between the correct decisionh&ndrong decision. In
other words, this metric gives the expected wrong decisast per task. The results
are in ms for Scenariol, and in millijoules (mJ) for Scen2rio

Figure 6.3 shows that, in Scenariol, there is a very unevsindistribution among
wrong locals and wrong remotes. In Castle and Ground-Tabted.most cost is due to
wrong remotes, in Shuttl@l cost is due to wrong locals. This is due to the asymmetric
nature of Scenariol; the computation offloading decisi@msn only when the task is
expected to last more than 50 ms, therefore only large tasksfboaded and a wrong
decision adds a huge error. This effect is clear in Castle andr@l-Table-Land, but

not in Shuttle. Due to the relatively lower CPU demand of Sauft.e. a very small

136



Chapter 6. Improving Computation Offloading

10 mm RPF
mEm | SQ
8 == NWSLite
6
n
2 4
o
)
0 2
E 0 |
Castle Shuttle  Ground-Table Average
(a) Scenario 1
25 mm RPF
mEm | SQ
20 == NWSLite
15
» 10
Q
>
85
= -

Cessna Venus Ground-Table Average

(b) Scenario 2

Figure 6.3: Cost of wrong decisions. The striped and solid parts show giremote
and local execution decisions, consecutively. Scenasogiy asymmetric; for Castle
and Ground-Table-Land almost all cost is due to wrong rerax¢eution decisions and
for Shuttle all cost is due to wrong local executions. Thixipected due to asymmetric
offloading rules. NWSLite beats other predictors in both aces.

137



Chapter 6. Improving Computation Offloading

Wrong Local Execution Wrong Remote Execution
Decisions Decisions
B RPF | LSQ | NWSLite | RPF LSQ NWSLite
E Castle 18.76 | 12.90 | 18.15 235.28 | 332.29 | 290.32
S | Shuttle 50.84 | 45.03 | 3958 | 0 0 0
& | Ground-Table| 13.15 | 9.47 | 6.18 110.76 | 164.45 | 198.96
§ Cessha 217.47| 43.66 | 280.86 66.77 |89.85 |131.85
% Venus 139.04| 124.35| 52.56 1464.00| 1695.26| 1315.97
& | Ground-Table| 55.72 | 24.23 | 30.66 119.87 | 1278.40| 227.11

Table 6.3: Expected penalty for a wrong decision. The cost of a wrongsaetis
proportional to the complexity and size of a scene. For exenfipr Venus, the cost is
extremely high, however for Shuttle it is very low. The exjgelccost is almost same
for NWSLite and other predictors.

scene of 15 KBytes), the predictors always estimated that &@cution was adequate
and never chose remote execution.

Table 6.3 shows the expected penalty for a wrong decisiasthier words, it shows
how costly a wrong decision is. We compute it by dividing tb&al cost of wrong
decisions to the number of wrong decisions, that is>_ ¢;/n,,. The results are in
milliseconds for Scenariol and in millijoules for Scenario

The expected penalty is not significantly different acragsljgtors. In Scenariol,
RPF had slightly lower penalty per miss, however, its effeas wffset by the high num-
ber of wrong decisions. (i.e. Figure 6.2). In general, priats have fairly close results,
however, Ground-Table-Land in Scenario2, is marginal. As explained before, this

is due to the LSQ, which consistently underestimates theafdscal execution.

138



Chapter 6. Improving Computation Offloading

Table 6.3 also emphasizes the asymmetry in cost structar®cénariol, a wrong
remote execution decision was much more expensive thanrsgvooal execution de-
cision (i.e. 200 ms vs. 20 ms latency). Therefore, in settimgere power consumption
is not a concern, it may be beneficial to continue local exenun parallel. The same
cost structure also exists in Scenario2. Here, the wrongtemxecution decision
penalty was 410 mJ, in contrary to the wrong local executiecision penalty which

was only 107 mJ.

6.4 Summary

In this chapter, we show how NWSLite demand and supply predietlows com-
putation offloading to effectively optimize energy as a tgse. NWSLite provides
accurate predictions that indicate how much a task needsin@ss, and how much is
available, and the “Decision Manager” decides whether tootely or locally execute
the task. NWSLite monitors the network bandwidth and lateaegt CPU demand
and availability using an adaptive, dynamic, mixture-gperts mechanism. After each
prediction, it reconsiders the current predictor —if a et has less error rate than
the current one, it replaces the current predictor with the that has less prediction
error. Consequently, the predictions that NWSLite produce®ahigher quality than

its static competitors which always use the same predictor.

139



Chapter 6. Improving Computation Offloading

The higher quality of NWSLite predictions have a clear impactcomputation
offloading decisions. In each scenario that we evaluateptiBBVSLite has reduced
both the number of “wrong” (i.e. not beneficial) computataffioading decisions and

the energy consumption.

140



Chapter 7

Improving Dynamic Voltage Scaling

The previous chapter demonstrated the potential of cortipotaffloading. It
showed that better predictions of resource demand andysapplimprove energy ef-
ficiency (and performance) significantly, when there exastemputational server that
we can offload the computation to. However, such a compunialtserver is not always
available. Furthermore, even when there is a remote coripuig server, it may be
possible to reduce energy consumption further by scalivghdeerformance level of
local resources. Dynamic voltage scaling (DVS) is a metiad kets us do so when
increased task completion time caused by lower performkvegis not a concern.

To minimize the effect of voltage scaling on system respamsss, DVS policies
must estimate future workload and choose the most apptepdRU level. Accu-
rately predicting future workload is challenging yet vital maintaining acceptable
performance. Mis-prediction can result in setting the CPi¢lléoo high, curtailing

power savings, or in setting the CPU level too low, producingiaresponsive system.

141



Chapter 7. Improving Dynamic Voltage Scaling

Technigues that employ dynamic voltage scaling must emeffigient and accurate
prediction techniques to determine how much to scale the @vel bnd when. If
the estimates are incorrect or the application of the ogation introduces significant
overhead, the techniques may be unable to extend batteryrldctually shorten it.

Prior research has concentrated on prediction technidpa¢®stimate future CPU
load as a function of previous load history [77, 3, 26, 72, 28bre recent techniques
proposed classifying tasks into different groups, eaclm a&itcustomized policy [17,
49]. These techniques focus on interactive tasks, suchrasgavord editors, notes,
browsers, etc. that form a significant portion of mobile devapplications. These
tasks are very sensitive to lower performance, as a useeipabte slowness may be
distracting and annoying for their user.

In this section, we explore how to better predict user irtkray for reducing en-
ergy consumption of mobile devices. Using the predictorwedeveloped in previous
chapters, we design and implement an automatic voltagagatstem which we call
AutoDVS In Section 7.1, we discuss the user think time as a novel amsim that
can guide dynamic clock scaling of CPUs. In Section 7.2, weeqareour design and
implementation to detect and predict future user think smdere, we also show how
to integrate our system to prior techniques that schedule §ffegd for non-interactive

tasks. Section 7.3 describes how we capture user intetgct®ection 7.4 describes

142



Chapter 7. Improving Dynamic Voltage Scaling

evaluation metrics. Finally, Section 7.5 discusses resaltd Section 7.6 gives a sum-

mary of the chapter and concludes.

7.1 Predicting User Interactivity For DVS

As we have explained in Section 2.2.2, most modern dynanitag® scaling ap-
proaches classify interactive tasks as a separate taskg gramlidevelop custom scaling
policies for them. This allows keeping interactive taskai®sn latencies at levels that
are acceptable to the user. Many researchers agree thattesactive events should be
completed within 50 to 100 milliseconds for providing a conmt&ble human-computer
interaction [69].

Prior research has suggested monitoring and schedulitgii@cactive task auto-
matically and individually by tracking them at the kerneld€[17, 16, 49]. Interactive
tasks are triggered by a user action, such as a mouse movesnenkeystroke. The
aforementioned works schedule the CPU in a way that thess taskplete before the
50 milliseconds delay, whenever possible. As we have dssrlisefore (Section 2.2.2),
while this approach provides significant energy savingsrferactive applications, it
has the drawback of having the operating system guess wiaesk aampletes.

Guessing when a user interactive task completes is rathey.fih user is probably

not expecting the same interactive behavior from each ussrt€keystroke, mouse,

143



Chapter 7. Improving Dynamic Voltage Scaling

etc.,) even when they are of the same type. The intention oftaractive event may be

a factor of numerous things, including:

e editing in a word editor (a keyboard event)

e starting a command using command line interface (a keybeardt)

e starting a search in a web browser (a keyboard/mouse/toress event)

e action in a game (a mouse/touchscreen event)

e drawing in a back office program (a mouse/touchscreen event)

e dragging a window in window manager (a mouse/touchscreentgv

e redrawing/creating a window in window manager (a window agger triggered

event)

To reschedule the CPU optimally for each event, we would havddntify the
intention behind all the user events. Rather than strugglarioextremely complex
model, we choose to predict interactivity as a function ¢dirarrival time between the
user events that are generated in a particular time. In odemwe define user events
in a broader term and include window redraw, create, mow@jg§@nd similar events
among the ones that we monitor. Even though these eventoatagygered by user

directly, they are important for interactivity. The fulktiof events that we monitor are

144



Chapter 7. Improving Dynamic Voltage Scaling

Connected
Mouse

Keystroke

Focus

Region modified
Creation

Property notify
Property reply
Selection clear
Selection request
Selection notify
Max. window rect.
COP

Window operation
IM Event

NEvent

Embed

A client connected to the window manager

A mouse button / touchscreen pressed or released
A key pressed or released

A window received/lost focus

A region has changed

The server has created an ID, typically for a window
A property has changed

The server is responding to a property value

A selection is cleared

The server has queried for a selection

A new selection has been created

The server has changed maximum window size

A communication message appeared (between GUI clients)
A window operation (resizing, etc.)

An input method has been used to enter non-latin text
Number of events changed

An event used internally to implement embedded windows

Table 7.1: Interactive events that we monitor

given in Table 7.1. The list includes all the events that oimdewing manager [57]

allows us to capture.

Figure 7.1 shows the graphical user interface (aka GUI)tevaoes of a Solitaire

game. We capture these while a real user was playing the ganaehandheld de-

vice. The x axis shows the event identifier, which is a monigtdly increasing integer

starting from 0. The y-axis shows the time (in milliseconbejween two consecutive

events. Solitaire receives long bursts of user input evemisded by large think times.

The event burst is generated by the touch screen, duringe¢lednt drag-and-drop

operations involved in this game. The long bursts of usentigpents indicate poten-

145



Chapter 7. Improving Dynamic Voltage Scaling

Interactivity Sessions - Solitaire

| | | | | | | T

500 |- m

100 |~ N

% Fpthl s At Mmoo g G

20 40 60 80 100 120 140 160 180 200
Events

event interarrival time (msecs)

Figure 7.1: GUI event inter-arrival times for Solitaire. The y-axis sisthe time (in
milliseconds) between two consecutive events.

tially high CPU activity, because the events are receivediitecghort succession. The
large think times (the spikes) indicate low CPU demand. Tieeestrong pattern in
the graph —the typical gap between two events is 40 to 50sedbnds, until when a
large gap starts. Solitaire however, is not the only gamesttaws such a pattern.
Figure 7.2 and 7.3 show the event traces for a Tetrix game @muleplayer, which
is a typical MP3 player. Tetrix receives the most user evémtsugh the keypad; this
results in very short bursts of events. However, due to tliereaf game, the event
bursts are separated by smaller think times. If we assunarlygeriod lasting longer
than 0.5 seconds is an indication of user thinking, the nmethiank time for Solitaire

and Tetrix is 2.2 and 1.0 seconds, respectively. Opieplayauch less interactive than

146



Chapter 7. Improving Dynamic Voltage Scaling

Interactivity Sessions - Tetrix

I L
100 | u —
581 MW Ll | W\W

20 40 60 80 100 120 140 160 180 =200
Events

Figure 7.2: GUI event inter-arrival times for Tetrix. The y-axis shovire ttime (in
milliseconds) between two consecutive events.

Interactivity Sessions - Opieplayer

LT T

500 —

100 H u u

50 N ”W P LA

0 | ] ]

20 40 60 80 100 120 140 160 180 =200
Events

Figure 7.3: GUI event inter-arrival times for Opieplayer. The y-axi®gls the time
(in milliseconds) between two consecutive events.

147



Chapter 7. Improving Dynamic Voltage Scaling

both of those games with almost no burst of user interfacateveAgain, there is a
pattern in the graph, however, this time, the think timessanaller, and event bursts
are shorter.

In Autodvs, we monitor these GUI events to identifiyeractive sessionshe peri-
ods of high user event generation periods, in arbitrary qanog. Our system employs
no notion of tasks, but instead automatically infers tak&-behavior, i.e., periods of
time, in which the user is interacting with the device. Weerdb non-interactive ses-
sions aghink times In addition, we do not distinguish event types (as is dor{d %)
i.e, we consider only interactive sessions regardless aflwdvents occur within them.
The goal of AutoDVS is to predict the length of user intenatiand and utilization

level, which is crucial to prevent obtrusive effects of fneqt clock scaling requests.

7.2 Design and Implementation

Our goal with AutoDVS is a light-weight, practical DVS systdor low-end, mo-
bile computers and their applications — without partidg@atrom the user, information
from the source programs, or a priori knowledge of task lemgtbehavior. AutoDVS
transparently changes the clock frequency according tovibrikload activity that it
senses dynamically. The key to the efficacy of AutoDVS isategorization of applica-

tion workload into two session types: interactive sessantsbatch sessions. AutoDVS

148



Chapter 7. Improving Dynamic Voltage Scaling

—_—_— e e — — =

Policy Stack | Arbiter Rules [
Priority  Parameters I :
c o - I If predicted load < CPU load in last
2 R Interactive —— 1= 500 milliseconds, do not lower spee'n
8 o CPU load & | I
= & period length Translate CPU load to clock speed |
Q | (round up to the closest level) |
R I

2 | - _ |
3 idle task entry | ————+= Excessive idleness: Reduce Speed
5 2| count & period I Excessive load: Increase Speed !
g | |
— | |
E : Load Avg > HiThr: Increase Speed]
O 3| CPU load avg ,  Load Avg < LoThr : Reduce Speed |
I

U PUES U U U U

Figure 7.4: AutoDVS policy stack and arbiter rules. AutoDVS respondgadicy
requests according to priority (1 is highest).

then intelligently applies different, independent, anditiple scheduling policies to
each session type.

For interactive sessions, AutoDVS employs a user-spaceypbiat considers GUI
events for each application. The policy predicts the daratind CPU load of each
interactive session. By considering each application idda&lly, our predictions have
a better chance of capturing regular, repeating pattertisneach.

For batch sessions, AutoDVS implements two different kKeleeel, interval-based
policies (as Linux kernel modules). The batch policies tdgrchanges in CPU load
and estimate when a CPU clock change is warranted. These CBPriedictors take a
global view of the system to identify additional DVS opparities not made apparent

by the fine-grain interactive scheduler.

149



Chapter 7. Improving Dynamic Voltage Scaling

All CPU performance change requests issued by any policyamdlad by an ar-
biter using the pre-defined rules that we show in Figure 7h# golicies either request
a speed change or inform the arbiter about expected CPU lahtbad duration. The
arbiter executes requests using a priority scheme; theestgifrom interactive appli-
cations have the highest priority, and the requests frontipsl that monitor largest
time-span have the lowest priority. In the case of concuinrequests, the arbiter al-
ways chooses the highest priority. However, there is onepgian to this rule: If the
policy that monitors excessive load detects a sudden iserea CPU demand, this
request is honored first.

This division of labor across the system is key to the efficaAutoDVS. To-
gether the policies are able to consider a wide range of egijn behaviors without
much implementation complexity. By processing the requesidrally, we are able
to make accurate and effective, system-wide, CPU scalinigidas that reduce power
consumption without negatively impacting performance.

Moreover, this design accounts for the actual CPU changedgiaf the underlying
device. Extant approaches to DVS scheduling assume a wsriatency and allow a
large number of frequency changes. For our device howesereasuggested previ-
ously, this latency can be much larger due to the overheadhoftaining other devices
in the system that are synchronized with the CPU clock. We aredghe switch over-

head for the HP IPAQ H3800 running Linux 2.4 to be 40 millised® on average.

150



Chapter 7. Improving Dynamic Voltage Scaling

Figure| 7.5 shows the timeline of a clock speed change requrethis platform.
We measured this period using timestamp counters. Initidie kernel maintains a
dynamic list of device drivers that must be alerted when tbhekcspeed changes. A
frequency switch request requires three traversals ofligtisfirst to inquire if new
speed is in acceptable range, and then to let device drinéialize their hardware
appropriately before and after clock change, i.e. PRECLK a@&FCLK phases.
During the PRECLK and POSTCLK phases, the device drivers impuosalization
delays due to hardware requirements. Even though thesgsdi#anot block the CPU,
they increase the latency between clock speed request &mal abange. The more
devices that employ the CPU clock for timings, the longer tatency. AutoDVS
does not consider sessions shorter than 50 millisecondsciouat for this latency.
Moreover, we can change this threshold dynamically to attaphanging peripheral

configurations.

7.2.1 Monitoring GUI Events

For each application, AutoDVS monitors user input and digplpdates. The for-
mer events are the direct result of user input through thp&gwand touch-screen. The
latter events include GUI messages such as window updat®emnsioperations. Mon-
itoring the display updates is important to correctly idigninteractivity, e.g., when

user waiting for an application to redraw the screen.

151



Chapter 7. Improving Dynamic Voltage Scaling

old speed new speed
/_/H
 time | PRECLK Phase . POSTCLK
| /T\O /1\35 40 miliseconds
Clock Scheduling Rgst Update Clock Speed

Figure 7.5: iPAQ H3800 clock scaling request timing. After receiving tlequest, the
kernel initializes data structures and waits for initiatibn of hardware devices (PRE-
CLK and POSTCLK phases). The actual clock scheduling takeerumanillisecond
(heavily shaded area). The clock scheduling latency on iBA@x Kernel v2.4 is
approximately 40 milliseconds.

In our software platform, all GUI applications are linkedaatst a shared GUI li-
brary. We extended thevent _handl er function of this library to contain AutoDVS
policies. Theevent _handl er is a null (unimplemented) wrapper that receives all
GUI events before any other function. Our modifiedent fi | t er identifies in-
teractive sessions and interfaces to the prediction ft@forecast interactive session
lengths and load (we detail this process in the next sulmsgctie implemented a
Linux new system call to provide a communication path to AM& policies in the

kernel.

DVS For Interactive Sessions

An interactive session starts with the arrival of an evertt ands if no event is
received for a period of,. Identifying the interactive sessions correctly is impoif

since presumably, the user is most sensitive to any perfuwenkss during these peri-

152



Chapter 7. Improving Dynamic Voltage Scaling

ods. The value of, impacts the system in two ways. #lf is too small, the algorithm
might end an interactive session prematurely while theiegiobn is still processing

a GUI event. Ift, is too large, AutoDVS will maintain a high CPU speed and miss
opportunities for reducing energy consumption. Wetséd be 1 second empirically:
our evaluation of more thanL0, 000 events on iPAQ workloads indicates that the inter-
arrival time between two GUI events is less than 1 second thare99.0% of time and
that when inter-arrival time is larger than 1 second, themimae to receive next event
is 8 seconds.

When an interactive session starts, AutoDVS computes twanpaters: the length
of the previous session and the interactive CPU load. The atatipn of length{,) is
straightforward. Ife; is the arrival time of an event such that the period betweemd
preceding event is larger than Then the length of periodis equal to(e;; —e;). We
set the CPU load to be the CPU time divided by length of the peri@dpredict the

new session length and CPU load, we employ our NWSLite predicto

7.2.2 CPU Load Sensor

AutoDVS must also account for periods of time during workl@xecution that are
not interactive. Most programs, even those that are priynauteractive, execute think
(non-interactive or computationally intensive) periodlee CPU load sensor is respon-

sible for these sessions. This sensor takes a global vielhveaytstem and workload,

153



Chapter 7. Improving Dynamic Voltage Scaling

i.e., it does not consider task-level and application-Bjpedetails. CPU load sensor
employs two interval-scheduler€PU Load Monitorand theldle Process Monitar

The CPU load monitor considers very large intervals (10 seésjpand averages the
measured CPU load across intervals. By averaging, the magiitoinates noise in the
data and distributeslack timemore efficiently. Slack time consists of the idle cycles
during an interval when CPU utilization is less than 1. The itoorpredicts that the
CPU load for the next interval will be the same as it is for the@ot interval (this is the
PAST policy used in [77, 28]). We do not use NWSLite for preidigtfuture load since
it requires floating point operations which cannot be hashdtethe Linux kernel. By
coupling interactive task scheduling with the CPU load namifutoDVS can handle
both fine and coarse grain workload activities. However, aguire one additional
monitor to identify fine-grain behavior in non-interactiggeeg. batch and background)
sessions, called the idle process monitor.

The idle process is a process that the OS scheduler exechtsever no other
process in the system is runnable. The idle process monuaes (then resets)
idle process statistics every 500 milliseconds. The momtmsiders the number of
times the idle process was scheduled by the OS and its esraliiration during the
previous interval. We modified the Linux scheduler (scheth.collect and export this
information as a kernel symbol. All of our modifications aght-weight, simple, and

efficient and do not perceivably impact the behavior of thetemy.

154



Chapter 7. Improving Dynamic Voltage Scaling

Both monitors make CPU scaling requests to the arbitrator.Gmid load monitor
uses an extension to Pering’s hysteresis pair [60] to desiuen to request a speed
change. These values, (50,70) in prior work, act as a boyridaaverage CPU load.
A level less than 50% indicates CPU can be scaled down and lahigver than 70%
indicates CPU can be scaled up. We found empirically that &ire(0,80) works best
in our actual implementation for iPAQ software. The idle ggss monitor requests a
step increase from the arbitrator when it detects a perio@ (billiseconds) in which
the idle process is never scheduled. If the monitor detbetdiie idle process executes
for over half the interval time, it requests a step decrease.

Both monitors request only single step CPU clock changes.Vésiigated methods
such as estimating CPU cycles based on workload demand andylgswitching to the
most appropriate clock level (i.e. similar to [17]), howewhese approaches resulted
in instability, i.e. the system switched back and forth dhpibetween neighboring
frequency levels. The reason for this thrashing is a contioinaf measuring the CPU
during periods of fluctuation (which impacts the measurdrpencess) and hardware
design [28].

We have empirically evaluated the efficacy of our approactubping a large num-
ber of very different workloads on an iPAQ with AutoDVS andwuarative techniques.

In the subsections that follow, we describe our experimesgtiaup and the benchmark

155



Chapter 7. Improving Dynamic Voltage Scaling

workloads. We then define the metrics that we use in our eogpigvaluation and

present our results.

7.2.3 Platform Specific Design Constraints

Our device infrastructure includes five Compaq H3800 hand-bemputers run-
ning Familiar Linux version 0.7.2 [15]. The H3800 is a verypitsal hand-held com-
puter, with a 206MHz StrongArm CPU, and 64 Mbytes of main memiiris capable
of dynamic frequency scaling, howeverdites not yet support voltage scaling

To estimate power savings due to voltage scaling, we usehaitpee defined in
prior work [17] for a similar study. We assume that the Stdmg and XScale [33]
processor exhibit similar power characteristics and udsighed data for the XScale
XSA (the system most similar to the StrongArm in terms of maxin voltage and
supported frequency range), in the estimation. We appratdarthe voltage levels of
the XScale CPU using the available frequency levels and andet®gree polynomial

parameterized by the XSA data:
v=—4x10""f%40.0015f + 0.5324 (7.1)

To compute the corresponding StrongArm voltage levels, s Equation 7.2 as a

mapping function. That is, we linearly scale the StrongAmegtiency range to the

156



Chapter 7. Improving Dynamic Voltage Scaling

Estimated
Level | Freq. (MHz)| Voltage (mV)
1 59.0 748
2 73.7 832
3 88.5 914
4 103.2 992
5 118.0 1067
6 132.7 1139
7 147.5 1209
8 162.2 1274
9 176.9 1337
10 191.7 1397
11 206.4 1453

Table 7.2: SA1100 Parameters. We estimate the voltage levels usirgiega 7.1 and
7.2, and assuming that the SA1100 has the same characteaistihe XScale processor.

XScale frequency range:

773 — 150.0

ro TS0 e 59.0) + 150. 7.2
I = %064 =590 < f =99:0)+ 1500 (7.2)

We present the estimated voltage levels in Table 7.2.

The StrongArm architecture requires that all of the primpeyipherals be syn-
chronous to the CPU clock [31]. This implies that all CPU saahmll impact the
performance of memory, the 1/0O controller, DMA, the LCD catier, etc. The depen-
dency between the CPU clock and external devices can causécsigt differences
between theoretical expectations (and simulated resarid)yractical results. For ex-
ample, Grunwald et al. found that the CPU utilization chamgeslinearly with respect

to clock frequency, possibly due to variations in memoryeasccycles [28]. Another

157



Chapter 7. Improving Dynamic Voltage Scaling

obstacle was the LCD driver. In our evaluations, the displasted vibrating making it
unreadable for any speed lower than 103MHz. Thus we hadruorglte three lowest
frequencies.

The window manager that we run on the devices is Opie [57jaetk0.2. Opie is
an open-source graphical user interface designed for Steamus and Compag hand-
held computers. 1t is a full-fledged GUI comparable to conuiaiversions in both
appearance and features. The available Opie applicatiehgde Calendar, Contacts,

Drawpad, a multimedia player, a wide range of games, etc.

7.3 Collecting User Interactivity Traces

We evaluate AutoDVS below using two different scenariog. lifteractive: Run-
ning GUI applications; and (2) Concurrent: Interactive aoff-seal time applications
running together.

To evaluate and compare the performance of interactivacgbioins, we collect a
set of usage traces and extracted event and timestamp etfiorm We then monitor
the performance of AutoDVS while replaying the events inl tie@e. Thus,our results
also include the overhead of clock switching and all AutoDug&gtionality.

To collect the usage traces, we have installed Opie on d&venapagq H3800 hand-

held computers and have distributed them to graduate stdeour department. We

158



Chapter 7. Improving Dynamic Voltage Scaling

alert the students that we are capturing all events and ask th use the hand-helds as
their own as normally as possible and to reboot them perdigli¢to end the session).

We modify the IPAQ software to enable trace collection irethways: We (1)
disable network connectivity; (2) modify random number g@ators to use a fixed
seed; and (3) program each to clear all user state informafter every reboot. These
changes were necessary to eliminate as much non-detenmasipossible so that we
could re-generate the user events in the correct orderglaxperimentation.

To capture the events, we instrument the Linux kernel atADalriver level. Our
system captures all events generated by the touch-screekeypad, and the joy-pad
using a microsecond timestamp. We save the identificatiforrmation for captured
events in RAM and copies them to permanent storage immeyljartielr to shut-down,
to prevent any excessive overhead. The time and space adeiitreevent trace collec-
tion is small. Each event requires a total of 20 bytes: 8 bfgiethe timestamp and 12
bytes for event type and attributes. Since we capture eattie /O device driver, we
can read the current time directly from Linux kernel datadures and no system calls
are required.

To replay the captured events, we have developed a Linuxekenodule. The
module initiates events from a list in memory using a miccosel resolution timer.

The events describe user behavior from boot-up to shutdé&eme of the event

traces that we captured are not useful; they are either tod,dbroken, i.e., depen-

159



Chapter 7. Improving Dynamic Voltage Scaling

Event Count
Trace (ETime@206MHz)| Description

DrawPad-1| 23100 (915.4s) Drawing random pictures
General use including calendar,

General-1 | 3688 (448.1s) contacts and games

Solitaire-1 | 8700 (756.4s) Multiple Solitaire games

Tetrix-1 6936 (583.8s) Tetrix

Tetrix-2 1342 (210.1s) Tetrix - very short and slow

Checkers-1| 1238 (205.1s) Checkers - medium difficulty

Checkers-2| 1214 (265.7s) Checkers - maximum difficulty

Checkers-3| 2490 (1076.4s) Checkers - maximum difficulty

Table 7.3: AutoDVS evaluation benchmarks and event traces. We gatleetraces
using instrumented versions of the system while differesgrsi exercised the iPAQSs.
The name of each trace reflects the application that was @mhoturing the usage
period.

dent on user created files, or too similar. Overall, we empih@ytraces described in
Table 7.3. The second column is the number of events in tice &ad the total time
(seconds) for the real time play-back at maximum perforradB06MHz). We refer to
each event trace using the name of the application that wae aost often. The first
four traces describe more general-use applications ahelieenultiple program types.
The last four traces are exclusively games.

To evaluate soft real-time applications we use Madplay,mnesource, high qual-
ity, MP3 decoder [50]. We interface Madplay to the GNOME Bhtened Sound Dae-

mon (ESD), to enable on-line playback. The input file encgdate is 56Kbits/sec.

160



Chapter 7. Improving Dynamic Voltage Scaling

7.4 Evaluation Metrics

We have evaluated the impact of AutoDVS using three differeetrics: energy
factor, stall rate, andstall magnitude Energy factor measures energy consumption
with respect to execution at full CPU performance. The st and magnitude metrics
describe the degradation in interactive performance d@td scaling.

We compute energy consumption using tweer gy fact or (EF) as defined
in [17]. E'F is the ratio of energy used by the scaled workload to energy usen

workload is processed at full speed. That is,

EF = Zi:l U; fltl

ViaxfruaxT (7.3)
wherev; and f; are the voltage and frequency of each period of timebetween two
frequency scaling operations afidis the execution time of benchmark at full CPU
performance level. We use the frequency and voltage leletsare given in Table 7.2.
EF is unit-less and measures the energy consumption of the CRU on

To compute performance loss, we record the execution timeaoh interactive
event. Specifically, we assume that execution of an everissidhen it arrives at
the window manager. We define event completion time usingfipgoach described
in [49]: The execution of an event ends when the idle tasktisred and no 1/O is ongo-

ing. Even though this method can be imprecise (i.e. it miglegsionally mis-classify

events as completed), other (extant) approaches (dedanit&ection 2.2.2) are highly

161



Chapter 7. Improving Dynamic Voltage Scaling

complex and can adversely affect the performance of madtsystem. We discuss
the impact of using this method when we present our results.

We assume that an event misses its deadline if its execumenis larger than user
perception threshold, i.e. 50 milliseconds [17]. Givert thes the deadline, anthy, is

the execution time of an event which missed its deadlinestéiérate G R) is:

SR — PN )

- (7.4)

SR is a unit-less metric that measures the user perceivedrpafwe loss during the
execution of a benchmark. However this metric does not atditiow much the user

must wait for a stalled system. To measure this, we use stghitude §M):

SM — Zle(;nk —d) (7.5)

SM measures the average stall time due to interactive eveatsniss their deadline.
The unit of SM is seconds.

Finally, to measure the quality of music playback when wesabgr concurrent
workloads, we count the number of buffer underruns thatoodine ESD sound driver.
Buffer underruns indicate that the MP3 decoder has missddadline for replenishing
consumed data. When this happens, the sound driver fills thbygeepeating the most
recent data. Each buffer underrun is perceivable by userVer the degree to which

it degrades the overall quality of the experience, is a mattgersonal taste. We

162



Chapter 7. Improving Dynamic Voltage Scaling

therefore, treat each buffer underrun as equally unddsieaid disregard the duration

of each individual underrun period.

7.5 Results

We compare AutoDVS to two other policies: MAX, in which the CBset to the
highest level (for maximum performance), and IDEAL, in whiwe employ an ideal
(oracle-based) CPU speed. IDEAL is not a realistic policgntays chooses a clock
speed such that its performance degradation is at the lIévltoDVS or less. To
accomplish this, IDEAL uses future information: If IDEAL vgorse than AUTODVS
in terms of both performance metrics (i.8'R and SM), or if the quality of sound
playback is inadequate (i.e. more than 10 buffer underrainsh IDEAL switches to a
higher clock frequency. We limited IDEAL choices to 132MHZ,6MHz and 206 MHz
to limit the search space.

We have experimented with two different scenarios. (1)rbdve: Running GUI
applications; and (2) Concurrent: Interactive and soft-tié@ applications running
together. We describe the results from each of these sosriarihe following subsec-

tions.

163



Chapter 7. Improving Dynamic Voltage Scaling

7.5.1 Interactive Workloads

We first evaluate AutoDVS in terms of performance degradadiaring the execu-
tion of interactive applications. The IDEAL policy has anvadtage in this dataset;
our empirical evaluations show that most interactive tasgsire only a fraction of the
maximum CPU power. A flat policy of 132MHz will provide adegeaterformance.
The question we want to answer is this: Can AutoDVS achievéasimnergy savings
and still maintain a high level of responsiveness?

Figure 7.6 compares AutoDVS and IDEAL in terms of energydacstall mag-
nitude, and stall rate, from left to right. For all sub-figsire&a lower bar indicates
a better performance. For the first sub-figure, a lower bacates reduced energy
consumption, for the last two sub-figures, a lower bar ingi@abetter response time.
We label the bars with the first three letters of the eventetraélsese arérawing,
Gernreral, Solitaire, Tetrix-1, Tetrix-2, Checkers1, Checkers2 andCheckers3, from
left to right. For example, for the Drawing benchmark, tha@VS policy saved al-
most 60% of energy with a 10% stall rate and approximately i2dlliseconds stall
magnitude (i.e. mean stall time due to interactive evergsrthss their deadline).

AutoDVS enables significant performance benefits for the §irs benchmarks.
While keeping the stall rate under 10% of total execution fif&oDVS reduces en-
ergy consumption 30—-66% (49% on average). In general, gremsumption is pro-

portional to the performance requirements of benchmarbsekample, for Gen-1 and

164



Chapter 7. Improving Dynamic Voltage Scaling

1.0 = AutoDVS
mm (DEAL_FLAT

Dra Gen Sol Tet-1Tet-2 Che-1Che-2 Che-3 Average
(a) Energy Factor

2.5 = AutoDVS
20 m IDEAL_FLAT (559439
1.5
1.0+
0.5+
0.0-
Dra Gen Sol Tet-1Tet-2 Che-1Che-2 Che-3 Average
(b) Stall Magnitude
1.0 = AutoDVS
mm IDEAL_FLAT
0.5
0.0

Dra Gen Sol Tet-1Tet-2 Che-1Che-2 Che-3 Average
(c) Stall Rate

Figure 7.6: Performance of AutoDVS and IDEAL for interactive workloadslower
bar indicates better performance. AutoDVS reduces enargguwmption by 10% over
IDEAL (Figure (a)), Overall energy savings due to AutoDV3!&% on average. Au-
toDVS average stall time (Figure (b)) is lower than IDEAL evbough the stall rates
are the same (Figure (c)). The circled values in (b) are theahdata values — that are
cut off in the graph for clarity.

165



Chapter 7. Improving Dynamic Voltage Scaling

Utilization L
C OEENe] ™ T
J t ua/f\ 12>>(t1+3)

User Input Display Update 'esPonse time = t1+t2+3

Figure 7.7: CPU utilization in Checkers.In Checkers, CPU utilization istygeriodic
and changes in a boolean fashion. Each user input triggersGtl update events
(light gray boxes), and a computationally intensive tasikkdyray box). This periodic
behavior reduces voltage scaling opportunities.

Che-1, which both include game sessions at novice levelsaviags are the greatest.
For the first six benchmarks, IDEAL uses 176MHz for Tet-1 ceriyl 132MHz for the
rest. In general, IDEAL uses almost 10% more energy to miaiti@ stall rate of Au-
toDVS. However, AutoDVS is able to predict CPU demand acelyab reduce stall
time. On average, AutoDVS achieves a 35% improvement ovEAID

Che-2 and Che-3 exhibit different behavior patterns than therdoenchmarks.
Both of these traces are game sessions at the highest djffleuttl. As Figure 7.7
shows, their workload is very regular and highly computadity intensive. Each user
input triggers a computationally intensive task which ikofwed by a long idle period
(think time). The NWSLite is unable to predict this behaviocarately. It is possible
to estimate such behavior using techniques such as spanabyisis [9], however, we

avoid such algorithms in NWSLite due to their high computadio(floating point)

166



Chapter 7. Improving Dynamic Voltage Scaling

cost. Despite some prediction error, AutoDVS enables gnevgsumption for Che-2

and Che-3 that is 36% lower than MAX and 15% lower than IDEAL.

7.5.2 Concurrent Workloads

We next investigate how AutoDVS performs when multiple aggilons are running
concurrently on an iPAQ. In particular, we replay the eveaté while running the
Madplay MP3 decoder (music player) in the background. Fchesvent trace, we
start collecting the measurement statistics when the teksthegin executing events
concurrently; we continue measuring until Madplay terrtesa There are three short-
traces that end earlier than Madplay, Tet-2, Che-1 and Cher2hEse traces, Madplay
is the single task for 45%, 42% and 33% of total evaluatioretinespectively. The
Madplay playback length is 424 seconds.

The opportunities for CPU scaling are reduced when we exaculigple programs
concurrently. The question that we are interested in is drat is possible to extract
any energy savings without hurting performance.

Figure 7.5.2 compares the performance of AutoDVS to IDEAIngishe same
methodology as the previous subsection. AutoDVS is ablave 81% of the energy
consumption over MAX on average. The energy savings of IDEAR0%. IDEAL

chooses 176MHz for all but Che-2 and Che-3. For these two tréD&AL uses the

167



Chapter 7. Improving Dynamic Voltage Scaling

1.0 = AutoDVS
mm [DEAL_FLAT

0.5

0.0-
Dra Gen Sol Tet-1Tet-2 Che-1Che-2 Che-3 Average

(a) Energy Factor

2.5 == AutoDVS

00 mm (DEAL_FLAT

1.5+
1.0+
0.5

0.0-
Dra Gen Sol Tet-1Tet-2 Che-1Che-2 Che-3 Average

(b) Stall Magnitude
1.04 = AutoDVS
| mm IDEAL_FLAT

0.5

0.0-
Dra Gen Sol Tet-1Tet-2 Che-1Che-2 Che-3 Average

(c) Stall Rate

Figure 7.8: Performance of AutoDVS for interactive and soft-real timerkoads,
running concurrently. A lower bar indicates better perfante. The overall energy
savings is 31% for AutoDVS and 20% for IDEAL (Figure (a)). &igs (b) and (c)
report stall magnitude and rate, respectively. The cirot@des in (b) are the actual
data values — that are cut off in the graph for clarity.

168



Chapter 7. Improving Dynamic Voltage Scaling

maximum level (206MHz). The savings are small for traceswigh computational
requirements, e.g., Che-3 and Sol.

Atthe 132MHz (lowest) level, the buffer underruns for Maaipéare very high (122—
2781) for all benchmarks. At 176MHz, there are fewer than @euruns. However,
IDEAL must switch to 206MHz (the highest level) for Che-2 andechto achieve the
same performance as AutoDVS. For example, Che-2 at 176MHasewa 8% larger
stall rate and an average stall time that is 179 millisecamase than AutoDVS. The
performance loss margin is greater for Che-3. The buffer wundecount is always less
than 3 for AutoDVS. For MAX, buffer underruns are always 0.

In the concurrent workload results, the only anomalous tasdiich IDEAL out-
performs AutoDVS in terms of energy consumption is for $alé. AutoDVS uses
13% more energy than its competitor to achieve approximatehe performance level.
Solitaire is unique in that most of the GUI events are mouag/drop events; the other
benchmarks use keypad, joypad, or touchscreen keyboarddsr of the data input.
Each drag and drop generates a sudden burst of GUI eventw/iingow update mes-
sages and mouse movements). Consequently, this suddensbarsbmpanied with a
jump in CPU demand. NWSLite immediately chooses the most agiyeeforecaster,
often over-estimating the CPU load for the next interacteesgon. Even though the

CPU load sensor policies correct the over-estimation afteig; some portion of en-

169



Chapter 7. Improving Dynamic Voltage Scaling

ergy is wasted during this period. Moreover, an increaséoickcspeed does not reduce
the stall magnitude significantly since it is already vemy.lo

We can address this problem in two ways:(1) by classifyiragdand drop events
separately from other GUI events and reducing the weight@fis generated in bursts,
or by (2) shutting down predictors that consistently ov&ireate. However, we do not

evaluate any of these alternatives in the scope of thisghesi

7.5.3 Integrating PACE

As a final experiment, we investigate the efficacy of extegdhitoDVS to con-
serve additional energy on platforms that have very lowagwtswitch latency. To
investigate this, we have incorporated extant, efficiemplementation of the PACE
algorithm [48, 49], called Practical Pace (PPACE) [84], iAtdoDVS.

PACE is a technique that computes optimal energy savings whetinuousCPU
scaling is possible. PACE computes CPU speed as a functiomgbleted work and
gradually increases the CPU frequency as the task nearsaiiinie PPACE extends
PACE to handle discrete CPU scaling levels and uses a polyhtme&approximation
of PACE that is computationally efficient but does not alwagd the optimal solution.

We investigate the impact of integrating PPACE into AutoDV& employ simula-
tion for these experiments (unlike in our previous experitaesince an actual, online

implementation of PPACE is currently not feasible due toeglpamary reasons. First,

170



Chapter 7. Improving Dynamic Voltage Scaling

Parameter Value Description

D 50 Msecs Task deadline

wC 6.192 Mcycles Worst-case execution cycles

r 6 Number of transition points

f (103.2 - 206.4) MHz| StrongArm Clock frequency

S [WC-1]/r Transition period -evenly spaced
€ 0.05 Trim error parameter

Table 7.4: PPACE simulation parameters

extent hand-held devices impose a very high switch late®egond, the computational
requirements of PPACE are high and consume significant ressim modern devices.
Third, the computation of cumulative distribution functicequires off-line informa-
tion.

Despite these limitations, we are interested in undergtgnitie potential of cou-
pling PPACE and AutoDVS for interactive programs. For theggeementswe con-
sider the energy consumption due to GUI events al@ne results indicate the potential
energy savings during the execution of pre-deadline cydBssdefinition, the PACE
algorithms do not reschedule post-deadline cycles.

To integrate PPACE into AutoDVS, we extended AutoDVS with ddigonal API
through which it consumes off-line information, task deaek, and the worst-case ex-
ecution times (WCETSs) of tasks from the program. Table 7.4 shibve parameters
we use to evaluate PPACE in AutoDVS. To determine the WCET inesyalve use

the CPU demand of 99 percentile of GUI tasks which is equal1®8®BMcycles. We

171



Chapter 7. Improving Dynamic Voltage Scaling

1.0+

0.5

0.0-
Dra Gen Sol Tet-1 Tet-2 Che-1 Che-2 Che-3 Average

Figure 7.9: Simulatedenergy savings ratio with respect to AutoDVS. These resnés

different from all those prior in that we obtain them througimulation and consider
only GUI events. Higher bars are better. On average, incatipg PPACE results in a
potential 41% decrease in energy consumption of GUI eveh&whe event deadlines
and WCETs are known a priori.

limited the number of clock speed transitions to 6, placimgn evenly in the range
[1,WCET]. Even though we use a smaller number of transitioan there used in the
previous PPACE, our implementation provides a higher réolahan the original im-
plementation since we use a much smaller WCET. Xu et al. Ws€s= 500 Mcycles
with 100 transition points — this corresponds to a transition poggraximately every
5 Mcycles. In contrast, we place a transition point at apprately everyl Mcycles.
Figure 7.9 shows the energy savings ratio for GUI events wieereschedule CPU
speed using PPACE - relative to AutoDVS (not MAX as in priorpdrs). Higher bars
are better. The data indicates that using PPACE with AutoDaSpotentially enable
significant energy savings. Our results indicate that fostnod our event traces, the

energy consumption of GUI events can be decreased by over &b#-2 and Che-3

172



Chapter 7. Improving Dynamic Voltage Scaling

are exceptions to general trend. For these two cases, tingjsare less than 10%. We

find that on average, PPACE reduces the energy consumptiobloéents by 41%.

7.6 Summary

In an effort to produce an automatic DVS system for a popudardhheld device,
we developed a set of Linux extensions that couple and exdendnber of extant ap-
proaches. Our system is called AutoDVS and is very flexibk extensible. Each of
the DVS algorithms that we used for different workload babis/can be replaced with
others. We intend for it to be used by researchers interestgwestigating, empir-
ically evaluating, and comparing DVS algorithms on iPAQ ddrelds using popular
and general-purpose hand-held software.

Our results indicate that AutoDVS can reduce power consiomptgnificantly for a
wide range of application types executed alone or conctlyrédn average, AutoDVS
reduces power consumption by 49% for interactive tasks,bgn8l1% for concurrent
workloads. AutoDVS enables these results automaticaltiteansparently for a wide
range of real applications. The key to enabling these poe@uations is the use of
interval schedulers that capture computationally intenand idle periods in the work-
load and accurate time series prediction to estimate tregidarof application-specific

interactive sessions. The combination of these techniguoaisles AutoDVS to infer ac-

173



Chapter 7. Improving Dynamic Voltage Scaling

curately task-level behavior from applications, worklsadnd concurrent workloads,
and to adapt the clock speed appropriately.

Finally, with AutoDVS, we show that event arrival frequen@gterarrival times
between events) is a useful metric for measuring user ictieity. We do this without
requiring any modification to user applications, simply bgmtoring the events that

the window manager receives and broadcasts.

174



Chapter 8

Conclusions

In this dissertation, we explored better resource measemeand prediction sup-
port for enabling more effective power management in eméedresource-restricted
computers. We discussed the significance of prediction manhc voltage scaling and
computation offloading efficacy. In this work, we developsthamic, adaptive tech-
niques that can provide such accuracy with low resourcewsopson.

As the power management techniques become more maturegeldear more ef-
fective prediction methods will increase significantly. priesent most computation
offloading and dynamic voltage scaling techniques usecsfarameterized prediction
techniques that are tedious to develop and parameterizele Wiai static techniques
are highly accurate for the workload (dataset) that theyparameterized for, they may
not capture the changes in workload characteristics. Hezaliscussed the design of
an adaptive, dynamic prediction utility for embedded systeand we validated its effi-

cacy using a large dataset that is collected from real systémaddition, we discussed

175



Chapter 8. Conclusions

the challenges of measuring energy consumption at run-tame we proposed a run-
time power measurement technique which we validated usiedstargate computer
that we have.

We provide the following contributions in this dissertatio

e Arun-time, fine grain task power measurement technique tdt¢teique that we
developed can predict power measurement with great agc(Ba8% to 4.6%

error rate). It updates the model at run-time using batteygitor feedback.

e A non-parametric prediction tool that make accurate fastscaf future applica-
tion and resource behavior, wireless bandwidth, CPU, nétwandwidth and
latency. Our tool surpasses, or at least matches that of cotyrased exponen-
tial smoothing and least squares predictors, without atliptes parameterization.

Our tool uses only 55 floating point operations for each putémh.

e Demonstration of significance of prediction accuracy in patation offloading.
Using simulation on real data, we demonstrated that betégfigtion leads to a
significant improvement in energy savings. Our evaluatgimsv that NWSLite
can reduce wasted energy (that is due to wrong decisions)t@ B%% in com-

parison to its static parameterized competitors.

e Application of better prediction to dynamic voltage scglinUser think time

can be used as an important opportunity to scale CPU perfaeramnd voltage

176



Chapter 8. Conclusions

level. We measure user think time directly inside window agger, without any
change to application source code, and then we use thesemae@nts to predict
future think times using our predictors. By combining our freetism to already
existing DVS methods, we show significant energy saving843d 49%) are

possible.

In concluding remarks, we discuss potential improvememtgoposed techniques

and future research directions that these techniquese=nabl

8.1 Directions For Future Research

The capability of accurately measuring task power consiomptan have a pro-
found effect on the design and implementation of power awpegating systems. Once
the operating system knows its energy budget and how mugcheiserequired by dif-
ferent applications, tasks and threads, it can allocateggrmauch more efficiently in
order to satisfy user requirements (such as battery lifeliegiion performance). Fu-
ture operating systems, such as the recently proposed E@DOsj&7], micro-manage
energy consumption for optimum battery life. In ECOsystdme, duthors propose al-
locating energy to tasks using a priority mechanism thagi$og the user. As the tasks
use computational resources, CPU, 1/0 and network intertaeg pay their share of

energy consumption to the operating system, in units ofe¥oufor the realization of

177



Chapter 8. Conclusions

----- Desired Power Budget
CPU Voltage level

Foxton reduces

voltage level to

correct power
condition

OS invokes DBS
(via ACPI) to
request a lower
power envelope

On-chip ammeter
senses over-power
condition

Foxton increases
voltage to utilize
unused budget

CPU Power Consumption

Unused budget

Time

Figure 8.1: Power management using Foxton technology. The y-axis i<t
power consumption. The A/D converters that exist on CPU nregsower continu-
ously and scale CPU voltage/frequency accordingly to keegepaonsumption in a
certain budget. The operating system uses DBS (demandgossitching) interface
to convey the power consumption limit.

these systems, run-time power measurement capabilityyigvideich this thesis dis-
cusses). Therefore, one of the future directions that tlsisedtation enables is the
design and implementation of power aware operating systbatscan measure (and
optimize) software energy consumption. Combining our systgth ECOsystem may
be a good starting point for achieving this goal.

Since our work is a first step to run-time power measuremettefull system,
there are a number of areas that must be improved. First,ofvalheed to improve

hardware capability to provide more accurate power measemes. As we demon-

178



Chapter 8. Conclusions

strated, current battery monitors are not as accurate yekily however, there are new
projects which, as a side effect, can lead to technologigtsfétilitate such accurate
battery sensors. One such project is Intel Foxton [61]. is pinoject, the researchers
couple the existing CPUs with very high speed and very aceu#d converters that
measure power consumption of CPU at real time, and with gozairacy. The micro-
controller that controls these A/D converters automdiiaadjust the CPU voltage level
and frequency using these instantaneous power consunmppéasurements such that it
keeps the power consumption under a certain budget. Thatopgsystem determines
what this budget is. Figure 8.1 explains this concept in ndetail.

There are two ways that Intel Foxton (and similar future @ctg) can improve run-
time power measurement support. First, if Foxton microcaler can be enhanced in
a way akin to hardware performance monitors, operatingesystan use this interface
to measure CPU power consumption in real time, for any agmicatask, or even
a procedure. Second, such projects can enable productibigldfy accurate battery
monitoring sensors that can measure full system energyuogotson with great ac-
curacy. By coupling these measurements with the models tbgirepose, it will be
possible for the OS to assess the energy cost of tasks andtiogesystem threads.
In measuring full system energy consumption, a significafficdlty is 1/0O devices.
In this thesis, we proposed using software counters forhipose and demonstrated

their effectiveness using the communication interfaceweéir, there is still a lot to

179



Chapter 8. Conclusions

do. Many of the 1/O states (and their power behavior) aresfrarent to software coun-
ters, since there is a firmware/microcode layer (mostly petgry) that controls these
devices. In addition, since 1/O is mostly asynchronous fiegtion execution, its mea-
surement and mapping to applications accurately is stib@an question. We believe
that further investigation of 1/0 power consumption is higjustified for the design

and implementation of future operating systems.

180



Bibliography

[1] A. Balachandran, G. Voelker, P. Bahl, and P. Rangan. Charaicig user be-
havior and network performance in a public wireless lanAGM International
Conference on Measurement and Modeling of Computer Sys2603.

[2] R. Balan, M. Satyanarayanan, S. Park, and T. Okoshi. Tabtsed remote ex-
ecution for mobile computing. Iinternational Conference on Mobile Systems,
Applications, and Service2003.

[3] S. A. Banachowski and S. A. Brandt. The BEST scheduler fagrdted pro-
cessing of best-effort and soft real-time processe®rateedings of Multimedia
Computing and Networkinganuary 2002.

[4] Rechargeable battery/systems for communicationfeeit applications.
http://www.acq.osd.mil/ott/natibo/docs/BatryRpt.pdf.

[5] B.D.Cahoon Effective Compile-Time Analysis For Data Prefetching Inald&®hD
thesis, University of Massachusetts at Amherst, 2002.

[6] F. Berman, G. Fox, and T. Heysrid Computing: Making the Global Infrastruc-
ture a Reality Wiley and Sons, 2003.

[7] W. L. Bircher, M. Valluri, J. Law, and L. K. John. Runtime iatfication of
microprocessor energy saving opportunitiesintiernational Symposium on Low
Power Electronics and Desig2005.

[8] G. Bottomley and S. Alexander. A novel approach for staimy recursive least
squares filterslEEE Transactions on Signal Processjgigust 1991.

[9] P. J. Brockwell and R. A. Davis.Introduction to Time Series and Forecasting
Springer-Verlag, 2002.

[10] D. Burger and T. Austin. The simplescalar tool set, vaars2.0. Technical Report
1342, UW Madison Computer Sciences, June 1997.

181



Bibliography

[11] S. Card, T. Moran, and A. Newell'he Psychology of Human-Computer Interac-
tion. Lawrence Erlbaum Associates, 1983.

[12] G. Contreras and M. Martonosi. Power prediction for IlXScale processors
using performance monitoring unit events. linernational Symposium on Low
Power Electronics and DesigR2005.

[13] Dallas Semiconductors. DS2760 Data Sheet http://pdfserv.maxim-
ic.com/arpdf/DS2760.pdf.

[14] J. Eager. Advances in rechargeable batteries spaduptannovation. IrSilicon
Valley Computer ConferencAugust 1992.

[15] Familiar Web Page — http://www.handhelds.org.

[16] K. Flautner and T. Mudge. Vertigo: Automatic perfornearsetting for Linux. In
Proceedings of the Fifth Symposium on Operating SystengDasid Implemen-
tation OSD| December 2002.

[17] K. Flautner, S. Reinhardt, and T. Mudge. Automatic perfance setting for dy-
namic voltage scalingWireless Networking3(5):507-520, 2002.

[18] J. Flinn. Extending Mobile Computer Battery Life through Energy-Awadap-
tation. PhD thesis, Carnegie Mellon University, Dec. 2001.

[19] J. Flinn, D. Narayanan, and M. Satyanarayanan. Sakduemote execution for
pervasive computing. Iiot Topics in Operating Systems(HotOS-\/Ippges
61-66, Germany, 2001.

[20] J. Flinn, S. Park, and M. Satyanarayanan. Balancingopmdnce, energy, and
quality in pervasive computing. limternational Conference on Distributed Com-
puting Systems (ICDCS '02)ages 217-226, 2002.

[21] J. Flinn and M. Satyanarayanan. Powerscope: A tool fofilphg the energy
usage of mobile applications. WMCSA '99: Proceedings of the Second IEEE
Workshop on Mobile Computer Systems and Applicatipage 2, Washington,
DC, USA, 1999. IEEE Computer Society.

[22] I. Foster and C. Kesselmahe Grid: Blueprint for a New Computing Infras-
tructure Morgan Kaufmann Publishers, Inc., 1998.

[23] R. Freund and P. MintonRegression Methods, A tool for Data Analysisl-
ume 30. Marcel Dekker, 1979.

182



Bibliography

[24] Game of Life — http://daugerresearch.com/vault/peltde.shtml.

[25] GLVU source code and documentation, Feb 2002.
http://www.cs.unc.edu/ walk/software/glvu/.

[26] K. Govil, E. Chan, and H. Wasserman. Comparing algoritfonglynamic speed-
setting of a low-power CPU. IACM International Conference On Mobile Com-
puting And Networking (MoBiCompages 13-25, 1995.

[27] The grid application development software project AOBSB).
" http://hipersoft.cs.rice.edu/grads/”.

[28] D. Grunwald, P. Levis, C. Morrey, M. Neufeld, and K. FaskaPolicies for dy-
namic clock scheduling. I@perating System Design and Implementation(OSDI)
pages 73—-86, October 2000.

[29] M. R. Guthaus, J. Ringenberg, D. Ernst, T. M. Austin, T. idadand R. Brown.
Mibench: A free, commercially representative embeddedc:herark suite. In
IEEE 4th Annual Workshop on Workload Characterizatioac 2001.

[30] Hewlett-Packard. Compaq iPAQ Pocket PC H3800 Series Reference Guide
March 2002. Document Part Number: 253194-002.

[31] Intel. StrongARM SA-1110 Microprocessor Developer’'s Man@aitober 2001.
Order Number:278240-004.

[32] Intel. Intel PXA-270 Processor: Electrical, Mechanical and Thatr8pecifica-
tion, June 2004. Order Number:280002-006.

[33] Intel Corporation XScale www.intel.com/design/intelxscale/.

[34] C. Isciand M. Martonosi. Identifying program power padehavior using power
vectors. INWWC '03: Proceedings of the Sixth International Worksho\amk-
load Characterization2003.

[35] C. Isci and M. Martonosi. Runtime power monitoring in highd processors:
Methodology and empirical data. INICRO '03: Proceedings of the 36th
ACM/IEEE International Symposium on Microarchitectuz803.

[36] C. Isci and M. Martonosi. Phase characterization for @oviEvaluating control-
flow-based and event-counter-based techniquadPI@A '06: Proceedings of the
Twelfth International Symposium on High-Performance CoepAtchitecture
2006.

183


"

Bibliography

[37] 1. Jolliffe. Principal Component AnalysisSpringer, 2002.

[38] R. Joseph and M. Martonosi. Run-time power estimationigh lperformance
microprocessors. Imternational Symposium on Low Power Electronics and De-
sign, pages 135-140, 2001.

[39] I. Kadayif, T. Chinoda, M. Kandemir, N. Vijaykirsnan, M. Irwin, and A. Siva-
subramaniam. vec: virtual energy counters. Pioceedings of the 2001 ACM
SIGPLAN-SIGSOFT Workshop On Program Analysis For Softwarts Find En-
gineering (PASTE)2001.

[40] M. Kim and B. Noble. Mobile network estimation. Mobile Computing and
Networking pages 298-309, 2001.

[41] U. Kremer, J.Hicks, and J.M.Rehg. A compilation framekvfor power and en-
ergy management on mobile computersiniternational Workshop on Languages
and Compilers for Parallel Computing (LCPC’QJ4ug. 2001.

[42] C. Krintz. Coupling on-line and off-line profile informan to improve program
performance. Innternational Symposium on Code Generation and Optiminatio
(CGO), Mar. 2003.

[43] C. Krintz and B. Calder. Using annotation to reduce dynampitmization time.
In Proceedings of ACM SIGPLAN Conference on Programming LareggDagign
and Implementatiarpages 156-167, June 2001.

[44] B. Lee and D. Brooks. Accurate and efficient regressioneting for microarchi-
tectural performance and power prediction.Piroceedings of Architectural Sup-
port for Programming Languages and Operating Systems (&&RXII), 2006.

[45] C. Lee, M. Potkonjak, and W. Mangione-Smith. Mediaben&hool for evaluat-
ing and synthesizing multimedia and communication systdmBroceedings of
the 30th ACM/IEEE International Symposium on Microarchiteg 1997.

[46] T. Liand L. John. Run-time modeling and estimation of igpi&g system power
consumption. IPACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systendsne 2003.

[47] X. Liu, P. Shenoy, and M. Corner. Chameloen: Applicatiamtcolled power
management with performance isolation. Technical Repe@&@Department of
Computer Science University of Massachusetts, 2004.

184



Bibliography

[48] J.Lorch and A. Smith. Improving dynamic voltage scglaigorithms with PACE.
In Proceedings of the 2001 ACM SIGMETRICS international contez®n Mea-
surement and modeling of computer systgmages 50—-61. ACM Press, 2001.

[49] J. Lorch and A. Smith. Using user interface event infation in dynamic voltage
scaling algorithms. IfProceedings of the 11th IEEE/ACM International Sympo-
sium on Modeling, Analysis and Simulation Computer and dacunications
Systemgpages 46-55, October 2003.

[50] Madplay — http://www.underbit.com/products/mad/.

[51] S. Matrtin, K. Flautner, T. Mudge, and D. Blaauw. Combingghanic voltage
scaling and adaptive body biasing for lower power micropssors under dy-
namic workloads. IrProceedings of the 2002 IEEE/ACM international confer-
ence on Computer-aided desjgrages 721-725. ACM Press, 2002.

[52] R. Myers. Classical and Modern Regression with ApplicationBWS-KENT
Publishing Company, 1989.

[53] D. Narayanan.Operating System Support for Mobile Interactive Applicas
PhD thesis, Carnegie Mellon University CMU-CS-02-168, Aud20

[54] D. Narayanan and M. Satyanarayanan. Predictive resouanagement for wear-
able computing. Irinternational Conference on Mobile Systems, Applications,
and Services2003.

[55] B. Noble, M. Satyanarayanan, D. Narayanan, J. Tiltoflidn, and K. Walker.
Agile application-aware adaptation for mobility. $ixteenth ACM symposium on
Operating systems principlegages 276—287. ACM Press, 1997.

[56] The Network Weather Service Home page — http://nwsosh.edu.
[57] OpenZaurus Web Page — http://www.openzaurus.org/web
[58] PAPI — http://icl.cs.utk.edu/papi.

[59] M. Pedram and J. Rabaeyower Aware Design MethodologieKluwer Aca-
demic Publishers, 2002.

[60] T. Pering, T. Burd, and R. Brodersen. The simulation anduew@n of dynamic
voltage scaling algorithms. Iroc. International Symposium on Low Power Elec-
tronics and Designpages 76—-81, Aug. 1998.

185



Bibliography

[61] C. Poirier, R. McGowen, C. Bostak, and S. Naffziger. Poweat samperature
control on a 90nm itanium family processor. Iimernational Solid State Circuits
Conference (ISSCC¥an Francisco, CA, February 2005.

[62] J. Pouwelse, K. Langendoen, and H. Sips. Dynamic velsaaling on a low-
power microprocessor. lroceedings of the 7th Annual International Conference
On Mobile Computing And Networkingages 251-259. ACM Press, 2001.

[63] Q.0.Snell, A.Mikler, and J.L.Gustafson. Netpipe: Awerk protocol indepen-
dent performance evaluator. IASTED International Conference on Intelligent
Information Management and Systerdisne 1996.

[64] A. Rudenko, P. Reiher, G.Popek, and G.Kuenning. The remacessing frame-
work for portable computer power saving. ACM Symp. Appl. CompSan An-
tonio, TX, Feb. 1999.

[65] A. Rudenko, P. Reiher, G. Popek, and G. Kuenning. Savinmtaple computer
battery power through remote process executiblobile Computing and Com-
munications Review2(1):19-26, Jan. 1998.

[66] S. Russell and P. NorvigArtificial Intelligence: A Modern ApproachPrentice
Hall, 1995.

[67] L. Shang, A. Kaviani, and K. Bathala. Dynamic power cangtion in Virtex-
[l FPGA family. In Proceedings of the 2002 ACM/SIGDA Tenth International
Symposium on Field-Programmable Gate Arrgyages 157-164, 2002.

[68] M. A. Sharaf, J. Beaver, A. Labrinidis, and P. K. Chrysastffina: a scheme for
temporal coherency-aware in-network aggregatiorMabiDe '03: Proceedings
of the 3rd ACM international workshop on Data engineering foreldss and
mobile accespages 69-76, New York, NY, USA, 2003. ACM Press.

[69] B. ShneidermanDesigning The User Interface: Strategies For Effective ldom
Computer InteractionAddison-Wesley, 1998.

[70] Wireless LAN Traces from ACM SIGCOMM’01 -
http://ramp.ucsd.edu/pawn/sigcomm-trace/.

[71] A. Sinha. Energy Efficient Operating Systems and Softwd@D thesis, Mas-
sachusetts Institute of Technology, 2001.

[72] A. Sinha and A. P. Chandrakasan. Dynamic voltage scieglulsing adaptive
filtering of workload traces. IRProceedings of the The 14th International Confer-
ence on VLSI Design (VLSID '0lpage 221. IEEE Computer Society, 2001.

186



Bibliography

[73] A. Sinha and A. P. Chandrakasan. Jouletrack: a web bas#ddr software
energy profiling. InDAC '01: Proceedings of the 38th conference on Design
automation pages 220-225, New York, NY, USA, 2001. ACM Press.

[74] M. Smith. Overcoming the challenges to feedback-degoptimization. I'ACM
SIGPLAN Workshop on Dynamic and Adaptive Compilation andn@gation
(Dynamo00)Jan. 2000.

[75] Sundials: Suite of nonlinear and differential algebr&quation solvers —
http://www.lInl.gov/CASC/sundials/main.html.

[76] Y. Wang, E. Y. Chang, and K. P. Cheng. A video analysis fraor& for soft
biometry security surveillance. MSSN '05: Proceedings of the third ACM inter-
national workshop on Video surveillance & sensor netwppegies 71-78, New
York, NY, USA, 2005. ACM Press.

[77] M. Weiser, B. Welch, A. J. Demers, and S. Shenker. Scliegl@br reduced CPU
energy. InOperating Systems Design and Implementatpayges 13-23, 1994.

[78] A. Weissel and F. Bellosa. Process cruise control: ederen clock scaling
for dynamic power management. GASES '02: Proceedings of the 2002 Inter-
national Conference On Compilers, Architecture, And Syighiesr Embedded
Systemgpages 238-246, New York, NY, USA, 2002. ACM Press.

[79] A. J. Willmott. Radiator source code and online docuragah, Oct 1999.
http://www.cs.cmu.edu/ ajw/software/.

[80] R. Wolski. Dynamically Forecasting Network Performardsing the Network
Weather ServiceJournal of Cluster Computindl:119-132, Jan. 1998.

[81] R. Wolski, N. Spring, and J. Hayes. The Network Weathevige: A Distributed
Resource Performance Forecasting Service for Metacongputiuture Genera-
tion Computer System$999.

[82] N.-S. Woo. Promises and challenges of mobile embedysigis:: an industry
perspective. ICODES+ISSS '06: Proceedings of the 4th international cenfer
ence on Hardware/software codesign and system syntipegjes 3—3, New York,
NY, USA, 2006. ACM Press.

[83] Gartner Inc, press release —http://www.gartner.ddatpber 2006.

[84] R. Xu, C. Xi, R. Melhem, and D. Moss. Practical pace for entseblsystems. In
Proceedings of the fourth ACM international conference orb&mided software
pages 54-63. ACM Press, 2004.

187



Bibliography

[85] P.Young.Recursive Estimation and Time-Series AnalySjzringer-Verlag, 1984.

[86] W. Yuan and K. Nahrstedt. Energy-efficient soft reat¢i CPU scheduling for
mobile multimedia systems. IRroceedings of the 19th ACM Symposium on Op-
erating Systems Principles (SOSP’03003.

[87] H. Zeng, C. Ellis, A. Leveck, and A. Vahdat. Ecosystem:rndging energy as a
first class operating system resourcePhoceedings of Architectural Support for
Programming Languages and Operating Systems (ASPL@x$)ber 2002.

[88] Z.Li, C.Wang, and R.Xu. Computation offloading to save ggyesn handheld
devices:a partition scheme. Froc. of International Conference on Compil-
ers,Architectures and Synthesis for Embedded Systems }Af§es 238-246,
2001.

188



	Acknowledgements
	Curriculum Vitæ
	Abstract
	List of Figures
	List of Tables
	Introduction
	Background
	Computation Offloading
	Dynamic Voltage Scaling
	Interval Scheduling
	Interactive Task Scheduling

	Our Hardware And Software Setup
	VPerfmon


	Modeling Energy Consumption
	HPMs To Model Program Power Behavior
	Modeling Methodology
	Linear Regression For Modeling Computational Power Consumption
	Problem Encountered In Modeling

	Modeling Communication Energy Consumption
	Validation
	Computation Model
	Communication Model

	Why Linear Regression?
	Related Work
	Summary

	Predicting Energy Consumption at Run-Time
	Extant OS Support For Measuring Energy Use
	Proposed Run-time Energy Prediction Mechanism
	Evaluation Methodology
	Results
	Decay Factor vs. Accuracy
	Update Period
	Benefits From Offline Profiling
	Battery Monitor Error Rate vs. Accuracy
	Performance Of Complex Model
	Performance Of Compact Model
	Execution Cost

	Why RLS-ED?
	Related Work
	Summary

	Predicting System Resources For Reducing Energy Consumption
	Extant Resource Prediction Systems
	Proposed Non-parametric Resource Prediction Tool
	Design Rationale
	Validation
	Experimental methodology
	Evaluation Metrics
	Predictor Accuracy
	Computational Cost Of Prediction
	Validation Summary

	Summary

	Improving Computation Offloading
	Resource Prediction in Remote Execution
	Methodology
	Simulation Results
	Summary

	Improving Dynamic Voltage Scaling
	Predicting User Interactivity For DVS
	Design and Implementation
	Monitoring GUI Events
	CPU Load Sensor
	Platform Specific Design Constraints

	Collecting User Interactivity Traces
	Evaluation Metrics
	Results
	Interactive Workloads
	Concurrent Workloads
	Integrating PACE

	Summary

	Conclusions
	Directions For Future Research

	Bibliography

