
ECMA/TC39/TG3/2000/2

Draft Standard ECMA-xxx
October 2000

S t a n d a r d i z i n g I n f o r ma t i o n a n d C o mmu n i c a t i o n S ys t e ms

Common Language Infrastructure (CLI)

Part 2: General

Draft 1 - October 2000



This contribution is being provided “AS IS”, and the SPONSORS EXPRESSLY DISCLAIM ANY
AND ALL WARRANTIES REGARDING THIS CONTRIBUTION, INCLUDING ANY
WARRANTY THAT THIS CONTRIBUTION DOES NOT VIOLATE THE RIGHTS OF OTHERS
OR IS FIT FOR A PARTICULAR PURPOSE.



ECMA/TC39/TG3/2000/2

Draft Standard ECMA-xxx
October 2000

S t a n d a r d i z i n g I n f o r ma t i o n a n d C o mmu n i c a t i o n S ys t e ms

Brief History



This ECMA Standard has been adopted by the ECMA General Assembly of ....



- i -

Table of contents

1 Scope 1

1.1 Overview 1

1.1.1 Structure of the Document 1

1.1.2 Text Style 1

1.2 The Execution Engine and the CLI 2

1.3 Validation and Verification 2

1.4 Common Language Specification 3

2 Introductory Examples 4

2.1 Hello World Example 4

2.2 Examples 4

3 General Syntax 4

3.1 General Syntax Notation 4

3.2 Terminals 5

3.3 Identifiers 6

3.4 Labels and Lists of Labels 6

3.5 Lists of Hex Bytes 7

3.6 Floating point numbers 7

3.7 Source Line Information 8

3.8 File Names 8

3.9 Attributes and Metadata 8

4 Assemblies, Manifests and Modules 8

4.1 Assemblies, Modules, Types and Namespaces 8

4.2 CIL Assembly Files 9

4.3 Defining an Assembly 10

4.3.1 Operat ional Character is t ics of Assemblies 11

4.3.2 Information about the Assembly 12

4.3.3 Manifest Resources 13

4.3.4 Files in the Assembly 14

4.4 Referencing Assemblies 14

4.5 Declaring Modules 15

4.6 Referencing Modules 15

4.7 Declarations inside a Module or Assembly 16

4.8 Export Declarations 16

4.8.1 The .comtype direct ive 17

5 Types 17

5.1 Introduction to Types 17

5.2 The Type System 19



- i i -
5.3 Types 20

5.3.1 modreq and modopt 22

5.3.2 pinned 22

5.3.3 Types in Reflect ion Emit 22

5.4 Built-in Types 22

5.5 Type References, Assemblies and Modules 24

5.6 Inheritance and Subtyping 25

5.6.1 Verificat ion of Subtyping 26

5.6.2 Conformance and Subtyping at Runtime 26

5.7 Native Data Types 26

5.8 Marshaling 29

5.8.1 Marshaling with Reflect ion 30

6 Visibil i ty , Accessibil i ty and Hiding 30

6.1 Visibil i ty 30

6.2 Hiding 31

6.3 Accessibil i ty 31

6.3.1 Family Access 31

6.3.2 Privatescope Access 32

7 Class Types 33

7.1 Namespaces 34

7.2 Using Classes 34

7.3 Instantiating Classes 35

7.4 Defining a Class 35

7.4.1 Class Head 35

7.4.2 Buil t-in Class Attr ibutes 36

7.5 Body of a Class 39

7.6 Members of Classes 39

7.6.1 Stat ic and Instance Fields 39

7.6.2 Stat ic and Instance Methods 40

7.6.3 Vir tual Methods 40

7.6.4 Method Implementat ion Requirements 42

7.6.5 Instance constructors 43

7.6.6 Instance Final izer 43

7.6.7 Type Ini t ial izers 44

7.7 Nested Classes 46

7.8 Controlling Layout and Dispatch 47

7.8.1 Layout Control of Fields 47

7.8.2 Control l ing Vir tual Method Dispatch 48

7.9 Global Fields and Methods 49

8 Interfaces 49

8.1 Implementing Interfaces 50



- i i i -

8 .1 .1 Implementat ion Requirements 51

8.1.2 MethodImpls 51

8.2 Defining Interfaces 52

9 Value Types 52

9.1 Referencing Value Types 53

9.2 Instantiating Value Types 53

9.3 Defining Value Types 54

9.4 Methods of Value Types 55

9.5 Boxing and Unboxing 56

9.6 Copy Constructors on Value Types 57

9.7 Using Value Types for C++ Classes 58

9.7.1 Representat ion of a Class as a Value Type 58

9.7.2 Representat ion of the VTable 59

10 Special Types 59

10.1 Arrays 59

10.1.1 Vectors 59

10.1.2 General Arrays 61

10.1.3 Arrays of Arrays 65

10.2 Enumerations 66

10.3 Pointer Types 68

10.3.1 Obtaining and Using an Address 69

10.3.2 Unmanaged Pointers 70

10.3.3 Managed Pointers 70

10.3.4 Transient Pointers 71

10.4 Method Pointer Types 71

10.5 Delegates 72

10.5.1 Declar ing Delegates 73

10.5.2 Creat ing Delegates 74

10.5.3 Using Delegates 74

10.5.4 Mult icast Delegates 77

10.5.5 Other Methods of Delegates 78

11 Methods 78

11.1 Method Descriptors 79

11.2 Method Signatures 80

11.3 Types of methods 80

11.3.1 Stat ic Methods 80

11.3.2 Instance Methods 80

11.3.3 Vir tual Methods 81

11.4 Method Calls 81

11.4.1 Call ing Convention 82

11.4.2 Call Kinds 82

11.4.3 The call Instruct ion 83



- iv -
11.4.4 The callvir t Instruct ion 84

11.4.5 Indirect Calls 84

11.4.6 Tail Calls 85

11.4.7 jmp 86

11.4.8 Call ing Instance Constructors 87

11.4.9 Call ing vararg Methods 87

11.5 Defining Methods 87

11.5.1 Method Head 87

11.5.2 Method Parameters 88

11.5.3 Method Body 90

11.5.4 Predefined Attr ibutes on Methods 93

11.5.5 Implementat ion Attr ibutes of Methods 95

11.5.6 Scope Blocks 97

11.5.7 vararg Methods 98

11.6 Unmanaged Methods 99

11.6.1 Call ing Unmanaged Methods 99

11.6.2 Managed Native Call ing Conventions (x86) 102

12 Fields 104

12.1 Predefined Attributes of Fields 105

12.1.1 Accessibi l i ty Information 105

12.1.2 Field Contract Attr ibutes 106

12.1.3 Interoperat ion Attr ibutes 106

12.1.4 Other Attr ibutes 106

12.2 Field Init Metadata 106

12.3 Embedding Data in a PE File 107

12.3.1 Data Declarat ion 108

12.3.2 Accessing Data 109

12.3.3 Unmanaged Thread-local Storage 109

12.4 Ini t ial izat ion of Stat ic Data 109

12.4.1 Data Known at Link Time 109

12.4.2 Data Known at Load Time 110

12.4.3 Data Known at Run Time 110

13 Properties 111

13.1 Declaring properties 111

13.1.1 Property Head 111

13.1.2 Property Members 112

14 Events 113

14.1 Implementing Events 114

14.2 Observing Events 114

14.3 Declaring Events 115

14.3.1 Event Head 115

14.3.2 Event Members 115



- v -

15 Exception Handling 118

15.1 SEH Blocks 118

15.1.1 Protected Blocks 118

15.1.2 Handlers 119

15.2 Throwing an Exception 123

16 Declarative Security 124

17 Custom Attributes 124

17.1 CLS Conventions: Custom Attribute Usage 125

17.2 Attributes Used by the Runtime 126

17.2.1 Pseudo Custom Attr ibutes 126

17.2.2 Attr ibutes Defined by the CLS 126

17.2.3 Custom Attr ibutes for JIT Compiler and Debugger 127

17.2.4 Custom Attr ibutes for Reflect ion 127

17.2.5 Custom Attr ibutes for Remoting 127

17.2.6 Custom Attr ibutes for Securi ty 127

17.2.7 Custom Attr ibutes for TLS 128

17.2.8 Custom Attr ibutes for the Assembly Linker 128

17.2.9 Attr ibutes Provided for Interoperat ion with COM 129

18 CIL Instructions 130

18.1 Overview 130

18.2 Numeric and Logical Operat ions 132

18.3 Control Flow 135

18.3.1 Uncondit ional Branch Instruct ions 136

18.3.2 Unary Compare-and-Branch and Mult i -Way Branch Instruct ions 136

18.3.3 Binary Compare-and-Branch Instruct ions 136

18.3.4 Procedure Call and Related Instruct ions 137

18.3.5 Exception Handling 137

18.3.6 Other Control Flow Instruct ions 137

18.4 Moving Data 137

18.5 Object Management 139

18.6 Annotations 140

19 Overview of File Format Extensions to COFF 141

19.1 Structure of the Runtime File Format 141

19.2 Producers and Consumers of the Runtime File Format 142

19.3 Requirements Addressed by the Runtime File Format Design 142

20 Emitt ing A Valid CLI Image 143

20.1 File Headers 143

20.1.1 Signature 143

20.1.2 COFF Header 143

20.1.3 Optional Header 144

20.1.4 Stor ing Runtime Data in Sections 147



- vi -
1.2.2 Runtime Header 147

20.2 Section Headers 151

20.3 Modifications to Existing PE Data 151

20.3.1 Import Address Table (IAT) 151

20.3.2 Export Section ( .edata) 151

20.3.3 Thread Local Storage Table 151

20.3.4 Relocations 152

21 Common Intermediate Language 152

21.1 Local Variable Layout 152

21.2 File Format Structure Definit ions 152

21.2.1 Method Body 152

21.2.2 Section Data 155

21.2.3 IMAGE_COR_ILMETHOD_SECT_EH 155

21.2.4 IMAGE_COR_ILMETHOD_SECT_EH_CLAUSE_FAT 157

22 Code Transit ions 158

22.1 Call Transitions 158

22.1.1 Transi t ion Types 158

22.2 Runtime Header Support for Transitions 159

22.2.1 VTableFixups 159

22.2.2 Export Address Table Fix-ups 159

23 Entry Points 160

23.1 Runtime API’s 160

23.1.1 _CorExeMain 160

23.1.2 _CorDllMain 160

23.1.3 Entry Points for Windows CE 161

23.2 Shut Down Requirements 161

23.3 Entry Point Stubs 161

23.3.1 Runtime Aware OS Loader 161

23.3.2 Non Runtime Aware OS Loader 161

23.3.3 Sample x86 Stubs 161

24 Metadata Format 163



1 Scope
The Common Language Infrastructure (CLI) provides a powerful platform for development. The Common
Language Infrastructure provides a device and language independent way to express data and behavior of
applications. While the CLI primarily supports Object Oriented Programming (OOP) languages, procedural
and functional languages are also supported. Through the CLI, languages can interoperate with each other
and make use of a built-in garbage collector, security system, exception support, and a powerful framework.

Common Intermediate Language (CIL) is the intermediate language emitted by all compilers that target the
CLI. The CLI converts the device independent CIL binaries into native code using CIL-to-native code
compilers (also incorrectly known as JIT compilers). These compilers can be run in a Just-In-Time (JIT)
mode, converting methods from CIL to native code before a method runs for the first time. They can also be
used to convert an entire assembly (see section 4.1) to native code and then saving the native code for future
use. While it is possible to interpret CIL code, the runtime never interprets CIL but always compiles it into
native code.

Tools that generate CIL can benefit from the many services provided by the runtime, including the support
for early and late binding, and the fact that code compiled to CIL will run on any platform supported by the
CLI. CIL is simple and fast to generate, which is essential in RAD (rapid application development)
environments, where speed of compilation and ease of debugging are of primary importance. The runtime
manages the native code generated from CIL so that this code may benefit from features such as cross-
language inheritance, code access security, garbage collection, and simplified COM programming.

1.1 Overview
This document focuses on writing programs directly in the CIL assembly language, and relies heavily on
the syntax of ilasm, a hypothetical assembler for the CIL. A complete syntax for ilasm is included in Part
5.

In order to understand the process of creating programs in the CIL assembly language, it discusses

• Execution: The execution engine, a model of a machine that supports the execution of CIL
binaries

• Types: The underlying type system and the declarations used to define types

• Instructions: The operations of the CIL instruction set

• Deployment: These include assemblies, manifests and modules. Assemblies are the unit of
deployment in the CLI.

• Additional Features, such as global methods, global fields, and interoperation with existing
unmanaged code.

1.1.1 Structure of the Document

This document starts with an introductory sample (section 2) and with an introduction to the grammar
(section 3) followed by a discussion of assemblies, modules and manifests (section 4). The document
continues with a detailed overview of the type system, including their declaration, definition, and use
(sections 5 – 10) followed by a description of their various members (sections 11 – 14). After a
description of the members follows the specification of exceptions (section 15), security (section 16),
and custom attributes (section 17). Finally, the document concludes with the description of all CIL
instructions (section 18).

Part 5 contains a number of annexes, including samples that illustrate typical uses of the CIL assembly
language, keywords reserved by ilasm, and the complete grammar of ilasm.

1.1.2 Text Style

The following styles are used throughout the document:

Category Style Example

Body text Times New Roman This is some text.
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Category Style Example

Code embedded in text Courier New The member func is a function.

Hyperlinks Blue (violet if visited) and
underlined

CIL Instruction Set specification

CIL Keywords Verdana, bold call 

Important facts Underlined Note: This is not unimportant.

Sample code Courier New, compressed
and keywords are bold

ldstr “Sample code”

Terms and emphasized text Italic Types have members.

Tool and file names Arial, italic ilasm

1.2 The Execution Engine and the CLI
The execution engine (EE) is responsible for executing PE (portable executable) files which are managed
by the CLI. The EE translates PE files into native code. Further, the EE provides the program with an
environment to run in.

The EE is described in Part 1. It provides a number of services to applications including:

• Garbage Collection

• Code Management

• Class Loading

• CIL interpretation and/or IL to native code compilation

• Thread Support

• Type Checking

• Exception Management

• Security Engine

1.3 Validation and Verif ication
Validation refers to a set of tests that can be performed on a CLI PE file to check that the file format,
metadata, and CIL are self-consistent. These tests are intended to ensure that the PE file conforms to the
mandatory requirements of this specification. The behavior of compliant implementations of the CLI
when presented with non-compliant PE files is unspecified.

Verification refers to a check of metadata to ensure type safety and a check that the use of certain CIL
instruction sequences can permit any access to memory outside the program’s logical address. In
conjunction with the validation tests, verification ensures that the program cannot access memory or other
resources to which it is not granted access.

Part 3 specifies the rules for both valid and verifiable CIL code. A mathematical proof of soundness of
the underlying type system is possible, and provides the basis for the verification requirements. Aside
from these rules this standard does not specify:

• the details of any particular verification algorithm

• at what time (if ever) such an algorithm should be performed

• what a conforming implementation should do in case of failure of verification.

The following graph makes this relationship clearer (see next paragraph for a description):
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Figure 1: Relationship between valid and verifiable CIL. (Figure not drawn to scale)

In the above figure, the outer circle contains all code permitted by the CIL syntax. The next circle, which
is solid gray, represents all code that is valid CIL. The dotted inner circle represents all type safe code.
Finally, the innermost circle contains all code that is verifiable.

Note that even if the assembler accepts a CIL program, or a program follows the syntax described in this
document, the code may still not be valid, because valid code must adhere also to other restrictions
presented in this document. Also, the assembler may accept a somewhat more liberal syntax than presented
in this document.

Verification is a very stringent test. There are many programs that will pass validation but will fail
verification. The CLI cannot guarantee that these programs do not access memory or resources to which
they are not granted access. Nonetheless, they may have been correctly constructed so that they do not
access these resources. It is thus a matter of trust, rather than mathematical proof, whether it is safe to run
these programs. Therefore, the CLI allows an unsafe subset of code, that is code that does not pass
verification but is valid CIL, to be executed subject to administrative trust controls.

In general, CIL is used most often with a type-safe programming language whose compilers emit CIL that
can be verified, but it is possible to generate CIL for unsafe languages, such as C and C++. The CIL
emitted by the compilers for unsafe languages cannot, in general, be verified, but it will execute as a CLI
managed application provided the correct security settings are set.

1.4 Common Language Specif ication
The common language specification (CLS) is a collection of rules and restrictions that allow
interoperation between languages. Even though the CLI does not require compilers to follow CLS, code
that follows the CLS rules is compatible with all other languages that follow the CLS rules.

The term CLS consumer refers to languages that can use all functionality provided by CLS compliant
languages. This includes creating instances of classes of CLS compliant languages.

A CLS extender is a language which can be used to derive new classes from existing CLS classes and
define new interfaces that comply with the CLS.

A CLS framework provides services implemented by a set of classes all of which are CLS compliant. The
.NET framework is a CLS framework.

Typically a CLS compliant program will be verifiable. In general however, CLS programs may be
unverifiable. The complete set of CLS rules can be found in Part 1.

Syntactically correct IL

Valid IL

Typesafe IL

Verifiable IL
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2 Introductory Examples
Before diving into the details, it is useful to see an introductory sample program to get a feeling for the CIL
assembly language. The next section shows the famous Hello World program, this time in the CIL assembly
language.

2.1 Hello World Example
This section gives a simple example to illustrate the general feel of CIL. Below is code that prints the well
known “Hello world” salutation. The salutation is written by calling WriteLine, a static method found
in the .NET Frameworks class System.Console.

.assembly hello {}

.assembly extern mscorlib {}

.method static public void main() CIL managed {

.entrypoint

.maxstack 1

ldstr "Hello World from CIL!"

call void [mscorlib]System.Console::WriteLine(class System.String)

ret

}

The .assembly declaration in the first line declares the assembly name for this program. Assemblies
are the deployment unit for executable content for the CLI. The next line contains a reference to an
external assembly, namely mscorlib, which defines System.Console. The .method declaration
defines the global method main. The body of the method is enclosed in braces. The first line in the body
indicates that this method is the entry point for the assembly (.entrypoint), and the second line in the
body specifies that method requires at most one stack slot (.maxstack).

The method contains only three instructions. The ldstr instruction pushes the string constant "Hello
World from CIL!" onto the stack and the call instruction invokes
System.Console::WriteLine, passing the string as its only argument (note that string literals in
CIL are instances of the standard class System.String). As shown, call instructions must include the
full signature of the called method. Finally, the last instruction returns (ret) from main.

2.2 Examples
This document contains integrated examples for most features of the CLI. Many sections conclude with an
example that show a typical use of the feature. All these examples are written using the CIL assembly
language. The corresponding code in other languages can be obtained from the appropriate language
documentation.

Even though little samples of code make it easier to understand abstract concepts, they do not show how
all the features of the runtime fit together to form a working system. As a solution this document provides
a number of complete applications in Part 5. These applications show how the features of the CLI fit
together to form a working system.

Many integrated examples come from parts of the samples in the appendix. Sometimes, these pieces were
modified to illustrate the particular feature in a better way.

3 General Syntax
This section describes aspects of the CIL syntax that are common to many parts of the grammar.

3.1 General Syntax Notation
This document uses a modified form of the BNF syntax notation. The following is a brief summary of this
notation.

Bold items are terminals. Items placed in angle brackets (e.g. <int64>) are names of syntax classes and
must be replaced by actual instances of the class. Items placed in square brackets (e.g. [<float>]) are
optional, and any item followed by * can appear zero or more times. The character “|” means that the items
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on either side of it are acceptable, and in this document each option introduced by a “|” is given on a
separate line for easier reading. The options are sorted in alphabetical order (to be more specific: in ASCII
order, ignoring “<” for syntax classes, and case-insensitive). If a rule starts with an optional term, the
optional term is not considered for sorting purposes.

CIL is a case-sensitive language. All terminals must be used with the same case as specified in this
reference.

Examples:

A grammar such as

<top> ::= <int32> | float <float> | floats [<float> [, <float>]*] | else <QSTRING>

would consider the following all to be legal:

12

float 3

float –4.3e7

floats

floats 2.4

floats 2.4, 3.7

else “Something \t weird”

but all of the following to be illegal:

else 3

3, 4

float 4.3, 2.4

float else

stuff

3.2 Terminals
The basic syntax classes used in the grammar are:

<int32> is either a decimal number or “0x” followed by a hexadecimal number, and must be represented in
32 bits.

<int64> is either a decimal number or “0x” followed by a hexadecimal number, and must be represented in
64 bits.

<hexbyte> is a hexadecimal number that fits into one byte.

<QSTRING> is a string surrounded by double quote (″) marks. Within the quoted string the character “\”
can be used as an escape character, with “\t” for a tab character, “\n” for a new line character, or followed
by three octal digits in order to insert an arbitrary byte into the string. The “+” operator can be used to
concatenate string literals. This way, a long string can be broken across multiple lines by using “+” and a
new string on each line. An alternative is using “\” as the last character in a line, in which case the line
break is not entered into the generated string. Any white characters (space, line feed, carriage return, and
tab) between the “\” and the first character on the next line are ignored. See also examples below.

<SQSTRING> is similar to <QSTRING> with the difference that it is surround by single quote (′) marks
instead of double quote marks.

<ID> is a contiguous set of characters which starts with either an alphabetic ASCII character or one of
“_”, “$”, “@” or “?” and is followed by any number of alphanumeric characters or any of “_”, “$”, “@”,
or “?”. An <ID> is used in only two ways:

• As a label of an CIL instruction
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• As an <id> which can either be an <ID> or an <SQSTRING>, so that special characters can be
included.

Example:

The following examples shows breaking of strings:

ldstr"Hello " + "World " +

"from CIL!"

and

ldstr "Hello World\

\040from CIL!"

become both “Hello World from CIL!”.

3.3 Identif iers
Identifiers are used to name entities. Simple identifiers are just equivalent to an <ID>. However, the CIL
syntax allows the use of any identifier that can be formed using the Unicode character set. To achieve this
an identifier is placed within single quotation marks. This is summarized in the following grammar.

<id> ::=

<ID>

| <SQSTRING>

Keywords may only be used as identifiers if they appear in single quotes (see part 5 for a list of all
keywords). The maximum length of identifiers is 1024 characters.

Several <id>’s may be combined to form a larger <id>. The <id>’s are separated by a dot (.). An <id>
formed in this way is called a <dottedname>.

<dottedname> ::= <id> [. <id>]*

Note: In the syntax of ilasm, names that end with $PST followed by a hexadecimal number have a special
meaning. The assembler will automatically truncate the part starting with the $PST. For more information
see section 6.3.2.

Examples:

The following shows some simple identifiers:

A Test $Test @Foo? ?_X_

The following shows identifiers in single quotes:

′Weird Identifier′ ′Odd\102Char′ ′Embedded\nReturn′
The following shows dotted names:

System.Console A.B.C ′My Project′.′My Component′.′My Name′
3.4 Labels and Lists of Labels

A simple label is a special name that represents an address. Syntactically, a label is equivalent to an <id>.
Thus, labels may be also single quoted and may contain Unicode characters.

A list of labels is comma separated, and can be any combination of these simple labels and integers. The
integers are byte offsets that can be used instead of labels. However, these integers are intended for use
only by a disassembler, e.g. ildasm, and not for use by a programmer.

<label> ::= <id>

http://msdn.microsoft.com/library/devprods/vs6/visualc/vccore/_crt_unicode.3a_.the_wide.2d.character_set.htm
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<labeloroffset> ::=

<int32> /* For round trip use only */

| <label>

<labels> ::= <labeloroffset> [, <labeloroffset>]*

CIL distinguishes between two kinds of labels: code labels and data labels. Code labels are always
followed by a colon (“:”) and represent the address of an instruction to be executed. Code labels appear
always before an instruction and they represent the address of the instruction that immediately follows the
label. A particular code label name may not be declared more than once in a method.

In contrast to code labels, data labels specify the location of a piece of data and do not include the colon
character. The data label may not be used as a code label, and a code label may not be used as a data label.
A particular code label name may not be declared more than once in a module.

<codeLabel> ::= <label> :

<dataLabel> ::= <label>

Example:

The following is code label that represents the address of the instruction ldstr:

ldstr_label: ldstr “A label”

3.5 Lists of Hex Bytes
A list of bytes consists simply of zero or more hex bytes. Hex bytes are pairs of characters 0 – 9, a – f, and
A – F.

<bytes> ::= <hexbyte> [<hexbyte>*]

3.6 Floating point numbers
There are two different ways to specify a floating point number:

1. The regular way is to type in the floating point number with the dot (“.”) for the decimal point and
“e” or “E” in front of the exponent. Both the decimal point and the exponent are optional. This
way is primarily used to specify floats as parts of instructions

2. The second way is to convert from an integer to a floating point number by using either the
keyword float32 or float64 and indicating the integer to be converted in parentheses. This
way is used to specify floats for the metadata.

<float64> ::=

float32 ( <int32> )

| float64 ( <int64> )

| <realnumber>

Examples:

5.5

1.1e10

float64(128)
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3.7 Source Line Information
To aid with debugging, source line information may be included in the PDB (Portable Debug) file
associated with each module. There are two directives that can be used to accomplish this:

• .line takes a line number and an optional single quoted string that specifies the name of the file
the line number is referring to

• #line takes both a line number and a (required) double quoted string that specifies the name of
the file the line number is referring to

#line is only used for compatibility purposes. The .line directive is recommended for adding source
line information.

<externSourceDecl> ::=

.line <int32> [<SQSTRING>]

| #line <int32> <QSTRING>

3.8 File Names
Some grammar elements require that a file name be supplied. A file name is like any other dotted name,
with the difference that if provided the part after the last dot is interpreted as the extension of the file. The
specific syntax for file names follows the specifications of the underlying operating system.

The following grammar shows the definition of file names:

<filename> ::= Section

<dottedname> 3.3

3.9 Attributes and Metadata
The power of the CLI lies in the language independent representation of important information about types
and its members in form of metadata. The term metadata refers to descriptive information that provides
the runtime a specification of the types and their members as well as global information about the
application.

In CIL, attributes of types and their members are the metadata which provides descriptive information.
Many attributes are predefined and have a specific bit in the metadata associated with them. These
attributes have keywords in the CIL assembly language.

Usually, the use of an attribute turns a bit on and the absence turns the same bit off. ilasm uses default
values for attributes which are not specified. Generally, these default values correspond to the turned off
bit state. However, in some cases there are exceptions. All default values are specified in this document.

4 Assemblies, Manifests and Modules
4.1 Assemblies, Modules, Types and Namespaces

It is important to understand the difference between assemblies, modules, types and namespaces, all of
which are mechanisms for grouping constructs, each playing a different role in the CLI.

An assembly is a family of files that is deployed as a unit. Typically, it might include some image files
(.exe and .dll’s), resource files, online help or documentation. Although, in the extreme case, it’s also
perfectly feasible for an assembly to include just one file. An assembly has a strong sense of family
membership; one of the files in the assembly embeds a list of all its siblings, together with their identity
(name, version, culture information, etc). We call this list the assembly manifest. You cannot update just
one file in an assembly; if you attempt to do so, the CLI will detect this stranger and refuse to load. If any
part of an assembly needs to be updated, you build a new version of that assembly, and deploy it to
customers. Types (classes, interfaces, value types) can be accessed from outside an assembly only if you
explicitly mark them for export (using the public keyword on their definition). All other types are
invisible from outside that assembly.
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The assembly is also the entity treated by the security system. That’s to say, a security administrator will
grant rights based on the evidence of authenticity the assembly as whole unit can provide.

The assembly is also the unit of versioning. Assemblies have a version associated with them, which is used
by the CLI to prevent version conflicts. In addition, the assembly provides culture information used for
localization purposes.

A module is a single file containing executable content within an assembly, conceptually corresponding to
a DLL or EXE in a native code environment. A module will typically contain a number of types and other
declarations, and may itself be an assembly if the assembly only contains one module. A module contains
metadata, in addition to the metadata of its enclosing assembly, that provides the runtime with necessary
descriptive information about the module.

A type specifies a set of data and behaviors associated with each other. All values have a certain type and
may only be assigned to variables that support the type. Types may themselves contain nested types. Each
type is fully defined within a single module.

A namespace is syntactic sugar to create dotted type names, and while it may contain types (e.g.
System.Object) and other namespaces (e.g. System.XML), there is no semantics associated with this
containment. The CLI does not recognize namespaces as a separate entity. They become a part of the full
name of a type.

4.2 CIL Assembly Files
A single file input to the CIL assembler is a sequence of declarations, defined as follows:

<ILFile> ::= Section

<decl>* 6

The complete grammar for a top level declaration is shown below. The following sections will concentrate
on the various parts of this grammar.

<decl> ::= Section

.assembly <asmAttr>* <dottedname> { <asmDecl>* } 4.3

| .assembly extern [fullorigin] <dottedname> {

<asmRefDecl>* }

4.4

| .class <classHead> { <classMember>* } 7

| .comtype <comtypeHead> { <comtypeDecl>* } 4.8.1

| .corflags int32 4.3

| .custom <customDecl> 17

| .data <datadecl> 12.3.1

| .field <fieldDecl> 12

| .file [nometadata] <filename> [.hash = ( <bytes> )] 0

| .manifestres [public | private] <dottedname>

[( <QSTRING> )] { <manResDecl>* }

4.3.3

| .method <methodHead> { <methodBodyItem>* } 11

| .module [<filename>] 4.5

| .module extern <filename> 4.6

| .namespace <dottedname> { <decl>* } 7.1

| .subsystem int32 4.3

| .vtfixup <vtfixupDecl> 7.8.2
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| <externSourceDecl> 3.7

| <securityDecl> 15

4.3 Defining an Assembly
An CIL file does not necessarily define an assembly. It only does so if it contains a manifest. A manifest
describes an assembly and contains information that is used by the assembler, other tools and the EE itself.

If a manifest is given, it should appear at the beginning of an CIL file. The manifest does not appear as a
single declaration, rather it is begun by using the .assembly directive, and other declarations add
further information. The following grammar specifies all the relevant declarations:

<decl> ::= Section

.assembly <asmAttr>* <dottedname> { <asmDecl>* } 4.3

| .corflags <int32> 4.3

| .file [nometadata] <filename> [.hash = ( <bytes> )] 0

| .manifestres [public | private] <dottedname> [(

<QSTRING> )] { <manResDecl>* }

4.3.3

| .subsystem int32 4.3

| … 4.7

The .assembly directive begins the manifest and specifies to which assembly the current module
belongs to. Each module may only contain one .assembly directive. After the .assembly directive
any number of <asmAttr>s may be provided. A <dottedname> specifies the name of the assembly and is
followed by the assembly declarations in braces.

The .assembly directive is required for exe files. However, it is optional for other modules (DLL files).
The presence of the .assembly directive creates an assembly. At runtime, any files and modules
referenced by the assembly using the .module extern (see section 4.6) and .file (see section 0)
directives will become part of that assembly. Multiple assemblies may reference the same modules or files.

An CIL file may need to access other assemblies, which it does by using the .assembly extern
directive covered in section 4.4. This information is then used by the EE to determine which assembly is to
be used.

The following picture should clarify the various forms of references:

Figure 2: References

Eight files are shown in the picture. The name of each file is shown below the file. Files that declare a
module have an additional border around them and have names beginning with M. The other two files have
a name beginning with F. These files may be resource files, like bitmaps, or other files that do not contain
CIL code. Files M1 and M4 declare an assembly in addition to the module declaration, namely assemblies
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A and B, respectively. The assembly declaration in M1 and M2 references other module, shown with
straight lines. A references M2 and M3. B references M3 and M5. Thus, M3 is referenced by both
assemblies. Usually, a module belongs only to one assembly, but it is possible to share it across
assemblies. When A is loaded at runtime, an instance of M3 will be loaded for A. When B is loaded,
possibly simultaneously with A, another, independent, instance of M3 will be loaded for B. Both
assemblies reference also F2, for which similar rules apply. The module M2 references F1, shown by
dotted lines. As a consequence F1 will be loaded as part of the assembly A, when A is executed. Thus, the
file reference must also appear with the assembly declaration. Similarly, M5 references another module,
M6, which becomes part of B when B is executed. It follows, that assembly B must also have a module
reference to M6.

Assembly names do not contain the file extension.

Note: Since some platforms may treat names in a case insensitive manner, two assemblies that have names
that differ only in case should not be declared.

The following grammar shows the attributes allowed after a .assembly directive.

<asmAttr> ::= Description Section

implicitcom Must be set in V1

| noappdomain One instance only per application domain 4.3.1

| nomachine One instance only per machine, install time 4.3.1

| noprocess One instance only per process 4.3.1

Note that for Version 1, the CLI ignores any definitions made using the noappdomain, nomachine and
noprocess keywords.

The .manifestres directive introduces a manifest resource declaration, described in section 4.3.3.

The .subsystem directive is used to indicate the kind of executable the assembly represents. E.g. a
Windows GUI program or a Windows console program. Permissible values are defined in the Windows
WinNT.h header file. See Part 5.

The .corflags directive can be used to specify flags specific to 64 bit architectures. Permissible values
are defined in the CLI CorHdr.h header file. See Part 5.

Examples:

.assembly CountDown {

.hash algorithm 32772

.ver 1:0:0:0

}

.file Counter.dll .hash = (BA D9 7D 77 31 1C 85 4C 26 9C 49 E7 02 BE E7
52 3A CB 17 AF)

4.3.1 Operational Characterist ics of Assemblies

The attributes noappdomain, nomachine and noprocess specify how many instances of the
assembly are loaded. The attributes may be combined. The default is that none of them is specified.
(However, note that for Version 1, the CLI ignores these settings)

An application is a complete program that forms its own assembly and contains its own set of threads.
A thread is a sequential flow of execution of code. In contrast to an application, a process is an
operating system entity that lives in a well defined memory space. Code inside a particular process
cannot access any memory not allocated for that process. The CLI allows multiple applications to reside
in the same process and thus share memory. The applications are separated by so called application
domains. Each application has its own domain inside a process.
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Usually, assemblies are loaded on a per application domain basis. However, if for some reason an
assembly needs to be loaded only once for a process, the attribute noappdomain may be specified.
In this case, all application domains inside the process will share the same instance of the assembly, and
the assembly will have a unique state across all application domains inside the process.

If an assembly cannot support multiple instances across processes, the attribute noprocess may be
used. This attribute is similar to noappdomain, but will make sure that only one instance of an
assembly is loaded for a particular machine. All processes on this machine will share the same instance
of the assembly with the same unique state.

In certain situations involving networking, an assembly might not support separate instances on separate
machines. In this case, the nomachine attribute may be specified, wich will guarantee that within a
particular network session, only one instance of the assembly will be loaded. This instance will be
shared across machines.

4.3.2 Information about the Assembly

The following grammar shows the information you may specify about an assembly. All of these are
optional.

<asmDecl> ::= Description Section

.hash algorithm <int32> Hash algorithm ID for hash value used in
the .file directive

4.3.2.1

| .title <QSTRING> [(

<QSTRING> )]

Title of the assembly. The optional
QSTRING is a description.

4.3.1

| .custom <customDecl> Custom attributes 17

| .locale = ( <bytes> ) /*

round trip only */

Information about the locale 4.3.2.2

| .locale <QSTRING> Information about the locale 4.3.2.2

| .originator = ( <bytes> ) Information about the originator. The
<bytes> of the originator's public key.

4.3.1

| .os <int32> .ver <int32> :

<int32>

OS ID, with major version and minor
version

4.3.2.3

| .processor <int32> Processor ID 4.3.2.4

| .ver <int32> : <int32> :

<int32> : <int32>

Major version, minor version, revision, and
build

4.3.1

4.3.2 .1 Hash Algorithm

The hash algorithm id is defined in the Windows header file wincrypt.h. The ID is the object
identifier stored in one of the constants of the form CALG_<algorithm>, where <algorithm> is the
name of the algorithm. This algorithm is used to calculate and compare the hash value of a file
referenced with the .file directive (see section 0). The hash algorithm is not used for any other
calculations.

In case you are not familiar with these algorithms, you may consider using the CALG_SHA1
algorithm.

See Part 5 for the permissible values.

4.3.2 .2 Locale

The locale contains culture specific information. The strings that can be used in the .locale form
are the same strings accepted by the System.Globalization.CultureInfo class. More
information about this class can be found in the .NET SDK Base Class Library documentation.
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The culture names follow the RFC1766 names. The format is “<language>-<country>”, where
<language> is a lowercase two-letter code in ISO 639-1. <country> is an uppercase two-letter code in
ISO 3166.

The list of strings is not reproduced here due to its length, but can be found with the documentation
of the CultureInfo class.

The form of .locale that accepts a list of bytes rather than strings is only used by ildasm for round
tripping purposes.

Example:

.locale “en-US” // locale string for the United States of America

4.3.2.3 Operating System

The .os directive is for documentation purposes and records on what platform the assembly was
built and tested. This information can be used for debugging purposes. In particular, this information
does not restrict the target machine.

The OS id can be found in the Windows header file winbase.h. See Part 5.

4.3.2.4 Processor

Similar to the OS information, the processor information introduced by the .processor directive is
used for documentation and debugging purposes only. The specified processor is the processor on
which this assembly was built and does not restrict the target processor.

The processor id can be found in the Windows header file winnt.h. See Part 5.

4.3.3 Manifest Resources

A manifest resource is simply a named item of data associated with an assembly. As the name implies,
it includes resources for the assembly, e.g. bitmaps, references to files, etc. A manifest resource is
introduced using the following declaration, which adds the manifest resource to the assembly manifest
begun by the .assembly declaration.

<decl> ::= Section

.manifestres [public | private] <dottedname> [(

<QSTRING> )] { <manResDecl>* }

| … 4.2

If the manifest resource is declared public it is exported from the assembly. If it is declared private
it is not exported and only available from within the assembly. The <dottedname> is the name of the
resource followed by an optional description in parentheses. The actual manifest resource declarations
are provided in braces.

The following grammar defines a manifest resource declaration.

<manResDecl> ::= Description Section

.assembly extern <dottedname> Manifest resource is in
external assembly with name
<dottedname>.

| .custom <customDecl> Custom attribute. 17

| .file <dottedname> at <int32> Manifest resource is in file
<dottedname> at byte offset
<int32>.
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Note that, for the .file directive, you must supply the byte offset at which the resource begins, even if its
value (commonly) is zero.

4.3.4 Files in the Assembly

Assemblies may be associated with other files, e.g. documentation and other files that are used during
execution. The declaration .file is used to add a reference to such a file to the manifest of the
assembly:

<decl> ::= Section

.file [nometadata] <filename> [.hash = ( <bytes> )]

| … 4.2

The attribute nometadata is specified if the file does not contain any metadata, an example of such
a file is a resource file.

The <bytes> after the optional .hash specify a hash value computed for the file. The EE will
recomputed this hash value when this file is accessed and report an error if it does not match. This
ensures that the correct file is used and changes to the file do not break the code. The algorithm used to
calculate this hash value is specified with .hash algorithm (see section 4.3.1).

If the hash value is not specified, it will be automatically computed by the assembly linker al when an
assembly file is created using al. Even though the hash value is optional in the grammar for ilasm, it is
required at runtime.

4.4 Referencing Assemblies
When you want to refer to constructs in an external assembly, you must first use a .assembly extern
declaration to define some information about the assembly you wish to access, and to give the resulting
assembly a name for the purposes of the rest of your CIL file. .assembly extern declarations are thus
used for the resolution of names that refer to external entities. The declaration includes the external
assembly name and a sequence of further declarations in braces. The option fullorigin specifies that the
assembly reference holds the full (unhashed) originator.

<decl> ::= Section

.assembly extern [fullorigin] <dottedname> { <asmRefDecl>*

}

| … 4.2

The following is the grammar for a .assembly extern declaration:

<asmRefDecl> ::= Description Section

.hash = ( <bytes> ) Hash Blob for file references

| .custom <customDecl> Custom attributes 17

| .locale = ( <bytes> )

/* round trip only

*/

Information about the locale 4.3.2.2

| .locale <QSTRING> Information about the locale 4.3.2.2

| .originator = (

<bytes> )

Information about the originator. The <bytes> are
the low 8 bytes of the SHA1 hash of the originator's
public key.

| .os <int32> .ver

<int32> : <int32>

OS ID, with major version and minor version 4.3.2.3
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| .processor <int32> Processor ID 4.3.2.4

| .ver <int32> :

<int32> : <int32>

: <int32>

Major version, minor version, revision, and build

The dotted name used in .assembly extern must exactly match the name of the assembly as declared
with .assembly directive in a case sensitive manner.

These declarations are very similar to those for .assembly declarations (section 4.2) and some of them
are described in the subsections following the description of the .assembly declarations, with the
exception of the .hash value. You may determine appropriate settings for these by using ildasm on the
assembly you wish to access.

The assembly mscorlib contains many of the classes and methods in the System namespace. This assembly
may always be referenced implicitly, so that its classes and methods can be used without having to
explicitly reference the assembly.

Example:

.assembly extern MyComponents {

.originator = (BB AA BB EE 11 22 33 00)

.hash = (2A 71 E9 47 F5 15 E6 07 35 E4 CB E3 B4 A1 D3 7F 7F A0 9C 24)

.ver 2:10:2002:0

}

4.5 Declaring Modules
All CIL files must be part of a module. An CIL file may be added to a module by using the .module
directive. A module encapsulates only one file but may reference other files (see 4.6).

<decl> ::= Section

| .module [<filename>]

| … 4.2

Usually, a name will be provided with the module. The name is case sensitive and should be the same as
the file name, including its file extension. The module will be referenced by this name.

If no name is provided, the name is set by ilasm to be the empty string (‘’). If the .module directive is
missing, ilasm will automatically add a .module directive and set the module name to be the file name,
including its extension in capital letters. E.g., if the file is called foo and compiled into an exe, the module
name will become “Foo.EXE”.

Note: Since some platforms may treat names in a case insensitive manner, two modules that have names
that differ only in case should not be declared.

Example:

.module CountDown.exe

4.6 Referencing Modules
Instead of referring to a construct via its containing assembly, you may instead need to refer to it via its
module, in particular if the construct is part of another module in the same assembly. This can be done by
using the .module extern directive with the module name. The file which contains the module must
be referenced with the .module directive.

The module reference includes the file extension. The module name should be the same as the file name,
and it is case sensitive.

<decl> ::= Section
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| .module extern <filename>

| … 4.2

The file name used in .module extern must exactly match the name of the module as declared with
.module directive in a case sensitive manner.

Example:

.module extern Counter.dll

4.7 Declarations inside a Module or Assembly
Declarations inside a module or assembly are specified by the following grammar. More information on
each option can be found in the corresponding section.

<decl> ::= Section

| .class <classHead> { <classMember>* } 7

| .custom <customDecl> 17

| .data <datadecl> 12.3.1

| .field <fieldDecl> 12

| .method <methodHead> { <methodBodyItem>* } 11

| .namespace <dottedname> { <decl>* } 7.1

| .vtfixup <vtfixupDecl> 7.8.2

| <externSourceDecl> 3.7

| <securityDecl> 15

| …

4.8 Export Declarations
.export is used to export types from a module or assembly. The .export declaration is used only in the
main file of the assembly (i.e. the one with the manifest). This way, all exported types are specified at one
place and there is no need to check all files to determine which types are exported.

As shown in the grammar below, after any number of attributes, the name under which the type is exported
is specified. Finally, the export declarations follow.

<decl> ::= Section

.export [<exportAttr>] <dottedname> [ ( <compQstring> ) ]

{ <exportDecl>* }

The following grammar shows the attributes of an .export declaration:

<exportAttr> ::= Section

nested assembly 6

| nested famandassem 6

| nested family 6
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| nested famorassem 6

| nested private 6

| nested public 6

| public 6

| private 6

The following grammar shows the body of an .export declaration:

<exportDecl> ::= Description Section

.class <int32> Specifies a class

| .custom <customDecl> Custom attributes 17

| .file <dottedname> Specifies a file

| .nestedtype <dottedname> Specifies a nested type

4.8.1 The .comtype directive

The .comtype directive is for disassembling purposes only. It should not be used. Instead, use the
.export directive (see section 4.8).

<decl> ::= Section

| .comtype <comtypeHead> { <comtypeDecl>* } /* roundtrip

only */

4.3.1

5 Types
5.1 Introduction to Types

The two key components of any software program are data and behavior. Types apply to both of these
concepts. Data is stored in the form of bits and bytes. In order for humans to understand this data and do
useful operations with it, the data needs to be interpreted to be of a certain type, e.g. an integer or a string.
This form of loose typing can be made stricter. The data stored in memory is reached by using variables.
In a static type model, only certain types of data can be associated with a particular variable. This is
achieved by assigning a particular type to a variable.

The CLI has adopted a static typing model, in which variables have one type assigned to them. While
static typing may restrict the programmer in some sense, this has many advantages. The most important
advantage is code verification. With types, the CLI is able to detect code that handles its data incorrectly
and thus in a potentially harmful way. With static typing this verification can be done before the program
is executed, and any problematic code can be rejected before the execution starts. Verification does not
only make code less error prone, but also opens the door for a security system. The security system
protects the user and the machine on which the program is running from malicious attacks by applications.

However, it would be very restrictive to allow the association of a variable with only one type. E.g., it is
known that an integer is a number. It is also known that a real is a number. Thus, a number is a more
general type than an integer or a real. This form of a relationship between types is called subtyping. A type
that is a special form of a general type is called a subtype of the general type. The general type is called
the supertype of the specific type.

The notion of subtyping may be extended to let subtypes reuse behavior defined in their superclasses as
well as affect the behavior of their superclasses. A subtype that does this needs to inherit behavior from its
supertype. Inheritance and subtyping are defined in detail in section 5.6.

The CLI allows data that is a subtype of some general type to be assigned to a variable declared to be of
that general type. Thus, at a particular time, a variable may represent a type of data other than its declared
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type. The type of the variable which it represents at a particular time is called its exact type. The ability of
a variable to have a variety of exact types and support different behaviors depending on its exact type is
called polymorphism.

A type may be just a simple data item or be a container for a set of data items. Often data is associated
with a particular set of behaviors, that define operations on the data. These behaviors may provide typical
operations with the data and implement complicated algorithms that need to be performed on the data.
This concept is called abstraction. Frequently, it is even desirable to protect the data from other
programmers and provide a particular interface through which the data can be accessed and modified,
which is called encapsulation. The combination of subtyping, abstraction, encapsulation, and
polymorphism is referred to as an Object Oriented Programming (OOP) style. Even though the CLI does
support procedural and functional programming styles, it has an emphasis on OOP and particularly targets
this programming model.

Even though OOP is a powerful way to design large applications, Object Oriented type systems face a big
challenge. On the one hand, there is the aim to fully support OOP concepts, in which there are no special
types and all types conform to a common type. On the other hand, there are performance problems due to
the larger overhead. Some programming languages solve this problem by distinguishing between primitive
types, like integers, and types defined by classes. In these languages, primitive types and class types do not
have a subtype/supertype relationship to each other and live in separate worlds. Other languages stay with
the OOP concepts and take the performance loss.

The CLI provides an elegant solution to this problem. It does stay loyal to true OOP concepts and does not
make a distinction between primitive and class types. However, at the same time, the CLI offers the same
performance as a system that has primitive types. This is achieved by distinguishing two kinds of types,
reference types and value types.

With the .NET Framework, the CLI provides many predefined types that define a number of behaviors,
which enable the programmer to develop many applications. However, a fixed type system is of little use
for a programmer. There are various ways to create new types in the CLI. New types may be defined by
classes, value type definitions or implicit type declarations. Both the CLI and the CIL assembly language
have direct support for these various forms of type declarations.

Classes of many OOP languages declare only reference types. A variable of a reference type stores a
reference to the actual data. Thus, to reach the data the reference must be first dereferenced. The CLI
supports two main kinds of reference types. These are pointer types and types defined by classes. Pointer
types are fixed, while class types, also called self-describing types, are defined. There is yet another
category of reference types called interfaces, which are used for type declarations.

Data that has a type defined by a class type is said to be an instance of the class type. Instances of class
types are also called objects. In the CLI type system, all objects are subtypes of the class
System.Object.

In contrast to reference types, the data of value types is stored directly in the variables themselves. This is
in some sense similar to C++ structures. In the CLI type system, value types are defined by value type
definitions. Value classes have certain restrictions on them as described in section 9.

In the CLI, types that correspond to primitive types of other languages are represented as value types.
Further, a value type may be defined by the user, such that the CLI enables the programmer to make use of
the higher performance of value types. This is especially useful for compilers of languages that have a rich
set of primitive types.

The CLI supports an important feature that brings value types and reference types together. Value types
may be converted into reference types. This operation is called boxing. A boxed value type behaves like
any other reference type and is a subtype of System.Object. A boxed value type may be converted
back into its unboxed form, which is called, following the naming pattern, unboxing.

The CIL assembly language provides keywords for certain types, like int32 for integers. It is important
to understand that even though there are keywords for these types, these types are not special. The
keywords are just a more comfortable way to refer to these types and produce more efficient code. These
keywords are just aliases to the value types defined in the System namespace. Since these types are used
very often, they are encoded in a special space efficient way that is expressed at the assembly language
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level by a dedicated keyword. There are also specific CIL instructions (like ……) that perform common
operations on these types, so they may be manipulated even without the existence of the Base Class
Library.

Finally, another important aspect of typing needs to be mentioned. Sometimes, it may be useful to
reinterpret the data as a different type. The declared type of a variable may not change, however the type
of the data may be changed. In general, reinterpreting the type of a variable is called casting if it does not
change the data representation. If the data representation is changed as part of the reinterpretation, the
change of type is called coercion. E.g., changing a real number into an integer is a coercion. The CLI has
built-in support for casting of class types and casting or coercion of value types. Casting will explicitly
declare for verification and the runtime that the data shall be treated as another type after the cast is done.
The exact type of the variable must be a subtype of the type to which the variable is cast. Coercion is very
similar to casting, but the exact type of the variable does not need to be a subtype of the type targeted by
the coercion.

Section 7 describes reference types, section 8 discusses interfaces and section 9 describes value types.
Section 10 is a description of special types, which are either types created on the fly by the runtime or
features of the type system that deserve special discussion.

More information on types can also be found in the Part 1.

5.2 The Type System
The following diagrams give an overview of the CLI type system.

Figure 3: Value types and reference types.

Types are separated into value types and reference types. Value types have both a performance and space
advantage compared to reference types. However, reference types give more flexibility to the programmer.
Boxing and unboxing glue together reference and value types, by converting types defined by value classes
to and from reference types and letting instances of value types enjoy the benefits of both worlds.

Figure 4: Value types

Value types can be further separated into built-in types, like integral types, floating point types, and typed
references. Even though these types are built-in, they are not special but just predefined. Value types may
also be user defined. Enumerations are a special class of user defined value types. More information on
enumerations can be found in section 10.5.
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Figure 5: Reference types

Reference types are subdivided into self-describing reference types, pointer types, and interfaces. Self-
describing types contain their full definition. There are name equivalent versions, which correspond to
regular classes, and structural equivalent versions primarily used with arrays. The structural equivalent
types are created on the fly by the CLI as needed. While in V.1 delegates will be name equivalent, in V.2
delegates may be structurally equivalent. A description of delegates can be found in section 10.2. Boxed
value types, including enumerations, if implemented in V.2 will be name equivalent types.

Pointers are separated into method (or function) pointers (section 10.4) and pointers to data (section 10.3).
Pointers to data may be managed by the runtime and enjoy the comfort of features like garbage collection
or be unmanaged. The use of unmanaged pointers make the code in which they are used unverifiable.
Unlike self-describing types, interfaces only declare a type but do not provide a full definition with it.
Interfaces need to be implemented by a class.

5.3 Types
The following grammar completely specifies all built-in types including pointer types of the CLI system. It
also shows the syntax for user defined types that can be defined in the CLI system:
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<type> ::= Description Section

bool Boolean

| char Unicode character

| class <typeReference> User defined reference type.

| float32 32-bit floating point number

| float64 64-bit floating point number

| int8 Signed 8-bit integer

| int16 Signed 16-bit integer

| int32 Signed 32-bit integer

| int64 Signed 64-bit integer

| method <callConv> <type> * ( <parameters> ) Method pointer 10.4

| native int Signed integer whose size varies
depending on platform (32- or
64-bit)

| native unsigned int Unsigned integer whose size
varies depending on platform
(32- or 64-bit)

| <type> & Managed pointer (by-ref) to
<type>. Note that <type> cannot
itself be a managed pointer.

10.3

| <type> * Unmanaged pointer to <type> 10.3

| <type> [ [<bound> [,<bound>]*] ] Array of <type> with optional
rank (number of dimensions) and
bounds.

10.1.1.1

| <type> modopt ( <typeReference> ) Custom modifier that may be
ignored by the caller.

5.3.1

| <type> modreq ( <typeReference> ) Custom modifier that the caller
must understand.

5.3.1

| <type> pinned For local variables only. The
garbage collector will not move
the referenced value.

5.3.2

| typedref Typed reference, created by
mkrefany and used by
refanytype or refanyval.

| value class <typeReference> (value will be

removed in Beta-2)

User defined value type.

| unsigned int8 Unsigned 8-bit integers

| unsigned int16 Unsigned 16-bit integers

| unsigned int32 Unsigned 32-bit integers

| unsigned int64 Unsigned 64-bit integers

| void No type. Only allowed as a
return type or as part of void *

| wchar Unicode character
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In several situations the grammar permits the use of a slightly simpler mechanism for specifying types, by
just allowing type names (e.g. “System.Object”) to be used instead of the full algebra (e.g. “class
System.Object”). These are called type specifications:

<typeSpec> ::= Section

[ [.module] <dottedname> ] 5.5

| <typeReference> 5.4

| <type> 5.3

5.3.1 modreq and modopt

The use of a method or field may require certain care. The additional information is specified with a
custom modifier. Typically, a custom modifier is used for a particular parameter of a method. However,
it may be also used with the return type of a method or a field.

The keyword modreq is used with modifiers that the user of a method or field must understand and
handle correctly in order to be able to use the method or field. The keyword modopt is used to
provide additional information for tools that understand the modifier. In general, a user of a method or
field does not need to understand the modifier introduced by a modopt.

Associated with the custom modifier is a type that is referenced in parentheses after the modifier. This
type is used as a tag and qualifies the modifier. The type will tell tools and compilers what the meaning
of the modifier is and distinguish the modifier from other modifiers. Even though the type is primarily
intended as tag, it may implement behavior or provide fields.

The modifier with the referenced type becomes part of the signature of the method or field. This means
that the same modifier with a reference to the same type needs to be used with any reference to the
method or field. The type used to reference the method or field must match exactly the type of the
modifier. Subclasses of this type may not be used.

5.3.2 pinned

The garbage collector of the runtime may move the location of objects in memory. If this is a problem,
the garbage collector can be specifically instructed not to move an object referenced by a local variable.
This is done by using the keyword pinned after the type of the local variable. pinned is only used
with the declaration of the local variable. It is not used with any references to the local variable.

If unmanaged pointers are used to dereference managed objects, these objects must be pinned.
Otherwise, the garbage collector may fail to operate properly.

5.3.3 Types in Reflect ion Emit

Types are primarily used as part of signatures, which can be constructed using
System.Reflection.Emit.SignatureHelper. To construct a new type, use
System.Reflection.Emit.TypeBuilder to define its fields, methods, properties, and events,
then call the CreateType method to finalize the definition. Once a type has been defined, a new
instance can be created using the CreateInstance method on the class
System.Reflection.Type.

5.4 Built-in Types
The CLI built-in types have corresponding value types defined in the Base Class Library. The list of these
classes must be known to all compilers because it is not legal for them to be referenced (in their unboxed
form) in signatures by their value type names, they must be referenced by the ELEMENT_TYPE defined
for that purpose (see CorHdr.h). When using System.Reflection.Emit this is taken care of by the
SignatureBuilder.

Care must be taken when using the assembler since it will accept not only the built-in name of the type but
the syntax value class followed by the name as used in the Base Class Library. This latter form, while
it can be specified, will not execute correctly. This error is detected by PEVerify. (value keyword
disappears in Beta-2)
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Rather than using the name in the Base Class Library, a special keyword that the assembler provides needs
to be used. E.g., rather than using System.Int32, the keyword int32 must be used to refer to integers.
Note that this is only required in declarations or signatures. To refer to a specific member of the class as
specified in the Base Class Library, the class name needs to be used.

The table below shows various types provided by the runtime. The first column shows the syntax in ilasm
and the second column shows the corresponding class in the Base Class Library. The third column
specifies whether CLS compliant tools need to support the type. The fourth column gives a brief
description and the last column shows the constant in CorHdr.h that corresponds to the type.

Name in ilasm
Type in Base Class
Library

CLS
Type

Description
Name from CorHdr.h

(ELEMENT_TYPE_
<name>)

bool 
System.Boolean Yes Boolean (true/false)

BOOLEAN

char 
System.Char Yes Unicode Character

CHAR

class 
Syste
m.Obj
ect1 

System.Object Yes Object or boxed value
type OBJECT

class 
Syste
m.Str
ing2 

System.String Yes Unicode String
STRING

float32 
System.Single Yes IEEE 32-bit floating point

R4

float64 
System.Double Yes IEEE 64-bit floating point

R8

int8 
System.Sbyte No Signed 8-bit integer

I1

int16 
System.Int16 Yes Signed 16-bit integer

I2

int32 
System.Int32 Yes Signed 32-bit integer

I4

int64 
System.Int64 Yes Signed 64-bit integer

I8

native int 
System.IntPtr3 No Singed, native size

integer I

native 
unsig

ned 
int 

System.UIntPtr3 No Unsigned, native size
integer U
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Name in ilasm
Type in Base Class
Library

CLS
Type

Description
Name from CorHdr.h

(ELEMENT_TYPE_
<name>)

typedref 
System.
TypedReference

No Pointer to runtime type
TYPEDBYREF

unsigned int8
System.Byte Yes Unsigned 8-bit integer

U1

unsigned
int16

System.Uint16 No Unsigned 16-bit integer
U2

unsigned
int32

System.Uint32 No Unsigned 32-bit integer
U4

unsigned
int64

System.Uint64 No Unsigned 64-bit integer
U8

wchar4
System.Char Yes Unicode Character

CHAR

Notes:
1 In the .NET SDK not all mathematical operations are supported for this type. Future versions may
support more operations
2 In Beta-2, the ilasm keyword will change to simply object
3 In Beta-2, the ilasm keyword will change to simply string
4 char and wchar do the same thing. We recommend use of wchar

Example:

The following declares a 32 bit integer:

int32 x

The following converts the integer into a string:

// load x onto the stack

callvirt instance class System.String [mscorlib]System.Int32::ToString()

5.5 Type References, Assemblies and Modules
Type are referred to by using a dotted name. Names of nested classes (see section 7.7) are formed by using
recursively the full name of the outer class, a slash (“/”) and the name of the nested class.

The use of a type within code is referred to as a type reference. Often, the definition of a type which is
referenced is not available at compile time, but needs to be resolved by the CLI just before the code is
executed. While types based on fundamental types, like int32, will be self-contained and appear as type
specifications well known to the runtime, a type name used to specify a reference type (e.g. “class
MyClass”) must be resolved. Once the definition of the type is found, the type reference can be replaced
by a type definition token, which contains a pointer to an internal description of the type. These type
description tokens are automatically inserted by the ilasm tool where possible. Type references will be
used, however, if the type cannot be found in the same module in which the type is referenced.
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In many cases the type definition is located in another module or even in another assembly. To help the
runtime to resolve these types, a resolution scope needs to be attached in front of the type name. If the
type is located in another module within the same assembly, a type reference is used and a module
reference is attached to the type reference as part of the resolution scope. If the type is located in another
assembly, an assembly reference is attached to the type reference. A module reference must have been
declared by a prior .module extern directive (see section 4.5), and an assembly reference by a prior
.assembly extern directive (see section 4.4).

The following grammar defines type references and resolution scopes. If a module reference needs to be
used, then the .module keyword is used with the resolution scope. Otherwise an assembly reference is
assumed.

<typeReference> ::=

[<resolutionScope>] <dottedname> [/ <dottedname>]*

<resolutionScope> ::=

[ .module <filename> ]

| [ <assemblyRefName> ]

<assemblyRefName> ::= Section

<dottedname> 3.1

Examples:

The following is the proper way to refer to a class defined in the .NET SDK base class library. The name
of the type is System.Console and it is found in the assembly named mscorlib.dll. A .assembly 
extern directive to define mscorlib must be declared before this reference:

class [mscorlib]System.Console

A reference to the named C.D in the module named x.dll in the current assembly. There must be a top-
level .module extern directive to define x.dll:

class [.module x.dll]C.D

A reference to the type named C nested inside of the type named Foo.Bar in another assembly, named
MyAssembly.exe. Notice that there must already have been a top-level .assembly extern directive
that defines the name MyAssembly:

class [MyAssembly]Foo.Bar/C

5.6 Inheritance and Subtyping
Reference types may be related to each other by inheritance and other rules. E.g. System.String is
related to System.Object. We say that System.String is a subtype of System.Object. At the
same time, System.Object is said to be the supertype of System.String. If one type is a subtype of
another type, this means that it provides the same members, contracts, and member signatures as the other
type. However, the behavior of the types may differ.

The word subtype includes the type itself. Thus, A is a subtype of A. However, A is not a proper subtype
of A.

If class A defines a subtype of a type defined by a class B, then class A is a subclass of B. Similarly, class
B is a superclass of A. The class A is said to extend the definition of class B. In the CLI type system every
class must extend exactly one other class. The exception is the class System.Object, which does not
extend any class.

If a class A defines a subtype of a type defined by an interface I, then class A is said to implement
interface I. In the CLI, classes may implement any number of interfaces.
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If a variable has a declared type that is a subtype of the declared type of another variable, than the first
variable is said to be assignment compatible to the second variable.

In summary, the rules for subtyping between reference types are as follows:

• In the trivial case, a type is always a subtype of itself

• If a type B is a class type and has a superclass A, then type B is a subtype of type A

• If a type B is a class or interface type and supports interfaces I0, ... In, then type B is a subtype of
each of I0 through In

• All reference types are subtypes of System.Object

• All array types are subtypes of System.Array (which is a subtype of System.Object)

• An array type B[...] is a subtype of an array type A[...] if type B is a subtype of type A. This
applies if the rank of the two types is identical, and in the case of single dimensional arrays if one
of the types has lower bound 0 then both must. The bounds are otherwise ignored. More
information about arrays can be found in section 10.1.

5.6.1 Verif icat ion of Subtyping

Subtyping is most crucial for the verification of CIL instructions that call methods, perform stores, and
return values from methods (e.g., call, callvirt, ret, starg, stfld, stloc etc., see section 18). The
exact rules applied by verification vary (see section 18 and related specifications), but typically a
variable may be assigned a value of another assignment compatible variable. E.g., if a variable has type
A, and B is a subtype of A, then the variable may be assigned values of type B.

5.6.2 Conformance and Subtyping at Runtime

Types and type conformance is also relevant at runtime: the exact type of an object is the type of which
its value is an instance. E.g. in the above case, even though the declared type is A, the exact type may
be either A or B (or even some subtype of B). Exact types may be compared and checked by using CIL
instructions such as castclass and isinst, as well as the facilities available in the reflection library.

5.7 Native Data Types
This section is a brief summary of native types. More information about native types can be found in the
Data Type Marshaling specification.

Native data types are optional items you can specify in method and field declarations. They are preceded
by the marshal keyword, and define how a method’s arguments and return value, as well as field values,
should be marshalled between managed and unmanaged code.

The following table lists all native types supported by the CLI and provides a description for each of them.

<nativeType> ::= Description

[ ] Native array. Type and size are determined at
runtime by the actual marshaled array.

| as any Dynamic type that determines the type of an Object
at runtime and marshals the Object as that type.

| bool Boolean. 4-byte integer value where a non-zero value
represents TRUE and 0 represents FALSE.

| [ansi] bstr A COM style BSTR with a prepended length and
Unicode (or ANSI) characters. (Not supported for
StringBuilder)

| byvalstr A string in a fixed length buffer.

| custom ( <QSTRING> ,

<QSTRING> , <QSTRING> ,

)

Custom marshaler. The 3rd string is a custom
marshaler type name. The 4th string is a cookie – it
may be blank. The first 2 strings must be present,
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<QSTRING> ) and blank ( ie ‘ ‘ )

| error Return value for HRESULT methods that failed.

| fixed array [ <int32> ] A fixed size array of length <int32>

| fixed sysstring [ <int32> ] A fixed size system string of length <int32>

| float32 32-bit floating point number.

| float64 64-bit floating point number.

| [unsigned] int Signed or unsigned size-agnostic integer

| [unsigned] int8 Signed or unsigned 8-bit integer

| [unsigned] int16 Signed or unsigned 16-bit integer

| [unsigned] int32 Signed or unsigned 32-bit integer

| [unsigned] int64 Signed or unsigned 64-bit integer

| interface A COM interface pointer. The GUID of the interface
is obtained from the class metadata.

| lpstr A pointer to a null terminated array of ANSI
characters.

| lpstruct A pointer to a C-style structure. Used to marshal
managed formatted classes and value types.

| lptstr A pointer to a null terminated array of platform
characters.

| lpvoid An un-typed 4-byte pointer.

| lpwstr A pointer to a null terminated array of Unicode
characters.

| method A function pointer.

| <nativeType> * Pointer to <nativeType>.

| <nativeType> [ ] Array of <nativeType>. The length is determined at
runtime by the size of the actual marshaled array.

| <nativeType> [ int32 ] Array of <nativeType> of size <int32>.

| <nativeType> [ .size .param =

int32 [* int32] ]

<nativeType> [.size .param = paramIndex * mult]

Array of <nativeType>. The size of the array is
specified by a parameter with index paramIndex (see
also 11.5.6). An optional multiplier may be provided
to increase the size by some factor.

| safearray [<variantType>] An OLE Automation SafeArray. The optional
<variantType> supplies the unmanaged type of the
elements within the array when it is necessary to
differentiate among string types.

| struct A C-style structure, used to marshal managed
formatted classes and value types.

| tbstr A COM style BSTR with a prepended length and
platform dependent characters format (rarely used).
ANSI is used on Win9x, and Unicode on WinNT and
Win2K.

| variant bool Boolean. 2-byte integer value where the value –1
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represents TRUE and 0 represents FALSE.

The following grammar specifies a variant type. These are used for marshalling. The native constants for
variants types for older versions of Windows can be found in MSDN.

<variantType> ::= Description

blob /* roundtrip only */ Bytes prefixed with the length.

| blob_object /* roundtrip only */ Blob contains an object.

| bstr A COM style BSTR with a prepended length
and Unicode characters. (Not supported for
StringBuilder)

| bool Boolean. 4-byte integer value where a non-zero
value represents TRUE and 0 represents FALSE.

| carray /* roundtrip only */ C style array.

| cf /* roundtrip only */ Clipboard format.

| clsid /* roundtrip only */ Class ID.

| currency A currency structure.

| date A data structure.

| decimal 16 byte fixed point number

| error Return value for HRESULT methods that failed.

| filetime /* roundtrip only */ Structure for a file time.

| float32 32-bit single precision floating point number.

| float64 64-bit double precision floating point number.

| hresult Standard return type.

| idispatch * COM style IDispatch interface.

| [unsigned] int

/* roundtrip only */

Signed or unsigned size-agnostic integer

| [unsigned] int8 Signed or unsigned 8-bit integer

| [unsigned] int16 Signed or unsigned 16-bit integer

| [unsigned] int32 Signed or unsigned 32-bit integer

| [unsigned] int64

/* roundtrip only */

Signed or unsigned 64-bit integer

| iunknown * Native pointer to COM style IUnknown
interface.

| lpstr /* roundtrip only */ A pointer to a null terminated array of ANSI
characters.

| lpwstr /* roundtrip only */ A pointer to a null terminated array of Unicode
characters.

| null /* roundtrip only */ SQL style null.

| record User defined type.

| safearray /* roundtrip only */ A safe array.

http://msdn.microsoft.com/library/default.asp?URL=/library/sdkdoc/daosdk/daglos04_4fs5.htm
http://msdn.microsoft.com/library/psdk/mts20sp1/errorcodes_16ib.htm
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| storage /* roundtrip only */ Storage structure.

| stored_object

/* roundtrip only */

Store contains an object.

| stream /* for roundtrip only */ A stream.

| streamed_object

/* for roundtrip only */

Stream contains an object.

| userdefined

/* for roundtrip only */

User defined type.

| variant * Native pointer to a variant type.

| <variantType> & Managed pointer to variant.

| <variantType> [ ] Array of variant, size is unspecified.

| <variantType> vector A variant vector.

5.8 Marshaling
The CLI provides automatic marshaling to and from a variety of native (unmanaged) data types and
corresponding managed data types.

The keyword marshal is used to specify how a parameter, return type or field should be marshaled to or
from unmanaged code. It is used only if the implementation of a method is declared to be via COM or
PInvoke (see also section 11.6.1) or if a field is passed to such a method as an argument.

The marshal keyword takes an optional native type. The CLI will select an appropriate marshaler
according to the indicated native type and marshal the value when necessary.
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Example:

The following shows a method declaration requests marshaling the string return value of the method to a
bstr:

.method public static class [mscorlib]System.String marshal(bstr) MyMethod() CIL unmanaged {

// body

}

5.8 .1 Marshaling with Reflect ion

The marshal information can be set using the SetMarshal method in the appropriate builder class of
the name space System.Reflection.Emit. The complete list of these types is in CorHdr.h as the
enumeration CorNativeType.

6 Visibility, Accessibility and Hiding
The CTS (see also Common Type System Specification) makes use of three different ideas that must be
mapped back to the desired language semantics:

Visibility controls whether or not a type is visible outside of the assembly in which it is defined. If a type is
not visible outside its assembly, then no reference to that type can be resolved from other assemblies and the
name of the type and its members do not participate in any way in name resolution at runtime.

Hiding controls which method names inherited from its super class are available during compile-time name
binding. Members other than methods are not subject to hiding, since they can only be referenced using the
type in which they are defined.

Accessibility does not affect name lookup directly (except for one case having to do with choosing the
method implementation used to fulfill an interface method definition). Only visibility and hiding are
considered when determining how a member reference should be resolved. Once resolved, the accessibility of
the chosen member is examined and the lookup may fail (rather than the member being ignored) if the
accessibility condition is not met.

The following sections provide more detail about these topics.

6.1 Visibility
Visibility is attached only to top-level types, and there are only two possibilities: visible to types within
the same assembly, or visible to types regardless of assembly.

For nested types (i.e. types that are members of another type) the nested type has an accessibility that
allows visibility to be further refined. While a top-level type might be thought of as having either public
or assembly accessibility, a nested type may have any of the 7 accessibility modes (see below) for its
visibility.

The following table shows all visibility attributes.

Visibility ilasm Keyword Description

Public public The type may be exported from the assembly.

Assembly private The type is only visible within the assembly.

Nested nested The type has the same visibility as its outer type.

Note that the keyword for assembly visibility is private. It is assumed by default.

Because the visibility of a top-level type controls the visibility of the names of all of its members, a nested
type cannot be more visible than the type in which it is nested. That is, if the outer type is visible only
within an assembly then a nested type with public accessibility is still only available within the
assembly. By contrast, a nested class that has assembly accessibility is restricted to use within the
assembly even if the outer class is visible outside the assembly.
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6.2 Hiding
Hiding applies to individual members of a type (nested types are not considered to be members for this
purpose). The CTS specifies two mechanisms for hiding:

hide-by-name, meaning that the introduction of a name in a given class hides all inherited members of the
same kind (method or field) with the same name.

hide-by-name-and-sig, meaning that the introduction of a name in a given class hides any inherited
member of the same kind but with precisely the same type (for fields) or signature (for methods,
properties, and events).

Hiding is a compile-time, not a runtime, issue. It specifies how the compiler should treat method
references—either by generating an error or resolving to a specific method. It is only this resolved
reference that is used by the runtime.

The runtime supports only the latter form of hiding. Compilers that desire the effect of hide-by-name need
to emit appropriate code to achieve this functionality; this is done by the use of the newslot keyword
and judicious choice of class name for resolution.

6.3 Accessibility
There are seven accessibility modes. These can be applied to members of a type and to nested types, which
have an accessibility associated with them in addition to their nested visibility.

The following table shows and describes the accessibility attributes:

<accessibility> ::= Description

assembly Accessible only to referents in the same
assembly that contains the implementation of the
type.

| family Accessible only by referents whose base class
(immediate or indirect) defined the member or
type in question.

| famandassem Accessible only to referents that qualify for both
Family and Assembly access.

| famorassem Accessible only to referents that qualify for
Family or Assembly access, but not necessarily
both.

| private Accessible only to referents in the
implementation of the exact type that defines the
member.

| privatescope Not accessible by a reference, but only with a
member definition token.

| public Accessible by all referents.

With the exception of attributes involving family as described below, all other accessibility attributes
can be verified statically (i.e. at compile time). The following two subsections give more information on
family and privatescope accessibility.

6.3.1 Family Access

It is worth explaining the modes that involve family accessibility (family, famandassem,
famorassem) in more detail. family accessibility gives a context sensitive way to control which
classes may access certain members as described by the following two rules:

1. The accessing type must be a subtype of the type that declares the member.
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2. If the member is associated with an instance of a type, than the type of the instance must be a
subtype of the accessing type.

For static members, only the first rule applies. However, for instance (and virtual) members the
second rule must be followed, too. The EE will always check the first rule, but not the second rule. The
second rule will be checked by verification. Code that does not follow the second rule is not verifiable.

The following class diagram illustrates this:

Figure 6: Family accessibility

Suppose there is a class A that defines an instance family member f. In the diagram, the arrows show
subtyping, where, e.g., an arrow from B0 to A means that B0 is an immediate subtype of A.

Clearly Z cannot access f, since rule 1 does not apply for Z. However, types A, B0, B1, C and D all
fulfill rule 1. They all are subtypes of A. Thus, the EE will not throw any exceptions if an instance of
one these types is used to access f. However, not all types follow rule 2. Imagine that m, defined in C,
tries to access f. To follow rule 2, m must use either an instance of C or D to access f, because those are
the only types that are subtypes of the accessing type C. It is a verification error if m uses an instance of
B0, B1 or A to access f.

If for some reason, m accepts an instance over a parameter that has a declared type that adheres to rule
1, but m is sure that the exact type of the parameter does follow rule 2, then a cast operation may be
used with the parameter to do a verifiable access to f. The parameter needs to be cast to type C, the
accessing type, and not A.

6.3.2 Privatescope Access

privatescope effectively restricts access to a member to the same compilation unit that defines it,
allowing a compiler complete control over accessibility. The member can only be accessed with a
member definition token. This access mode is most useful for implementing concepts like function-local
static variables.

In the syntax for the assembler, a specific privatescope item can be referenced by using the postfix
$PST<token value> after its name. The token value is a hexadecimal number that specifies the
token associated with the item.
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The assembler ilasm will automatically truncate names of the form <name>$PST<token value> to
just <name>. The disassembler ildasm produces automatically names of the form
<name>$PST<token value> for privatescope items. To determine the token value, the
disassembler may need to be run on the output of the assembler after the item was declared.

Example:

The following is the declaration of a privatescope method, note that the actual name of the method
in the metadata is MyMethod:

.method static privatescope void MyMethod$PST06000001() {

// method body

}

The following is a call to the method:

call void MyMethod$PST06000001()

7 Class Types
Class types describe data which are heap allocated and accessed using a reference. Class types are defined by
classes.

Classes have members that describe the data and behavior of a class type. The CLI supports the following
groups of class members:

• fields

• methods

• properties

• events

Fields are typed memory locations that store the data of classes and their instances. Fields are described in
more detail in chapter 12.

Methods implement the behavior of classes. They are described in further detail in chapter 11.

Properties are another way to represent data. While fields correspond to actual memory locations that store
the data, a property is a group of methods that provide access to the data and the ability to change the data.
The data represented by properties may be stored in one or more memory locations or may be computed on
the fly. More information on properties can be found in chapter 13.

Events are a group of methods that communicate changes of the state of an object to other objects. Using
events, an object may be notified when the state of the system changes and react to the change. More about
events can be found in chapter 14.

Members may be instance or static. instance members are associated with a particular instance of the
type, while static members are associated with the type itself. static members are shared across all
instances of a type.

The CLI supports nested types. Nested types are declared inside other types. Nested types are not formal
members of their outer types. However, the outer class restricts the visibility of its nested types by its
visibility declaration. Nested classes are covered in more detail in section 7.7.

The CLI type system supports single class inheritance. At runtime classes may be instantiated, allocating an
object on the heap and creating a reference to this location. As the name implies, classes are reference types
and only a reference to their instances may be stored in variables or passed as arguments to other methods.

All classes inherit ultimately from the same base class, System.Object, which makes polymorphism
between all class types possible. Any class may be treated as if it were of type System.Object.
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7.1 Namespaces
Namespaces declare a common prefix for a set of classes. Namespaces are introduced by the
.namespace directive. Each namespace has a <dottedname> and contains all its declarations in braces.
Namespaces may be nested.

<decl> ::= Section

.namespace <dottedname> { <decl>* }

| … 4.7

Namespaces are syntactic sugar. The assembler ilasm will automatically combine the prefix introduced by
a namespace with the name of a class, inserting a dot (“.”) between them. Declaring a class MyClass in
namespace MySpace would have the same effect as giving the class directly the name
'MySpace.MyClass', quoted in single quotes to permit the use of the “.”. Namespaces are not
recognized as separate entities by the runtime. The disassembler ildasm automatically splits names with a
dot in them into a namespace component and a class name component. Classes that start with the same
prefix in front of the dot will be put into the same namespace.

Note: If a name contains several dots, the part after the last dot is treated as the class name and the part in
front of the last dot is treated as the namespace name. Since nested namespaces create names with several
dots after they are assembled, this means that ildasm will not preserve the nesting of the namespaces but
create separate top-level namespaces for each nested namespace.

Examples:

Suppose the following class is declared:

.class public 'Outer.Middle.Inner' extends [mscorlib]System.Object {

// body

}

ildasm will disassemble the class into:

.namespace Outer.Middle {

.class public auto ansi Inner extends [mscorlib]System.Object {

// body

}

}

Suppose another class is called 'Outer.Middle.Inner2', then this class will also end up in the
Outer.Middle namespace.

However, if a class is called 'Outer.Middle2.Inner', then the class will end up in the namespace
Outer.Middle2. ildasm will not create a namespace Outer with nested namespaces created, even
though this can be done manually. Because namespaces are syntactic sugar, the results are identical even
though the input looks different.

7.2 Using Classes
A class is referred to by using the class keyword followed by a type name reference. The type reference
is resolved to a type definition token either at runtime, or if possible at compile time. The following
grammar shows reference type references:

<refTypeReference> ::=

class <typeReference>

There are two exceptional reference types that are referred to differently in signatures. These are
System.Object and System.String. Rather than using a <typeReference>, only System.Object
or System.String needs to be used. Eg, using class [mscorlib]System.Object, in a signature
will cause a verification error.
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[Note that in Beta-2, these will be shortened even further to use the keywords object and string
respectively]

Outside of signatures both classes are referred to as any other class. The special forms provide enable a
space efficient encoding in signatures.

Examples:

class [.module CountDownComponents.dll] CounterTextBox

The class CounterTextBox is referred to using the module reference CountDownComponents.dll.

class System.String[]

System.String is referred to without using an assembly reference. Using
[mscorlib]System.String would cause a verification error.

7.3 Instantiating Classes
Classes are instantiated using the newobj instruction. The newobj instruction allocates memory for
an instance of the class on the heap and calls the constructor of the class. The constructor to be called is
specified as part of the newobj instruction. Any parameters accepted by the constructor must be pushed
onto the stack before the newobj instruction is executed. The newobj instruction will return a
reference to the object on the stack when it is complete.

Example:

The following code loads the parameters expected by the constructor of the class to be instantiated and
then uses the newobj instruction to instantiate the class. The desired constructor is specified with the
instruction.

ldloc button

ldloc count

newobj instance void [.module Counter.dll]BeepingCounter::.ctor(class
[.module Counter.dll]StartStopEventSource, class [.module
Counter.dll]Count)

// reference on stack

7.4 Defining a Class
Classes may be defined at the top-level of an CIL file program as the following grammar shows:

<decl> ::= Section

.class <classHead> { <classMember>* }

| …

7.4.1 Class Head

A class head consists of

• any number of class attributes (see section 7.4.2)

• a name (an <id>)

• an optional superclass (see section 5.6)

• an optional list of interfaces to be implemented (see also section 8)

The following grammar shows the syntax of a class declaration:

<classHead> ::=

<classAttr>* <id> [extends <typeReference>] [implements

<typeReference> [, <typeReference>]*]
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The extends or implements clauses contain references to other classes or interfaces (see also
section 7.7). A <typeReference> is simply a <dottedname> with an optional module or assembly
reference, that is resolved to the appropriate class at runtime.

The extends keyword defines the superclass of a class, for a kind of inheritance called code
inheritance. In the CLI a class always inherits code from exactly one other class. If no class is
specified, ilasm will add an extend clause to make the class inherit from System.Object.

The implements keyword defines the interfaces of a class, a kind of inheritance called multiple type
inheritance. Any number of interfaces may be specified. A class that implements an interface promises
to provide implementation for all abstract virtual methods declared inside the interface. More
about interfaces can be found in section 8.

The inheritance structure creates a hierarchy of classes. At the top of the hierarchy must be
System.Object.

Example:

.class private auto autochar CounterTextBox

extends [System.WinForms]System.WinForms.TextBox

implements [.module Counter.dll]CountDisplay {

// body of the class

}

The code above declares the class CounterTextBox, which extends the class
System.WinForms.TextBox in the assembly System.WinForms and implements the interface
CountDisplay in the module Counter.dll of the current assembly. The attributes private, auto
and autochar are described in the following sections.

7.4.2 Built- in Class Attributes

Predefined attributes of a class may be grouped into attributes that specify visibility, class layout
information, class semantics information, special semantics, implementation attributes, interoperation
information, and information on special handling. The following subsections provide additional
information on each group of predefined attributes.

The following grammar shows and describes the attributes of a class:

<classAttr> ::= Description Section

abstract Class is abstract. 7.4.2.4

| ansi Used for string marshaling across managed/
unmanaged boundary.

7.4.2.6

| auto Auto layout of class. 7.4.2.2

| autochar Specifies to use platform specific char marshal across
boundary.

7.4.2.6

| explicit Layout of fields are provided explicitly. 7.4.2.2

| import The class is imported from COM. 7.4.2.5

| interface The declaration is an interface declaration. 7.4.2.3

| lateinit (rename to

before_field_init in

Beta-2)

Initialize class as late as possible. 7.4.2.7

| nested assembly Assembly accessibility for nested class. 7.4.2.1

| nested famandassem Family and Assembly accessibility for nested class. 7.4.2.1

| nested family Family accessibility for nested class. 7.4.2.1
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| nested famorassem Family or Assembly accessibility for nested class. 7.4.2.1

| nested private Private accessibility for nested class. 7.4.2.1

| nested public Public accessibility for nested class. 7.4.2.1

| not_in_gc_heap

(remove in Beta-2)

Specifies that the class shall not be allocated in
garbage collected heap.

7.4.2.3

| private Private visibility of top-level class. 7.4.2.1

| public Public visibility of top-level class. 7.4.2.1

| rtspecialname Special treatment by runtime. 7.4.2.7

| sealed The class cannot be subclassed anymore. 7.4.2.4

| sequential The class is laid out sequentially. 7.4.2.2

| serializable Specifies that the fields of the class may be serialized
by the CLI serializer.

7.4.2.5

| specialname Special treatment by tools. 7.4.2.7

| unicode Used for string marshaling across managed/unmanaged
boundary.

7.4.2.6

7.4.2 .1 Visibi l i ty and Accessibi l i ty Attributes

The visibility of top-level classes is either private or public. Nested classes have nested
visibility, which mean that they have the same visibility as their outer class. In addition nested
classes have an accessibility attribute, which specifies the range from which they can be referenced.

The accessibility attributes are assembly, famandassem, family, famorassem,
private, and public. These attributes must follow immediately the nested attribute.

Visibility attributes are described in section 6.1 and accessibility attributes are described in section
6.3. Nested classes are covered in section 7.7.

A class may only have one visibility and nested classes in addition one accessibility associated with
them. The default visibility for top-level classes is private. The default accessibility for nested
classes is private.

7.4.2.2 Class Layout Attributes

The class layout attributes are auto, explicit, and sequential. These attributes are used to
specify how the fields of an instance of a class are arranged. Layout attributes are mutually exclusive
and the default is auto.

auto specifies that the layout is done by the runtime.

explicit specifies that the layout of the fields is explicitly provided (see also section 7.8.1).

sequential specifies that the fields are laid out in sequential order by the runtime. The order used
is the order of declaration. Otherwise, the runtime may use a different order. The attribute
sequential needs to be specified if interoperation with the unmanaged world is desired.

7.4.2 .3 Class Semantics Attributes

The class semantics attributes are interface, not_in_gc_heap (to disappear in Beta-2)
and value (also to disappear in Beta-2) 

These attributes specify what kind of type is defined. interface specifies that an interface is
defined. The default is the definition of a reference type by a class, in which case no class semantics
attribute is used.

In Beta-2, instead of marking a ValueType with the value attribute, you should make the class
descend from System.ValueType.
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The not_in_gc_heap attribute, used in conjunction with the value attribute, denotes that no
instance of this ValueType should ever be allocated from the garbage collected heap (it should be
allocated elsewhere – for example, on the stack). As a consequence, any operation that causes such
an instance to be allocated, or moved into garbage collected heap is illegal. Examples of such
operations are boxing or using the type as the base type of an array. Allocating an instance of a such
a ValueType type on the heap causes a verification error.

Instances of class types are always allocated on garbage allocated heap and may not be marked
not_in_gc_heap.

(the not_in_gc_heap keyword will be removed in Beta-2. Types with the special semantics implied
by this attribute will instead be so marked by attaching one, or more, system-defined custom
attributes to their definition)

7.4.2 .4 Special Semantics Attributes

Attributes that specify special semantics are abstract and sealed. These attributes may be used
together.

abstract specifies that this class may not be instantiated. Typically, even though not necessary,
abstract classes contain one or more abstract methods (see section 11.5.4.4). If a class contains
abstract methods, it must be declared as an abstract class.

sealed specifies that a class may not have any subclasses. A class that inherits from a sealed
class cannot be loaded and will generate a System.TypeLoadException when an attempt is
made to load such a class. virtual methods of sealed classes turn effectively into instance
methods. They cannot be overridden since the class may not have any subclasses.

A class that is both abstract and sealed cannot have any non-static members. Such a class
defines only a set of static fields and methods. It may define nested types.

7.4.2.5 Implementation Attributes

The implementation attributes are import and serializable. These attributes may be combined.

import specifies that the class (or interface) is imported from COM.

serializable indicates that the fields of the class may be serialized into a data stream by the CLI
serializer. E.g., the class may be sent over the network or saved to a file. More about serialization
can be found in the Base Class Library documentation.

7.4.2.6 Interoperation Attributes

These attributes are for interoperation with unmanaged code and define how managed Strings should
be marshalled between managed and unmanaged code. Specify none or one of ansi, autochar,
unicode (default is ansi).

ansi says that arguments whose type is managed String (array of 2-byte Unicode characters) will be
marshalled to ANSI strings (arrays of 1-byte ANSI characters) before calling the target, unmanaged
routine (and vice-versa)

unicode says that arguments whose type is managed String will be marshalled to UNICODE strings
before calling the target, unmanaged routine (and vice-versa). [in effect, a simple copy]

autochar says that Strings will be marshalled to either Unicode or ANSI, depending upon the
platform at runtime (Windows-NT => Unicode, Windows-9X => ANSI)

7.4.2.7 Special Handling Attributes

The three attributes that are used for special handling are lateinit (becomes before_field_init 
in Beta-2), rtspecialname and specialname. These attributes may be combined.

lateinit instructs the runtime to initialize the class as late as possible, rather than initializing
classes at load time or soon after that (see also section 7.6.7).

rtspecialname signals a special name to the runtime, while specialname signals a special
name to some other tool.
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7.5 Body of a Class
A class may contain any number of further declarations. The following grammar shows the grammar for
these declarations and provides a description for each item.

<classMember> ::= Description Section

.class <classHead> { <classMember>* } Defines a nested class. 7.4

| .comtype <comtypeHead> {

<comtypeDecl>* } /* for round trip

only */

Exports a COM type, use
.export instead. (For
round trip only).

4.8.1

| .custom <customDecl> Custom attribute. 17

| .data <datadecl> Defines static data
associated with the class.

12.3

| .event <eventHead> { <eventMember>* } Declares an event. 14

| .export [public | private]

<dottedname> { <exportDecl>* }

Specifies entities to
export. Public exports it
from the assembly. Private
exports it only inside the
same assembly.

4.8

| .field <fieldDecl> Declares a field belonging
to the class.

12

| .method <methodHead> {

<methodBodyItem>* }

Declares a method of the
class.

11

| .override <typeSpec> :: <methodName>

with <callConv> <type> <typeSpec>

:: <methodName> ( <parameters> )

Specifies that the first
method is overridden by
the definition of the
second method.

7.6.3.1

| .pack <int32> Used for explicit layout of
fields.

7.8.1

| .property <propHead> { <propMember>* } Declares a property of the
class.

13

| .size <int32> Used for explicit layout of
fields.

7.8.1

| <externSourceDecl> .line or #line 3.7

| <securityDecl> .permission or .capability 16

The directives .event, .field, .method, and .property are used to declare members of a class.
These members are discussed in more detail in the following sections and chapters.

The directive .class inside a class declaration is used to create a nested type, which is discussed in
further detail in section 7.7.

7.6 Members of Classes
This section gives an introduction into some of the members of classes. This discussion primarily
concentrates on the members and their relationship to a class or to an instance of a class. Most of the
members are also discussed in other chapters of this document.

7.6.1 Static and Instance Fields

static fields are associated with the type which declares them. They are similar to global variables in
the sense that they are shared by all objects of the type. Only one copy of the field is created each time
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the type is loaded. A static variable is created when a class is loaded and initialized by the type
initializer. (see section 7.6.7)

instance fields are not only associated with the type but with a particular instance of the type. To
access an instance field, a reference to the instance is needed. Each instance of the type has its
unique copy of the instance field. instance fields are created and initialized when an instance of
the class is created.

7.6.2 Stat ic and Instance Methods

static methods are very similar to procedures of procedural languages. They are associated with a
class or interface, but are not associated with any particular instance of the type.

In contrast to static methods, instance methods are associated with an instance of the class.
Typically, to call an instance method an instance of the class is needed. However, it is possible to
use a null reference to call an instance method.

The CLI automatically adds a hidden parameter to instance methods. This new parameter becomes the
first parameter of the method and has the type of the declaring class or interface. This parameter is not
explicitly specified in the signature of the method, unless it is specified otherwise by the calling
convention (see section 11.4.1).

Even though not explicitly specified, the hidden parameter still needs to be passed to the method. Thus,
for all calls of instance methods, a reference that points to an object that is a (not necessarily proper)
subtype of the declaring type of the method. The passed in hidden parameter, which has argument index
0, can be used in calls to other instance methods declared by the type of the hidden parameter or it
can be used to access the instance fields of that type. However, an instance method needs to be
prepared for the case when the first argument is null.

Except for their special hidden parameter, instance methods are the same as static methods.

More about static and instance methods can be found in section 11.3.

7.6.3 Virtual Methods

virtual methods are similar to instance methods. They are also associated with a particular instance of
a class. However, virtual methods may be overridden by subclasses, such that the implementation of a
virtual method is determined at runtime. This gives subclasses the ability to modify their behavior
compared to that of their superclasses.

Similar to instance methods (see section 7.6.2) the first argument of virtual methods must be a
reference to an instance of the class. When called as a virtual method (see below) the hidden parameter
must not be null.

Introducing a new virtual method in a sealed class is possible and is precisely the same as
introducing the method as an instance method.

The final attribute on a virtual method prohibits any subclass from providing its own
implementation of this virtual method. However, a new virtual method with the same signature may
be introduced via the newslot attribute. This can be thought of as creating a new method that has no
relationship to the method of the superclass.

A virtual method of a superclass is overriden by providing a direct implementation of the virtual
method using a definition in the class and not specifying it to be newslot (see section 11.1). A
method may also be overridden using the .override directive, which is described in section 7.6.3.1.

When a virtual method is introduced for the first time in the inheritance hierarchy, it can be done in
either of two ways. The preferred method is to use a definition that provides the location of the code
that implements the method and is marked as newslot. This causes the CLI to create a new method
that has no relationship with any method of its superclass. If later a superclass defines a virtual
method with the same signature, this method will not override the implementation of the superclass.

It is also possible not to mark the method as newslot which will cause the CLI to create a new
method only if no existing virtual method with that signature is provided by its superclass. This is not
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recommended for the first introduction of a virtual method, however, since it allows a superclass to
capture this implementation by introducing a virtual method with the same signature.

When computing whether a virtual method overrides a virtual method of its superclass, given that
the virtual method is not marked newslot the EE will try to find an inherited virtual method to
override. The EE will continue to search up the chain of superclasses looking for a virtual method
with the same signature as the introduced virtual method. This search ignores intervening static
methods with the same signature. If the EE is unable to locate an existing virtual method in any of its
parents a new method is created, exactly as though the definition had been marked newslot.

7.6.3.1 The .override Directive

Usually, the runtime will automatically determine which method overrides which method by matching
signatures.

However, it is possible to explicitly specify which method overrides another method using
MethodImpls (see also section 11.1). A MethodImpl takes two MethodRefs. The first MethodRef
specifies the method to be implemented and the second specifies the method that implements the first
method. The implementing method must be declared in the class that specifies the MethodImpl. Its
definition may be deferred to a subclass by declaring the implementing method abstract in the
class that defines the MethodImpl. Both methods must have a matching signature, which means that
except for their type and name their signature must be equal to each other.

In the ilasm grammar a MethodImpl is defined with the .override directive. However, the
.override directive makes a simplification and requires only the type and name of the first method and
a full MethodRef for the implementing method. The calling convention, return type and parameter
types of the first MethodRef are inferred from the second MethodRef since they must be the same.

The syntax for .override is as follows:

<classMember> ::= Section

.override <typeSpec> :: <methodName> with <callConv>

<type> <typeSpec> :: <methodName> ( <parameters> )

| … 7.5

The first method specified by the partial MethodRef will be overridden by the method specified by
the MethodRef after the with keyword.

The .override directive may appear inside a class or inside a method. If it appears inside a
method, the implementing method is the method inside which the directive appears and the second
MethodRef is omitted from the .override directive (see also section 11.5.3).

Example:

The following example shows a typical use of the .override directive. A method implementation is
provided for a method declared in an interface. Interfaces are described in detail in section 8.

Suppose the interface, call it I, declares the following method:

.method public virtual abstract void m() CIL managed {}

And suppose a class, call it C, implements I and provides the following method, notice the different
name:

.method virtual public void m2() {

// body of m2

}

Then the .override directive below will associate the method from the interface with the
implementation of the class:

.override I::m with instance void C::m2()
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7.6.4 Method Implementation Requirements

A class (concrete or abstract) may provide

• implementations for instance, static, and virtual methods that it introduces

• implementations for methods declared in interfaces that it has specified it will implement, or
that its superclass has specified it will implement

• alternative implementations for virtual methods inherited from its parent

• implementations for virtual methods inherited from an abstract superclass that did not
provide an implementation

A concrete (i.e. non-abstract) class must provide either directly or by inheritance an implementation
for

• all methods declared by the class itself

• all virtual methods of interfaces implemented by the class

• all virtual methods that the class inherits from its superclass

If a class overrides an inherited method, it may widen, but it cannot narrow, the accessibility of that
method. As a principle, if a client of a class is allowed to access a method of that class, then it should
also be able to access that method (identified by name and signature) in any derived class. Table 7.1
defines the precise meaning of narrow and widen – a “Yes” denotes that the subclass can apply that
accessibility, a “No” denotes it is illegal.

Table 7.1: Legal Widening of Access to a Virtual Method

Subclass Superclass Accessibility

private family assembly famandassem famorassem public 

private 

Yes No No No No No

family Yes Yes No No If not in same
assembly

No

assembly Yes No Same
assembly

No No No

famandassem Yes No No Same assembly No No

famorassem Yes Yes Same
assembly

Yes Same assembly No

public Yes Yes Yes Yes Yes Yes

Notice that a method may be overridden even if it may not be accessed by the subclass. If a method has
assembly accessibility, then it must have public accessibility if it is being overridden by a method
in a different assembly. A similar rule applies to famandassem, where also famorassem is
allowed outside the assembly. In both cases assembly or famandassem, respectively, may be
used inside the same assembly.

A special rule applies to famorassem. Here is the only case where the accessibility is apparently
narrowed by the subclass. A famorassem method may be overridden with family accessibility by
a class in another assembly. This way, the implementer is not forced to use public. The EE will handle
this case in a special way. For such a method, the EE will grant access to any type inside the assembly
of the superclass, even though family is specified.
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For CLS compatibility, the accessibility of a virtual method must not be changed when it is
overridden.

7.6.5 Instance constructors

Instance constructors initialize an instance of a class or value type. An instance constructor is called
when an instance of a class is created.

An instance constructor must not be static or virtual. It must be named .ctor and marked with
rtspecialname and specialname. Instance constructors may take parameters, but may not
return a value. Instance constructors may be overloaded, (i.e. a class may have several instance
constructors). Each instance constructor must have a unique signature. At instantiation time, this
signature is specified and determines which constructor is called.

Instance constructors are a kind of instance method. However, instance constructors have a special
privilege to write into fields of the class that are marked with the initonly attribute.

An instance constructor should call one of the instance constructors of its superclass. If an instance
constructor of the superclass is not called, the instance of the class will be not be completely initialized.
A program that has an instance constructor which does not call an instance constructor of its superclass
is not verifiable.

Example:

The following shows the definition of an instance constructor that does not take any parameters:

.method public rtspecialname specialname hidebysig instance void
.ctor() CIL managed {

.maxstack 1

// call super constructor

ldarg.0 // load this pointer, created by CLI

call instance void [mscorlib]System.Object::.ctor()

// do other initialization work

ret

}

7.6.6 Instance Finalizer

An instance finalizer allows objects to execute some final code before they are reclaimed by the garbage
collector. The finalize method is invoked when the GC determines that the current object is no longer
being referenced by any other object.

The finalize method is defined in the class System.Object as follows:

family virtual void Finalize() { }

As you can see, the Finalize method in System.Object does nothing. If you want to use a
Finalize method to, for example, release resources before that object is reclaimed by GC, you must
override the Finalize method. Finalizers should be kept short: there is a timeout (of a few
seconds) for running Finalizers during shutdown – after that time, the process is simply shutdown
without completing the running of any remaining Finalizers.

Note that CLI does not guarantee when a Finalizer will be run, nor the order in which it is run,
compared with other Finalizers. In the extreme, a Finalizer may not actually be run at all. For example,
when the application shuts down, the CLI does not, by default, execute Finalizers at all – after all, the
process and its entire memory space is about to be reclaimed by the Operating System. However, if you
want to change this default, then call the method System.GC.RequestFinalizeOnShutdown – this can be
called at any time, and it applies to the whole process. Thus, if one AppDomain calls
RequestFinalizeOnShutdown(), then all AppDomains in that process are affected. Note that there is no
method provided to cancel the request to finalize on shutdown – it’s a once-off decision for that
process.

Finalization of a specific object may be explicitly prevented by using the
System.GC.SupressFinalize(Object obj) method. By notifying GC, we avoid burning cycles needlessly;
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it also allows that object to be reclaimed sooner by the GC, since it need never be added to the internal
“finalize” queue.

Note that ‘nothing comes free’ – if you request Finalization, then GC will take longer to complete.
Finalize may take any action, including resurrecting an object (that is, making the object accessible
again) after it has been cleaned up by the GC. (However, an object that is resurrected will never have
its Finalizer run again, even if it becomes garbage)

Because Finalizers are not guaranteed to run, you should follow the Dispose design pattern (see Design
Guidelines spec) if you really need objects to release resources promptly. [in effect, devise a “Dispose”
method on the class, and call it explicitly when the last reference to a particular object of that class is
about to be released]

In Beta2, the CLI will default to always running Finalizers on shutdown. The
System.GC.RequestFinalizeOnShutdown will be withdrawn. And there will be no means provided to
change that default behavior. The System.GC.SuppressFinalize method will be retained – it’s
usefulness still applies.

Example:

.method virtual family void Finalize() {

.maxstack 3

// remove the onClick event

ldarg.0

dup

ldfld class [mscorlib]System.EventHandler StartStopButton::

onClickEventHandler

call instance void [System.WinForms]System.WinForms.Button::

remove_Click(class [mscorlib]System.EventHandler)

ret

}

7.6.7 Type Init ial izers

Classes may contain special methods called type initializers to initialize the class itself.

Classes, interfaces, and value types may all have type initializers. This method must be static, take
no parameters, return no value, be marked with rtspecialname and specialname, and be named
.cctor. Thus a class may only have one type initializer. Most type initializers are simple methods that
initialize static fields of the type from stored constants or via simple computations. There are, however,
no direct limitations on what code is permitted in a type initializer.

Type initializers are a kind of static method. Thus, they may only access static fields. Type
initializers have a special privilege to write into static fields of the class that are marked with the
initonly attribute.

Example:

The following shows the definition of a type initializer:

.method static public rtspecialname specialname void .cctor() CIL managed
{

// do other initialization work

ret

}

7.6.7.1 Type Init ial izat ion Guarantees

There are three fundamental guarantees about Type initialization.

1. The Type initializer (.cctor) always starts running before
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• any instance of that Type is created

• any static member (method or field) of that Type is referenced

2. A Type initializer is run exactly once for any given Type, unless explicitly called by user code (few
languages allow the user to call a Type initializer explicitly, but it is supported by ILASM)

3. No method other than these called directly or indirectly from the Type initializer will be able to
access members of a Type before its initializer completes execution.

7.6.7 .2 Delaying Type Init ial izat ion

The default behavior (which we informally describe as “precise”) of a Type Initializer (.cctor) is as
follows:

• CLI guarantees to have started running the .cctor, by the first occurrence of : access of any
static or instance field (of that Type), or invocation of any static or instance method (of that
Type). Moreover, it is one of these four events that triggers execution of the .cctor -- so, in
effect, running the .cctor is left as late as possible

You can request another behavior, by specifying the lateinit attribute on the Type defintion (in Beta-
2, this name will change to before_field_init). This provides improved performance, particularly
when the Type is included in a ‘shared’ or ‘domain-neutral’ assembly. The behavior in this case is as
follows:

• CLI guarantees to have started running the .cctor, by the first access of any static field (of
that Type); but CLI is allowed to start running the .cctor earlier, if it so chooses

• Note that, if you select this option for a particular Type, it's entirely possible that code might
execute a static method of this Type before the .cctor runs. Also, it's possible that code
might create objects of the Type, and call methods on these objects, before the .cctor runs

Classes, ValueTypes and Interfaces can be marked as either “late initialize required” or “early
initialize allowed” based on the lateinit attribute (see also section 7.4.2.7) (note that this attribute
will be renamed to before_field_init in Beta-2) Requiring them to be initialized late ensures that the
type initializer will be called no earlier than absolutely required to meet the first of the guarantees.
Allowing early initialization relaxes this requirement and allows the JIT and the execution engine to
initialize the class at any earlier time, allowing them to optimize performance but at the possible cost
of predictable behavior.

7.6.7.3 Races and Deadlocks

Consider the following two class definitions:

.class public A extends [mscorlib]System.Object {

.field static public class A a

.field static public class B b

.method public static rtspecialname specialname void .cctor () {

ldnull // b=null

stsfld class B A::b

ldsfld class A B::a // a=B.a

stsfld class A A::a

ret

}

}

.class public B extends [mscorlib]System.Object {

.field static public class A a

.field static public class B b

.method public static rtspecialname specialname void .cctor () {
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ldnull // a=null

stsfld class A B::a

ldsfld class B A::b // b=A.b

stsfld class B B::b

ret

}

}

After loading these two classes, any attempt to reference any of the static variables causes a
problem, since the type initializer for each of A and B requires that the type initializer of the other be
invoked first. If we required that no access to a type was permitted until its initializer had completed
we would create a deadlock situation. Instead, the CLI provides a weaker guarantee: the initializer
will have started to run, but it need not have completed. But this alone would allow the full
uninitialized state of a class to be visible, which would make it difficult to guarantee repeatable
results.

There are similar, but more complex, problems when class initialization takes place in a multi-
threaded system such as the CLI. In these cases, for example, two separate threads might start
attempting to access static variables of separate classes (A and B) and then each would have to wait
for the other to complete initialization.

The CLI deals with these problems by ensuring that in addition to the three type initialization
guarantees (see 7.6.7.1) two further guarantees for code that is called from a class initializer are met:

1. static variables of a class are in a known state prior to any access whatsoever.

2. Type initialization alone cannot create a deadlock unless some code called from a class initializer
(directly or indirectly) explicitly invokes blocking operations.

The check of these guarantees is optimized by the JIT. Once the class is initialized, the check is not
done anymore.

A rough outline of the algorithm is as follows:

1. At class load time (hence prior to initialization time) store zero or null into all static variables of
the class.

2. If the type is initialized you are done.
3. If the type is not yet initialized, try to take an initialization lock.

- If successful, record this thread as responsible for initializing the type and proceed to step 4.
- If not, see whether this thread or any thread waiting for this thread to complete already holds the

lock.
a. If so, return since blocking would create a deadlock. This thread will now see an

incompletely initialized state for the type, but no deadlock will arise.
b. If not, block until the type is initialized then return.

4. Initialize the parent type and then all interfaces implemented by this type.
5. Execute the type initialization code for this type.
6. Mark the type as initialized, release the initialization lock, awaken any threads waiting for this type to

be initialized, and return.
7.7 Nested Classes

One class may be nested within another. All references to the class are through its enclosing class. The
nested class has its own accessibility, and references to the nested class must therefore have access to both
the enclosing class and the nested class itself. Nested classes have the same visibility as their enclosing
class. There visibility must be declared to be nested.

A nested class is not associated with an instance of its enclosing class. The nested class has its own
superclass and may be instantiated independent of the enclosing class. This means that the instance
members of the enclosing class are not accessible using the this pointer of the nested class.
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A nested class may access any members of its enclosing class, including private members, as long as the
member is static or the nested class has a reference to an instance of the enclosing class. Thus, by using
nested classes a class may give access to its private members to another class.

On the other side, the enclosing class may not access any private or family members of the nested
class. Only members with assembly, famorassem, or public accessibility can be accessed by the
enclosing type.

Example:

The following example shows a class declared inside another class. Both classes declare a field. The
nested class may access both fields, while the enclosing class does not have access to the field b.

.class private auto autochar CounterTextBox extends
[System.WinForms]System.WinForms.TextBox implements [.module
Counter.dll]ICountDisplay {

.field static private int32 a

/* Nested class. Declares the NegativeNumberException */

.class nested assembly NonPositiveNumberException extends
[mscorlib]System.Exception {

.field static private int32 b

// body of nested class

} // end of nested class NegativeNumberException

}

7.8 Controlling Layout and Dispatch
In some cases, it may be useful to control the layout of fields of an instance. E.g., layout control becomes
necessary to enable interoperation with unmanaged code. A set of directives make layout control of fields
possible. Further, it may be also desirable to directly influence the dispatch of virtual methods.

7.8.1 Layout Control of Fields

The CLI supports sequential and explicit layout control. If sequential layout control is
specified, the runtime will allocate space for the fields in the order they are declared and one next to the
other.

If the exact position of the fields needs to be specified, explicit layout control must be used and the
class marked with the attribute explicit (see section 7.4.2.2).

The following grammar shows the declaration of a field as it appears after the .field directive:

<fieldDecl> ::=

[[ <int32> ]] <fieldAttr>* <type> <id> [= <fieldInit> | at

<dataLabel>]

The optional int32 specified in brackets at the beginning of the declaration specifies the byte offset
from the beginning of the instance of the class. This form of explicit layout control cannot be used
with static fields.

Any offset may be specified. It is possible to overlap fields in this way, even though it is not
recommended. The field may be accessed using pointer arithmetic and ldind to load the field
indirectly or stind to store the field indirectly (see section 18.4).

The directive .pack specifies to put fields at multiples of the specified number or the natural word
boundary of the native machine, whichever is smaller. E.g., .pack 4 on a 64 bit or 32 bit machine has
no effect, while on a 16 bit machine the variables are put at offsets divisible by 4. The integer following
.pack must be one of the numbers 1, 2, 4, 8 or 16.

The directive .size specifies that a memory block of the specified amount of bytes shall be allocated
for an instance of the class. E.g., .size 32 would leave a blob of 32 bytes for the instance. This can be
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used to store values in the blob by using pointers into the blob. However, this is only possible with
unverifiable code.

Example:

The following class uses sequential layout of its fields:

.class sequential public SequentialClass {

.field public int32 a // store at offset 0 bytes

.field public int32 b // store at offset 4 bytes

}

The following class uses explicit layout of its fields:

.class explicit public ExplicitClass {

.field [0] public int32 a // store at offset 0 bytes

.field [6] public int32 b // store at offset 6 bytes

}

The following value type uses .pack to pack its fields together. Suppose the natural alignment of
variables on this platform is 32 bit.

.class value sealed explicit public MyClass extends System.ValueType {

.pack 2

.field public int8 a // store at offset 0 bytes

.field public int32 b // store at offset 2 bytes (not 4)

}

The following class specifies a blob of size 16:

.class public BlobClass {

.size16

}

7.8.2 Controll ing Virtual Method Dispatch

In some cases when interoperation with unmanaged code is required, the exact address of a virtual
method is important. In addition, the unmanaged code might not use the correct calling convention to
invoke a managed virtual method.

Both of these problems are solved by the .vtfixup directive. This directive may appear several times
only at the top level of an CIL assembly file, as shown by the following grammar:

<decl> ::= Section

.vtfixup <vtfixupDecl>

| … 4.7

The .vtfixup directive declares that at a certain memory location there is a table that contains
MethodDefs which needs to converted into method pointers. The CLI will do this conversion
automatically.

The table does not need to be a contiguous block of memory. It may be separated into several chunks of
memory. Each chunk is called an entry, and has an entry number associated with it. Each entry must
capture a contiguous block of memory and is divided into slots. The slots will contain a pointer that
points to the actual code.

The entries are numbered by the order of their declaration within a file. The syntax does not provide a
way for explicit numbering, so a tool that uses this feature must keep track of the entry numbers.

Each entry occupies a certain size at a certain memory location. This memory location with the desired
size must be reserved using the .data directive (see section 12.3).
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The syntax for .vtfixup takes the desired number of slots for the virtual method table entry in
brackets. Note that the number of slots is different from the size of the memory block required for
.data directive and must be calculated. Following the number of slots are any number of attributes and
the label at which the memory block was reserved. This is shown by the following grammar:

<vtfixupDecl> ::=

[ <int32> ] <vtfixupAttr>* at <dataLabel>

The following grammar shows the attributes that can be used with the .vtfixup directive:

<vtfixupAttr> ::=

fromunmanaged

| int32

| int64

The attributes int32 and int64 are mutually exclusive. int32 is the default. These attributes specify
the width of each slot. If int32 is used, the slots are 32 bits wide, if int64 is used the slots are 64
bits wide. If int64 is used and the pointers on the target machine are only 32 bits wide, the high order
bits of the slot will be filled with zeros and ignored.

If fromunmanaged is specified, the runtime will automatically generate a thunk that will convert
the unmanaged method call to a managed call, call the method, and return the result to the unmanaged
environment.

An application needs to emit the desired method definition tokens with the .data directive. The CLI
will convert these into method pointers and at runtime, the slots in the reserved memory will have
pointers to the desired methods.

7.9 Global Fields and Methods
In addition to classes with static members, many languages have the notion of data and methods that are
not part of a class at all. These are referred to as global fields and methods and are supported by the CLI.

It is simplest to understand global fields and methods in the CLI by imagining that they are simply
members of an invisible abstract public class. In fact, the CLI defines such a special class, called
′<Module>′, that does not have a superclass and does not implement any interfaces. The only noticeable
difference is in how definitions of this special class are treated by the metadata merge code, the CLI class
loader, and Reflection, all of which follow the same rules.

For an ordinary type, if the metadata merges two different definitions of the same type, it simply discards
one definition on the assumption they are equivalent and that any anomaly will be discovered when the
class is loaded. For the special class that holds global members, however, members are unioned across all
compilation units at merge time. If the same name appears to be defined for cross-compilation-unit use in
multiple compilation units then there is an error. In detail:

• If no member of the same kind (field or method), name, and signature exists, then add this member
to the output class.

• If there are duplicates and no more than one has an accessibility other than privatescope, then
add them all in the output class.

• If there are duplicates and two or more have an accessibility other than privatescope an error
is reported.

8 Interfaces
Interfaces define a contract that classes may implement. Similar to a class, an interface defines a reference
type. Unlike classes however, interfaces cannot be instantiated. They are just constructs to specify type
information.
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Even though interfaces may have static fields and methods, they may not have instance fields or
methods. However, interfaces typically define abstract virtual methods.

Classes may implement interfaces. A class that implements an interface promises to provide an
implementation for each abstract virtual method declared in the interface. A class may propagate this
promise to its subclasses without providing the method implementations, but must then be declared
abstract and cannot be instantiated since it has unimplemented methods. If a class implements an
interface, all classes that inherit from it also implement that interface. They may use the original
implementation or override individual methods.

While a class must always extend another class, a class may implement any number of interfaces. Even
though single inheritance is easy to understand and use, it has a problem describing objects which are
combinations of various types. E.g., a seaplane has the properties of a swimming object and a flying object.
However, single inheritance forces the implementation to choose one of them. Even though interfaces do not
solve the problem, they provide a work around without introducing the complexities of multiple inheritance.
A class may agree to provide implementations for a set of other methods. The class will not be able to inherit
any code, but the type checker will be able to verify that a class follows a special contract. E.g. in the case of
a seaplane, the class Seaplane may implement the interfaces IAircraft and IWatercraft. Some user
who is only interested in watercraft may treat the seaplane as an IWatercraft, because Seaplane
implements methods that a watercraft must have. The same applies to IAircraft.

The negative side of interfaces is that a class does not inherit any code and must provide its own
implementation, although it may inherit an implementation from the topmost class.

Interfaces may be nested inside interfaces. Interfaces may also be nested inside classes and classes may be
nested inside interfaces. This works fine, since the nested type is not associated with an instance of the outer
type.

8.1 Implementing Interfaces
A class may implement an interface by adding the interface name after the optional implements
keyword in the class declaration. Any number of interface names separated by comma may be listed after
the implements keyword.

<classHead> ::=

<classAttr>* <id> [extends <typeReference>] [implements

<typeReference> [, <typeReference>]*]

A class that declares that it implements an interface but does not provide an implementation for all the
virtual methods declared by the interface must be declared to be abstract.

Interfaces are referenced in the same way as class types.

Interfaces cannot extend other classes, but they may require a class that implements the interface to also
implement a set of other interfaces. To do this, an interface declares that it implements one or more other
interfaces. This is done in the same way as for classes using the implements keyword. Note that the
word implements is a little bit misleading. It refers to the class that eventually implements the interface.
An interface can not provide any implementation itself. The class implementing the interface does not
need to declare that it also implements the interfaces required by the interface it implements, although it
may do so. The difference is subtle. (see section 8.1.1)

Example:

The following class implements the interface IStartStopEventSource defined in the module
Counter.dll.

.class private auto autochar StartStopButton extends
[System.WinForms]System.WinForms.Button implements [.module
Counter.dll]IStartStopEventSource {

// body of class

}
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8.1.1 Implementation Requirements

When a class declares that it implements an interface the EE follows a simple set of rules to
determine which method definition will be used. A MethodImpl (see also section 8.1.2) can be used
when the default behavior does not capture the programmer’s intention.

The implementation of virtual methods may be provided by:

• directly specifying an implementation

• inheritance from its parent class

• use of an explicit MethodImpl (see section 8.1.2).

A method definition is said to be a matching method definition for a method declared by an interface, if
it is a virtual method with the same calling convention, return type, and the same order of parameter
types as the method declared by the interface.

The detailed rules for determining which method body implements a particular interface method are as
follows:

Suppose an interface I requires the implementation of method Foo(), and class A implements I. Then,

1. if A provides a MethodImpl for I::Foo(), then the MethodImpl specifies the method body
to use. If a MethodImpl is supplied but the body is not a matching method definition, a
System.TypeLoadException is generated.

2. otherwise, if A itself provides a matching method definition for a public method named Foo,
then use that method

3. otherwise, if the immediate parent of A implements the same interface and provides an
implementation for I::Foo(), then use whatever implementation A’s parent provides,

4. otherwise, if any parent of A provides a matching method definition for a public method
named Foo, then use the method from the closest parent, even if that parent does not implement
the interface,

5. otherwise: leave the slot empty if class A is abstract or generate a
System.TypeLoadException if class A is concrete.

8.1.2 MethodImpls

MethodImpls are a mechanism used to explicitly specify, for a given class, what method definition
should be used to implement a virtual method.

A MethodImpl consists of two parts, both of which are MethodRefs. The first MethodRef specifies the
method to be implemented and the second specifies the implementing method. Both methods must have
a matching signature, which means that except for their names and declaring type their signatures must
be equivalent.

MethodImpls can be used to specify the implementation of a method declared by an interface. This way
of specifying a method implementation is especially appropriate if a class implements several interfaces
and each declares a method with the same name. If MethodImpls are not used, both method declarations
will be implemented by the same method. If this is not desired, MethodImpls can be used to provide
methods with different names for the two interfaces.

In V1 of the CLI, the implementing MethodRef cannot refer to an inherited method implementation. It
must refer to a method declaration inside the class that declares the MethodRef. However, the method
may override a method of its superclass or may be overriden by subclasses. The MethodDecl inside the
class may also be an abstract method which is implemented by a subclass.

In the ilasm syntax, MethodImpls are declared using the .override directive which is discussed in
section 7.6.3.1. MethodImpls are also described in section 11.1.
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8.2 Defining Interfaces
Interface definitions are very similar to class definitions (see 7.4). They are introduced with the .class
directive but contain the interface attribute.

Compared to classes, interfaces are subject to various constraints:

• all methods must be either virtual or static

• all virtual methods must be abstract and public

• no instance fields are allowed

• interfaces must be abstract and cannot be instantiated

• interfaces may not inherit from a class

Interfaces may have static methods, which must have an implementation for them. This is used, for
example, to provide a type initializer for the interface to initialize its static fields.

However, it is not CLS compatible for interfaces to have static methods other than a type initializer
(named .cctor and marked with both specialname and rtspecialname).

Example:

.class interface public auto autochar CountDisplay {

.method public abstract virtual void SetCount(int32 count) {}

.method public abstract virtual int32 GetCount() {}

}

The interface CountDisplay is defined with two members. The description of the attributes can be
found in section 7.4.2.

9 Value Types
In contrast to reference types (section 7), value types are not accessed by using a reference, but are stored
directly in the location occupied by the variable that declares the value type.

Typically, value types are used to describe the type of small data items. Often, value types will be used as the
type of a local variable. Value types are useful for stack allocated data, since their creation is fast. However,
they can also be useful as the type of fields in heap allocated data. Compared to reference types, value types
are accessed faster since there is no additional indirection involved.

Value types are inappropriate to use if inheritance is desired, if changes to local data need to be visible
across method boundaries, or if the size of the data is fairly large.

Typical value types are complex numbers or dates. A typical non-value type would be a Window.

Value types have the same set of members as reference types:

• fields

• methods

• properties

• events

Similar to reference types, all members may be instance or static. Value types may have virtual
methods. These are used to override virtual methods defined in System.ValueType or
System.Object or to provide implementations for methods declared by interfaces.

The CLI does not support subtyping of value types. Value types may not have any subtypes and must be
declared sealed.

As the name implies, value types are passed by value in method calls, which means that a new copy of the
value will be created for the called method.
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A value type may be converted into a reference type by a process called boxing. In this representation it is
said to be in its boxed form. A boxed value type may be converted back into its value type representation, the
unboxed form, by a process called unboxing. More about boxing and unboxing can be found in section 9.5.

All boxed value types inherit from the base class System.ValueType, which is a subclass of
System.Object. This relationship between value types and reference types creates a unified type system
in which all types may be treated as subtypes of System.Object.

Similar to reference types, value types may be nested. Value types may have nested classes and interfaces
and classes and interfaces may have nested value types. This does not cause any problems since a nested type
is not associated with any instance of the outer type.

Value types may declare that they implement interfaces, but the implementation is only effective in their
boxed form. Only the boxed form can be used as an instance of the interface type.

When a value type is defined, a corresponding type that describes the boxed form of the value type will be
automatically created by the runtime. In version 1 of the CLI, this type cannot be directly represented in
metadata, so System.Object or any interface implemented by the value type has to be used as the type of
all boxed value types and only members of System.Object or a member of an implemented interface can
be used with the boxed form of a value type.

Unboxed value types are not considered subtypes of another type and it is not valid to use the isinst
instruction on unboxed value types. The isinst instruction may be used for boxed value types. E.g., the
isinst instruction may be used with System.ValueType to check whether the top of the stack is a
reference to a boxed value type.

Unboxed value types may not be assigned the value null and they may not be compared to null.

Value types support layout control in the same way as reference types do (see section 7.8). This is especially
important when values are imported from native code.

9.1 Referencing Value Types
The unboxed form of a value type is referred to by using the value class keyword followed by a type
reference. The type reference is resolved to a type definition token either at load time, or if possible at
compile time. The following grammar defines value type references:

<valueTypeReference> ::=

value class <typeReference>

The boxed form of a value type is referenced using class System.Object. (becomes simply object in
Beta-2)

Example:

The following example declares the variable size of type System.Drawing.Size which is a value
type:

value class [System.Drawing]System.Drawing.Size size

9.2 Instantiating Value Types
A value itself is already an instance of a value type. Instances of value types are stored in local variables,
fields, and method arguments. The value type is instantiated when memory is allocated for the local, field,
or argument. In addition, instances of value types may be also be directly created on the stack (e.g. by
using ldc).

Value types are initialized with the initobjinstruction. The initobj instruction zeroes out all
instance fields of a value type. The static fields are initialized when the value type is loaded.

The initobj instruction expects a managed pointer to an instance of the value type. initobj specifies the
value type to be initialized as part of the instruction. The instruction does not return anything on the stack.
If a value type is used without calling initobj first, the values of its instance fields may have any value.
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Value types may have any number of initializers. Similar to instance constructors of classes, an initializer
is named .ctor and has the attributes rtspecialname and specialname, which mark a special
name for the runtime and for other compilers and tools, respectively. The initializer is not automatically
called by the initobj instruction and should be explicitly called after the initobj instruction.

Verification requires that all fields of a value type be written before they are read or a pointer to an
instance of the value type is passed to a method other than an initializer of the value type. Every
initializer of the value type is required to store into every field of the value type (this applies recursively,
when one value type is embedded as a field of another value type).

Tools are urged to insert calls to the initializer, but this is not required. Programmers who expect their
value types to be used from another language must be prepared to handle the case where the state has been
zeroed but no initializer has been called.

If a value type has an initializer, an instance of its unboxed type can be created as is done with classes.
The newobj instruction is used along with the initializer and its parameters to allocate and initialize the
instance. The newobj does not require any pointer to a variable of the value type. The instance of the
value type will be allocated on the stack. Unlike the initobj instruction, the newobj does call the
initializer. It takes the a reference to the initializer as part of the instruction.

The Base Class Library provides the method System.Array.Initialize()to zero out all instances
in an array of unboxed value types.

Example:

The following code initializes the value type variable declared in the example in section 9.2:

ldloca size // load address of local variable

initobj value class [System.Drawing]System.Drawing.Size

ldloca size // load address for initializer (argument 0)

ldc.i4 425 // load argument 1 (width)

ldc.i4 300 // load argument 2 (height)

call instance void [System.Drawing]System.Drawing.Size::.ctor(int32,
int32)

// instance of value type is initialized

9.3 Defining Value Types
Similar to class types, the definition of value types is introduced by the .class directive and follows the
same rules as for class types (see section 7.3) with the difference that the value attribute must be used.
(the value attribute will be removed for type definitions in Beta-2) In addition, all value types must
explicitly inherit from System.ValueType defined in the DLL mscorlib. The only exception are
enumerations, which are described in section 10.2.

Example:

The following example defines a value type to represent complex numbers. The value type provides an
implementation of the ToString method that overrides the implementation given in System.Object.

.class value public sealed Complex {

.field public int32 re // the real part

.field public int32 im // the imaginary part

// create string of the form 1 + 2i, where 1 is re and 2 is im

.method virtual public hidebysig instance class System.String ToString()
CIL managed {

.maxstack 4

ldarg.0

ldfld int32 Complex::re

call class System.String System.Int32::ToString(int32)

ldstr " + "



- 55 -

ldarg.0

ldfld int32 Complex::im

call class System.String System.Int32::ToString(int32)

ldstr "i"

// combine the pieces on the stack

call class System.String System.String::Concat(class

System.String, class System.String)

call class System.String System.String::Concat(class

System.String, class System.String)

call class System.String System.String::Concat(class

System.String, class System.String)

ret // return combined string on stack

}

}

9.4 Methods of Value Types
Value types may have static, instance and virtual methods. static methods of value types are
defined and called the same way as static method of class types.

While instance methods of class types expect a reference to an instance of the class as the first argument,
all instance methods of value types, boxed or unboxed, expect a managed pointer to an unboxed
instance of the value type as the first argument to the method. The same applies for virtual methods.
This argument corresponds to the this pointer for value types and can be used to access the fields and call
instance or virtual methods of the value type.

Both instance and virtual methods of a boxed or unboxed value type are called using the call
instruction. The callvirt instruction may not be used with unboxed value types.

However, since methods implemented for an interface can only be called using the callvirt instruction,
all methods in a value type defined for an interface and thus declared virtual must be called using the
callvirt instruction. This requires the value type to be in its boxed form, since callvirt is not allowed
with its unboxed form. If the callvirt instruction is used, it is illegal to use the value type to refer to the
method to be called. Only a superclass of the value class, e.g. System.Object, or an interface type may
be used with the callvirt instruction as a type reference to specify the method to be called. Since value
types do not have subclasses, a callvirt that would explicitly reference the value type would never make
sense and is considered illegal.

There is a problem for virtual methods that override a virtual method of a superclass or that
implement a method declared in an interface. Callers of the method that make the call using the superclass
or the interface declaration do not know that the actual implementation is defined inside a value type. As a
consequence, they will pass a reference to the boxed version of the value type as the first argument to the
method. However, since the virtual method is in a value type, it expects a managed pointer to the
unboxed instance of the value type as the first argument. This conflict is resolved by the EE. When a
virtual method of a value type is called using the callvirt instruction, the caller is required to pass a
reference to an instance of the boxed value type. Thus, from the callers point of view, there is no
difference between calling a virtual method of a value type or class with the callvirt instruction. The
EE will automatically unbox the this pointer reference and pass a managed pointer to the unboxed instance
to the virtual method.

The following table summarizes the discussion in this section. It shows what the caller needs to push onto
the stack for the first argument in order to call an instance or virtual method with the call
instruction, or a virtual method with the callvirt instruction. The method of the value type will always
expect an unmanaged pointer to an unboxed instance of the value type. The first column shows the kind of
type reference the caller uses.

Table 1: Type of this given CIL instruction and declaring type of instance method.
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Value Type (Boxed or Unboxed) Interface Class Type

call managed pointer to value type illegal object reference

callvirt illegal object reference object reference

Examples:

The following converts an integer of the value type int32 into a string. Suppose the integer is declared
as:

.locals init (int32 x)

Then the call is made as shown below:

ldloca x // load managed pointer to local variable

call instance class System.String System.Int32::ToString()

However, if System.Object is used as the type reference rather than System.Int32, the code
becomes:

ldloc boxed_x

callvirt instance class System.String System.Object::ToString()

9.5 Boxing and Unboxing
If data of a value type needs to be assigned to a memory location of type System.Object or an
interface type, e.g. as part of a method call, it first needs to be converted into a reference type by boxing
it.

An instance of an unboxed value type can be converted to an instance of the corresponding boxed type
using the box instruction. The box instruction takes the address of an instance of a value type, allocates
space on the heap, copies the instance fields of the value type to the allocated space and returns a
reference to the location on the heap. Since the box instruction requires an address, the instance of the
value type must be stored in a local variable, argument, or field before the box instruction can be used.
This requirement follows from the restriction that it is not possible to obtain an address to a value on the
stack. The boxed version of the value type behaves like any other reference type. However, since its exact
type is not accessible, only members of System.Object are accessible in the boxed version. In order to
access members specific to the value type, the boxed form needs to be unboxed first. The box instruction
takes a type reference to the value type as part of the instruction. The following picture illustrates the box
operation:

Figure 7: box

An instance of a boxed value type can be converted to an instance of the corresponding unboxed type
using the instruction unbox. The unbox instruction takes a reference to the boxed version of a value
type and returns a managed pointer to the actual data of the value type. The returned pointer will point to
data of the actual value type, such that all members of the value type are accessible and can be modified.
Notice that the unbox instruction does not do a copy. The result of unbox shares state with the
original object. The unbox instruction takes a type reference to the value type as part of the instruction.
The following picture illustrates the unbox operation:
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Figure 8: unbox

The result of unbox can be stored in a local variable using the cpobj instruction. cpobj copies a
value type from a source to a destination, both of which must be declared to be value types. It expects the
address of the source on top of the stack and the address of the destination as a second argument on the
stack. Similar to unbox and box, the cpobj takes a type reference to the value type as part of the
instruction.

There is one case in which the runtime will do the unboxing implicitly, which is discussed in section 9.4
and has to do with the callvirt instruction.

Both boxed and unboxed value types are marshal by value (not reference) and are not contextful. This
means that value types, boxed or unboxed, are copied in remoting scenarios (across application domain
boundaries) and thus do not have a strong notion of identity. Within a single application domain, but
across contexts, boxed value types retain their identity.

For CLS compliance, the reference returned by the box instruction must be treated as a reference to an
instance of System.Object. The reference needs to be explicitly cast to an interface type before
assigning it to a variable that is declared to be of that interface type.

Examples:

The following code boxes the local myInt of type int32 and stores it in the local boxedInt of type
System.Object:

ldloca myInt // load address of myInt

box int32

stloc boxedInt

The following unboxes the boxed version of myInt and copies it back to myInt:

ldloca myInt // load address of destination

ldloc boxedInt // load reference of boxed type

unbox int32 // address of unboxed type on stack

cpobj int32 // copy into myInt

9.6 Copy Constructors on Value Types
Copy constructors are necessary if certain behavior needs to be executed when an instance of a value type
is copied from one memory location to another.

A value type can have a copy constructor, which is simply an initializer (i.e. it is named .ctor and has the
attributes specialname and rtspecialname). The copy constructor will receive the pointer as a
argument. Typically, copy constructors do not declare other parameters. Further, a value type with a copy
constructor should have the attribute not_in_gc_heap associated with it.

The copy constructor is not called automatically by the runtime, and is not supported on boxed instances,
i.e. the garbage collector will not call it.

Since the garbage collector only manages objects on the GC heap, the not_in_gc_heap attribute will
prevent any problems associated with movement of the value type. However, it has also some restrictions
associated with it. Instances of value types marked with not_in_gc_heap
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• may not be assigned to fields of classes, fields of value types that aren’t also marked
not_in_gc_heap, or static variables

• may not be boxed

since both of the above would move the instance to the GC heap.

For classes that have a copy constructor, the compiler must insert code to do the copy construction as
appropriate. The x86 managed calling convention is that the caller makes the copy and then passes the
address of that copy to the callee. This is unlike C++ where methods that take a copy-constructed
parameter appear to be called by value.

In order to interoperate with unmanaged code that passes the copy constructed values on the stack,
PInvoke (platform invoke) may call the copy constructor an additional time to construct a copy on the
unmanaged stack. This behavior is triggered (if needed) by a particular custom modifier applied to the
parameter which must be copy constructed. This modifier,
Microsoft.VisualC.NeedsCopyConstructorModifier, may only be placed in front of a parameter whose type
is a managed pointer to a value type.

For CLS compliancy, copy constructors may not be used.

Example:

The following defines a copy constructor for the value type Complex given in example 9.7.2:

.class value not_in_gc_heap public sealed Complex {

.method public hidebysig rtspecialname specialname instance void

.ctor() CIL managed {

// body of copy constructor

}

}

9.7 Using Value Types for C++ Classes
Where possible, languages that provide features in their object system not directly supported by the CLI
should use value types with visible field members to represent their classes. The following rules, designed
for compiling C++ to CIL, expose as many features of the underlying object model to other languages as is
possible with the CTS.

For C++, the trick is that managed languages will import C++ classes as value types and will see C++
virtual and instance methods on those types as static methods with an explicit unmanaged this pointer. The
C++ compiler is fully responsible for handling multiple inheritance, so other languages can use methods
that are defined in C++ using multiple inheritance even though they could not define such methods
themselves. In addition, because value types are sealed, it is not possible to extend frameworks created
in C++ in another language.

Similar rules can be devised for many other languages.

9.7.1 Representation of a Class as a Value Type

First, a custom attribute needs to be defined, possibly in a reserved part of the System namespace, to
indicate that a value type is a CTS representation of a language-specific class. The custom attribute may
have fields that provide more information of use to a browser that understands the language-specific
semantics. All value types that represent unmanaged classes need to be marked with instances of this
custom attribute.

Then the object layout has to be described in form of a value type, possibly with explicit layout control.
Static methods, static fields, and instance fields can be defined on the value class directly. There will be
necessarily a field for a pointer to the VTable and all constructors for the class must store the
appropriate value (see below) into this field.

Instance and virtual methods have to be converted to static methods with one more parameter than the
original C++ method had. This additional parameter is the first parameter, functions as the this
parameter, and its type is an unmanaged pointer to the value type. These methods should have a custom
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attribute attached so that browsers (and the C++ compiler itself) can distinguish true static methods
from these introduced static methods.

The method body for instance and virtual methods has access to the pointer to the original object
through its first parameter, through which it can access the VTable, and via the VTable the function
pointers to the virtual methods. The compiler can use explicit address arithmetic to adjust the address of
the object or VTable to handle multiple inheritance, etc. The calli instruction is used to call through
the function pointers in the VTable.

Classes that have user supplied copy constructors or destructors cannot be boxed, cannot be fields of
managed types, and cannot be passed by value directly. For this reason the not_in_gc_heap
attribute should be used to prevent the instance of the value type to be moved to GC heap. C++ classes
that do not have a copy constructor are usable by other languages just as any other value type would be
and should not set this bit. Copy constructors are also further described in section 9.6.

9.7.2 Representation of the VTable

The VTable itself is represented as the value of a static variable with specified RVA (relative virtual
address). The type of this variable is a class with a unique mangled name (or a type nested within the
object’s type), explicit layout, and with named fields that are function pointer types to native method
implementations.

The data for the VTable is stored in the data section of the PE file and the appropriate fixups must be
stored in the CLI header within the PE file. If unmanaged compatibility is required the entries may be
forced to be 32 bits wide and the PE file header marked for 32-bit architectures only. Otherwise, the
entries should be 64 bits wide. See also the description of vtfixup in section 7.8.2.

10 Special Types
10.1 Arrays

An array is a contiguous memory block that stores an indexed collection of values of the same type. The
CLI has partially built-in support for arrays, including multidimensional arrays.

Arrays that have only one dimension and are zero based (i.e. the first element is at index zero) are called
vectors. Even though the runtime has support for multidimensional arrays and arrays with a specified
lower and upper bound, the execution engine has only built in instructions for dealing with vectors. The
.NET Framework provides services to create arrays which are not vectors.

The following sections discuss vectors, general arrays, and arrays of arrays.

CLS Note: CLS-compliant tools are only required to support arrays whose elements are of types supported
by the CLS and which have zero lower bounds for all dimensions. For a CLS consumer there is no need to
accept arrays of other types. For a CLS extender there is no need to provide syntax to define other types of
arrays or to extend interfaces or classes that use other array types. For a CLS framework other array types
may not appear in exposed members.

10.1.1 Vectors

10.1.1.1 Declaring Vectors

Vectors are declared by providing the type of the elements followed by brackets.

<type> ::= Section

<type> [ ]

| … 5.3

The type of the elements may be any subtype of System.Object (including System.Object
itself) and any boxed or unboxed value type. This includes Delegates, and function pointers (see
example below). Pointer types are not allowed as an element type in the first version of the CLI.

The vector itself is an instance of a special array type that defines the vector. If necessary, the VES
(Virtual Execution System, see CTS Spec) creates this special array type automatically.
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The special array type is an object type. It is always a subtype of System.Array, which is a
subtype of System.Object. The operations on an array type are defined by the CTS. These
include indexing the array to read and write a value and computing the address, obtained in form of a
managed pointer, of an element of the array. The System.Array type supports additional
operations which are discussed in section 10.1.1.4.

Example:

A vector of Strings:

class System.String[] errorStrings

(becomes: string[] errorStrings in Beta-2 if a signature)

Example:

A vector of function pointers:

.field method instance void*(int32) [0..5] myVec

10.1.1.2 Creating Vectors

Vectors are created using the newarr instruction. Note that the newarr instruction can only be
used to create vectors and not other types of arrays. The newarr instruction expects the type of the
elements as part of the instruction and an unsigned 32 bit integer specifying the size of the vector on
the stack. The instruction returns a reference to the array on the stack.

Example:

ldc.i4.4

newarr class System.String

stfld class System.String[] CountDownForm::errorStrings

( in Beta-2, becomes:

ldc.i4.4

newarr class System.String // no change!

stfld string[] CountDownForm::errorStrings // change! )

The instructions above create a zero based array with size 4. The maximum index in the array is 3.
The next instruction stores this array in a dedicated memory location.

10.1.1.3 Using Vectors

The most common operations on arrays is to index them to retrieve an element or to set the value of
an element. The CLI has special instructions that implement these operations for vectors.

The instruction ldelem is used to load an element of the vector onto the stack. ldelem expects the
type of the elements as a postfix and a reference to the vector and an unsigned 32 bit integer
specifying the index of the element to load on the stack. The instruction returns the element on the
stack. The complete list of ldelem instructions can be found in section 18.

The instruction stelem is used to store a value in the vector. Similar to ldelem, stelem expects
the type as a postfix and a reference to the vector, the index, and value to store on the stack. The
complete list of stelem instructions can be found in section 18.

The instruction ldelem has a corresponding instruction ldelema that loads the address of an
element rather than the element itself.

There is a special case for value types. To access a value type in an array, the address of the array
element needs to be loaded via ldelema and then the value type can be loaded using ldobj. To
store a value type, first the address of the element is loaded with ldelema and then stobj is used.
More about these instructions can be found in section 18.5.

All three instructions throw a System.NullReferenceException if the array on the stack is
null. The instructions throw a System.IndexOutOfRangeException if the index is greater or
equal to the size of the vector. An System.ArrayTypeMismatchException is thrown if the
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array does not hold elements of the required type. Note that the index value is treated as an unsigned
value.

The instruction ldlen may be used to obtain the length of a vector. It takes the array on the stack
and returns the length as a 32 bit integer on the stack. The instruction throws a
System.NullReferenceException if the array on the stack is null.

Examples:

ldfld class System.String[] CountDownForm::errorStrings

ldloc errorCode

ldelem.ref

The instructions above load a vector, an index and use ldelem to retrieve the element. The postfix
.ref is used since strings are reference types.

ldfld class System.String[] CountDownForm::errorStrings

ldc.i4.1

ldstr "Number must be positive!"

stelem.ref

The code fragment above loads a vector, the index of the second element, a string, and stores the
string in the vector using stelem.ref.

10.1.1.4 Methods of Vectors

Array types form a hierarchy, with all array types inheriting from the type System.Array. This is
an abstract class in mscorlib.dll that represents all arrays.

The class System.Array defines a number of methods that can be used to apply operation to the
array. E.g., the class defines methods to retrieve the length of the array, copy the array, reverse the
array, or sort the elements of the array among other operations.

More information can be found in the Base Class Library documentation.

Example:

ldloc myVector

call instance int32 [mscorlib]System.Array::get_Length()

call void [mscorlib]System.Console::WriteLine(int32)

The code above loads a reference to a vector and calls the method get_Length() to obtain the
length of the array.

10.1.2 General Arrays

There are no CIL instructions to handle arrays which are not vectors, but they are still supported by the
runtime. In contrast to vectors, general arrays may have any bounds. The following sections discuss how
general arrays are declared, created, and used.

10.1.2.1 Declaring General Arrays

The rank of an array is defined to be the number of dimensions of the array. The CLI does not
support arrays with rank 0.

General arrays are defined in a way similar to vectors. However, they must declare their rank and
optionally may restrict their bounds.

<type> ::= Section

<type> [ [<bound> [,<bound>]*] ]

| … 5.3

The rank of the array is declared by using commas (“,”) between the brackets. The number of
commas plus one is equal to the rank of the array. For example, no commas means that the rank
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equals to one, one comma means that the rank equals to two, five commas means the rank equals to
six, etc.

Array declarations have the following choices to declare the bounds for each dimension:

• No bounds declaration, lower bound is assumed to be zero.

• Declaration of upper bound only, lower bound is assumed to be zero.

• Declaration of lower bound only

• Declaration of both lower and upper bounds.

<bound> ::= Description

... lower and upper bound are unspecified

| <int32> zero lower bound, <int32> upper bound

| <int32> ... lower bound only specified

| <int32> ... <int32> both bounds specified

While vectors have a type based on the type of the elements in the array, regardless of the upper
bound, arrays with more than one dimension or one dimension but with non-zero lower bound have
the same type if they have the same element type and rank, regardless of lower and upper bound of
the array. This array type is created on the fly by the execution engine as required.

Note that ILASM allows you to declare array variables with this rich syntax, providing some lower
bounds, missing out others, etc. However, in Version 1, CLI largely ignores this information – in
effect, all it pays attention to is the rank of that array variable. Just to be clear – when you define an
instance of an array (using the newobj instruction, detailed later), you must supply the actual upper
and lower bounds for each dimension – you cannot miss any out. Thereafter, when you bind this new
object to your array variable, the CLI ignores all the bounds information you gave to that variable –
so long as its rank is the same (and the array <type> is assignment-compatible of course), the bind
will be accepted.

The following table shows examples of array declarations – note carefully that only the first results in
a vector – all the others, despite what you might have guessed, result in a general array

Array Declaration Array Type

int32[] vector of int32

int32[0...5] array of int32, rank 1

int32[...] array of int32, rank 1

int32[0...] array of int32, rank 1

int32[5] array of int32, rank 1

int32[,] array of int32, rank 2

int32[0...3,...] array of int32, rank 2

int32[1...,0...] array of int32, rank 2

Only arrays which have zero lower bounds in all their dimensions are CLS compliant. [vectors are
therefore, of course, all CLS compliant]
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10.1.2.2 Creating General Arrays

The newarr instruction can not be used to create arrays other than vectors. However, when an
array is declared the execution engine will create a type for the array which can be used to construct
the array.

The declared array type may be used to access the members of the array type. The execution engine
defines two constructors for each array type. One of them takes the same number of unsigned 32 bit
integers as arguments as the rank of the array. Each of the arguments specifies the number of
elements for each dimension of the array, starting with the first dimension.

The other constructor takes twice as many arguments as the rank of the array. The first argument is
the lower bound for the first dimension and the second argument is the length of the first dimension.
The third argument is the lower bound of the second dimension and the fourth is the length of the
second dimension, and so on. Every even numbered argument (starting at zero) specifies the lower
bound, while every odd numbered argument specified the length for a certain dimension.

While the second contructor declares the lower bounds, the first constructor sets the lower bounds
automatically to zero.

Note: The declaration of the bounds is for documentation purposes only and will not affect the
runtime or verification. Only the choice of the constructor determines if the array has lower bounds
zero or some specified lower bounds.

The following table shows some constructors:

Array Declaration Constructors

int32[] void int32[]::.ctor(int32)

void int32[]::.ctor(int32,int32)

float32[1...5] void float32[1...5]::.ctor(int32)

void float32[1...5]::.ctor(int32, int32)

class System.String[,] void class System.String[,]::.ctor(int32,
int32)

void class System.String[,]::.ctor(int32,
int32, int32, int32)

int32[0...,1...5,...] void int32[0...,1...,...]::.ctor(int32, int32,
int32)

void int32[0...,1...,...]::.ctor(int32, int32,
int32, int32, int32, int32)

Example:

Assume the following array is declared:

int32[5...10,3...7] myArray

The following code creates an instance of the array. Note that the length for each dimension has to be
computed according to the formula upper bound – lower bound + 1. This formula assumes that the
bounds are inclusive.

ldc.i4.5 // load lower bound, dim 1

ldc.i4.6 // load upper bound - lower bound + 1, dim 1

ldc.i4.3 // load lower bound, dim 2

ldc.i4.5 // load upper bound - lower bound + 1, dim 2

newobj instance void int32[5...10,3...7]::.ctor(int32, int32)

stloc myArray
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10.1.2.3 Using General Arrays

In addition to the constructor, the execution engine defines the instance methods Get and Set for the
declared array type. These methods take the same number of arguments as the rank of the array, each
of them a 32-bit integer specifying the index of the element for each dimension starting with the first
dimension. The method Set takes an additional argument that specifies the value to store and has the
same type as the type of the elements.

The following tables shows some examples of the Get and Set methods:

Array Declaration Get Method

int32[] void int32[]::Get(int32)

float32[1...5] void float32[1...5]::Get(int32)

class System.String[,] void class System.String[,]::Get(int32, int32)

int32[0...,1...5,...] void int32[0...,1...,...]::Get(int32, int32,
int32)

Array Declaration Set Method

int32[] void int32[]::Set(int32, int32)

float32[1...5] void float32[1...5]::Set(int32, float32)

class System.String[,] void class System.String[,]::Set(int32, int32,
class System.String)

int32[0...,1...5,...] void int32[0...,1...,...]::Set(int32, int32,
int32, int32)

The index must be within the range specified at construction time.

The next section will introduce more methods that are defined for arrays.

Examples:

Assume the following array is declared:

int32[5...10,3...7] myArray

The following example stores the value 25 at position [6,7], i.e. myArray[6,7] = 25.

ldlocmyArray // load instance to array

ldc.i4 10 // desired index for dim 1

ldc.i4.7 // desired index for dim 2

ldc.i4 25 // value to be stored in element

int32[5...10,3...7]::Set(int32,int32,int32)

The following example retrieves the value at position [6,7], i.e. myArray[6,7] .

ldloc myArray // reference to an instance of the array on stack

ldc.i4 6 // desired index for dim 1

ldc.i4.7 // desired index for dim 2

call instance int32 int32[5…10,3…7]::Get(int32,int32)

// The value retrieved from the

array is on stack

10.1.2.4 Methods of General Arrays

Similar to vectors, all general arrays are subtypes of System.Array (see also 10.1.1.4). All
members of System.Array are inherited to the specific array types created by the execution
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engine on the fly. These members can be used to obtain further information on the array, e.g. the size
of a specific dimension, or do certain operations on the array, e.g. sort the elements.

More information on these members can be found in the Base Class Library documentation.

10.1.3 Arrays of Arrays

Arrays of arrays are different then multi dimensional arrays. While multi dimensional arrays form one
memory block, arrays of arrays are arrays that reference other arrays.

The following graphs illustrate this:

Figure 10.1: A 2 Dimensional array Figure 10.2: An array of arrays

In figure 10.2, not one but 5 arrays were created. The vertical array is an array of arrays and references
the horizontal arrays. As can be seen in the figure, several references may exist to the same array. In
figure 10.1, there is only one memory block. Verifiable code cannot reference a sub-array inside the
array.

While in the case of arrays of arrays an additional indirection is needed to reach the final element, the
location of the element can be calculated directly in multi dimensional arrays. This has performance
advantages, especially for large dimensions. Further, multi dimensional arrays make pointer arithmetic
possible, since the range of memory that contains all of the elements is well known.

On the other hand, all dimensions of a multi dimensional array must be of the same size. In the case of
arrays of arrays, it is possible to reference arrays with different sizes.

The syntax for arrays of arrays easily follows from the previous sections. The only difference is that the
elements are arrays themselves. The following sections give a summary and some examples.

The execution engine creates a special type for arrays of arrays on the fly, in the same way it is done for
regular arrays.

10.1.3.1 Declaring Arrays of Arrays

The syntax for the declaration of an array of arrays follows recursively from the syntax for general
arrays. An array of arrays is declared by using an additional pair of brackets. This may be repeated to
declare an array of arrays of arrays, etc.

Example:

int32[][][] arrayOfArraysOfIntArrays

In the example above, an array is declared that has elements of type array, which also have elements
of type array, which have element type int32.

10.1.3 .2 Creating Arrays of Arrays

Arrays of arrays can be treated as vectors as appropriate or as general arrays. The syntax for creating
arrays of arrays follows from the discussion of general arrays in section 10.1.2.2 and 10.1.2.3.

The following example illustrates this using the syntax for general arrays.

Example:

Suppose the following array is declared:

int32[][][] myArray
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Then the following code creates my Array, sets the first element to be an array of array of integers,
and the second element of the latter array to be an array of integers.

ldc.i4.5 // Size of myArray

newobj instance void int32[][][]::.ctor(int32)

stloc myArray // myArray is created

ldloc myArray // start creating an int32[][] to store in myArray

ldc.i4.0 // index to store int32[][]

ldc.i4.3 // size of int32[][]

newobj instance void int32[][]::.ctor(int32)

// int32[][] created, now store it in the int32[][][]

call instance void int32[][][]::Set(int32, int32[][])

ldloc myArray // start creating an int32[] to store in int32[][]

ldc.i4.0 // retrieve reference to int32[][]

call instance int32[][] int32[][][]::Get(int32)

ldc.i4.1 // index to store int32[]

ldc.i4 10 // size of int32[]

newobj instance void int32[]::.ctor(int32)

// int32[] created, now store it in the int32[][]

call instance void int32[][]::Set(int32, int32[])

10.1.3 .3 Using Arrays of Arrays

When using arrays of arrays, they may be treated like vectors or general arrays, whichever is more
appropriate. However, they should be treated in a consistent way. Arrays of arrays inherit from the
class System.Array and may use all of its members to do the operations defined by that class.

The following example uses the syntax of general arrays to store and retrieve an integer in the array
created in the example in section 10.1.3.2.

Example:

The following represents the operation myArray[0][1][5] = 100

ldloc myArray // load reference to myArray

ldc.i4.0 // retrieve myArray[0]

call instance int32[][] int32[][][]::Get(int32)

ldc.i4.1 // retrieve myArray[0][1]

call instance int32[] int32[][]::Get(int32)

ldc.i4.5 // store the value at myArray[0][1][5]

ldc.i4 100

call instance void int32[]::Set(int32, int32)

The following represents the expression myArray[0][1][5]

ldloc myArray // load reference to myArray

ldc.i4.0 // retrieve myArray[0]

call instance int32[][] int32[][][]::Get(int32)

ldc.i4.1 // retrieve myArray[0][1]

call instance int32[] int32[][]::Get(int32)

ldc.i4.5 // retrieve myArray[0][1][5]

call instance int32 int32[]::Get(int32)

10.2 Enumerations
An enumeration defines a set of symbols that all have the same type. A variable declared to be of the
enumeration type should only be assigned a symbol that belongs to the set of symbols of the enumeration.
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E.g., an enumeration days of week would contain the names of the days as symbols, i.e. Monday,
Tuesday, etc.

All enumerations inherit from the class System.Enum and must explicitly indicate this in their
definition. System.Enum inherits from System.ValueType. As a consequence, enumerations are
value types and all rules that apply for value types (see section 9) also apply for enumerations. E.g.,
enumerations have boxed and unboxed forms and may not have any subclasses.

The symbols of an enumeration are represented by an integral type, like int32. Any of the integer types
can be selected as the underlying representation of the enumeration. The first version of the CLI does not
support an underlying representation for enumerations other than integers.

The CLI does not provide a guarantee that values of the enumeration type are integers corresponding to
one of the symbols (unlike Pascal).

Enumerations are subject to a series of restrictions in addition to the restrictions imposed by the fact that
they are value types:

• Enumerations may not contain any members other than fields, not even constructors or type
initializers

• As a consequence of the above, enumerations may not implement any interfaces

• Enumeration may not have sequential or explicit field layout, they must have auto field
layout (see 7.4.2.2)

• All enumerations must have an instance field of the underlying type as described below

• All fields of an enumerations, except the value field, must be static and literal

• Enumerations may not be initialized with the initobj instruction, they need to be explicitly
assigned a value.

All enumerations must declare a single instance field. This field must be of the underlying type of the
enumeration. In addition the field must be marked with rtspecialname and specialname. To be
useful, the field should be accessible by all users of the enum and typically is public.

CLS note: The field must be named value__ and all fields must be public.

The instance field stores the current value of an instance of the enumeration. This field is never directly
accessed. The runtime will automatically take care of setting or retrieving this value. To set or retrieve the
value of an enumeration, the instance of the enumeration is used and not the field.

The static, literal fields of an enumeration declare the mapping of the symbols of the enumeration to
the underlying integral type. Recall that the runtime does not allocate any memory for literal fields.
literal fields are only metadata information and can only be queried by using reflection. All of these
fields should have the type of the enumeration and should all have a field init metadata part that assigns a
value of the underlying type to them (see section 12.2 for a description of field init metadata).

When used in a signature, enumerations must be marked as value class, since they are value types. For
binding purposes enums are distinct from their underlying type. This is used, for example, during the
mapping from a methodref to its corresponding methoddef.

For verification purposes and all uses within the execution engine, an unboxed enum automatically coerces
to and from its underlying type.

Enums can be boxed to a corresponding boxed instance type. This type is not the same as the boxed type
of the underlying type, so that the enum remains type distinct.

Because the unboxed form can be coerced to its underlying type and from there to any other enum with the
same underlying type, an enum can be boxed to any corresponding type. The choice is dictated by the type
used in the box instruction. Similarly, a boxed enum can be unboxed to the enum, its underlying type, or
any enum that has the same underlying type.

Examples:
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The following is a declaration of an enumeration:

.class value sealed serializable auto autochar public ErrorCodes extends
[mscorlib]System.Enum {

.field public specialname rtspecialname unsigned int8 value__

.field public static literal value class ErrorCodes no_error = int8(0)

.field public static literal value class ErrorCodes format_error = int8(1)

.field public static literal value class ErrorCodes overflow_error =
int8(2)

.field public static literal value class ErrorCodes nonpositive_error =
int8(3)

}

The enumeration was declared serializable and autochar, but it does not need to be. However, it
must be declared sealed, since it is a value type, and auto. The underlying type of the enumeration is
an unsigned int8. Thus, it declares an instance field of that type named value__. Then, the symbols
of the enumeration are listed as static, literal fields with the corresponding mapping to the underlying
type.

The following is a declaration of a variable named errorCode of the enumeration shown above:

value class ErrorCodes errorCode

The code below stores a value in the enumeration:

ldc.i4.1 // store the value 1, (= format_error in metadata)

stloc errorCode

The code below loads the value of the enumeration

ldarg errorCode

10.3 Pointer Types
A pointer contains the address of a memory location. Usually, this memory location contains a data item of
a specific type. It follows that pointers need to be typed, too, in order to guarantee type safety. The CLI
allows the use of generic pointers only in unverifiable code.

A pointer type is defined by specifying a location signature for the location the pointer references. Any
signature of a pointer type includes this location signature. Hence, no separate definition of the pointer
type is needed. A location signature contains the type of the data item and has special syntax that marks it
as a pointer type.

While pointer types are reference types, values of a pointer type are not objects, and hence it is not
possible, given a value of a pointer type, to determine its exact type. The CTS provides two type safe
operations on pointer types:

• loading the value from the location referenced by the pointer

• storing an assignment compatible value into the location referenced by the pointer

The CTS also provides three type unsafe operations on pointer types (byte-based address arithmetic):

• adding integers to pointers

• subtracting integers from pointers

• subtracting one pointer from another

The results of the first two operations are pointers to the same type signature as the original pointer. See
the CIL Instruction Set specification for details.

CLS note: Unmanaged pointer types are not part of the CLS. For CLS consumers there is no need to
support pointer types. For CLS extender there is no need to provide syntax to define or access unmanaged
pointer types. In CLS framework, pointer types must not be externally exposed.

The syntax for declaring a pointer’s unmanaged type is as follows:

http://comrtime/specs/EE/ILInstrSet.doc
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<type> ::= Section

<type> & 10.3.3

| <type> * 10.3.4

| … 5.3

The & indicates a managed pointer, while the * indicates an unmanaged pointer.

For pointers into the same array or object (see the EE Architecture Specification), the following arithmetic
operations are defined:

• Adding an integer to a pointer, where the integer is interpreted as a number of bytes, results in a
pointer of the same kind.

• Subtracting an integer (number of bytes) from a pointer results in a pointer of the same kind. Note
that subtracting a pointer from an integer is not permitted.

• Two pointers, regardless of kind, can be subtracted from one another, producing an integer that
specifies the number of bytes between the addresses they reference.

None of these operations is allowed in verifiable code.

It is important to understand the impact on the garbage collector of using arithmetic on the different kinds
of pointers. Since unmanaged pointers never reference memory that is controlled by the garbage collector,
performing arithmetic on them can endanger the memory safety of the system (hence it is not verifiable)
but since they are not reported to the garbage collector there is no impact on its operation. Similarly,
transient pointers are not reported to the garbage collecor and arithmetic can be performed without impact
on garbage collection. (see section 10.3.4)

Managed pointers, however, are reported to the garbage collector. As part of garbage collection both the
contents of the location to which they point and the pointer itself can be modified. The garbage collector
will ignore managed pointers if they point into memory that is not under its control (the evaluation stack,
the call stack, static memory, or memory under the control of another allocator). If, however, a managed
pointer refers to memory controlled by the garbage collector it must point to either a field of an object, an
element of an array, or the address of the element just past the end of an array. If address arithmetic is
used to create a managed pointer that refers to any other location (an object header or a gap in the
allocated memory) the garbage collector’s operation is unspecified.

Pointers are compatible with the int64 and, on 32-bit architectures, with the int32 type. They are best
considered as unsigned int, whose sites vary based on architecture.

10.3.1 Obtaining and Using an Address

Most of the load instructions have a corresponding instruction that has the same name as the load
instruction but ends with an “a” and loads the address of the data item which the load instruction would
load. In particular these instructions are:

Instruction Description

ldarga Load address of argument

ldelema Load address of array element

ldflda Load address of field

ldloca Load address of local variable

ldsflda Load address of static field

Once a pointer is loaded onto the stack, the instruction ldind may be used to load data indirectly.
ldind takes an address on the stack and return the value located at the address. ldind also takes the
type of the instruction as a postfix. Ldind is never verifiable.

http://comrtime/specs/EE/Architecture.doc
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Note that the runtime may throw an InvalidOperationException for a ldflda instruction if the obj is
not within the current application domain. (An example would be where the object derives from
System.MarshalByRefObject, where its field values are retrieved by a proxy from the actual target
object)

More detail about these instructions can be found in section 18.

Example:

ldloc pString // load pointer to string reference

ldind.ref

// reference to string is on stack

10.3.2 Unmanaged Pointers

Unmanaged pointers are the traditional pointers used in languages like C and C++. There are no
restrictions on their use, although for the most part they result in code that cannot be verified. While it
is perfectly legal to mark locations that contain unmanaged pointers as though they were unsigned
integers (and this is, in fact, how they are treated by the EE), it is often better to mark them as
unmanaged pointers to a specific type of data. This is done by using * in a signature for a return value,
local variable or an argument or by using a pointer type for a field or array element.

• Unmanaged pointers are not reported to the garbage collector and can be used in any way that
an integer can be used.

• It is best to think of unmanaged pointers as unsigned.

• Verifiable code cannot use unmanaged pointers to reference memory (i.e. it treats them as
integers, not pointers).

• Unverified code can pass an unmanaged pointer to a method that expects a managed pointer.
This is safe only if one of the following is true:

1. The unmanaged pointer refers to memory that is not in memory managed by the
garbage collector

2. The unmanaged pointer refers to a field within an object

3. The unmanaged pointer refers to an element within an array

4. The unmanaged pointer refers to the location where the element following the last
element in an array would be located

Example:

int32* pInt

10.3.3 Managed Pointers

Managed pointers (&) may point to a field of an object, a field of a value type, an element of an array,
or the address where an element just past the end of an array would be stored (for pointer indexes into
managed arrays). Managed pointers cannot be null, and they must be reported to the garbage collector
even if they do not point to managed memory.

Managed pointers are specified by using & in a signature for a return value, local variable or an
argument or by using a by-ref type for a field or array element.

• Managed pointers can be passed as arguments, stored in local variables, and returned as values.

• If you pass a parameter by reference, the corresponding argument is a managed pointer.

• Managed pointers cannot be stored in static variables, array elements, or fields of objects or
value types.

• Managed pointers are not interchangeable with object references.
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• A managed pointer cannot point to another managed pointer, but it can point to an object
reference or a value type.

• Managed pointers that do not point to managed memory can be converted (using conv.u or
conv.ovf.u) into unmanaged pointers, but this is not verifiable.

• Unverified code that erroneously converts a managed pointer into an unmanaged pointer can
seriously compromise the integrity of the EE. This conversion is only safe if one of the
following is known to be true:

1. The managed pointer does not point into the garbage collector’s memory area

2. The memory referred to has been pinned for the entire time that the unmanaged pointer
is in use

3. A garbage collection cannot occur while the unmanaged pointer is in use, or the
managed pointer refers to a pinned local variable

Example:

int32& pInt

10.3.4 Transient Pointers

Transient pointers are intermediate between managed and unmanaged pointers. They are created within
the EE by certain CIL instructions, but users cannot declare locations of this type. When a transient
pointer is passed as an argument, returned as a value, or stored into a user-visible location it is
converted either to a managed pointer or an unmanaged pointer depending on the type specified for the
destination.

• The CIL instructions that create transient pointers (ldloca, ldarga, ldsflda when the type
of the field is not an object) are guaranteed to produce pointers to data that is not in managed
memory.

• Transient pointers need not be reported to the garbage collector, and they are automatically
converted to managed or unmanaged pointers when necessary (during method calls or when
stored into a local or argument that requires a managed pointer).

• Transient pointers can exist only on the evaluation stack within a single method.

• Verification treats transient pointers as managed pointers.

Example:

Assume that the local variable myLoc is declared

ldloca myLoc

// transient pointer is on stack

10.4 Method Pointer Types
The CLI supports method pointers. A method pointer has a type, which is the signature of the method
including its calling convention. Unlike other pointers, a method pointer points to the beginning of a
method and not to a data item.

The following grammar shows the syntax for a method pointer type.

<type> ::= Section

method <callConv> <type> * ( <parameters> )

| … 5.3

Variables that have the type of the method pointer may store the address of the entry point to a method
with compatible signature, which may be used to call the method.

A pointer to a static or (non-virtual) instance method is obtained with the ldftn instruction (see
section 18.4). A pointer to a virtual method may be obtained by using the ldvirtftn instruction (see



- 72 -

section 18.4). Both instructions take the method definition token as part of the instruction and return a
method pointer on the stack. In addition, the ldvirtftn instruction expects a reference to an instance of
the class that defines the method, or one of its subclasses. In contrast to ldftn, ldvirtftn will return a
pointer to an overridden version of the method if applicable.

A method may be called by using a method pointer with the calli instruction (see section 18.3.4). The
calli instruction may be used with all method pointers independent of whether they were loaded with
ldftn or ldvirtftn. The calli instruction expects all arguments to the method on the stack as defined by
the method signature, including any instance references for instance and virtual methods. The first
argument needs to be pushed first onto the stack. calli also expects the method pointer on the stack. The
method pointer must be pushed last, i.e. it must be on top of the stack when calli is executed. If the
method has a return value, it will be on top of the stack after the execution of the calli instruction.

Like other pointers, method pointers are compatible with the int64 and, on 32-bit architectures, with the
int32 type. The preferred usage, however, is unsigned int.

Example:

ldarg.0 // load this pointer, method is defined by this class

ldvirtftn instance void StartStopButton::onClick(class System.Object, class
[mscorlib]System.EventArgs)

// Method pointer is on stack

The code above load a pointer to a virtual method defined in the same class. If a subclass overrides the
method, the overridden version will be loaded.

10.5 Delegates
A Delegate is perhaps best thought of as a self-describing function pointer. Recall that in unmanaged
code, a function pointer is just a naked address. To call the target function, your assembler code must
push the appropriate arguments, and then branch to that target address. But there’s no way to check that
where you land expects the particular argument types you just pushed. All you provided was that naked
address – you did not supply a signature that describes the function whose entry point lies at that address.
In the managed world, such a call is inherently unverifiable.

A Delegate, on the other hand, associates a signature with a target address. Therefore, we can invoke the
target method, and be sure we ‘land safely’.

Before launching into the details of Delegates in ILASM, here’s a simple example, written in a high-level
managed language (C#) that should clarify the situation:

class Foo {
private int val;
public Foo(int v) {val = v;}
public int Inc(int i) {return i + val;}

}

class Test {
delegate int Calc(int i);
static int Double(int i) {return 2 * i;}
public static void Main() {

int x;
Calc a = new Calc(Double); x = a(7);
Foo f = new Foo(5);
Calc c = new Calc(f.Inc); x = c(7);

}
}

We define a delegate called Calc – it takes a single int argument and returns an int. Then we invent a
couple of methods with that same signature – a static method called Double and an instance method on a
class Foo called Inc.

To use the delegate, we create an instance (called a) and attach it to the static method Double. We then
invoke that method, giving it the argument 7, via our delegate.
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Similarly, we create an instance of Foo, create another delegate instance (called b), and attach it to the
instance method f.Inc. And again, we call Inc via our delegate.

Notice that we can attach our delegate to any old method we can access! – just so long as its signature
matches that of our delegate. But unlike the use of function pointers in unmanaged code, the delegate
technique ensures our code can be verified as type-safe.

In this example, we have called the delegate in a synchronous fashion – that’s to say, we call the method
via the delegate, that method executes, and control then returns to the caller. But it’s possible to define
delegates to provide asynchronous calls too – that’s to say, one thread calls the delegate and continues
execution; the target method executes asynchronously (by a different thread) and informs the caller later,
when it’s finished its work.

With this introduction to delegates over, the following sections discuss how delegates are declared,
created and used.

10.5.1 Declaring Delegates

Delegates are reference types, and are declared in form of Classes. All delegates must inherit from
System.Delegate. Delegates may not have subclasses, and so must be declared sealed. The only
kind of members a Delegates may have are methods – they are not allowed to have fields, properties or
events.

All Delegates must declare either two or four methods:

1. An instance constructor

2. An Invoke method (virtual)

3. A BeginInvoke method (optional, virtual)

4. An EndInvoke method (if BeginInvoke is declared, virtual)

All methods must be declared runtime and managed (see 11.5.5). The methods must not provide a
body. The body will be automatically created by the CLI.

The constructor must take exactly two parameters. The first parameter is of type System.Object and
the second parameter is of type void*. The first argument is an instance of the class (or one of its
subclasses) that defines the target method. The reference encapsulates the environment of the method.
The second argument is a method pointer to the method to be called.

The Invoke method must have the same signature as the target method – ie, it must have the same
return type, the same parameter types, the same calling convention, and the same modifiers associated
with the return type or parameters. The Invoke method defines what methods this Delegate represents.

The BeginInvoke method must always have the return type System.IAsyncResult. It must take
the same parameters as Invoke, including all associated modifiers, with two additional parameters of
types System.AsyncCallback and System.Object. The BeginInvoke method has the same
calling convention as the Invoke method.

The EndInvoke method must always have the same return type as the Invoke method. It always
takes the BYREF subset of the Invoke signature, plus one additional parameter of type
System.IAsyncResult.

More information on BeginInvoke and EndInvoke and their parameters can be found in section
10.5.3.2.

Example:

The following example declares a Delegate used to call functions that take a single integer and return
void --

.class private sealed auto autochar StartStopEventHandler extends
[mscorlib]System.Delegate {

.method public hidebysig specialname rtspecialname void .ctor(class
System.Object object, void* 'method') runtime managed {}
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.method public hidebysig virtual void Invoke(int32 action) runtime
managed {}

.method public hidebysig newslot virtual class
[mscorlib]System.IAsyncResult BeginInvoke(int32 action, class
[mscorlib]System.AsyncCallback callback, class System.Object object)
runtime managed {}

.method public hidebysig newslot virtual void EndInvoke(class
[mscorlib]System.IAsyncResult result) runtime managed {}

}

10.5.2 Creating Delegates

Like any regular Class, Delegates need to be instantiated before they can be used to call a method.
Delegates are instantiated in the same way as other reference types (see section 7.3). The newobj
instruction is used and the constructor of the delegate is specified with this instruction.

First, a method that follows the declaration of the delegate must be defined. This method is declared the
same way as the Invoke method of the delegate, except it may have a different name, a different
accessibility and may be static, instance or virtual.

The two parameters required by the constructor of the delegate need to be loaded onto the stack before
the newobj instruction is executed. Recall that the constructor takes a parameter of type
System.Object and another one of type void*.

If the method to be abstracted by the delegate is a static method, then the first argument to the
constructor has to be null (null is loaded with the instruction ldnull, see section 18.5). If the method is
an instance or virtual method, the first argument has to be a reference to the object that represents
the environment in which the method shall be called, i.e. the instance that is passed as the first argument
to the method.

The second argument to the constructor is a managed pointer to the method. A method pointer may be
obtained with the ldftn or ldvirtftn instruction (see section 10.4).

Example:

Suppose the delegate given in the example in section 10.5.2 is declared. Then the following method
would follow the declaration of the delegate:

.method public void onStartStop(int32 action) {

// body

}

The code below creates and instance of the delegate for the method above.

ldarg.0 // load this instance as environment for method

ldftn instance void Counter::onStartStop(int32) // load method pointer

// the next line creates an instance of the delegate

newobj instance void StartStopEventHandler::.ctor(class System.Object,
void*)

// instance of delegate on stack

10.5.3 Using Delegates

As explained earlier, there are two ways to ‘call’ delegates: synchronously or asynchronously. For each
delegate call, you must select synchronous or asynchronous.

10.5.3.1 Synchronous Calls

The synchronous mode of calling delegates corresponds to regular method calls. When a delegate call
is made, the caller blocks until the called method returns. The called method is executed on the same
thread as the caller.

To make a synchronous call the Invoke method of the delegate has to be used. Since the Invoke
method is a virtual method, it needs to be called using the callvirt instruction (see section 11.4).
The callvirt instruction requires that first an instance of the delegate is loaded onto the stack and
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then all arguments of the Invoke method. If the method has a return value, it will be available on
the stack after the call.

Example:

Continuing the example introduced in section 10.5.1, the following shows how the Invoke method of
delegates is used:

ldloc startStopEventHandler // load the delegate instance

ldloc state // load the argument

callvirt instance void StartStopEventHandler::Invoke(int32)

10.5.3 .2 Asynchronous Calls

In the asynchronous mode, the call is dispatched, and the caller continues execution, without waiting
for the method to return. The called method will be executed on a separate thread. There is no control
over when the called method complete – the exact timing is determined by the thread scheduler.

Note: if the caller thread termintates before the callee completes, the callee thread will throw an
exception. A thread that invokes an asynchronous call should not terminate until the call returns.

Note that the callee may throw exceptions. If such an exception is not caught by the callee, it is
handed back to the caller.

To call delegates asynchronously, the BeginInvoke and EndInvoke methods are used.

10.5.3 .2 .1 The BeginInvoke Method

The asynchronous call is done using the BeginInvoke method of the delegate. The
BeginInvoke method will enqueue request to execute the target method, and return control
immediately to the caller. (there is no control over when that target method will be executed – it’s
a function of the thread scheduler, other requests enqueued, possible thread pooling, etc)

The BeginInvoke method is very similar to the Invoke method (10.5.3.1), but has three
differences:

1. It has an additional parameter of type System.AsyncCallback

2. It has an additional parameter of type System.Object

3. The return type of the method is System.IAsyncResult

The BeginInvoke method has the same calling convention as the Invoke method. The two
additional parameters appear after the parameters that the BeginInvoke method has in common,
including their modifiers, with the Invoke method.

Once the call is made, the caller usually wants to know when the called method returns. This is
especially important when the called method has a return value. This problem is traditionally
solved with callback methods. A callback method is a method that is called when a certain
asynchronous event occurs. In this case, the callback method is called when the delegate method
returns. In order to call the callback method, a pointer to the method is needed. This is a typical
case when the use of delegates is appropriate. Rather than passing a type unsafe pointer to the
outside, the caller of the delegate method may instantiate yet another delegate that encapsulates the
call to the callback method. In this particular case, the delegate is an instance of the delegate type
System.AsyncCallback.

The caller needs to define a method that follows the declaration of System.AsyncCallback.
The Invoke method of System.AsyncCallback has no return values and has one parameter
of type System.IAsyncResult. The method defined by the caller needs to follow exactly this
declaration.

Once the callback method is defined, the System.AsyncCallback delegate can be created in
exactly the same way as described in section 10.5.2.

The second additional parameter of the BeginInvoke method is of type System.Object. The
argument passed in for this parameter must be a reference to the calling object.
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The return value of the BeginInvoke method is of type System.IAsyncResult. Usually,
this return value may be ignored, but it may be useful in special circumstances. The interface
defines a number of properties, including a wait handle that can be used to suspend the current
thread until the called thread returns. Further, it has properties to query the state of the call, i.e.
whether completed or not, and the object that is executed asynchronously, which in this case is the
delegate of the called method.

Note: If the delegate accepts out parameters (& or * pointers to variables passed in as
arguments), the variable to which the pointers refer to will be asynchronously updated by the
called method. Any objects shared with the called method by references may asynchronously
change their state. Beware of possible deadlocks in the latter case if the object has
synchronized methods.

Example:

The following method follows the declaration of the System.AsyncCallback delegate:

.method private hidebysig instance void callback(class
[mscorlib]System.IAsyncResult result) {

// body

}

The following piece of code executes an asynchronous call continuing the example of
section 10.5.1:

ldloc startStopEventHandler // load the delegate

ldloc state // load the argument to the method

// the next three instruction create the AsyncCallback delegate

ldloc caller // load reference to caller

// load method pointer to callback method

ldftn instance void StartStopButton::callback(class
[mscorlib]System.IAsyncResult result)

// create the AsyncCallback delegate

newobj instance void [mscorlib]System.AsyncCallback::.ctor(class
System.Object, int32)

ldloc caller // load the caller for BeginInvoke
method

// make the asynchronous call

callvirt instance class [mscorlib]System.IAsyncResult
StartStopEventHandler::BeginInvoke(int32, class
[mscorlib]System.AsyncCallback callback, class System.Object
object)

pop // ignore the IAsyncResult

10.5.3 .2 .2 The EndInvoke Method

When the method called via the delegate returns, the caller is notified through its callback method.
The caller does not need to implement any logic in the callback method, but typically for delegate
calls with return value, the caller may be interested in this return value.

The return value of the method called through the delegate may be obtained by calling
EndInvoke. The name is a little bit misleading. When EndInvoke is called, the called method
already completed. It is only used to obtain the return value.

Note: If the delegate has out parameters, these parameters were already asynchronously updated
at the time EndInvoke is called.

Recall that the EndInvoke method expects one parameter of type System.IAsyncResult.
The callback method receives an argument of the same type. In fact, the argument of the callback
method may be passed on to the EndInvoke method.

However, since the EndInvoke method is a virtual method, it also has a hidden argument that
expects a reference to the delegate that represented the called method. The argument passed to the
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callback function contains a reference to this delegate. It is stored in the AsyncObject property
of the argument. This property has type System.Object. Thus, it will be necessary to do an
explicit cast to the correct delegate after the value of the property is retrieved.

The EndInvoke method has the same return type as the method represented by the delegate. The
EndInvoke method will leave the return value of the method on the stack when it returns.

The EndInvoke method does not need to be called if the delegate method has no return value. In
this case, the EndInvoke will also have no return value.

Example:

This example retrieves the return value from the delegate call of the example in section 10.5.3.2.1:

ldarg asyncResult // the argument passed to callback
method

// obtain the AsyncObject

callvirt class System.Object
[mscorlib]System.IAsyncResult::get_AsyncObject()

// cast the AsyncObject to the used delegate type

castclass StartStopEventHandler

ldarg asyncResult // also needed by EndInvoke

callvirt instance int32 StartStopEventHandler::EndInvoke(class
[mscorlib]System.IAsyncResult result)

// return value on stack

10.5.4 Mult icast Delegates

The delegates discussed so far are called single cast delegates, since they only abstract one method.
However, in some cases it may be desirable to abstract a set of methods with the same signature and
trigger a call to all these methods at the same time. Delegates that represent more than one method are
called multicast delegates.

To create a multicast delegate, two or more delegates need to be combined. This is done using the
Combine method that combines either two delegates or an array of delegates. The Combine delegate
accepts both single and multicast delegates as arguments. The rules are applied recursively if multicast
delegates are combined.

Only delegates which are subclasses of System.MulticastDelegate may be combined.
System.MulticastDelegate is a subclass of System.Delegate. The Combine method will
throw a System.MulticastNotSupportedException for attempts to combine subclasses of
System.Delegate. Notice, that despite this fact the Combine method is defined in the class
System.Delegate.

Only delegates of the same type may be combined. If the delegates do not have the same type, the
Combine method will throw a System.ArgumentException.

The Combine method returns a new multicast delegate that represents the combined delegates.

When a multicast delegate is invoked, each delegate that was added with the Combine method will be
invoked. The order of invocation corresponds to the order in which the single delegates were added.
The methods represented by the first argument of the Combine method will be called first. If an array
was passed to the Combine method, the first array element will be invoked first.

Delegates that are combined typically have no return values, but may have a return value. If they have a
return value, only the return value of the last delegate added to the multicast delegate will be returned.
All other return values will be discarded.

A particular delegate may be added multiple times to a multicast delegate. If the same delegate is added
several times to a multicast delegate, it is called as many times it is added, using the order in which it
was added compared to other method.

If an asynchronous call needs to be made to the delegate, the delegate must have a void return type.
Further, the delegate must be marked with the custom attribute
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System.Runtime.Remoting.OneWayAttribute. This attribute specifies that the caller is not
interested in the return value of the method.

If a method represented by one of the delegates inside the multicast delegate throws an uncaught
exception, no further calls will be made. The process will be terminated at the point where the exception
was thrown.

A delegate may be removed from a multicast delegate by calling the Remove method. The Remove
method accepts a multicast delegate as its first argument and a delegate as its second argument. It
returns a new multicast delegate that does not contain the second argument. The original multicast
delegate passed in as the first argument remains unmodified.

An interesting question arises about the order in which delegates that were added multiple times to the
multicast delegate are removed. The Remove method removes the delegates in the opposite order they
were added. E.g., if a particular delegate was added multiple times to a multicast delegate, the last
version will be removed first.

Example:

The following declares a multicast delegate:

.class private sealed auto autochar StartStopEventHandler extends
[mscorlib]System.MulticastDelegate {

// insert the body of the delegate here

}

The following shows how delegates are combined:

ldloc handler1 // some StartStopEventHandler delegate

ldloc handler2 // some other StartStopEventHandler delegate

call class [mscorlib]System.Delegate
[mscorlib]System.Delegate::Combine(class [mscorlib]System.Delegate,
class [mscorlib]System.Delegate)

// mutlicast delegate is on stack

10.5.5 Other Methods of Delegates

In addition to the methods discussed above, the System.Delegate and
System.MulticastDelegate classes have a number of other functions. A detailed description of
these functions can be found in the Base Class Library documentation.

It should be pointed out that the System.Delegate class implements the interfaces
System.Runtime.ISerializable and System.IClonable and thus supports serialization
and cloning.

11 Methods
Methods implement the behavior of types. They contain the CIL instructions executed by the execution
engine (EE).

One of the most important features of the CLI is that it offers various services to support the execution of a
method. Code that makes use of these services is called managed code. Managed code provides enough
information to allow the CLI to provide a set of core services, which include

• Given an address inside the code of a method, locating the metadata describing the method

• Walking the stack

• Handling exceptions

• Storing and retrieving security information

Only managed code may access managed data. To produce verifiable CIL code a compiler must produce
managed code.

Code written for the CLI will be managed code. However, it is also possible to make calls to unmanaged
methods from managed methods.
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Methods may be defined at the global level as well as inside classes:

<decl> ::= Section

.method <methodHead> { <methodBodyItem>* }

| … 4.2

<classMember> ::= Section

.method <methodHead> { <methodBodyItem>* }

| … 7.5

The CLI distinguishes between three kinds of methods:

• static methods (section 11.3.1)

• instance methods (section 11.3.2)

• virtual methods (section 11.3.3)

The CLI has some special methods. These are the type initializers (.cctor) and instance constructors
(.ctor) of types. The type initializers are called automatically by the runtime before a type is used (see
section 7.6.7). Instance constructors are called when an instance of a class is created (section 7.6.5). In some
cases, like value types, instance constructors can be called explicitly (see 9.2).

All methods have a common syntax as described in this chapter. A method definition consists of the keyword
.method, a method head, and the body surrounded by braces, which contains the actual instructions to be
executed.

<method> ::= .method <methodHead> { <methodBodyItem>* }

The following sections will give more details on these parts of a method definition. But first, the next section
will specify the various method descriptors used in the CLI.

11.1 Method Descriptors
The runtime distinguishes between MethodDecls, MethodDefs, MethodRefs, and MethodImpls; each of
them represented by tokens and describing methods.

A MethodDecl is simply the declaration of a method that contains all the information in the method head.
A MethodDecl contains enough information to specify a contract that a caller can use to interact with the
method. The MethodDecl specifies the name of the method, its parameters, return value, calling
convention, accessibility, method attributes, and implementation information. A MethodDecl also includes
a reference to the definition of the type that declares the method. MethodDecls are used in interfaces and
for the declaration of abstract methods in classes.

A MethodDef is the definition of a method. It contains the body of the method, which contains all of its
instructions, exception handlers, local variable information, and additional runtime or custom metadata
about the method. A MethodDef includes a MethodDecl.

A MethodRef is a reference to a MethodDecl. It is used when a method is called or a pointer to a method is
obtained. A MethodRef needs to be resolved into a MethodDef before the method is called. This can be
either done at compile time, if the method is defined in the same module, or at runtime, when the class
loader resolves all references. If a matching MethodDef cannot be found, the EE will throw a
System.MissingMethodException.

A MethodImpl associates a MethodDecl with a MethodDef. It consists of two MethodRefs, the first of
which specifies the MethodDecl to be implemented and the second specifies the implementing method.
The MethodRefs will be resolved by the loader. A MethodImpl may be used to specify that a particular
MethodDecl from an implemented interface is defined by a particular MethodDef of the implementing
class. A MethodImpl can also be used to specify the definition of an abstract method, or to specify that
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a particular method overrides another MethodDef. In any case, the signatures of the implemented and
implementing method must match, which means that except their name and declaring type the signatures
must be the same.

11.2 Method Signatures
The signature of a method is the part of a method declaration that uniquely identifies that method. A
signature includes the following information:

• The name of the method

• The type that declares the method

• The calling convention of the method

• The return type of the method, including any modreq or modopt specifications

• The types of the parameters of the method in the order in which they are declared, including any
modreq or modopt specifications

To reference a method, all of the information above must be present. Two methods may not have the same
value for all items in the list. They must differ in at least one item.

If in two method declarations the first two items are the same, i.e. they have the same name and are
declared in the same class, the methods are said to overload each other. Two methods also overload each
other if they have the same name but are declared in different types, as long as one of the types is a
subtype of the other. Note that unlike in many higher level languages the return type of the method belongs
to this list. Thus in the CLI, it is possible to overload a method with a different return type.

11.3 Types of methods
As already pointed out, the CLI supports static, instance and virtual methods. These kinds of
methods are described in the following sections.

11.3.1 Stat ic Methods

static methods are methods that are associated with a type, but not with its instances. static methods
are similar to procedures in procedural languages.

static methods may be defined in classes, value types, interfaces, and at the global level. In fact, all
global methods must be declared as static methods. static methods must always have a body
associated with them. static methods are referenced using a type reference to the type in which they
are declared.

11.3.2 Instance Methods

In contrast to static methods, instance methods are associated with an instance of a type. It
follows that instance methods may only be defined in classes or value types. In version 1 of the CLI
they may not be defined inside interfaces.

While static methods only represent stand-alone behavior, instance methods have behavior that is
associated with an environment of data that exists beyond the duration of the method call. The same
environment may be re-used with the same method or another method that expects an instance of a
compatible type.

instance methods accept a this pointer that has the same type as the type that declares the method
and thus requires that an instance of that type or one of its subtypes must be created in order to be able
to call the method. The instance referenced by the this pointer represents the environment in which the
method is called. The this pointer is not included in the signature, but it is automatically added to the
signature of a method as the first parameter. However, when an instance method is called, an
instance of the class must be passed to the method explicitly as the first argument, even though this
argument is not apparent from the signature.

Even though usually not practiced, the this pointer may be a null reference. Thus, instance and
virtual methods must be prepared to handle the possibility that the first argument is null.
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As an exception to the above, an explicit calling convention allows the explicit use of the this pointer
in the signature (see 11.4.1).

For classes, the this pointer is a reference to an instance of the class, while for value types the this
pointer is a managed pointer to the value type.

Note: Unlike static or virtual, instance is not a method attribute but part of the calling
convention (see 11.4.1) of a method.

11.3.3 Virtual Methods

Similar to instance methods, virtual methods are associated with an instance of a class.
However, unlike instance methods, the implementation of the method is not fixed. The MethodDef
that implements a virtual method can be determined dynamically at runtime. virtual methods may
be called with two instructions, call (see 11.4.3) and callvirt (see 11.4.4).

When the call instruction is used, virtual methods behave like instance methods. However, when
the callvirt instruction is used, the notion of subclassing comes into play. A subclass may override a
virtual method of its superclass, providing a new definition of the method. A callvirt to the method
of the parent will result in a call to the new method, as long as an instance of the subclass is used.
Since the subclass is a subtype of the original class, the declared types used in the code does not need to
be changed. This allows significant modification of behavior with little changes to the code.

The method attribute newslot causes the runtime not to override the virtual method definition of
the superclass with the new definition, but to treat the new definition as an independent virtual
method definition. The first declaration of a virtual method in a class hierarchy should be marked
newslot. More about newslot can be found in section 11.5.4.3.

Similar to instance methods, the this pointer must be passed to virtual methods, too.

11.3.3 .1 Virtual Method Interop

Some languages, like C++, have more complicated inheritance rules. For these languages, the
implementation of virtual methods in the CLI is not sufficient. Rather than using the
implementation of the runtime, these languages may explicitly emit code to implement their own
algorithm to call virtual methods.

The CLI has some support for these languages. It provides the .vtfixup directive (discussed in
section 7.8.2) that declares a block of memory to contain a table in which method definition tokens
may be inserted. After the methods are loaded into memory, the runtime will automatically convert
the entries in the table into method pointers. Thus, compilers may emit code to obtain the addresses
of specific methods at runtime. These addresses may be used to call the appropriate method.

Even though intended to allow virtual method interop, the .vtfixup directive can also be used to
declare other tables in which MethodRefs need to be converted into method pointers.

11.4 Method Calls
The following subsections discuss in detail the various forms of method calls. This section gives a brief
overview.

There are three call instructions to make a method call:

• call 

• callvirt 

• calli 

There are two additional instruction that call methods in a special way:

• jmp 

• newobj 

Every method has its own evaluation stack, which is called just stack for short in this document. Data is
loaded onto this stack and instructions take their arguments from the stack. The result of evaluating an
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expression can be found on the stack after the appropriate instruction has executed. The runtime
automatically creates and maintains this stack when a method is called. When a method exits, the stack is
automatically released.

In addition to the evaluation stack there is also a call stack that keeps track of the method calls and is also
maintained by the runtime.

A method usually returns to the caller using the ret instruction. If the method has a return value, it must
be on the stack when the ret instruction is executed. The stack may not contain any value other than the
return value when a ret is executed.

The CLI supports exception handling (see section 15). As a consequence, a method may exit also by
throwing an exception.

The CLI does support tail calls, which can be found primarily in functional programming languages. A tail
call is done using the prefix instruction tail. with any of the three call instructions above. More about tail
calls can be found in section 11.4.6.

In a normal (non-tail) call, the current stack frame is kept intact and a new frame is allocated for the called
method. For a tail call, on the other hand, the current frame is replaced with a frame for the called
procedure.

The CLI also supports various kinds of calls as discussed in the next sections.

11.4.1 Call ing Convention

A calling convention specifies how a method expects its arguments to be loaded onto the stack.

A calling convention includes a call kind (see section 11.4.2). In addition it has the optional keywords
instance or instance explicit, which have to do with the this parameter.

<callConv> ::= [instance [explicit]] [<callKind>]

By default, the method call will be treated as a call to a static method. If instance is specified, the
method call will be treated as a method call that accepts a this pointer as its first argument.

explicit applies only to instance methods. If explicit is specified, the this pointer is included
explicitly in the method signature. This is typically used in the declaration of method pointers in
connection with the calli instruction. explicit is not generally used with the call or callvirt
instruction, except when interoperating with unmanaged code.

Example:

Suppose a method is defined in class Bar and takes a single parameter of type int32. The following
type declaration of a variable of type method pointer uses an explicit signature:

method instance explicit void * (class Bar, int32)

Bar appears explicitly in the signature and specifies the this pointer type.

11.4.2 Call Kinds

The CLI supports various kinds of method calls as part of the calling convention (see section 11.4.1) .
The two managed kinds of calls are default and vararg. As the name implies, default is the call
kind used by default by the CLI. vararg specifies that the method accepts a variable number of
arguments and thus needs to be called in a special way. More information about calling vararg
methods can be found in section 11.4.9. Defining vararg method is covered in section 11.5.7.

The unmanaged kinds of calls are primarily intended to support languages which are similar to C++ and
cannot produce managed methods for arbitrary code permitted by the language. These calling
conventions are specific to Microsoft Windows and are generally needed to call methods of unmanaged
DLLs.

There are four unmanaged call kinds:

• unmanaged cdecl is the calling convention used by standard C
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• unmanaged stdcall specifies a standard C++ call

• unmanaged fastcall is a special optimized C++ calling convention

• unmanaged thiscall is a C++ call that passes a this pointer to the method

The following grammar summarizes the call kinds.

<callKind> ::=

default

| unmanaged cdecl

| unmanaged fastcall

| unmanaged stdcall

| unmanaged thiscall

| vararg

11.4.3 The call Instruction

static and instance methods are called using the call instruction. The call instruction may also be
used to call virtual methods. However, there is also another instruction for virtual methods which is
discussed in section 11.4.4. The call instruction takes a MethodRef as part of the instruction and
expects the arguments of the method on the stack. The first argument is pushed first onto the stack.

The only two differences between a call to a static and a call to an instance method is the use of
the keyword instance in the call convention and that the first argument must be the this pointer when
instance methods are called.

The general syntax for a call instruction is as follows:

call <callConv> <type> [<typeSpec>::]<methodName>( <parameters> )

The <typeSpec> specifies the type that declares the method. If it is missing, then the type in which the
method call is made is assumed. The use of <typeSpec> is recommended in all cases.

For static methods the syntax simply becomes:

call <callKind> <type> [<typeSpec>::]<methodName>( <parameters> )

And for instance methods the syntax becomes:

call instance <callKind> <type> [<typeSpec>::]<methodName>(

<parameters> )

To resolve the MethodRef of a call instruction the EE searches for a MethodDef that matches the
MethodRef. The EE starts in the type referenced by the MethodRef. If the method cannot be found in
this type, then the EE will go up step by step the hierarchy of superclasses until a match is found. E.g.,
if a MethodRef specifies a particular type in its <typeSpec> and this type does not provide a MethodDef
for the MethodRef, then its superclass is searched. This continues until System.Object has been
queried. Only then the EE will throw a System.MissingMethodException.

Example:

The following is a call to a static method:

call void [mscorlib]System.GC::RequestFinalizeOnShutdown()

The following is a call to an instance method:

ldloc timer // load the this pointer (argument #0)

ldloc timerEventHandler // load argument #1
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call instance void [System.Timers]System.Timers.Timer::add_Tick(class
[mscorlib]System.EventHandler)

Notice that the this pointer is not apparent from the signature of the method.

11.4.4 The callvirt Instruction

Since a call to virtual methods involves a runtime resolution of the MethodRef, there is a special
instruction to call virtual methods, callvirt. Even though the call instruction may be used with
virtual methods, only the callvirt instruction will consider overridden versions of the method.

Since virtual methods always expect a this pointer as the first parameter, the call convention must
always include the keyword instance. The this pointer passed to a virtual method with a callvirt
instruction cannot be null. (It may be null if a call instruction was used.) Thus, programmers of a
virtual method must be prepared to get a null value for the first argument.

The callvirt instruction has the same syntax as the call instruction for instance methods:

callvirt instance <callKind> <type> [<typeSpec>::]<methodName>(

<parameters> )

Example:

The following code makes a call to a virtual method:

ldarg.0 // load this pointer

callvirt instance void Counter::HandleTick()

11.4.4 .1 Super Calls

In some cases, it may be desirable to re-use code defined in the superclass. E.g., an overriding
virtual method may want to call its previous version. This kind of re-use is called a super call,
since the overridden method of the superclass is called. However, there is a problem. The callvirt
instruction will consider overridden versions of the method, such that a callvirt to the method of
the superclass will either result in a call to this method, causing an infinite recursion, or if the method
was overridden by subclasses and the this pointer passed to the method is an instance of one of the
subclasses, then an overridden version of the method depending on the exact type of this pointer will
be called. However, the method wants to call exactly the version of the superclass. It turns out, that
in this case the virtual method must be called with the call instruction and treated like an
instance method.

Even though not a necessity, it is strongly recommended that the super call is made to the immediate
superclass of the virtual method. As described in section 11.4.3 the call instruction will
automatically search the hierarchy until an appropriate MethodDef is found. It is important that the
call is made to the immediate super class, because this will enable a class to support newer versions
of its super class. E.g., the superclass may add or remove the appropriate MethodDef, without
breaking the implementation of the subclass.

Example:

The following is a super call to a virtual method (embedded in method of a class):

.class public auto autochar BeepingCounter extends Counter {

.method virtual family void HandleTick() CIL managed {

ldarg.0 // load the this pointer

// call version in superclass

call instance void Counter::HandleTick()

}

}

11.4.5 Indirect Calls

A method may also be called using a pointer to the method with the calli instruction. In addition to the
arguments, the calli instruction expects a method pointer at the top of the stack. A method pointer to
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any kind of method can be loaded with the ldftn instruction, while method pointers to virtual
methods can also be loaded with the ldvirtftn instruction, which will consider overloaded versions of
the virtual method. More about method pointers can be found in section 10.4.

The syntax for calli does not include the method name:

calli <callConv> <type> ( <parameters> )

Example:

The following is an indirect call to a virtual method:

ldarg.0 // load the this pointer

ldvirtftn instance void Counter::HandleTick()

calli instance void ()

11.4.6 Tail Calls

Normally calls return to the caller when the called method is done. Tail calls, however, do not return to
the caller. They effectively continue with the called method.

Non-tail calls, since they return to the caller, need to save who the caller is. This takes memory on the
stack and may limit the depth of a recursion.

In contrast, tail calls do not need to save any return information on the stack. This gives recursions the
possibility to continue practically forever without causing a stack overflow and may have significant
performance advantages. In particular, tail calls may be used to efficiently implement various looping
constructs.

The CLI has support for tail calls which may be marked with the prefix instruction tail.. tail. must be
followed by one of the call instructions. Since in some cases, as explained below, the runtime may
ignore a tail call, the ret instruction is required after the call instruction of a tail call. This will
guarantee that the control flow of the method will always be the same independent of whether a tail or
non-tail call was executed. If a tail call is executed, the ret instruction is ignored.

Methods called with a tail call may accept parameters like any other method and they may return a
value.

Tail calls may only be used if the following conditions are met:

1. When the call instruction is executed, the stack may only contain the arguments of the called
method and for the calli instruction a method pointer.

2. The return type of the called method must be the same or a subtype of the return type of the
caller.

3. The caller may not pass the address of an argument or a local variable to the called method.

4. The call is not made from a protected block (try block) or from a handler of a protected block.
The CLI does not support exception handling for tail calls.

If the four rules above are met, a tail. prefix may be used in front of the call. However, this does not
guarantee that a tail call will actually be performed. In general, tail calls cannot be done if the calling
method must do work to exit. In such a case, the runtime reserves the right to ignore the tail. prefix.
The following lists the two additional conditions that must be met in order for a tail call to be actually
executed:

1. The called method is a managed method and contains save CIL as determined by runtime
security checks.

2. The calling method must not be a synchronized method.

If the above conditions are not met, the CLI will ignore the tail. prefix and execute a regular call.
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The tail call behaves like a jump from one method to another. The EE will release the stack of the
current method and create a new one for the called method. If a value is returned, the value will be
directly returned to the original caller of the method making the tail call.

Compilers are recommended to emit the tail. prefix whenever it can be determined that a tail call is
appropriate.

Example:

The following example shows a program that calculates the factorial of a number using tail calls. It does
not require the use of the call stack.

/* num is the number for which the fact shall be computed (see also
previous examples), result must be one, the return value is the final
result */

.method static public int64 fact(int64 num, int64 result) {

.maxstack 3

ldarg num

ldc.i8 0

bgt compute

ldarg result // base case

ret

compute: // recursion

ldarg num // calculate new number

ldc.i8 1

sub

ldarg result // calculate result for this iteration

ldarg num

mul

tail. // make the call

call int64 fact(int64, int64)

ret

}

11.4.7 jmp

The jmp instruction executes a jump across methods. A method may jump only to the beginning of a
method and only to a method that has the same signature as the original method (including parameter
types, return type and calling convention)

The jmp instruction is not verifiable. The jmp instruction is a special case of a tail call. It transfers
control to a method that accepts the same parameters and has the same arguments as the caller.

Unlike in a call instruction, the jmp instruction passes the arguments of the current method to the next
method. Thus, the arguments may not be loaded explicitly. If the arguments were mutated before the
instruction is executed, the new values will be used. The arguments may be modified using the starg
instruction (see section 18.4).

Similar to tail calls, if the method has a return value, the return value of the called method will be
returned to the original caller.

Methods called with a jmp instruction are subject to even stronger restrictions than tail calls:

1. When the jmp is executed, the stack must be empty.

2. The caller must have the same signature as the called method. (In a future version, we might
relax this to allow covariance)

3. The jmp may not be executed in a protected block or a handler block. There is no exception
support for the jmp instruction.
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In addition, to guarantee correct execution of code, the following restrictions should be followed:

1. The called method should contain code that is trusted by the security policy.

2. The caller should not be a synchronized method.

Example:

The following examples call the factorial method given in example 11.4.6.

.method private static int64 MyJmp(int64, int64) CIL managed {

// do not load any arguments

jmp int64 fact(int64, int64)

}

11.4.8 Call ing Instance Constructors

Even though instance constructors (see also section 7.6.5) may be called directly, they are usually called
with the newobj instruction.

The newobj instruction is used to instantiate a class. It creates a new object, but also calls the
constructor of a class, which is a special instance method. Thus, the newobj instruction is very
similar to an instance method call. The major difference is that no instance is passed to the
constructor. Only its parameters as they are visible in the signature need to be passed to the constructor.
The instance is automatically created by the runtime and passed to the constructor, such that the
argument at index zero still ends up to be the this pointer.

More information about the newobj instruction can be found in section 7.3.

Example:

ldloc button

ldloc count

newobj instance void [.module Counter.dll]BeepingCounter::.ctor(class
[.module Counter.dll]StartStopEventSource, class [.module
Counter.dll]Count)

// reference on stack

11.4.9 Call ing vararg Methods

This section explains how vararg methods are called. Defining vararg methods is covered in
section 11.5.7.

Since vararg is a calling convention, and thus part of the signature of the method, it must be specified
also in the call. If a particular call includes no optional arguments, you specify the signature exactly the
same as in its definition (specifically, do not include any ellipsis) . Conversely, if a particular call
includes optional arguments, insert an ellipsis into the signature after the fixed parameters, followed by
the additional parameter types for this call.

When the method is called, all the additional arguments must be on the stack.

Example:

The following example calls a static vararg method that takes one required integer. The definition
of the vararg method can be found in section 11.5.7.

ldc.i4.1 // required

ldc.i4.2 // these are all optional

ldstr "Hello vararg"

ldc.r8 1.1

call vararg void MyMethod(int32,...,int32,class System.String,float64)

11.5 Defining Methods
11.5.1 Method Head

The method head contains important information for the identification and correct handling of a method
by the runtime. The head of a method also functions as an interface to other methods.
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The method head consists of

• any number of predefined method attributes (section 11.5.4)

• an optional indication that this method is an instance method

• an optional description of the kind of call to use

• a return type with optional attributes (section 11.2)

• optional marshalling information (see also section 5.7)

• a method name

• a signature in brackets

• and any number of implementation attributes (section 11.5.4.4)

as also shown by the following syntax rule:

<methodHead> ::=

<methAttr>* [<callConv>] [<paramAttr>*] <type> [marshal (

[<nativeType>] )] <methodName> ( <parameters> ) <implAttr>*

Methods not marked as static or virtual are instance methods. Even though not necessary, the
instance keyword may be used in the signature after the attributes. With the call kind together this is
shown as a call convention in the above grammar. However, note that the keyword explicit has no
meaning in a method declaration.

In the CLI, there are no attributes that can be used with the return type. However, future versions may
have return type attributes, which is reflected in the grammar. Existing parameter attributes should not
be used with the return type.

Methods that do not have a return value must use the keyword void as the return type.

Example:

The following declares a virtual method in a class:

.class public auto autochar Counter extends [mscorlib]System.Object {

.method virtual newslot hidebysig family instance void HandleTick()
synchronized CIL managed {

/* insert instructions and directives here */

}

}

11.5.1 .1 Method Name

Most method names are a <dottedname>. The exception are constructors because they would
otherwise require quotation marks. Instance constructors of a type always have the name .ctor,
while static (class) constructors of a type always have the name .cctor.

<methodName> ::=

.cctor

| .ctor

| <dottedname>

11.5.2 Method Parameters

Method parameters let the method accept information from the caller. Method parameters are type safe
and force the caller to pass the required information to the called method. The contract between caller
and called method specified through method parameters is enforced by the EE.

When a method is called, the caller must pass an argument for each required parameter of the method.
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Method parameters are specified in parentheses after the method name and specify the types of all
parameters to the method.

As shown by the following grammar, a method parameter declaration consists of any number of
parameters:

<parameters> ::= [<param> [, <param>]*]

An individual parameter must either be the special token “…” or have a defined type and optionally
have additional information.

<param> ::=

...

| [<paramAttr>*] <type> [marshal ( [<nativeType>] )] [<id>]

The <id>, if present, is the name of the parameter. A parameter may be referenced either by using its
name or the zero based index of the paramter.

The special value “. . .” can only occur once in a parameter declaration and it must be the last
parameter.

The parameter attributes specify special handling of certain parameters:

<paramAttr> ::=

[in]

| [lcid]

| [opt]

| [out]

| [retval]

None of the parameter attributes is part of the method signature. Methods that have the same declaration
but with different parameter attributes are considered to be duplicate method declarations (which is
invalid CIL).

in and out specify whether a managed reference or pointer parameter is used to supply input to the
method, return a value from the method, or both. If neither is specified in is assumed.

Note: These attributes are used by Interop marshalling code: for example, if a parameter is marked both
pdIn and pdOut, then its value is marshalled to the callee, and its value is marshalled back to the caller
(else, pinned and referenced as an optimization)

retval should only appear on one parameter of a method, and that parameter must be a pointer type. It
is used only on interfaces that are being exposed to unmanaged COM clients, and is the parameter
through which the CLI return value will be made visible to those clients.

opt indicates that this parameter is optional.

Note: The opt parameter attribute is for documentation purposes only. Compilers may mark a
parameter with opt such that the compiler itself and other tools understand that the parameter is
optional. However, from the point of view of the runtime optional parameters are not at all optional,
they are treated the same way as required parameters. A corresponding argument must be provided in a
method call.

lcid indicates that this parameter provides the locale ID to unmanaged COM clients.

Examples:

A single input parameter of type int32:
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(int32 i)

A pair of parameters, with the first one an input parameter of type System.String and the second
one an in/out parameter with type managed pointer to int32:

(class System.String myString, [in][out]int32& ptrInt)

A parameter declaration that takes one required input parameter, one optional input parameter and then
any number of further parameters:

(int32 required, [opt]int32 optional, ...)

11.5.2.1 Method Parameters with Reflect ion

Signatures can be created using System.Reflection.Emit.SignatureHelper. They are
most easily accessed using the method GetParameters on
System.Reflection.MethodBase and GetIndexParameters on
System.Reflection.PropertyInfo.

The information about an individual parameter can be seen through a
System.Reflection.ParameterInfo and can be created using
System.Reflection.Emit.ParameterBuilder.

The attributes in <paramAttr>* can be found under CorParamAttr in CorHdr.h.

11.5.3 Method Body

The method body contains the instructions of a program. However, it may also contain labels, additional
syntactic forms and many directives that provide additional information to the assembler and are helpful
in the compilation of methods of some languages.

The following grammar shows the syntax for the body of a method and describes each item. More
information about some of the directives can be found in the following subsections.

<methodBodyItem> ::= Description Section

.custom <customDecl> Definition of custom
attributes.

17

| .data <datadecl> Emits data to the data section
of the method.

12.3

| .emitbyte <unsigned int8> Emits a byte to the code
section of the method.

11.5.3.1

| .entrypoint Specifies that this method is
the entry point to the
application (only one such
method is allowed).

11.5.3.2

| .locals [init] ( <localsSignature>

)

Defines a set of local
variables for this method.

11.5.3.3

| .maxstack <int32> int32 specifies the maximum
number of elements on the
evaluation stack during the
execution of the method

11.5.3

| .override <typeSpec>::<methodName> Sets this method definition as
the implementation for the
method specified in the
instruction.

7.6.3.1

| .param [ <int32> ] [= <fieldInit>] For parameter number
<int32>, stores the constant
defined by <fieldInit> as its
default value

11.5.3.4
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| .vtentry <int32> : <int32> .vtentry <entry> : <slot> 11.5.3.5

| .zeroinit Specifies that all local
variables are initialized to
zero in this method.

11.5.3

| <externSourceDecl> .line or #line 3.7

| <instr> An instruction 18.1

| <codeLabel> : A label 3.4

| <scopeBlock> See below 11.5.6

| <securityDecl> .permission or .capability 16

| <sehBlock> An exception block 15.1

The following sections describe some of the directives above in more detail.

11.5.3.1 .emitbyte

The .emitbyte directive emits an unsigned 8 bit value directly into the code section of the method.
The value is emitted at the position where the directive appears.

The .emtibyte directive can be used to emit the opcode of a certain instruction. However,
typically the .emitbyte directive is used to emit compiler specific data, which is not intended to be
executed by the execution engine. In the latter case, the compiler should also emit code to jump over
the emitted value. It should be considered whether it is necessary to emit data into the code section
rather than the data section. Emitting data into the data section is covered in section 12.3.

Examples:

The following code emits a breakpoint, which can also be done with the break instruction.

.emitbyte 1

The following example shows how custom data can be emitted into the code section.

// some code

br.s continue // jump over data

.emitbyte 123 // custom data

continue:

// some other code

11.5.3 .2 .entrypoint

The .entrypoint directive marks the current method as the entry point to an application. The
execution engine will call this method to start the application.

Every executable must have exactly one entry point method. This entry point method may be a global
method or may appear inside a type. However, it must be a static method.

The entry point method may either accept no arguments or may accept a vector of strings. If it
accepts a vector of strings, the strings inside the vector will represent the arguments to the
executable, with index 0 containing the first argument.

The return value of the entry point method must be either void, int32, or unsigned int32. If
an int32 or unsigned int32 is returned, the executable can return an exit code to the operating
system. A value of 0 indicates that the application terminated ordinarily. A non-zero return value may
indicate various abnormal termination conditions. This value may be queried by other applications.

Entry point methods may have any accessibility. The CLI will always have access to this method.

Example:

The following example prints the first argument and return successfully to the operating system:
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.method public static int32 MyEntry(class System.String[] s) CIL managed

{

.entrypoint

.maxstack 2

ldarg.0 // load an print the first argument

ldc.i4.0

ldelem.ref

call void [mscorlib]System.Console::WriteLine(class System.String)

ldc.i4.0 // return success

ret

}

11.5.3 .3 . locals

.locals is used to define local variables for this method. Local variables are variables that may only
be accessed by the method in which they are defined. They may be used to store data that is only
needed during a method call. Once the method returns, the local variable will be discarded. Memory
for local variables can be allocated faster than memory for fields.

The local variables of a method are described by a signature, although the syntax is slightly different
from that for methods, since it is not possible to specify attributes (in, out, etc.) or marshaling for
local variables.

A <localsSignature> is simply a comma separated list of one or more local variable descriptions.

<localsSignature> ::= <local> [, <local>]*

<local> ::= [[<int32>]] <type> [<id>]

The assembler allows nested local variable scopes to be provided and allows locals in nested scopes
to share the same location as those in the outer scope. The information about local names, scoping,
and overlapping of scoped locals is persisted to the PDB (debugger symbol) file rather than the PE
file itself.

The integer in brackets that precedes the <type>, if present, specifies the local number (starting with
0) being described. This allows nested locals to reuse the same location as a local in the outer scope.
It is not legal to overlap two local variables unless they have the same type. The identifier, if present,
is the name of the local within the current scope. When no explicit index is specified, the next unused
index is chosen. That is, two locals never share and index unless the index is given explicitly.

If init is specified, the variables are initialized to their default values according to their type.
Reference types are initialized to null and value types are zeroed out. The <localsSignature> (see
11.5.3.3) lists the local variables. Each local variable receives a zero based index that is unique
within the method.

Using init in a .locals directive has the same effect as using the .zeroinit directive at the
method level. Thus, if init is used, all local variables will be initialized to their default values, even
variables in another .locals directive in the same method, which does not have the init directive.

Example:

The following declares two local variables for the method:

.locals init (int32 myCount,

value class [System.Drawing]System.Drawing.Point point)

11.5.3.3 .1 Local Variables with Reflect ion

Information about local variables can be created using the
System.Reflection.Emit.LocalBuilder class.
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11.5.3 .4 .param

Stores a default value with method parameter number <int32>. The value is stored into metadata.
And that value may be interrogated when importing that metadata. But the CLI itself does not
retrieve the value or insert it automatically into method calls. We call it a default value, because that
is how compilers often use the feature – but the CLI attaches no meaning to the constant.

Note: Since it emits metadata, .param uses the indexing of the metadata engine. Index 0 specifies
the return value of the method. Index 1 is the first parameter of the method. This is different from
the index used in CIL instructions (eg ldarg), where 0 indicates the first argument for a method – not
its return value.

11.5.3.5 .vtentry

This directive is used within the body of a virtual method definition. It directs ILASM to insert the
token for this method into a specified slot in an unmanaged vtable. For example,

.vtentry 0 : 2

will insert this method’s token into slot number 2 of the 0th unmanaged vtable. This feature is used
by compilers who want to control their own virtual method dispatch (for example, in implementing
multiple inheritance). For a fuller description, see the section on .vtfixup (section 7.8.2).

11.5.4 Predefined Attributes on Methods

Predefined attributes of a method are attributes which provide important information for the caller of a
method. Predefined attributes of a method specify information about accessibility, contract information,
virtual method table information, implementation attributes, interoperation attributes, as well as
information on special handling.

In addition to predefined attributes, the CLI supports custom attributes which are described in further
detail in section 17.

The following subsections contain additional information on each group of predefined attributes of a
method.

<methAttr> ::= Description Section

abstract Specifies that the
method is an abstract
method.

11.5.4.4

| assembly Assembly accessibility 11.5.4.1

| famandassem Family and Assembly
accessibility

11.5.4.1

| family Family accessibility 11.5.4.1

| famorassem Family or Assembly
accessibility

11.5.4.1

| final Specifies that this
method cannot be
overridden by
subclasses.

11.5.4.2

| hidebysig Hide by signature.
Ignored by the runtime.

11.5.4.2

| newslot Specifies that this
method shall get a new
slot in the virtual
method table.

11.5.4.3

| pinvokeimpl ( <QSTRING> [as <QSTRING>]

<pinvAttr>* )

pinvokeimpl( <DLL
name> [as <alias>]

11.5.4.5
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<attribute>*)

| private Private accessibility 11.5.4.1

| privatescope Privatescope
accessibility.

11.5.4.1

| public Public accessibility. 11.5.4.1

| rtspecialname The method name
needs to be treated in a
special way by the
runtime.

11.5.4.6

| specialname The method name
needs to be treated in a
special way by some
tool.

11.5.4.4

| static Specifies that this
method is a static
method of a type.

11.5.4.2

| unmanagedexp Marks for exports to
unmanaged world.

11.5.4.5

| virtual Specifies that this
method is a virtual
method.

11.5.4.2

11.5.4 .1 Accessibil i ty Information

The accessibility attributes are assembly, famandassem, family, famorassem,
private, privatescope and public. These attributes are exclusive. If you do not specify an
accessibility for a method, then ILASM inserts one for you, depending upon the visibility of its
owner Type, as follows:

• global, private => privatescope

• global, public => public

• non-global, top-level, public => public

• non-global, top-level, private => private

• nested, XXX => XXX (where XXX is any of the above)

Accessibility attributes are described in section 6.3.

11.5.4.2 Method Contract Attributes

Method contract attributes are final, hidebysig, static, and virtual. These attributes may be
combined, except a method may not be static and virtual at the same time. Only virtual
methods may be final and abstract methods may not be final.

final methods may not be overridden by subclasses of this class. This makes sure the functionality
provided by the implementing class is not modified by other implementations.

hidebysig specifies that the declared method hides all methods of the parent classes that have a
matching method signature. Note that this attribute is ignored by the runtime. The runtime always
matches methods by signature. This attribute is intended to let compilers emit additional information,
that can be read by the same or other compilers or some other tools. If a compiler intends to hide
methods by signature, the hidebysig attribute should be emitted. Some languages use hide by
name, where only the name of the method must match for hiding purposes. These languages should
not emit hidebysig. If However, since the runtime still uses hiding by signature, compilers of
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these languages must emit explicit code to reference the intended methods. More about hiding can be
found in section 6.2.

You can define a method, including the keyword static.  When called, such a 
method does not expect an implicit this reference as its first argument.  Or, you 
can defined a method, including the virtual keyword.  (If neither static nor 
virtual is specified, the method is called an instance method).  Virtual or 
instance methods do expect an implicit this reference as their first argument.  Do 
not specify the contradictory combination virtual and static. 

11.5.4.3 Overriding Behavior

The only attribute in this group is newslot. newslot can only be used with virtual methods.

By default, a virtual method will override the implementation of a matching virtual method in
the superclass. This can be prevented by using the attribute newslot. If newslot is used, the
method will not override any method of the superclass.

Calls to the method of the superclasses of this method will be redirected to the implementation of the
superclass of this class. Calls to method in this class and its subclasses will be redirected to the new
implementation, or to an overriding version of one of the subclasses.

The attribute newslot should be used if a virtual method is declared for the first time in a class
hierarchy.

The implementation of the superclass may still be overridden by subclasses by using a MethodImpl
with an explicit reference to the implementation of the superclass.

11.5.4.4 Implementation Attributes

The two implementation attributes are abstract and specialname. abstract can only be used
with non-final virtual methods. These two attributes may be combined.

abstract specifies that the method is not provided and needs to be defined by a subclass.
abstract methods can only appear in abstract classes (see section 7.2).

specialname indicates that the name of this method has special meaning to some tools.

11.5.4.5 Interoperation Attributes

These attributes are for interoperation with Windows or classical COM applications. The attributes in
this category are pinvokeimpl and unmanagedexp. These two attributes may be combined.

pinvokeimpl instructs the runtime to use the platform invoke functionality to invoke an
unmanaged method in the specified DLL with the specified export name (see also section 11.6.1.1).

unmanagedexp marks this managed method as exported for use by unmanaged callers, via the
legacy Export Address Table in the PE image.

11.5.4.6 Other Attributes

The attribute rtspecialname indicates that the method name shall be treated in a special way by
the runtime. Examples of special names are .ctor (constructor) and .cctor (type initializer).

11.5.5 Implementation Attributes of Methods

Implementation attributes of a method are attributes that provide important additional information to the
runtime. They contain information about required special handling by the runtime or more information
on the code implemented by the method. Implementation attributes may also contain additional
information on interoperation with classical COM.

The following subsections contain additional information on each group of implementation attributes..

<implAttr> ::= Description Section

forwardref Specifies that the body of this method is
not specified with this declaration.

11.5.5.3
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| CIL Specifies that the method contains
standard CIL code.

11.5.5.1

| internalcall /* round trip

only */

Used only for disassembling purposes. 11.5.5.3

| managed Specifies that the method is a managed
method.

11.5.5.2

| native Specifies that the method contains native
code.

11.5.5.1

| noinlining Specifies that the runtime shall not
attempt to inline the method.

11.5.5.3

| ole Indicates method signature is mangled to
return HRESULT, with the return value
as a parameter.

11.5.5.4

| optil Specifies that the method contains OptIL
code.

11.5.5.1

| runtime The body of the method is not defined
but produced by the runtime.

11.5.5.1

| synchronized The method will be executed in a single
threaded fashion.

11.5.5.3

| unmanaged Specifies that the method is unmanaged. 11.5.5.2

11.5.5.1 Code Implementation Attributes

The code implementation attributes are CIL, native, optil, and runtime. These attributes are
exclusive. The default is CIL.

These attributes specify the type of code the method contains.

CIL specifies that the method body consists of CIL code. Unless the method is declared abstract,
the body of the method must be provided if CIL is used.

native indicates that a method was implemented using native code, rather than the device
independent CIL. native methods only execute on the platform their code targets. native methods
may not have a body with instructions but must refer to a native method that declares the body.
Typically, the PInvoke functionality (see 11.6.1.1) of the CLI is used to refer to a native method.
native method declarations are used to define the signature of the method important for callers and
the runtime. In addition, native methods may have custom attributes and other metadata
information associated with them.

optil marks that the method contains optimized CIL. Optimized CIL follows certain restrictions that
allow the JIT to compile the CIL to native code faster.

runtime specifies that the implementation of the method is automatically provided by the runtime
and is primarily used for the constructor and invoke method of delegates.

11.5.5 .2 Managed or Unmanaged

The options are either managed or unmanaged. The default is managed.

As the names imply, if managed is specified, the execution of the method will be managed by the
CLI. If unmanaged is specified, the code will not be managed by the CLI.

11.5.5 .3 Implementation Information

The attributes in this group are forwardref, internalcall, synchronized, and
noinlining. The attributes may be combined.
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forwardref specifies that the body of the method is provided elsewhere –in another module of the
same assembly. (This corresponds to a C++ forward declaration)

internalcall is a special token used by the disassembler for some methods and must not be used.
The explicit use of internalcall will cause the execution engine to throw a
System.Security.SecurityException.

synchronized specifies that the whole body of the method shall be single threaded. If this
method is an instance or virtual method a lock on the object will be obtained before the method is
entered. If this method is a static method a lock on the class will be obtained before the method is
entered. If a lock cannot be obtained the requesting thread will be suspended and placed on a waiting
queue until it is granted the lock. This may cause dead locks.

noinlining specifies that the runtime shall not inline this method. Inlining refers to the process of
replacing the call instruction with the body of the called method. This may be done by the runtime for
optimization purposes.

11.5.5.4 Interoperation

The attribute ole is used for compatibility with unmanaged COM. It instructs the runtime to convert
the signature of a method for calls in both directions unmanaged to managed and managed to
unmanaged.

The conversion from managed to unmanaged appends the return value of a method to its parameter
list as an out, retval parameter with the corresponding pointer type of the return type. The new
return type of the method becomes HRESULT. Instead of throwing an exception, the HRESULT
value will indicate success or failure.

The conversion from unmanaged to managed is the opposite way.

11.5.6 Scope Blocks

Scope blocks are syntactic sugar and primarily serve for readability and debugging purposes.

Syntactically, a scope block is enclosed inside braces and recursively contains a <methodBodyItem>.

<scopeBlock> ::= { <methodBodyItem>* }

A scope block defines the scope in which a local variable is accessible by its name. Scope blocks may
be nested, such that a reference of a local variable will be first tried to resolve in the innermost scope
block, than at the next level, and so on until the top-most level of the method, is reached. A declaration
in an inner scope block hides declarations in the outer layers.

If duplicate declarations are used, the reference will be resolved to the first occurrence. Even though
valid CIL, duplicate declarations are not recommended.

Scoping does not affect the lifetime of a local variable. All local variables are created (and if specified
initialized) when the method is entered. They stay alive until the execution of the method is completed.

The scoping does not affect the accessibility of a local variable by its zero based index. All local
variables are accessible from anywhere within the method by their index.

The index is assigned to a local variable in the order of declaration. Scoping is ignored for indexing
purposes. Thus, each local variable is assigned the next available index starting at the top of the
method. This behavior can be altered by specifying an explicit index, as described by a
<localsSignature> as shown in section 11.5.3.3.

Example:

{

.locals (int32 a) // declares local 0

{

.locals (int32 a) // declares local 1

ldloc a // loads local 1
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pop

}

ldloc a // loads local 0

pop

ldloc.1 // loads local 1, which is still alive

pop

}

11.5.7 vararg Methods

vararg methods are methods that may accept a variable number of arguments.

Methods that want to accept a variable number of arguments must have the calling convention vararg.
This becomes part of their signature. When such a method is called, you must separate the fixed from
the additional parameters in the signature with an ellipsis (see section 11.4.9)

Any number and type of arguments may be passed after the last required argument. The vararg
arguments may be accessed by obtaining a handle to the argument list. This is done using the arglist
instruction. The handle can be used to create an instance of the value type System.ArgIterator.
The iterator can be used to obtain the arguments using the GetNextArg method. This method returns a
typedref. Finally, the typedref can be used to obtain a reference to the argument. This is also
illustrated in the example at the end of this section.

The GetRemainingCount method of System.ArgIterator can be used to obtain the number of
arguments left. If GetNextArg is called after the last vararg argument was returned,
System.ArgIterator will throw a System.InvalidOperationException.

Calling vararg methods is described in section 11.4.9.

Example:

The following example shows how a vararg method is declared and how the first vararg argument
is accessed, assuming that at least one additional argument was passed to the method:

.method public static vararg void MyMethod(int32 required) {

.maxstack 3

.locals init (value class System.ArgIterator it,

int32 x)

ldloca it // initialize the iterator

initobj value class System.ArgIterator

ldloca it

arglist // obtain the argument handle

call instance void System.ArgIterator::.ctor(value class
System.RuntimeArgumentHandle) // call constructor of iterator

/* argument value will be stored in x when retrieved, so load

address of x */

ldloca x

ldloca it

// retrieve the argument, the argument for required does not matter

call instance typedref System.ArgIterator::GetNextArg()

call class System.Object System.TypedReference::ToObject(typedref)
// retrieve the object

castclass System.Int32 // cast and unbox

unbox int32

cpobj int32 // copy the value into x

// first vararg argument is stored in x

ret

}
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11.6 Unmanaged Methods
11.6.1 Call ing Unmanaged Methods

There are two primary mechanisms to call unmanaged methods, It Just Works and PInvoke.

It Just Works (IJW) scenarios are designed for programmers who wish to use existing unmanaged data
types for interoperation with unmanaged code. The CLI provides very little marshaling support and,
since the data types are unmanaged, the programmer is required to deal directly with lifetime and
memory management. Users can write their own custom marshaling code to wrap existing unmanaged
code if they wish to provide a managed view.

The primary issue in IJW is to guarantee that execution cannot transfer from managed code to
unmanaged code (or vice versa) without first executing transition code supplied by the CLI. This
transition primarily deals with exception handling and garbage collection. To support this, IJW relies on
the following:

• Instances of the type System.ArgIterator are marshaled specially across the
managed/unmanaged boundary, so that they appear to unmanaged code as the type required by
the C++ va_* macros or functions.

• Function pointers are not marshaled across the boundary. It is the responsibility of the user to
convert pointers as needed across the boundary, and the CLI provides a mechanism for doing
this conversion. By considering managed/unmanaged to be part of the type of a function
pointer, this work can be handled automatically by a compiler.

Platform invoke (PInvoke) is a combination of the transition management provided by IJW with data
marshaling similar to that provided by COM Interop. It allows existing APIs to be called from managed
code, with automatic conversion between some managed types and their unmanaged equivalents.

11.6.1 .1 Platform Invoke

Methods defined in a native DLL may be invoked using the PInvoke (platform invoke) functionality
of the CLI. PInvoke will handle everything needed to make the call work. It will automatically switch
from managed to unmanaged state and back and also handle necessary conversions. Methods that
need to be called using PInvoke are marked as pinvokeimpl. In addition, the methods must have
the implementation attriubtes native and unmanaged (see 11.5.4.4).

pinvokeimpl takes in parentheses the name of the DLL with any number of PInvoke attributes.
After the name of the DLL, an as clause may be inserted that specifies an alias that may be used to
call the method. While the name of the method must exactly match the name of the method as
declared in the DLL, the alias may be used as an alternative name for the method in CIL. This may be
useful, since some compilers use cryptic names for methods in DLLs.

<methAttr> ::= Description Section

pinvokeimpl ( <QSTRING> [as

<QSTRING>] <pinvAttr>* )

pinvokeimpl( <DLL name> [as
<alias>] <attribute>*)

| … 11.5.4

A method declared with pinvokeimpl may not have a body, since it was declared to be native.

pinvokeimpl methods may be global methods as well as methods of classes. Only static
methods may be pinvokeimpl. The CLI PInvoke feature does not support instance or virtual
methods.

A call to a pinvokeimpl method is just like any other call to a static method.

Note: The disassembler ildasm may output pinvokeimpl declarations with no DLL name, e.g.
when VC++ code is disassembled, and the assembler ilasm does accept pinvokeimpl declaration
with no DLL. However, this is invalid CIL and the produced code will fail to execute. PEVerify will
report pinvokeimpl declarations without a specified DLL as errors.

The following grammar shows the attributes of a pinvokeimpl instruction.
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<pinvAttr> ::= Description

ansi ANSI character set.

| autochar Determine character set automatically.

| cdecl Standard C style call.

| fastcall C style fastcall.

| lasterr Indicates that method supports C style last error
querying.

| nomangle Use the member name as specified – do not
search for ‘A’ (ascii) or ‘W’ (widechar) variants
in the Win32 DLLs

| ole Indicates method signature is mangled to return
HRESULT, with the return value as a parameter.

| stdcall Standard C++ style call.

| thiscall The method accepts an implicit this pointer.

| unicode Unicode character set.

| winapi Pinvoke will use native call convention
appropriate to target windows platform.

Example:

The following shows the declaration of the method MessageBeep located in the Windows DLL
user32.dll:

.method public static pinvokeimpl("user32.dll" cdecl) int8
MessageBeep(unsigned int32) native unmanaged {}

The above method may be called like any other static method from CIL code.

11.6.1 .1 .1 Name Mangling in DLLs

Some compilers, like VC++, convert human readable names into cryptic names that contain
additional information like types, etc. This process is called name mangling.

ilasm does not support automatic name mangling for PInvoke calls. Thus, it is important to use the
exact mangled name of the method. The mangled name of the method can be obtained using the
dumpbin tool applied to the DLL:

dumpbin /symbol <dllname>

The alias used with pinvokeimpl gives an opportunity to declare explicitly the unmangled
name of the method.

11.6.1.2 Via Function Pointers

Unmanaged functions can also be called via function pointers. There is no difference between calling
managed or unmanaged functions with pointers. However, the unmanaged function needs to be
declared with pinvokeimpl as described in section 11.6.1.1. Calling managed methods with
function pointers is described in section 11.4.

11.6.1 .3 COM Interop

Unmanaged COM operates primarily by publishing uniquely identified interfaces and then sharing
them between implementers (traditionally called “servers”) and users (traditionally called “clients”)
of a given interface. It supports a rich set of types for use across the interface, and the interface itself
can supply named constants and static methods, but it does not supply instance fields, instance
methods, or virtual methods.
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The CLI provides mechanisms useful to both implementers and users of existing classical COM
interfaces. The goal is to permit programmers to deal with managed data types (thus eliminating the
need for explicit memory management) while at the same time allowing interoperability with existing
unmanaged servers and clients. COM Interop does not support the use of global functions (i.e.
methods that are not part of a managed class), static functions, or parameterized constructors.

• Given an existing classical COM interface definition as a type library, the tlbimp tool
produces a file that contains the metadata describing that interface. The types it exposes in
the metadata are managed counterparts of the unmanaged types in the original interface.

• Implementers of an existing classical COM interface can import the metadata produced by
tlbimp and then write managed classes that provide the implementation of the methods
required by that interface. The metadata specifies the use of managed data types in many
places, and the CLI provides automatic marshaling (i.e. copying with reformatting) of data
between the managed and unmanaged data types.

• Implementers of a new service can simply write a managed program whose publicly visible
types adhere to a simple set of rules. They can then run the tlbexp tool to produce a type
library for classical COM users. This set of rules guarantees that the data types exposed to
the classical COM user are unmanaged types that can be marshaled automatically by the CLI.

• Implementers need to run the RegAsm tool to register their implementation with classical
COM for location and activation purposes – if they wish to expose managed services to
unmanaged code

• Users of existing classical COM interfaces simply import the metadata produced by tlbimp.
They can then reference the (managed) types defined there and the CLI uses the assembly
mechanism and activation information to locate and instantiate instances of objects
implementing the interface. Their code is the same whether the implementation of the
interfaces is provided using classical COM (unmanaged) code or the CLI (managed) code:
the interfaces they see use managed data types, and hence do not need explicit memory
management.

• For some existing classical COM interfaces, the CLI execution engine provides an
implementation of the interface. In some cases the EE allows the user to specify all or parts
of the implementation; for others it provides the entire implementation.

11.6.1 .4 Call ing from Managed to Unmanaged

From the point of view of an CIL code generator, both IJW and PInvoke are handled in the same way
as calls to other named methods. There is a call to a method using the ordinary CIL mechanisms (a
call, callvirt, or jmp instruction) that specifies a destination by way of a metadata token. When
resolved at runtime, the metadata token is discovered to be associated with a methoddef that is
specially marked that its implementation is unmanaged code. This definition effectively provides two
signatures: one for the managed side (indicating how it is being called) and one for the unmanaged
side (indicating how it is implemented).

It is the job of the CLI execution engine and any CIL-to-native-code compilers to cooperate to make
sure that the transition is done correctly, including any possible data marshaling. When the data types
are identical in both of the signatures, no marshaling occurs. Where the type as passed by the
(managed) caller differs from the type expected by the (unmanaged) receiver, the PInvoke marshaling
rules are invoked to convert the data types.

For calls or jumps via a function pointer, the mechanism is slightly different. The ldftn and
ldvirtftn instructions construct a pointer to an entry point and the type conveys whether it is a
managed or unmanaged entry point. There is a Base Class Library routine (unsafe but known to
verification) that takes a function pointer and converts it from any given calling convention to any
other, by producing a transition stub as needed.

11.6.1 .5 Calls from Unmanaged to Managed

Just as there are two ways to call from managed to unmanaged (direct and via a pointer), there are
two ways to call from unmanaged to managed. Since the call is arising in unmanaged code, however,
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there is no simple way to arrange for a direct call to a managed method. For IJW, the VC compiler
and linker arrange that any unmanaged code that tries to call managed code will do so by one of two
mechanisms:

• If the managed code is in the same module as the call site, the linker arranges for an entry in
a table that represents the managed address, and forces the jump or call to go via that table
entry. When the module is loaded, the CLI execution engine is started (because the module
has managed code in it) and this table is updated to contain transition thunks for use when
calling from unmanaged to managed code (see also 7.8.2).

• If the managed code is in a different module than the call site, the linker uses its existing
mechanism to make an entry in the Import Address Table requesting the appropriate
unmanaged entry point. The exporting module will have exported this entry point, and made
it to point to a table entry (also fixed up by the CLI execution engine) to perform the
transition.

The situation is somewhat easier for function pointers. The assumption is that the function pointer is
already pointing to a transition function. This will have been generated either because

• The marshaling code saw a managed function pointer or delegate in the managed signature
and a pointer to an unmanaged function in the unmanaged signature and so produced the
necessary stub, or

• The compiler saw a type mismatch between an attempt to pass or store a pointer to a
managed function where a pointer to an unmanaged function was required, so it called the
Base Class Library function mentioned earlier to produce the transition function.

11.6.2 Managed Native Call ing Conventions (x86)

This section is intended for an advanced audience. It describes the details of a native method call from
managed code on the x86 architecture. The information provided in this section may be important for
optimization purposes. This section is not important for the further understanding of the CLI and may
be skipped.

There are two managed native calling conventions used on the x86. They are described here for
completeness and because knowledge of these conventions allows an unsafe mechanism for bypassing
the overhead of a managed to unmanaged code transition.

11.6.2 .1 Standard 80x86 Call ing Convention

The standard native calling convention is a variation on the fastcall convention used by VC. It
differs primarily in the order in which arguments are pushed on the stack.

The only values that can be passed in registers are managed and unmanaged pointers, object
references, and the built-in integer types I1, U1, I2, U2, I4, U4, I and U. Enums are passed as their
underlying type. All floating point values and 8-byte integer values are passed on the stack. When the
return type is a value type that can’t be passed in a register, the caller must create a buffer to hold the
result and passes the address of this buffer as a hidden parameter.

Arguments are passed in left-to-right order, starting with the this pointer (for instance and virtual
methods), followed by the return buffer pointer if needed, followed by the user-specified argument
values. The first of these that can be placed in a register is put into ECX, the next in EDX, and all
subsequent ones are passed on the stack.

The return value is handled as follows:

• Floating point values are returned on the top of the hardware FP stack.

• Integers up to 32 bits long are returned in EAX.

• 64-bit integers are passed with EAX holding the least significant 32 bits and EDX holding
the most significant 32 bits.

• All other cases require the use of a return buffer, through which the value is returned.
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In addition, there is a guarantee that if a return buffer is used a value is stored there only upon
ordinary exit from the method. The buffer is not allowed to be used for temporary storage within the
method and its contents will be unaltered if an exception occurs while executing the method.

Examples:

static System.Int32 f(int32 x)

The incoming argument (x) is placed in ECX; the return value is in EAX

static float64 f(int32 x, int32 y, int32 z)

x is passed in ECX, y in EDX, z on the top of stack; the return value is on the top of the floating
point (FP) stack

static float64 f(int32 x, float64 y, float64 z)

x is passed in ECX, y on the top of the stack (not FP stack), z in EDX; the return value is on the top
of the FP stack

virtual float64 f(int32 x, int64 y, int64 z)

this is passed in ECX, x in EDX, y pushed on the stack, then z pushed on the stack (hence z is top of
the stack); the return value is on the top of the FP stack

virtual int64 f(int32 x, float64 y, float64 z)

this is passed in ECX, x in EDX, y pushed on the stack, then z pushed on the stack (hence z is on top
of the stack); the return value is in EDX/EAX

virtual [mscorlib]System.Guid f(int32 x, float64 y, float64 z)

Since System.Guid is a value type the this pointer is passed in ECX, a pointer to the return buffer
is passed in EDX, x is pushed, then y, and then z (hence z is on top the of stack); the return value is
stored in the return buffer.

11.6.2 .2 Varargs x86 Call ing Convention

All user-specified arguments are passed on the stack, pushed in left-to-right order. Following the last
argument (hence on top of the stack upon entry to the method body) a special cookie is passed which
provides information about the types of the arguments that have been pushed.

As with the standard calling convention, the this pointer and a return buffer (if either is needed) are
passed in ECX and/or EDX.

Values are returned in the same way as for the standard calling convention.

11.6.2 .3 Fast Calls to Unmanaged Code

Transitions from managed to unmanaged code require a small amount of overhead to allow
exceptions and garbage collection to correctly determine the execution context. On an x86 processor,
under the best circumstances, these transitions take approximately 5 instructions per call/return from
managed to unmanaged code. In addition, any method that includes calls with transitions incurs an 8
instruction overhead spread across the calling method’s prolog and epilog.

This overhead can become a factor in performance of certain applications. For use in unverifiable
code only, there is a mechanism to call from managed code to unmanaged code without the overhead
of a transition. A “fast native call” is accomplished by the use of a calli instruction which indicates
that the destination is managed even though the code address to which it refers is unmanaged. This
can be arranged, for example, by initializing a variable of type function pointer in unmanaged code.

Clearly, this mechanism must be tightly constrained since the transition is essential if there is any
possibility of a garbage collection or exception occurring while in the unmanaged code. The
following restrictions apply to the use of this mechanism:

1. The unmanaged code must follow one of the two managed calling conventions (regular and
vararg) that are specified below. In V1, only the regular calling convention is supported
for fast native calls.
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2. The unmanaged code must not execute for any extended time, since garbage collection
cannot begin while executing this code. It is wise to keep this under 100 instructions under
all control flow paths.

3. The unmanaged code must not throw an exception (managed or unmanaged), including
access violations, etc. Page faults are not considered an exception for this purpose.

4. The unmanaged code must not call back into managed code.

5. The unmanaged code must not trigger a garbage collection (this usually follows from the
restriction on calling back to managed code).

6. The unmanaged code must not block. That is, it must not call any OS-provided routine that
might block the thread (synchronous I/O, explicitly acquiring locks, etc.) Again, page faults
are not a problem for this purpose.

7. The managed code that calls the unmanaged method must not have a long, tight loop in
which it makes the call. The total time for the loop to execute should remain under 100
instructions or the loop should include at least one call to a managed method. More
technically, the method including the call must produce “fully interruptible native code.” In
future versions, there may be a way to indicate this as a requirement on a method.

Note: restrictions 2 through 6 apply not only to the unmanaged code called directly, but to anything it
may call.

12 Fields
Fields are typed memory locations that store the data of a program. The CLI allows the declaration of both
instance and static fields. While static fields are associated with a type and shared across all instances,
instance fields are associated with an instance of a type. When instantiated, the instance has its own copy of
the field.

The CLI also supports global fields, which are fields not declared inside a type. Global fields must be
static.

A field is defined by using the .field directive and a field declaration:

<field> ::= .field <fieldDecl>

The <fieldDecl> has the following parts:

• an optional integer specifying the offset if specific layout of a class is desired

• any number of field attributes (see section 12.2)

• a type

• a name

• and optionally either a <fieldInit> form or a data label

This is also shown by the following grammar.

<fieldDecl> ::= Comments

[[ <int32> ]] <fieldAttr>* <type> <id>

[= <fieldInit> |

at <dataLabel>]

[<int32>] is byte offset, for explicit
layout only, ignored in global and
static fields; at <label> specifies the
data item label

The optional field offset is ignored for static and global fields. For instances, the field will be stored at the
specified offset within the portion of the instance data belonging to this class. Classes that use this feature
must be declared explicit (see also section 7.8.1).
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Global fields must have a data label associated with them. The data label specifies where the data of the field
is located. Static fields of a type may, but do not need to, be assigned a data label.

Example:

The following is an instance variable declaration:

.field private class [.module Counter.dll]Counter counter

12.1 Predefined Attributes of Fields
Predefined attributes of a field specify information about accessibility, contract information,
interoperation attributes, as well as information on special handling.

The following subsections contain additional information on each group of predefined attributes of a field.

<fieldAttr> ::= Description Section

assembly Assembly
accessibility.

12.1.1

| famandassem Family and Assembly
accessibility.

12.1.1

| family Family accessibility. 12.1.1

| famorassem Family or Assembly
accessibility.

12.1.1

| initonly Marks a constant field. 12.1.2

| literal Specifies metadata
field. No memory is
reserved for this field.

12.1.2

| marshal ( [<nativeType>] ) Marshaling
information.

12.1.3

| notserialized Field is not serialized
with other fields of the
class.

12.1.2

| private Private accessibility. 12.1.1

| privatescope Privatescope
accessibility.

12.1.1

| public Public accessibility. 12.1.1

| rtspecialname Special treatment by
runtime.

12.1.4

| specialname Special name for other
tools.

12.1.4

| static Static field. 12.1.2

12.1.1 Accessibil i ty Information

The accessibility attributes are assembly, famandassem, family, famorassem, private,
privatescope and public. These attributes are exclusive. If you do not specify an accessibility for
a field, then ILASM inserts one for you, depending upon the visibility of its owner Type, as follows:

• global, private => privatescope

• global, public => public

• non-global, top-level, public => public
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• non-global, top-level, private => private

• nested, XXX => XXX (where XXX is any of the above)

Accessibility attributes are described in section 6.3.

12.1.2 Field Contract Attributes

Field contract attributes are initonly, literal, static and notserialized. These attributes may
be combined. Only static fields may be literal. The default is an instance field that may be serialized.

static specifies that the field is associated with the type itself rather than with an instance of the type.
Static fields can be accessed without having an instance of a class, e.g. by static methods. As a
consequence, a static field is shared within an application domain (see the CTS and Remoting
specifications) between all instances of a class, and any modification of this field will affect all
instances. If static is not specified, an instance field is created.

initonly marks fields which are constant after they are initialized. These fields may only be mutated
inside a constructor. If the field is a static field, then it may be mutated only inside the type initializer
of the type in which it was declared. If it is an instance field, then it may be mutated only in one of the
instance constructors of the type in which it was defined. It may not be mutated in any other method or
in any other constructor, including constructors of subclasses.

Note: The CLI may not check whether initonly fields are mutated outside the constructors. The EE
need not report any errors if a method changes the value of a constant. However, such code is not valid
and an error will be reported by PEVerify.

notserialized specifies that this field is not serialized when an instance of this class is serialized
(see section 7.4.2.5). It has no meaning on global or static fields, nor if the class doesn’t have the
serializable attribute.

literal specifies that this field represents a constant value. In contrast to initonly fields, literal
fields do not exist at runtime. There is no memory allocated for them. literal fields become part of the
metadata but cannot be accessed by the code. literal fields are assigned a value by using the
<fieldInit> syntax (see section 12.2).

12.1.3 Interoperation Attributes

There is one attribute for interoperation with classical COM applications. The attribute is marshal
and is used for marshalling the field to a native type whenever it is used by unmanaged code and
marshalling it back to the managed form such that it can be continue to be used by managed code.

The default marshalling for each type is listed in two appendices (Unmanaged-to-Managed, and vice-
versa) – see Part 5.

12.1.4 Other Attributes

The attribute rtspecialname indicates that the field name shall be treated in a special way by the
runtime.

In contrast to rtspecialname, specialname indicates that the field name has special meaning to
some tools.

12.2 Field Init Metadata
The <fieldInit> metadata can be optionally added to a field declaration. The use of this feature may not be
combined with a data label.

The <fieldInit> information is available only in metadata. It does not have any affect on the actual value of
the field and does not create any instructions. Thus, the <fieldInit> option does not initialize the field with
any value but puts a value associated with this field into the metadata of the PE file. The field init
metadata is typically used with literal fields (see section 12.1.2) or optional parameters (see section
11.5.2).

The following table lists the options for a field init. The type used has to agree with the type of the field.
The description column provides additional information.
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<fieldInit> ::= Description

bytearray ( <bytes> ) Array of type U1 (8 bit). <bytes> specifies the actual bytes.

| float32 ( <float64> ) 32 bit floating point number, with the floating point number
specified in parentheses. The number needs to fit in 32 bits.

| float32 ( <int32> ) <int32> is binary representation of float

| float64 ( <float64> ) 64 bit floating point number, with the floating point number
specified in parentheses.

| float64 ( <int64> ) <int64> is binary representation of double

| int8 ( <int8> ) 8 bit integer with the integer specified in parentheses.

| int16 ( <int16> ) 16 bit integer with the integer specified in parentheses.

| int32 ( <int32> ) 32 bit integer with the integer specified in parentheses.

| int64 ( <int64> ) 64 bit integer with the integer specified in parentheses.

| <QSTRING> String. <QSTRING> is stored as ASCII

| wchar ( <QSTRING> ) String. <QSTRING> is stored as Unicode.

Example:

The following example shows a typical use of this:

.field public static literal value class ErrorCodes no_error = int8(0)

The variable is a literal variable for which no memory is allocated. However, tools and compilers can
look up the value.

12.3 Embedding Data in a PE File
CLI allows programs to store data in a PEFile.

There are several ways to declare a data field that is stored in a PE file. In all cases, the .data directive
is used.

Data can be embedded in a PE file by using the .data directive at the top-level.

<decl> ::= Section

.data <datadecl>

| … 4.7

Data may also be declared as part of a class:

<classMember> ::= Section

.data <datadecl>

| … 7.5

Yet another alternative is to declare data inside a method:

<methodBodyItem> ::= Section

.data <datadecl>

| … 11.5.3
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In all cases, the data should be declared with the entity in which it is used. E.g., data used only by a
method should be declared in that method. Regardless of where the data is declared, it is accessible
anywhere inside the assembly.

12.3.1 Data Declaration

The data declaration of a .data directive contains the optional attribute tls to specify thread local
storage (see below). Further, it contains an optional data label and the body which defines the actual
data. A data label must be used if the data shall be accessed by the code.

<dataDecl> ::= [tls] [<dataLabel> =] <ddBody>

Each PE file has a particular section whose initial contents are copied whenever a new thread is created.
This section is called thread local storage. Marking data as tls causes the data to be put in the part of
the PE File.

The body consists either of one data item or a list of data items in braces. A list of data items is similar
to an array.

<ddBody> ::=

<ddItem>

| { <ddItemList> }

A list of items consists of any number of items:

<ddItemList> ::= <ddItem> [, <ddItemList>]

The list may be used to declare multiple data items associated with one label. The items will be laid out
in the order declared. The first data item will be accessible directly through the label. To access the
other items, pointer arithmetic needs to be used, adding the size of each data item to get to the next one
in the list. The use of pointer arithmetic will make the application not verifiable.

A data item declares the type of the data and provides the data in parentheses. If a list of data item
contains items of the same type and initial value, the grammar below can be used as a short cut for some
of the types. The number of times the item shall be replicated is simply put in brackets after the
declaration. Note that the data is not accessible in a verifiable way.

<ddItem> ::=

& ( <id> )

| bytearray ( <bytes> )

| char * ( <QSTRING> ) //ASCII encoded

| float32 [( <float64> )] [[ <int32> ]]

| float64 [( <float64> )] [[ <int32> ]]

| int8 [( <int8> )] [[ <int32> ]]

| int16 [( <int16> )] [[ <int32> ]]

| int32 [( <int32> )] [[ <int32> ]]

| int64 [( <int64> )] [[ <int32> ]]

| wchar * ( <QSTRING> ) //Unicode encoded

Example:

The following declares an int32:

.data theInt = int32(123)
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12.3.2 Accessing Data

The data can be accessed through a static variable. A static variable, either global or a member of a
type, needs to be declared at the position of the data. The syntax for this is as follows:

<fieldDecl> ::= <fieldAttr>* <type> <id> at <dataLabel>

This is similar to a regular <fieldDecl>. After the at the label pointing to the location at which the data
is stored is inserted. One of the field attributes must be static.

The data can then be accessed through the static variable. The variable may be accessed also by other
modules or assemblies.

To export the data to the unmanaged world, the static variable needs to appear in a type that is
exported.

Example:

The following accesses the data declared in the example of section 12.3.1. First a static variable needs
to be declared for the data, e.g. a global static variable:

.field public static int32 myInt at theInt

Then the static variable can be used to load the data:

ldsfld int32 myInt

// data on stack

12.3.3 Unmanaged Thread-local Storage

There are two mechanisms for dealing with thread-local storage (tls): an unmanaged mechanism and a
managed mechanism. The unmanaged mechanism has a number of restrictions which are carried forward
directly into the CLI. For example, the amount of thread local storage is determined when the PE file is
loaded and cannot be expanded. The amount is computed based on the static dependencies of the PE
file, DLLs that are loaded as a program executes cannot create their own thread local storage through
this mechanism. The managed mechanism, which does not have these restrictions, is described in the
Base Class Library documentation.

For unmanaged tls there is a particular native code sequence that can be used to locate the start of this
section for the current thread. The CLI respects this mechanism. That is, when a reference is made to a
static variable with a fixed RVA in the PE file and that RVA is in the thread-local section of the PE, the
native code generated from the CIL will use the thread-local access sequence.

This has two important consequences:

• A static variable with a specified RVA must reside entirely in a single section of the PE file.
The RVA specifies where the data begins and the type of the variable specifies how large the
data area is.

• When a new thread is created it is only the data from the PE file that is used to initialize the
new copy of the variable. There is no opportunity to run the class initializer. For this reason it
is probably wise to restrict the use of unmanaged thread local storage to the primitive numeric
types and value types with explicit layout that have a fixed initial value and no class initializer.

12.4 Init ial izat ion of Stat ic Data

Many languages that support static data (i.e. variables that have a lifetime that is the entire program)
provide for a means to initialize that data before the program begins running. There are three common
mechanisms for doing this, and each is supported in the CLI.

12.4.1 Data Known at Link Time

When the correct value to be stored into the static data is known at the time the program is linked (or
compiled for those languages with no linker step), the actual value can be stored directly into the PE
file, typically into the .data area (see section 12.3). References to the variable are made directly to the
location where this data has been placed in memory, using the OS supplied fix-up mechanism to adjust
any references to this area if the file loads at an address other than the one assumed by the linker.
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In the CLI, this technique can be used directly if the static variable has one of the primitive numeric
types or is a value type with explicit class layout and no embedded references to managed objects. In
this case the data is laid out in the .data area as usual and the static variable is assigned a particular
RVA (i.e. offset from the start of the PE file) by using a data label with the field declaration (using the
at syntax).

This mechanism, however, does not interact well with the CLI notion of an application domain (see the
CTS specification). An application domain is intended to isolate two applications running in the same
OS process from one another by guaranteeing that they have no shared data. Since the PE file is shared
across the entire process, any data accessed via this mechanism is visible to all application domains in
the process, thus violating the application domain isolation boundary.

12.4.2 Data Known at Load Time

When the correct value is not known until the PE file is loaded (for example, if it contains values
computed based on the load addresses of several PE files) it is possible to supply arbitrary code to run
as the PE file is loaded and while the OS holds a process-wide lock.

This mechanism, while available in the CLI, is strongly discouraged. The details are provided in
section 1.2.2.

12.4.3 Data Known at Run Time

When the correct value cannot be determined until class layout is computed, the user must supply code
as part of a type initializer to initialize the static data. The guarantees about class initialization are
covered in section 7.6.7.1. As will be explained below, global statics are modeled in the CLI as though
they belonged to a class, so the same guarantees apply to both global and class statics.

Because the layout of managed classes need not occur until a class is first referenced, it is not possible
to statically initialize managed classes by simply laying the data out in the PE file. Instead, there is a
class initialization process that proceeds in the following steps:

1. All static variables are zeroed.

2. The user-supplied class initialization procedure, if any, is invoked as described in section 7.8.2.

Within a class initialization procedure there are several techniques:

• Generate explicit code that stores constants into the appropriate fields of the static
variables. For small data structures this can be efficient, but it requires that the
initializer be JITted, which may prove to be both a code space and an execution time
problem.

• Box value types. When the static variable is simply a boxed version of a primitive
numeric type or a value type with explicit layout, introduce an additional static variable
with known RVA that holds the unboxed instance and then simply use the box
instruction to create the boxed copy.

• Create a managed array from a static native array of data. This can be done by
marshaling the native array to a managed array. The specific marshaler to be used
depends on the native array. E.g., it may be a safearray.

• Default initialize a managed array of a value type. The .NET SDK Base Class Library
will provide a method that will call the default constructor (or zero the storage if there
is no default constructor) for every element of an array of unboxed value types (called
System.Runtime.CompilerServices.InitializeArray)

• Use Base Class Library deserialization. The .NET SDK Base Class Library provides
serialization and deserialization services. These services can be found in the
System.Runtime.Serialization namespace. An object can be converted to a
serialized form, stored in the data section and accessed using a static variable with
known RVA of type unsigned int8[]. The corresponding deserialization
mechanism can then be used in the class initializer.
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13 Properties
Properties can be thought of as smart fields. Rather than just being a field that contains a value, properties
are implemented by a collection of methods. Every property represents a certain value. Methods associated
with this property retrieve or change this value. Typically, a property is associated with a field that stores the
value. However, the value of the property may also be computed on the fly by methods.

The CLI supports the declaration of properties. From the point of view of the runtime, properties are only
metadata, they associate some methods and optionally a field together. The property declaration does not
have any meaning at runtime. However, the metadata can be used by compilers and other tools to inspect the
property and understand what methods are associated with the property. E.g., the property declaration
describes what method needs to be called in order to obtain the value of the property.

Typically, properties have a getter and a setter. The getter returns the current value of the property, while the
setter updates the value of the property with a new value. Some higher level programming languages
implement the getter the same way as an access to a field and the setter the same way as an assignment to a
field. However, there is no such support at the runtime level. However, the metadata describes what method
will implement the functionality of the getter and what method will implement the functionality of the setter.

The CLI supports static, instance, and virtual properties. While static properties are only associated
with the type in which they are declared, instance and virtual properties are associated with an instance
of the type in which they are declared.

Properties have two major advantages over fields. The first advantage is that behavior is associated with the
access and updating of a value. This can be used to abstract the representation of the value and do additional
computation and validation when the value is accessed or updated. Properties also give more control over
restricting what values are stored when and by whom.

Virtual properties allow their getters and setters to be implemented via virtual methods. As a consequence,
these methods may be overriden by subclasses and their behavior may be modified in an object oriented
fashion to do more sophisticated or specialized work. Subclasses also get a chance to interrupt when a value
is retrieved or updated.

In addition to the setters and getters, properties may also have other methods associated with them.

It may seem that method calls to obtain a value may be much slower than direct access to a field. However, in
reality the CIL-to-native code compiler of the runtime will optimize properties, so that for trivial getters and
setters there is no performance loss.

13.1 Declaring properties
A property is declared by the using the .property directive, followed by a property head and property
members in braces. Properties may only be declared inside of types.

<classMember> ::= Section

.property <propHead> { <propMember>* }

| … 7.2

Even though it is typical that the setters and getters of the property come from the type which declares the
property, this is not necessary.

13.1.1 Property Head

The property head contains a calling convention (see section 11.4.1), a type and a name, and parameter
declarations in parentheses.

The property head may contain the keywords specialname or rtspecialname. specialname
marks the name of the property for other tools, while rtspecialname marks the name of the
property as special for the runtime.

While in theory there need be no relationship between the signature of a property and the methods that
implement it, in practice the declaration of the property must match the declaration of the getter
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method. The calling convention, type, and parameters of a property have to be the same as they are
defined for the get method.

<propHead> ::=

[specialname|rtspecialname]* <callConv> <type> <id> ( <parameters>

)

13.1.2 Property Members

A property may contain any number of property members in its body. The following table shows these
and provides short descriptions for them:

<propMember> ::= Description Section

.backing <type> <id> Backing field of the
property.

| .custom <customDecl> Custom attribute. 17

| .get <callConv> <type> [<typeSpec> ::]

<methodName> ( <parameters> )

Specifies the getter
for the property.

| .other <callConv> <type> [<typeSpec> ::]

<methodName> ( <parameters> )

Specifies a method for
the property other
than the getter or
setter.

| .set <callConv> <type> [<typeSpec> ::]

<methodName> ( <parameters> )

Specifies the setter for
the property.

| <externSourceDecl> .line or #line 3.7

As described above, .backing specifies the field in the class that is associated with this property, by
its type and name. A property does not need to have a backing field, but if it has such a field it should
be specified in the property declaration. The backing field has to be defined in the same type as the
property itself, otherwise it cannot be specified in the metadata. The field should be marked with
specialname in its declaration to highlight it for tools and compilers.

.getspecifies the getter method for this property with a MethodRef. The method needs to be defined in
the type specified by <typeSpec> or in this class. Only one get method may be specified for a property.
The <callConv>, <type> and parameters of the get method, in practice, should be the same as those
specified in the property head. The get method should be marked with specialname in its
declaration to highlight it for tools and compilers.

.set specifies the setter method for this property using a MethodRef, similar to the way the getter is
specified. A property may have only one setter. The set method should be marked with specialname
in its declaration to highlight it for tools and compilers.

.other can be used to specify other methods associated with this property. If the other methods have a
special semantics, the implementer of the property needs to document these and used appropriate
naming conventions.

In addition, custom attributes (see section 16) or source line declarations may be specified.

Example:

This example shows the declaration of the property used in the example in Part 5.

.class public auto autochar MyCount extends [mscorlib]System.Object {

.field private specialname int32 count // the backing field
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.method virtual hidebysig public specialname instance int32 get_Count()
{

// body of getter

}

.method virtual hidebysig public specialname instance void
set_Count(int32 newCount) {

// body of setter

}

.method virtual hidebysig public instance void reset_Count() {

// body of refresh method

}

// the declaration of the property

.property int32 Count() {

.backing int32 count

.get instance int32 get_Count()

.set instance void set_Count(int32)

.other instance void reset_Count()

}

} // end of class MyCount

14 Events
An event is the change of state of an object at a particular time. Any non-trivial application reacts to events.
Examples of events are hardware events, like keyboard strokes or mouse movements, or software events, like
selecting a menu item.

Events become very important in a multi-tasking environment, where many processes and their threads share
the same processor resources. Many applications need to show some behavior when an event occurs, but do
not do any computation when no event occurred. It is inappropriate to loop and keep checking whether the
state of an object changed. This technique wastes huge amounts of processor resources. In a complex system
an event model that enables applications to efficiently detect events is a necessity.

This section describes the event model of the CLI and shows how applications may observe and declare
events. The CLI has built-in support for events in its metadata. This allows a consistent event model across
all platforms and languages that target the CLI. The CLI event model makes it possible for an event to be
declared in one language and observed by an application that is written in another language.

Events are similar to properties in the sense that they are pure metadata elements. However, the metadata
description of events is powerful enough to inform observers as well as event sources of how the event is
used. Similar to properties, events have a number of methods associated with them. These methods have a
special semantics and implement a certain behavior that is defined by the CLI event model.

An event source is the object where an event may occur. If an event occurs, the event source fires the event.
An event has a special method associated with it that fires the event.

An event observer is an object that waits for an event and presumably shows some behavior if the event
occurs. To do this, an observer needs to listen to an event. An observer may start listening to an event by
adding itself onto the list of observers for the event. If the observer wants to discontinue listening to an
event, it may remove itself from this list. An event has special methods associated with it that add an
observer to the event and remove an observer from the event.

When an event is fired, the observer is notified that an event is called through a method call. A method that
is dedicated to be called whenever the event is fired is called an event handler. When an observer starts
listening to an event, it needs to register an event handler with the event source.
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The CLI supports both static and instance events. While static events are associated with a type,
instance events are associated with an instance of the type.

14.1 Implementing Events
The event source needs to be able to call the event handler of the observer. This is done using delegates
(see section 10.5), which specify the signature of the event handler that must be implemented by the
observer.

Delegates not only provide an ideal way of abstracting the observer’s reference to event handler, they also
provide additional functionality. Usually, an event will be listened to by several observers at a time and
the event source needs to be prepared to be able to handle multiple observers. While the event source may
implement behavior to handle multiple observers, delegates provide a standard mechanism--multicast
delegates. Multicast delegates abstract the code involved in combining various delegates. When the event
is fired all handlers are notified with just one call to the multicast delegate. The event source may define
its own delegate type or use the delegate System.EventHandler. The Invoke method of the
System.EventHandler delegate takes two parameters, the event source and data associated with the
event.

14.2 Observing Events
Example:

This example shows how a timer event source is created and an observer added to the timer event.

Assume the timer is needed by a class called Counter. The following declares the needed fields in the
sample class Counter:

.field private class [System.Timers]System.Timers.Timer timer

.field private class [mscorlib]System.EventHandler timerEventHandler

The following is the declaration of the event handler:

.method virtual hidebysig private void instance onTick(class
System.Object, class [mscorlib]System.EventArgs) CIL managed {

// body of event handler

}

The method below adds this class to the timer even using the handler above:

.method virtual hidebysig famorassem instance void SetupTimer() CIL
managed {

.maxstack 3

// create the timer

ldarg.0

ldc.r8 1000 // 1000 ms

newobj instance void
[System.Timers]System.Timers.Timer::.ctor(float64)

stfld class [System.Timers]System.Timers.Timer Counter::timer

// create the delegate

ldarg.0 // load this pointer, needed 3 times

dup // duplicate top of stack, 2 copies on stack

dup // duplicate another time, 3 copies on stack

ldvirtftn instance void Counter::onTick(class System.Object, class
[mscorlib]System.EventArgs)

newobj instance void [mscorlib]System.EventHandler::.ctor(class
System.Object, int32)

stfld class [mscorlib]System.EventHandler
Counter::timerEventHandler

// add this observer to the time event

ldarg.0

ldfld class [System.Timers]System.Timers.Timer Counter::timer



- 115 -

ldarg.0

ldfld class [mscorlib]System.EventHandler
Counter::timerEventHandler

call instance void
[System.Timers]System.Timers.Timer::add_Tick(class
[mscorlib]System.EventHandler)

ret

}

When done, the observer should be removed from the event.

14.3 Declaring Events
Events are declared inside types with the .event directive. Following the directive is an event head and any
number of event members.

<classMember> ::= Section

.event <eventHead> { <eventMember>* }

| … 7.2

Even though it is typical that the members of the event are declared in the type which declares the event,
this is not necessary.

14.3.1 Event Head

The event head contains the type and a name for the event.

<eventHead> ::=

[specialname] [rtspecialname] [<typeSpec>] <id>

If the event was implemented using delegates, the type refers to the type specification of the delegate.
Otherwise, the type should refer to a type that specifies the signature of the handler for the event.

The event head may contain the keywords specialname or rtspecialname. specialname
marks the name of the property for other tools, while rtspecialname marks the name of the event as
special for the runtime.

14.3.2 Event Members

The grammar below shows the various members of an event:

<eventMember> ::= Description Section

.addon <callConv> <type> [<typeSpec> ::]

<methodName> ( <parameters> )

Add method
for event.

| .custom <customDecl> Custom
attribute.

16

| .fire <callConv> <type> [<typeSpec> ::]

<methodName> ( <parameters> )

Fire method
for event.

| .other <callConv> <type> [<typeSpec> ::]

<methodName> ( <parameters> )

Other
method.

| .removeon <callConv> <type> [<typeSpec> ::]

<methodName> ( <parameters> )

Remove
method for
event.

| <externSourceDecl> .line or #line 3.7

Even though not required an event should at least provide an add and a remove method.
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The .addon directive specifies the add method by providing a MethodRef. If the <typeSpec> is not
specified, the method is assumed to be in the same type as the event. The add method may take any
parameters, but typically it will take at least a reference to the event handler of the observer, e.g. in
form of a delegate. The type of the parameter accepting the event handler should be same as the type
used in the event head. The accessibility of the add method restricts the observers that may add
themselves to the event. If this should be unrestricted, public needs to be used. The add method
should be marked with specialname in its declaration to highlight it for tools and compilers.

The .removeon directive specifies the remove method by providing a MethodRef similar to the
.addon directive. The remove method may also take any parameters, but typically it will take at least
a reference to the event handler to be removed. This is the same reference that was used with the add
method. The accessibility of the remove method should be the same as the accessibility of the add
method. The remove method should be marked with specialname in its declaration to highlight it
for tools and compilers.

The .fire directive is used to specify the fire method of the event. It also uses a MethodRef to refer to
the implementation similar to the .addon and .removeon directives. The .fire directive is not
required but should be provided if possible. The accessibility of the fire method determines which types
may fire the event. If only the type that declares the fire method should be able to fire the event, the fire
method needs to be private. The fire method should be marked with specialname in its
declaration to highlight it for tools and compilers.

The implementation of the event will make use of one or more fields to store the observers. It is
important that the fields that store information about the observers remain private or at most family.
This will make sure that no unauthorized objects remove observers by using the fields or fire the event
without the control of the event source. However, firing the event means notifying the observers, which
makes access to them necessary. The fire method gives other objects the opportunity to request that an
event is fired without the event having to expose its underlying data structures. In addition, the fire
method abstracts the specific implementation of the event.

An event may contain any number of other method specified with the .other directive. From the point
of view of the runtime, these methods are only associated with each other through the event. If they
have special semantics, this needs to be documented by the implementer.

Events may also have custom attributes (17) associated with them and they may declare source line
information.

Example:

The following example shows the declaration of an event, its corresponding delegate, and typical
implementations of the add, remove, and fire method of the event. The event and the methods are
declared in a class called Counter.

// the delegate

.class private sealed auto autochar TimeUpEventHandler extends
[mscorlib]System.MulticastDelegate {

.method public hidebysig specialname rtspecialname instance void

.ctor(class System.Object object, int32 'method') runtime managed {}

.method public hidebysig virtual instance void Invoke() runtime managed
{}

.method public hidebysig newslot virtual instance class
[mscorlib]System.IAsyncResult BeginInvoke(class
[mscorlib]System.AsyncCallback callback, class System.Object object)
runtime managed {}

.method public hidebysig newslot virtual instance void EndInvoke(class
[mscorlib]System.IAsyncResult result) runtime managed {}

}

// the class that declares the event

.class public auto autochar Counter extends [mscorlib]System.Object {
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// field to store the handlers, initialized to null

.field private class TimeUpEventHandler timeUpEventHandler

// the event declaration

.event TimeUpEventHandler startStopEvent {

.addon instance void add_TimeUp(class TimeUpEvent 'handler')

.removeon instance void remove_TimeUp(class TimeUpEvent 'handler')

.fire instance void fire_TimeUpEvent()

}

// the add method, combines the handler with existing delegates

.method public hidebysig virtual specialname instance void
add_TimeUp(class TimeUpEventHandler 'handler') {

.maxstack 4

ldarg.0

dup

ldfld class TimeUpEventHandler Counter::timeUpEventHandler

ldarg 'handler'

call class[mscorlib]System.Delegate
[mscorlib]System.Delegate::Combine(class [mscorlib]System.Delegate,
class [mscorlib]System.Delegate)

castclass TimeUpEventHandler

stfld class TimeUpEventHandler Counter::timeUpEventHandler

ret

}

// the remove method, removes the handler from the multicast delegate

.method virtual public specialname void remove_TimeUp(class
TimeUpEventHandler 'handler') {

.maxstack 4

ldarg.0

dup

ldfld class TimeUpEventHandler Counter::timeUpEventHandler

ldarg 'handler'

call class[mscorlib]System.Delegate
[mscorlib]System.Delegate::Remove(class [mscorlib]System.Delegate, class
[mscorlib]System.Delegate)

castclass TimeUpEventHandler

stfld class TimeUpEventHandler Counter::timeUpEventHandler

ret

}

// the fire method

.method virtual family specialname void fire_TimeUpEvent() {

.maxstack 3

ldarg.0

ldfld class TimeUpEventHandler Counter::timeUpEventHandler

callvirt instance void TimeUpEventHandler::Invoke()

ret

}

} // end of class Counter
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15 Exception Handling
This section is a brief summary of the CLI exception handling. A more detailed description of exception
handling can be found in the Architecture specification.

The CLI supports an exception handling model based on the idea of exception objects and protected blocks
of code. When an exception occurs, an object is created to represent the exception. All exceptions objects
are instances of some class (i.e. they can be boxed value types, but not pointers, unboxed value types, etc.).
Users can create their own exception classes, typically by subclassing System.Exception.

15.1 SEH Blocks
A Structured Exception Handling (SEH) block, called <sehBlock> in the grammar, may appear in a
method as shown by the following grammar:

<methodBodyItem> ::= Section

<sehBlock>

| … 11.5.3

A SEH block consists of a protected block (try block), and one or more handlers, called <sehClause> in
the grammar.

<sehBlock> ::=

<tryBlock> <sehClause> [<sehClause>*]

15.1.1 Protected Blocks

A protected block is declared with the .try directive. There are two ways to define a protected block.

The first way simply uses a scope block (see section 11.5.6) after the .try directive that contains the
instructions to be protected.

In the second way, the protected instructions are enclosed by two labels. The first label is defined at the
first instruction to be protected, while the second label is defined at the first instruction that does not
need to be protected, i.e. after the last instruction that needs to be protected.

There is yet another way permitted by the syntax, but only to be used by disassemblers for enabling
round tripping of code. Instead of the labels, the addresses the labels represent may be used.

The three ways are summarized in the grammar below:

<tryBlock> ::= Descriptions

.try <int32> to <int32> For disassembler only

| .try <label> to <label> Second label is exclusive, pointing to first instruction after
the try block; both labels must be already defined in the
preceding code

| .try <scopeBlock> <scopeBlock> contains the instructions to be protected

Protected blocks may be nested inside each other. Each protected block has one and only one handler
associated with it. If multiple handlers are needed to cover a certain set of instructions nested protected
blocks need to be used.

There are two ways to leave a protected block, by using the leave instruction or with an exception. In
particular, a protected block may not be left with a branch or ret instruction, nor are tail calls or jumps
allowed inside a protected block.
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The leave instruction takes a code label that points to the address of the next instruction to execute
after the protected block is left. If protected blocks are nested, a single leave instruction can be used
to leave all protected blocks at once.

If an exception occurs inside the protected block, the CLI will search for an appropriate handler and, if
such a handler can be found, transfer control to the handler.

Note: The assembler ilasm requires labels used to specify a protected block to be declared before the
.try directive.

15.1.2 Handlers

There are four kinds of handlers for protected blocks. A single protected block can have exactly one
handler associated with it. If more than one handler needs to be used, nested protected blocks need to be
declared. There are four different kinds of handlers:

1. A finally handler which is always executed whenever the protected block is left, regardless of
whether by normal control flow or with an exception.

2. A fault handler which is always executed if an exception occurs, but not on completion of
normal control flow.

3. A type-filtered handler (catch) that handles any exception of a specified class or any of its
sub-classes.

4. A user-filtered handler (filter) that runs a user-specified set of CIL instructions to determine
whether the exception should be handled or not.

The handlers are specified by the following grammar.

<sehClause> ::=

catch <typeReference> <handlerBlock>

| fault <handlerBlock>

| filter <int32> <handlerBlock> /* for round tripping only */

| filter <label> <handlerBlock>

| finally <handlerBlock>

When an exception occurs, the EE will fix the state of the thread that caused the exception, so that the
call and evaluation stacks will be kept unmodified. These stacks can be inspected by handlers to
determine the cause of an exception. The EE will then try to find an exception handler which matches
the object being thrown..

There are two classes of handlers, exception resolving handlers and exception observing handlers.
Exception resolving handlers may, but do not need to, resolve an exception so that normal control flow
may continue. catch and filter handlers are exception resolving handlers. finally and fault
handlers only observe exceptions in the sense that they show behavior when an exception occurs but do
not resolve the exception.

The handlers will be visited starting at the deepest nested one and then going to the enclosing one, step
by step. If a method does not define an appropriate handler that resolves the exception, the next method
on the class stack will be inspected. However, this process does not modify the call or evaluation stack
fixed when the exception occurred.

What if we reach the last method on the call stack without finding a handler? The behavior in this case,
at the moment, is implementation-defined. It may depend upon the kind of thread that threw the
exception:

• main thread (ie corresponding to the main method in a managed image)

• user-created, managed threads

• threads which started life in unmanaged code, and transitioned into managed code paths
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• a task that was enqueued to be run by a thread in the pool of managed worker threads

• the finalizer thread (where the thread that created the objects being finalized may well have
ceased to exist)

Moreover, the situation is complicated by any user-registered handlers that field otherwise uncaught
exceptions, and which version of the CLI image is being run (eg, a regular, retail build or a developer
edition that supports more careful checking). Possible options for what to do on an unhandled
exception include: emit a stack trace to the console, or a file; attach a debugger to the thread; prompt
the user for appropriate action; write an event to a system-supplied ‘event log’, etc. These issues will
be resolved during Beta-2.

The following grammar shows a handler block:

<handlerBlock> ::= Description

handler <int32> to <int32> For disassembler only

| handler <label> to <label> Second label is exclusive, pointing to first instruction
after the handler block; both labels must be already
defined in the preceding code

| <scopeBlock> <scopeBlock> contains the instructions of the handler
block

In the above grammar, the labels enclose the instructions of the handler block. Alternatively, the
handler block is just a scope block. The option with the integers is intended for the round tripping use
only.

Each handler has a specific instruction that is used to exit the handler. It is illegal to exit a handler with
an instruction other the specific instruction. Specifically, it is illegal to return from a handler or branch
outside a handler. It is also illegal to execute a tail call from a handler or jump to a different method
from a handler. See the Architecture specification for details.

It is also possible that the handler itself causes a new exception. Such an exception will exit the handler
and continue the search for another appropriate handler.

Note: The assembler ilasm requires labels used to specify a protected block to be declared before the
declaration of the handlers.

The following sections add more details to each type of exception handler.

15.1.2 .1 Finally Handler

As noted above, the finally handler is executed whenever its protect block is left. A finally
handler may be used to execute code that must always be executed and is usually code used to clean
up state, like closing a file.

The finally handler is exited with the endfinally instruction. If the protected block was left with
a leave instruction, execution will resume with the instruction indicated by the label used with the
leave instruction after executing any enclosing finally clauses. Otherwise, if the protected block
was left with an exception, the EE will continue to search for a resolving handler.

Note: endfinally and endfault are synonyms for each other and represent the same instruction.

Example:

The following code uses scope blocks to mark the protected block and handler.

.try {

// protected instructions

leave exitTry

} finally {

// instructions in finally handler
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endfinally

}

15.1.2 .2 Fault Handler

The fault handler is similar to the finally handler, but will only be executed if an exception
occurred. If the protected block was left with the leave instruction, the fault handler will be
skipped.

A fault handler may be exited with the endfault instruction. The endfault instruction will let
the EE continue to search for a resolving handler.

Note: endfinally and endfault are synonyms for each other and represent the same instruction.

Example:

The following code uses labels to mark the protected block and handler.

.method public static void m() {

startTry:

// protected instructions

leave exitSEH

endTry:

startFault:

// instructions to be executed in case of an fault

endfault

endFault:

// the SEH declaration

.try startTry to endTry fault handler startFault to endFault

exitSEH:

// unprotected instructions

}

15.1.2.3 Type-Filtered Handler

If a type-filtered handler is associated with a protected block and the protected block is left with an
exception, then the EE will check whether the type of the exception objection is equal to or a subtype
of the type the type-filtered handler expects.

If the type matches, the code associated with the handler will be executed. Otherwise, the EE will
continue to search for the next handler.

A type-filter is declared using the catch keyword. Following the catch keyword is a reference to
the type of exception object that the handler expects. After the handler block follows similar to other
handlers.

When the type-filtered handler is entered, the EE will automatically push the exception object onto
the stack. The handler may inspect this exception object and do operations on it. However, the
handler is responsible for popping the exception object from the stack.

A type-filtered handler may be exited in one of two ways, in addition to the third way of causing a
new exception. The first way is using a leave instruction. Similar to the case with protected blocks,
the leave instruction takes a label as part of the instruction that points to the next instruction to be
executed after the exception after executing any enclosing finally clauses. The next instruction
must be outside the protected block from which the exception originated. It is not possible to resume
execution using a type-filtered handler.

When the leave instruction is executed, the EE will treat the exception as resolved and restore the
normal condition in the system.

The second way to exit a type-filtered handler is by not resolving the exception. This is done with the
rethrow instruction. The rethrow instruction throws the exception that caused the handler to be
executed again. The rethrow instruction expects the exception object on the stack when it is
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executed. After the rethrow instruction is executed the EE will continue its search for a handler
that resolves the exception.

Example:

.try {

// protected instructions

leave exitSEH

} catch [mscorlib]System.FormatException {

// pop the exception object (or inspect it)

pop

// other handler instructions

leave exitSEH // leave the catch

}

15.1.2.4 User-Filtered Handler

While for type-filtered handler the EE checks whether the handler should be executed, a user-filtered
handler provides its own code that checks whether the exception should be handled by a particular
handler.

The user-filtered handler is declared using the filter syntax and consists of two parts. The first part
is a label that points to code that checks whether the exception should be handled. The second part is
the handler block itself.

The user defined filter is a block of code inside the method that contains the protected block, even
though the filter may call another method. The EE will automatically push the exception object onto
the stack for the user defined filter for inspection. However, the filter is responsible itself to pop the
exception object from the stack. The filter may also inspect the state of the evaluation stack and local
variables or other data that will help it to make the decision. When the filter has decided whether to
accept the exception or not, it needs to return using the endfilter instruction.

The endfilter instruction expects an argument on the stack that defines whether this method will
handle the exception or not. In general there three answers, but the first version of the CLI only
honors two of those answers.

The two possible values are:

• EXCEPTION_CONTINUE_SEARCH ( = 0): Indicates that the handler cannot process this
exception and that the EE should offer the exception to the next handler on the list.

• EXCEPTION_EXECUTE_HANDLER ( = 1): Indicates that the handler can process the
exception and that the EE should halt the search for any other handlers and use the code at
this handler’s handler offset to process the exception.

Readers familiar with exception handling will know that the third answer is
EXEPTION_CONTINUE_EXECUTION, which instructs the EE to ignore the exception and continue
with the next instruction after the instruction the caused the exception in the protected block. This
third possibility may be supported in future versions of the CLI.

If the user-defined filter causes a new exception, which escapes the filter block (ie, it is not caught by
a handler inside the filter), CLI will ignore that exception. The result of the filter is made to appear
as it having returned EXCEPTION_CONTINUE_SEARCH

If the answer of the filter was EXCEPTION_EXECUTE_HANDLER, the EE terminates the first pass
of exception handling, and arranges that the second pass will give control to the handler block
associated with the user filtered handler. This handler block is very similar to the handler block of a
type-filtered handler. The EE will automatically push a reference to the exception object onto the
stack, which the handler must pop itself from the stack.

Similar to the handler block of a type-filtered exception handler, the handler is exited either with a
leave instruction, or with a rethrow instruction. The handler is also exited if it causes a new
exception itself.
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If the leave instruction is used, the EE will treat the exception as resolved and restore normal
conditions. The leave instruction takes a label that points to the address of the next instruction to
execute after executing any enclosing finally clauses. This instruction must be outside the protected
block that caused the exception.

If the handler block is exited with a rethrow instruction, the EE will throw the same exception
again and continue its search. The rethrow instruction expects an object on the stack, which will
be treated as the exception to throw.

Example:

.method public static void m () {

brstart // jump over user defined filter

check_exception:

// this is the user defined filter

pop // pop exception object or inspect

// other filter instructions

ldc.i4.1 // EXCEPTION_EXECUTE_HANDLER

endfilter // return answer to EE

// end of user defined filter

start:

.try {

// protected instructions

leave exitSEH

} filter check_exception {

pop // pop exception object or inspect

// other handler instructions

leaveexitSEH // leave the handler

}

}

15.2 Throwing an Exception
An exception is thrown using the throw instruction. The throw instruction expects the exception object
on the stack. This object can be an instance of any class, but typically is an instance of
System.Exception or one of its subclasses.

CLS compliant languages must throw an exception object that is an instance of System.Exception or
one of its subclasses.

The Architecture Specification describes in detail how and exception is thrown. In summary, the CLI
exception system does two passes on the call stack to handle user-filtered exceptions. The first pass will
search for user defined filters or type filters and if one is found execute that filter. During this pass no
finally or fault handlers are executed. The second pass calls the finally and fault handlers, and then
the selected filter’s handler. This behavior gives the user defined filter more flexibility for its decisions.

Example:

The following code throws the NonPositiveNumberException, a nested class that declares the custom
exception inside the class CounterTextBox.

// create the an instance of the exception

newobj instance void CounterTextBox/NonPositiveNumberException::.ctor()

throw // throw the exception
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16 Declarative Security
The CLI has a sophisticated security system. More information about the security system can be found
Security Guide. Programs may specify what permission they need in order to run correctly. However, this
feature is currently not available for CIL assembly code. It is planned for Beta-2.

The following grammar is for round tripping use only. It will be used by ildasm to display code compiled
from other languages.

<securityDecl> ::=

.capability <secAction> = ( <bytes> )

| .permission <secAction> <typeReference> ( <nameValPairs> )

In .permission, <typeReference> specifies the permission class and <nameValPairs> show the settings.
In .capability the bytes show the serialized version of the security settings. The following values for
<secAction> can be displayed by ILDASM:

<secAction> ::= Description

assert Assert permission so callers don’t need it.

| demand Demand permission of all callers.

| deny Deny permission so checks will fail.

| inheritcheck Demand permission of a subclass.

| linkcheck Demand permission of caller.

| permitonly Reduce permissions so check will fail.

| prejitdeny Persisted grant set at prejit time.

| prejitgrant Persisted denied set at prejit time.

| reqmin Request minimum permissions to run.

| reqopt Request optional additional permissions.

| reqrefuse Refuse to be granted these permissions.

| request Hint that permission may be required.

<nameValPairs> ::= <nameValPair> [, <nameValPair>]*

<nameValPair> ::= <SQSTRING> = <SQSTRING>

17 Custom Attributes
Custom attributes add user-defined annotations to the metadata. Custom attributes allow an instance of a
type to be stored with any element of the metadata. This mechanism can be used to store application specific
information at compile time and access it either at runtime or when another tool reads the metadata. While
any user-defined type can be used as an attribute it is expected that most attributes will be instances of types
whose parent is System.Attribute. The CLI predefines some attribute types and uses them to control
runtime behavior. Some languages predefine attribute types to represent language features not directly
represented in the CTS. Users or other tools are welcome to define and use additional attribute types.

Custom attributes are declared using the directive .custom. Followed by this directive is the method
declaration for a class constructor, optionally followed by a <bytes> in parentheses:

<customDecl> ::=

<ctor> [ = ( <bytes> ) ]
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For example:

.custom instance void myAttribute::.ctor(bool, bool) = ( 01 00 00 01 00 00 )

Custom attributes can be attached to any item in metadata, except a custom attribute itself. Commonly,
custom attributes are attached to assemblies, modules, classes, interfaces, value types, methods, fields,
properties and events (the custom attribute is attached to the immediately preceding declaration)

The <bytes> item is not required if the constructor takes no arguments. In these cases, all that matters is the
presence of the custom attribute.

If the constructor takes parameters, then you must specify their values in the <bytes> item. The format for
this ‘blob’ is defined in the Metadata API specification.

Example:

The following example shows a class that is marked with the System.SerializableAttribute and a
method that is marked with the System.Runtime.Remoting.OneWayAttribute. The keyword
serializable corresponds to the System.SerializableAttribute.

.class public MyClass {

.custom [mscorlib]System.SerializableAttribute

.method public static void main() {

.custom [mscorlib]System.Runtime.Remoting.OneWayAttribute

ret

}

}

17.1 CLS Conventions: Custom Attribute Usage
In order to allow languages to provide a consistent view of custom attributes across language boundaries, a
set of conventions is very helpful. The Base Class Library provides support for several different
conventions defined by the CLS:

• Attributes must be instances of the class System.Attribute, which provides static methods to
test whether attributes exist on a metadata element and retrieve their value if so.

• The use of a particular attribute class may be restricted in various ways by placing an attribute on
the attribute class. The System.AttributeUsageAttribute is used to specify these
restrictions:

! What kinds of constructs (types, methods, assemblies, etc.) may have the attribute applied to them.
By default, instances of an attribute class can be applied to any construct. This is specified by setting
the value of the ValidOn property of System.AttributeUsageAttribute. Several
constructs may be combined.

! Multiple instances of the attribute class can be applied to a given piece of metadata. By default, only
one instance of any given attribute class can be applied to a single metadata item. The
AllowMultiple property of the attribute is used to specify the desired value.

! Do not inherit the attribute when applied to a type. By default, any attribute attached to a type should
be inherited to types that derive from it. If multiple instances of the attribute class are allowed, the
inheritance performs a union of the attributes inherited from the parent and those explicitly applied
to the child type. If multiple instance are not allowed, then an attribute of that type applied directly
to the child overrides the attribute supplied by the parent. This is specified by setting the
Inherited property of System.AttributeUsageAttribute to the desired value.

Notice that, since these are CLS rules and not part of the CTS itself, tools are required to specify
explicitly the custom attributes they intend to apply to any given metadata item. That is, compilers or
other tools that generate metadata must implement the allow multiple and inherit rules. The EE and
reflection do not supply attributes automatically.
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17.2 Attributes Used by the Runtime
The metadata engine implements two sorts of Custom Attributes, called (genuine) Custom Attributes (CA),
and Pseudo Custom Attributes (PCA). CAs and PCAs are treated differently, as follows:

• A CA is stored directly into the metadata. The “blob” which holds its defining data is not checked
or parsed. That “blob” can be retrieved later.

• A PCA is recognized because its name is one of a handful of hard-wired PCAs. The engine parses
its blob and uses this information to set bits and/or fields within the metadata tables. The engine
then totally discards the blob, such that it cannot be retrieved later.

PCAs therefore serve to capture user directives, using the same familiar syntax the compiler provides for
regular CAs, but these user directives are then stored into the more space-efficient form of metadata
tables. Tables are also faster to check at runtime than (genuine) CAs. An example of a PCA is the
SerializableAttribute. If the compiler specifies this PCA for a class, then the metadata engine
simply defines the class to be serializable.

Many CAs are invented by higher layers of software. They are stored and returned by the EE, without
knowing or caring what they mean. But all PCAs, plus a handful of regular CAs are of special interest to
compilers and to the Runtime. An example of such distinguished CAs is
System.Reflection.DefaultMemberAttribute. This is stored in metadata as a regular CA
blob, but reflection uses this CA when called to invoke the default member (property) for a class.

The following subsections lists all of the PCAs and distinguished CAs, where distinguished means that the
runtime and/or compilers pay direct attention to them.

Note that it is a Frameworks design guideline that all CAs should be named to end with “Attribute”.
The runtime does not care about this convention.

For further details on these special CAs, consult the Base Class Library, or appropriate specs in the area
that each covers.

17.2.1 Pseudo Custom Attributes

The Metadata engine checks for the following CAs, as part of the processing of the
DefineCustomAttribute method. The check is solely on their name, e.g.
“DllImportAttribute”. If a name match is found, the metadata engine parses the blob argument
and sets bits and/or fields within the metadata tables. It then discards the blob. All these attributes are
part of the System namespace, and should indicate the ilasm syntax, if any, they correspond to.

Attribute Description

NonSerializedAttribute

SerializableAttribute

17.2.2 Attributes Defined by the CLS

The CLS specifies certain custom attributes and requires that conformant languages support them.
These attributes are located under System.

Attribute Description

AttributeUsageAttribute Used to specify how an attribute is intended to be used.

ObsoleteAttribute Indicates that an element is not to be used.

CLSCompliantAttribute Indicates whether or not an element is declared to be CLS compliant
through an instance field on the attribute object.
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17.2.3 Custom Attributes for JIT Compiler and Debugger

The CAs that control runtime behavior of the JIT-compiler and the debugger can be found in
System.Diagnostics.

Attribute Description

DebuggableAmbivalentAttribute

DebuggableAttribute

DebuggerHiddenAttribute

DebuggerStepThroughAttribute

17.2.4 Custom Attributes for Reflect ion

The following CA in System.Reflection is used by reflection’s invoke call:

Attribute Description

DefaultMemberAttribute Defines the member of a type that is the default member used by
InvokeMember.

17.2.5 Custom Attributes for Remoting

CAs that affect behavior of remoting can be found in System.Runtime.Remoting.

Attribute Description

ContextAttribute Root for all context attributes.

OneWayAttribute

Synchronization

ThreadAffinity Refinement of Synchronized Context.

17.2.6 Custom Attributes for Security

The following CAs affect the security checks performed upon method invocations at runtime.

The CAs in the following table can be found in System.Security.

Attribute Description

DynamicSecurityMethodAttribute

SuppressUnmanagedCodeSecurityAttribute

UnverifiableCodeAttribute

The CAs in this table can be found in System.Security.Permissions.

Attribute Description

CodeAccessSecurityAttribute This is the base attribute class for declarative security using
custom attributes.

EnvironmentPermissionAttribute Custom attribute class for declarative security with
EnvironmentPermission.

FileDialogPermissionAttribute Custom attribute class for declarative security with
FileDialogPermission.



- 128 -

FileIOPermissionAttribute Custom attribute class for declarative security with
FileIOPermission.

IsolatedStorageFilePermissionAttribute Custom attribute class for declarative security with
IsolatedStorageFilePermission.

IsolatedStoragePermissionAttribute Custom attribute class for declarative security with
IsolatedStoragePermission.

PermissionSetAttribute Allows declarative security actions to be performed against
permission sets rather than individual permissions.

PrincipalPermissionAttribute A PrincipalPermissionAttribute can be used to declaratively
demand that users running your code belong to a specified
role or have been authenticated.

PublisherIdentityPermissionAttribute Custom attribute class for declarative security with
PublisherIdentityPermission.

ReflectionPermissionAttribute Custom attribute class for declarative security with
ReflectionPermission.

RegistryPermissionAttribute

SecurityAttribute This is the base attribute class for declarative security from
which CodeAccessSecurityAttribute is derived.

SecurityPermissionAttribute

SiteIdentityPermissionAttribute Custom attribute class for declarative security with
SiteIdentityPermission.

StrongNameIdentityPermissionAttribute Custom attribute class for declarative security with
StrongNameIdentityPermission.

UIPermissionAttribute Custom attribute class for declarative security with
UIPermission.

ZoneIdentityPermissionAttribute Custom attribute class for declarative security with
ZoneIdentityPermission.

17.2.7 Custom Attributes for TLS

A CA that denotes a TLS (thread-local storage, see section 12.3.3) field can be found in System.

Attribute Description

ThreadStaticAttribute Provides for type member fields that are relative for the thread.

17.2.8 Custom Attributes for the Assembly Linker

The following CAs are used by the al tool to transfer information between modules and assemblies (they
are temporarily attached to a TypeRef to a class called AssemblyAttributesGoHere) then merged
by al and attached to the assembly. These attributes can be found in
System.Runtime.CompilerServices.

Attribute Description

AssemblyCultureAttribute

AssemblyDelaySignAttribute

AssemblyKeyFileAttribute
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Attribute Description

AssemblyKeyNameAttribute

AssemblyOperatingSystemAttribute

AssemblyProcessorAttribute

AssemblyVersionAttribute

17.2.9 Attributes Provided for Interoperation with COM

There are a number of custom attributes for interoperation with COM 1.x and classical COM. These
attributes are located under System.Runtime.InteropServices in the class hierarchy. More
information can also be found in the Base Class Library specification.

These attributes are shown in the following table.

Attribute Description

ComAliasNameAttribute Applied to a parameter or field to indicate the COM alias for the
parameter or field type.

ComConversionLossAttribute

ComEmulateAttribute Used on a class to indicate that the class is an emulator class for
another .NET Framework class.

ComImportAttribute Used to indicate that a class or interface definition was imported from
a COM type library.

ComRegisterFunctionAttribute Used on a method to indicate that the method should be called when
the assembly is registered for use from COM.

ComSourceInterfacesAttribute Identifies the list of interfaces that are sources of events for the class.

ComUnregisterFunctionAttribute Used on a method to indicate that the method should be called when
the assembly is unregistered for use from COM.

ComVisibleAttribute Can be applied to an individual type or to an entire assembly to
control COM visibility.

DispIdAttribute Custom attribute to specify the COM DISPID of a Method or Field.

DllImportAttribute Used to indicate that a method is implemented as a PInvoke method in
unmanaged code.

FieldOffsetAttribute Used along with the System.Runtime.InteropServices.
StructLayoutAttribute.LayoutKind set to explicit to indicate the
physical position of each field within a class.

GuidAttribute Used to supply the GUID of a class, interface or an entire type library.

HasDefaultInterfaceAttribute Used to specify that a class has a COM default interface.

IdispatchImplAttribute

ImportedFromTypeLibAttribute Custom attribute to specify that a module is imported from a COM
type library.

InAttribute Used on a parameter or field to indicate that data should be marshaled
in to the caller.

InterfaceTypeAttribute Controls how a managed interface is exposed to COM clients
(IDispatch derived or IUnknown derived).
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Attribute Description

MarshalAsAttribute This attribute is used on fields or parameters to indicate how the data
should be marshaled between managed and unmanaged code.

MethodImplAttribute

NoComRegistrationAttribute Used to indicate that an otherwise public, COM-creatable type should
not be registered for use form COM applications.

NoIDispatchAttribute This attribute is used to control how the class responds to queries for
an IDispatch Interface.

OutAttribute Used on a parameter or field to indicate that data should be marshaled
out from callee back to caller.

PreserveSigAttribute Used to indicate that hresult/retval signature transformation that
normally takes place during Interop calls should be suppressed.

ProgIdAttribute Custom attribute that allows the user to specify the prog ID of a .NET
Framework class.

StructLayoutAttribute Typically the runtime controls the physical layout of the data members
of a class.

TypeLibFuncAttribute Contains the FUNCFLAGS that were originally imported for this
function from the COM type library.

TypeLibTypeAttribute Contains the TYPEFLAGS that were originally imported for this type
from the COM type library.

TypeLibVarAttribute Contains the VARFLAGS that were originally imported for this
variable from the COM type library.

18 CIL Instructions
18.1 Overview

This section lists and describes all CIL instructions by category. A more detailed description of the
instructions can be found in the CIL Instruction Set specification.

The CLI uses the model of a stack machine. Each method has an evaluation stack on which arguments to
instructions are pushed. The instructions will pop these instructions and push the results onto the stack.
More about the architecture of the CLI can be found in the Architecture specification.

The execution of instructions can cause an exception. The possible exceptions are described in this section
and the detailed list can also be found in the CIL Instruction Set specification.

Any instruction can throw the general System.ExecutionEngineException. This exception is
thrown when an error internal to the EE occurs.

The Architecture specification gives details on exceptions and rules for valid CIL sequences and verifiable
code.

All instructions have an opcode that identifies them to the JIT compiler. Many instructions also accept
additional data as part of the instruction. This is different from arguments to the instruction. While the
arguments are on the stack, the additional data is integrated into the instruction directly following the
opcode. Thus, each instruction has a certain syntax that describes how it needs to be used. A description of
the integrated data for each instruction can be found in this section and a summary of the grammar in Part
5.

Some instructions have a prefix instruction associated with the them. A prefix instruction is a separate
instruction with its own opcode but qualifies the following instruction in a certain way. A specific prefix
instruction can only be used before selected instructions as described in the next sections. The names of all
prefix instructions end with a dot (“.”).
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Some instructions also have a suffix associated with them. Unlike a prefix instruction, a suffix is not a
separate instruction. A suffix starts with a dot (“.”). The following sections point out which instructions
have what suffixes associated with them. Often, the suffix specifies the size of the data the instruction
deals with and/or includes a small constant number that is encoded efficiently using the suffix.

The general instruction syntax is as follows:

<instr> ::=

<instruction>[.ovf][.un]

| <prefixInstruction>

<instruction> specifies the desired instruction. The suffix .ovf specifies that the instruction checks for
overflow. The suffix .un specifies that the instruction treats its operands on the stack as unsigned values.
The optional suffixes can only be used with specific instructions as shown in the following sections.

The following grammar shows various which suffixes can be used to selected instructions.

<2bitNumSuffix> ::=

0

| 1

| 2

| 3

<constNumSuffix> ::=

4

| 5

| 6

| 7

| 8

| M1

| m1

| <2bitNumSuffix>
M1 or m1means “minus one”.

<typeSuffix> ::=

i

| i1

| i2

| i4

| i8

| r4

| r8

| ref

<exTypeSuffix> ::=

<typeSuffix>

| u

| u1
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| u2

| u4

| u8

The following sections describe:

• Numeric and Logical Operations (18.2)

• Control flow instructions (18.3)

• Instructions that move data (18.4)

• Object management instructions (18.5)

18.2 Numeric and Logical Operations

Many CIL operations take numeric operands on the stack. These fall into several different categories,
depending on how they deal with the types of the operands. The following operand tables summarize the
legal operand types and the resulting type. Notice that the type referred to here is the type as tracked by
the CLI rather than the more detailed types used by tools such as the CIL verifier. The types tracked by
the CLI are: I4, I8, I, F, O, &, and * (see section 5.3 for the definition of & and * )

Table 1: Binary Numeric Operations

A op B (used for add, div, mul, rem, and sub, applies to all instructions unless specific instructions are
specified in the table). The shaded uses are not verifiable, while items marked “-“ indicate incorrectly
formed CIL sequences.

B’s type
A’s type

I4 I8 I F & O *

I4 I4 - I - & (add) - * (add)

I8 - I8 - - - - -

I I - I - & (add) - * (add)

F - - - F - - -

& & (add,
sub)

- & (add,
sub)

- I (sub) - I (sub)

O - - - - - - -

* * (add,
sub)

- * (add,
sub)

- I (sub) - I (sub)

Table 2: Unary Numeric Operations

Used for the neg instruction. All these uses of this instruction are verifiable.

Operand
Type

I4 I8 I F & O *

Result
Type

I4 I8 I F - - -

Table 3: Binary Comparison or Branch Operations
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These return a boolean value or branch based on the top two values on the stack. Used for beq, bge,
bge.un, bgt, bgt.un, ble, ble.un, blt, blt.un, bne, bne.un, ceq, cgt, cgt.un, clt, clt.un. Items marked “####”
indicate that all instructions are valid. Items marked “-” indicate invalid CIL sequences. If only a subset of
instructions are permitted, the valid instructions are shown in the corresponding cell.

I4 I8 I F & O *

I4 #### - #### - - - -

I8 - #### - - - - -

I #### - #### - beq[.s],
bne.un[.s], ceq

- beq[.s],
bne.un[.s],
ceq

F - - - #### - - -

& - - beq[.s],
bne.un[.s],ceq

- #### (Note) - #### (Note)

O - - - - - beq[.s],
bne.un[.s],
ceq

-

* - - beq[.s],
bne.un[.s], ceq

- #### (Note) - #### (Note)

Note: Except for beq, bne.un (or short versions) or ceq these combinations only make sense if both
operands are known to be pointers to elements of the same array (CLI does not check this constraint – it’s
the responsibility of the compiler to ensure it holds)

Table 4: Integer Operations

These operate only on integer types. Used for and, div.un, not, or, rem.un, shl, shr, xor. The div.un
and rem.un instructions treat their arguments as unsigned integers and produce the bit pattern
corresponding to the unsigned result. As described in the CLI Specification, however, the CLI makes no
distinction between signed and unsigned integers on the stack. The not instruction is unary and returns the
same type as the input. The shl and shr instructions return the same type as their first operand and their
second operand must be of type U. All items marked “-“ indicate incorrectly formed CIL sequences, while
the others are verifiable.

I4 I8 I F & O *

I4 I4 - I - - - -

I8 - I8 - - - - -

I I - I - - - -

F - - - - - - -

& - - - - - - -

O - - - - - - -

* - - - - - - -

Table 5: Overflow Arithmetic Operations
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These operations generate an exception if the result cannot be represented in the target data type. Used
for add.ovf, add.ovf.un, mul.ovf, mul.ovf.un, sub.ovf, sub.ovf.un The shaded uses are not verifiable,
while items marked “-“ indicate incorrectly formed CIL sequences.

I4 I8 I F & O *

I4 I4 - I - & add.ovf.un - * add.ovf.un

I8 - I8 - - - - -

I I - I - & add.ovf.un - * add.ovf.un

F - - - - - - -

& &
add.ovf.un,
sub.ovf.un

- &
add.ovf.un,
sub.ovf.un

- I sub.ovf.un - I sub.ovf.un

O - - - - - - -

* *
add.ovf.un,
sub.ovf.un

- *
add.ovf.un,
sub.ovf.un

- I
sub.ovf.un

- I sub.ovf.un

Table 6: Conversion Operations

These operations convert from one numeric type to another. The result type is guaranteed to be
representable as the data type specified as part of the operation (i.e. the conv.u2 instruction returns a
value that can be stored in a U2). The stack, however, can only store values that are a minimum of 4 bytes
wide. Used for the conv.<to type>, conv.ovf.<to type>, and conv.ovf.<to type>.un instructions. The
shaded uses are not verifiable, while items marked “-“ indicate incorrectly formed CIL sequences.
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Output
Operand

I1/U1
I2/U2

I4/U4 I8 U8 I

I4 Truncate1 No-op Sign extend Zero extend Sign extend

I8 Truncate1 Truncate1 No-op No-op Truncate1

I Truncate1 Truncate1 Sign extend Zero extend No-op

F Trunc to 02 Trunc to 02 Trunc to 02 Trunc to 02 Trunc to 02

& - - - Stop GC
Tracking

-

O - - - - -

* - - - Zero extend -

Output
Operand

U All R Types

I4 Zero extend To Float

I8 Truncate1 To Float

I No-op To Float

F Trunc to 02 Change
Precision3

& Stop GC
Tracking

-

O - -

* No-op -

Note 1: “Truncate” means that the number is truncated (i.e. the higher-order bits are set to zero) to the
desired size. If the destination type is signed, the most-significant bit of the truncated value is then sign-
extended to fill the full output size. Thus, converting 257 (0x101) to I1 or U1 yields 1, but truncating 129
(0x81) to U1 yields 129 (0x81) while truncating it to I1 yields –126 (0xF...F81)

Note 2: “Trunc to 0” means that the floating point number will be converted to an integer by truncation
toward zero. Thus 1.1 is converted to 1 and –1.1 is converted to –1.

Note 3: Converts from the current precision available on the evaluation stack to the precision specified
by the instruction. If the stack has more precision than the output size the conversion is performed using
the IEEE 754 “round to nearest” mode to compute the low order bit of the result.

18.3 Control Flow

The operations described in the following sections alter the normal flow of control from one CIL
instruction to the next. There are three main ways to alter the control flow:

1. branch instructions

2. procedure calls

3. exceptions

Branch instructions can be further subdivided into unconditional and conditional branches. There are
unary, binary, and multi-way conditional branch instructions. Branch instructions can only branch to a
label within the current block of code, e.g. they cannot branch to a location outside the current method or
a protected block.
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Branch instructions take in addition to their operands on the stack a label as an argument to which the
control flow shall be redirected if the branch condition is met.

18.3.1 Uncondit ional Branch Instructions

The .s suffix indicates that the distance can be expressed in a signed 8-bit number (distances are in
bytes from the end of the current instruction). See also the leave and leave.s instructions in Section
18.3.5.

br branch within current method or protected block

br.s branch within current method or protected block

18.3.2 Unary Compare-and-Branch and Multi-Way Branch Instructions

These instructions branch depending on the value of the topmost stack item. The .s suffix indicates that
the distance can be expressed in a signed 8-bit number (distances are in bytes from the end of the
current instruction).

brfalse branch if false (i.e. zero)

brfalse.s branch if false (i.e. zero)

brinst branch if non-null object reference

brinst.s branch if non-null object reference

brnull branch if null object reference

brnull.s branch if null object reference

brtrue branch if not false (i.e. not zero)

brtrue.s branch if not false (i.e. not zero)

brzero branch if zero

brzero.s branch if zero

switch multi-way 0-based branch depending on value on top of evaluation stack

18.3.3 Binary Compare-and-Branch Instructions

These operations compare the top two elements on the evaluation stack and branch if a specific
condition is true. They can be considered abbreviations for sequences of instructions using the binary
comparison instructions followed by either a brtrue (or brtrue.s) or a brfalse (or brfalse.s)
instruction. The .s suffix indicates that the distance can be expressed in a signed 8-bit number (distances
are in bytes from the end of the current instruction).

beq based on ceq and brtrue

beq.s based on ceq and brtrue.s

bge based on clt and brfalse

bge.s based on clt and brfalse.s

bge.un based on clt.un and brfalse

bge.un.s based on clt.un and brfalse.s

bgt based on cgt and brtrue

bgt.s based on cgt and brtrue.s

bgt.un based on cgt.un and brtrue

bgt.un.s based on cgt.un and brtrue.s

ble based on cgt and brfalse

ble.s based on cgt and brfalse.s
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ble.un based on cgt.un and brfalse

ble.un.s based on cgt.un and brfalse.s

blt based on clt and brtrue

blt.s based on clt and brtrue.s

blt.un based on clt.un and brtrue

blt.un.s based on clt.un and brtrue.s

bne.un based on ceq.un and brfalse

bne.un.s based on ceq.un and brfalse.s

18.3.4 Procedure Call and Related Instructions

These instructions move the flow of control to another procedure. See also callvirt and ldvirtftn in
section 18.5.

call call a method specified by type, name, and signature

calli call a method specified by function pointer

jmp branch with current arguments to another method

ldftn create function pointer from type, name, and signature

ret return from the current method, possibly returning a value

tail. Convert subsequent instruction to a tail call version (drop current stack frame before call)

18.3.5 Exception Handling

The following instructions specify the control flow of exceptional code. The .s suffix indicates that the
distance can be expressed in a signed 8-bit number (distances are in bytes from the end of the current
instruction).

endfault mark end of a fault handler

endfilter mark end of a filter handler

endfinally mark end of a finally handler

leave unconditional branch that may exit a try block

leave.sunconditional branch that may exit a try block

rethrow throw exception again (out of a catch handler)

throw throw an exception

18.3.6 Other Control Flow Instructions

The instructions in this section are considered to be instructions that belong to the group of control flow
instructions, however do not belong to any of the above sections.

break invoke debugger if attached

ckfinite check that the top of stack is a finite floating point number, generating a
System.ArithmeticException if the value is a NaN or an infinity 

nop ignored

18.4 Moving Data
The instructions presented in this sections may be used to move data from one location to another.

Method arguments and locals are numbered in increasing order starting with 0, unless explicit values are
assigned (see section 11.5.6). Argument 0 is the this pointer for instance and virtual methods. Valid CIL
requires that any argument or local is used consistently, always containing either an integer, floating point
number, class, or instance of a specific value class.
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arglist returns handle to current argument list on stack (for vararg methods, see section 11.5.7) 

cpblk copy block of data from one part of memory to another (not verifiable).

dup duplicate top element of evaluation stack

initblk zero block of data in memory (not verifiable).

ldarg, ldarg.<2bitNumSuffix>, ldarg.s

load argument onto evaluation stack. ldarg.0 through ldarg.3 are short encodings for accessing
the first four arguments. ldarg.s is used for arguments numbered 4 through 255.

ldarga, ldarga.s

load address of an argument. ldarga.s is used for arguments 0 through 255

ldc.i4, ldc.i4.<constNumSuffix>, ldc.i4.s

load constant as a 4-byte signed integer onto the evaluation stack. There is a short encoding for
constants –1 (denoted “m1”) through 8. ldc.i4.s is for encoding constants that fit, signed, in one
byte.

ldc.i8 load an 8-byte integer constant onto the evaluation stack

ldc.r4 load a 32-bit floating point constant onto the evaluation stack

ldc.r8 load a 64-bit floating point constant onto the evaluation stack

ldind.<exTypeSuffix>

load indirect through a pointer, type of data loaded is specified as a suffix to the instruction (not
verifiable).

ldloc, ldloc.<2bitNumSuffix>, ldloc.s

load value of a local variable (numbered from 0) onto the evaluation stack. There are special small
encodings for locals 0 through 3. ldloc.s is used for locals 4 through 255.

ldloca, ldloca.s   

load address of local variable onto stack; ldloca.s is used for locals 0 through 255

ldnull load the null object reference

localloc allocate space for additional locals, dynamically. The evaluation stack must be empty when
this instruction is executed.

pop remove the top item from the evaluation stack

starg, starg.s

store top of evaluation stack into an argument; starg.s is used for arguments 0 through 255

stind.<typeSuffix>

store the top of the evaluation stack into the address specified by a pointer, which is the second item
on the stack. The type of data stored is specified by the suffix to the instruction. Valid CIL requires
that the suffix corresponds to the basic type (integer, float, object) of the value on the top of the
stack. (Not verifiable).

stloc, stloc.<2bitNumSuffix>, stloc.s

store the top of the evaluation stack into a local variable. There are short encodings for locals 0
through 3. stloc.s is used for locals 4 through 255.

unaligned. Indicates that the subsequent operation may reference data that is not aligned to the natural size of
the target machine. Valid only before ldind.<exTypeSuffix>, stind.<typeSuffix>, ldfld,
stfld, ldobj, stobj, initblk, or cpblk.
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volatile. Indicates that the subsequent operation my reference data that is read or written asynchronously.
Valid only before ldind, stind, ldfld, ldsfld, stfld, stsfld, ldobj, stobj, initblk, or
cpblk.

18.5 Object Management
The CIL instruction set has direct support for creating objects, zero-based one-dimensional arrays, typed-
references, and strings. It also supports casting between object types with runtime type checking, copying
instances of value types, accessing fields of classes and value types, and converting between the boxed and
unboxed forms of value types.

box convert an unboxed (copy-by-value) instance of a value type into the boxed (copy-by-reference)
version by allocating a System.Object on the heap.

callvirt call a virtual method given an object and arguments on the evaluation stack and the types, name,
and signature of the virtual method as direct arguments. If the object is null a
System.NullReferenceException is thrown.

castclass convert an object to any of its parent classes, specified as part of the instruction, or raise
System.InvalidCastException.

cpobj copy an instance of a value type from one location to another. The top of the evaluation stack

points to the source object and the next-to-top points to the destination.

initobj zero the contents of a value type. The top of the stack is the address of the instance to be zeroed.

isinst the top of the stack must be an object reference and a type is passed as a direct argument. If the

top of the stack is an instance of that type it is left on the stack, otherwise it is replaced by a null

object reference. In either case, it is guaranteed that the top of the stack can be considered to be of

the specified type.

ldelem.<exTypeSuffix>
load an element out of a zero-based, one-dimensional array, with range and type checking. The
type of the array must match the suffix of the instruction or a
System.ArrayTypeMismatchException is raised. An out of range subscript results in a
System.IndexOutOfRangeException, while an attempt to access an element of the null
array results in a System.NullReferenceException.

ldelema load the address of an element of a zero-based, one-dimensional array, with range and type
checking. The index is the top operand on the stack, the array is the second on the stack. The type
is expected as a direct argument to the instruction.

ldfld load the contents of a field of an object.
ldflda load the address of a field of an object

ldlen load the length of a zero-based, one-dimensional array.

ldobj load an instance of a value type onto the evaluation stack. The top of the evaluation stack is a

pointer to the instance.

ldsfld load the contents of a static field of a class onto the evaluation stack.

ldsflda load the address of a static field of a class onto the evaluation stack.

ldstr load a literal instance of System.String onto the evaluation stack.

ldtoken load a token representing a type, field, or method onto the evaluation stack. The instruction returns

an unmanaged pointer type I (32- or 64-bits, depending on platform) and can be used for efficient

type comparisons, method lookup, etc.
ldvirtftn load a function pointer that references the implementation, in a given object, of a particular virtual

method. This function pointer can then be used with the calli instruction. The method is
computed at the time the ldvirtftn instruction is executed, not when the calli occurs (i.e. it
returns a function pointer, not a C++ “pointer to virtual function”).

mkrefany make a typed reference (runtime typed pointer to memory). A pointer to memory is passed on the
top of the stack, and the type of data stored at that location is passed as part of the instruction
itself. Verification requires that the type specified in the instruction and the type of the pointer
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match, and verification will fail if it cannot show this to be true. Thus, only stylized uses of
mkrefany are verifiable.

newarr allocate and zero-initialize a zero-based, one-dimensional array. The top of the evaluation stack
specifies the total number of elements in the array, and the instruction itself specifies the data type
of the elements.

newobj allocate and initialize an object. The initializer (see Section 7.6.5) to call is specified as part of the

instruction itself. The arguments, if any, to that initializer must be on the evaluation stack.
refanytype given a typed reference on the evaluation stack, extract the type of the pointer from it. This will be

the same value that would have been computed by a ldtoken instruction given the type used
when the typed reference was created using mkrefany.

refanyval given a typed reference on the evaluation stack, extract the pointer from it. See also mkrefany.
sizeof returns the size in bytes of an instance of a value type. The value type is specified as part of the

instruction.

stelem.<typeSuffix>
store an item into an element of an array, with type and range checking. The type is specified by
the suffix of the instruction and (for stelem.ref) the object itself; any mismatch results in a
System.ArrayTypeMismatchException. The top of the stack contains the value to be
stored. The second item on the stack is the index, an unsigned integer. A
System.IndexOutOfRangeException will be thrown if the index is larger than the size of
the array. The third item on the stack is the array itself, which will result in a
System.NullReferenceException if it is null. To store an unboxed value type into an
array, use ldelema and stobj rather than stelem.<typeSuffix>.

stfld store the top of the stack into a field of an object. The item below the top of stack must be an
object reference or a pointer to an unboxed value type instance.

stobj store an unboxed instance of a value type (on the top of the stack) at the address specified by the
pointer below it on the evaluation stack.

stsfld Store the top of the evaluation stack into a static field, specified as part of the instruction.
unbox Return a pointer to the unboxed instance of a value type that is stored within the boxed instance on

the top of the evaluation stack. The type of the boxed instance (from the object on the stack) must
match the type desired (from the instruction stream) or a System.InvalidCastException
is thrown. The result is a by-ref (managed pointer), not a copy of the data in the object. A copy
can be made by using ldobj to copy the data onto the evaluation stack or cpobj to copy into
another location that has already been computed.

18.6 Annotations
Annotations are ignored by all the CLI tools that convert CIL into managed native code. Their opcodes are
reserved and their formats specified for completeness only. More information on these instruction can be
found in the CIL Instruction Set specification.

ann.call 

ann.catch 

ann.data 

ann.data.s 

ann.dead 

ann.def 

ann.hoisted 

ann.hoisted_call 

ann.lab 

ann.live 

ann.phi 
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ann.ref 

ann.ref.s 

19 Overview of File Format Extensions to COFF
This clause specifies a file format for CLI components that is based on, and is a strict extension of, the
current Microsoft Windows Portable Executable (PE) and Common Object File Format (COFF). This
extended PE/COFF format enables the operating system to recognize runtime images, accommodates code
emitted as CIL or native code, and accommodates runtime metadata as an integral part of the emitted code.

This section provides a brief overview of and motivation for the design approach, including a summary of
requirements and constraints. Subsequent sections present the technical specifications as a delta from the
current Windows PE/COFF file format, in sufficient detail that a tool or compiler can use the specifications
to emit valid runtime images.

The entire document assumes familiarity with the current PE/COFF structure and terminology. For more
information, refer to the “Microsoft Portable Executable and Common Object File Format Specification”

19.1 Structure of the Runtime File Format
The figure below provides a high-level view of the CLI file format. All runtime images contain the
following:

• Standard PE/COFF headers, with specific guidelines on how field values should be set in a
runtime file

• A runtime header that contains all of the runtime specific data entries. Currently, the runtime
header is read-only and may be placed in any read-only section

• Any of the data one currently finds in a valid PE/COFF image, including imports/exports, data,
and code. This spec calls out specific areas where we use this data in the runtime.
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additional tuning of the structures without impacting the tools that are emitting them. And, it is in part
because the runtime metadata engine even today supports a number of different formats exposed in a
uniform way through the same API. For example, for COM Interop, a consumer of runtime metadata can
import a typelib as though it were a perfectly valid runtime metadata file. Refer to the Metadata Interfaces
spec for details on emitting and consuming the metadata portion of a runtime image.

19.2 Producers and Consumers of the Runtime File Format

Development tools and compilers will emit runtime images that can be packaged and deployed across a
range of runtime-enabled platforms. Development tools will range from RAD tools (including scripting
languages) to high-level language compilers. The first category of tools will compile and emit files in a
single pass from the development environment. Scripting tools may not even have a need to persist the
resulting file, but simply regenerate the code every time it’s executed. The second category of tools has an
incremental approach, first emitting intermediate compilation units and then linking them together with
resources into a loadable runtime image.

The file format needs to accommodate not only what the runtime will require in order to load and execute
these files, but it needs to make it reasonably straightforward for this range of different tools with different
internal data structures and compilation models to emit metadata and code efficiently (along with
imports/exports, fix-ups, debugging information, etc.).

Consumers of the runtime file format include the runtime itself as well as development tools and
administrative tools. The runtime consumes metadata and CIL in order to JIT-compile CIL to native code.
The loader consumes metadata to load classes and track managed data structures. Development tools will
import metadata to enable references to runtime types and members. Administrative tools will consume
metadata to browse classes and configure services.

19.3 Requirements Addressed by the Runtime File Format Design

Initial exploration of alternative design approaches ranged from introducing an entirely new file format for
the runtime that would co-exist side-by-side with today’s PE file format, to ensuring that the runtime
format was a natural extension of today’s Windows PE file. In having chosen the latter approach, it may
be instructive to review the requirements that drove the design and spec work.

An Option of CIL or Native Code

A developer who wants to target a range of runtime platforms may want to build a component or assembly
of components once and compile to native when needed for a particular platform. Options for “when
needed” range from deployment time to install time to execution time. In this scenario, the code is emitted
as CIL, plus the metadata that the runtime JIT compiler(s) use to compile the CIL to native.

A developer building a runtime component or application in his or her favorite language may have reason
to compile code directly to native. For example, if the code is known to target only a specific platform,
there may be no perceived benefit from going through an intermediate language. This does not mean that
the developer need forego the benefits of the runtime managed services. In the design presented in this
document, the target file format is today’s PE file, either .exe or .dll.

To be more specific, the runtime recognizes managed native code and unmanaged native code. Both are compiled
in any language to the native instruction set of a CPU. Unlike unmanaged native code, managed native code has
additional metadata and coding conventions used by the runtime to enable garbage collection, exceptions and
other runtime features. The current file format specification does not describe these metadata and file format
extensions. Unmanaged native code is fully supported, emitted using all of the structures of today’s PE/COFF.

A Combination of CIL and Native Code

The runtime will accept a file containing a mixture of CIL and native code. The runtime file format
accommodates either one or both naturally in a single format, without requiring compilers to emit, and OS
loaders to recognize, a range of different formats for specialized purposes.

Self-Contained Environments

Although based on today’s Windows PE/COFF, the structure of the sections is intended to be subset-able
for self-contained environments that are directly integrated with the runtime. In particular, these
environments may be willing to trade off full OS services, like page sharing between processes, for image
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size. Observe that the structure of the format headers and sections pictured earlier lends itself to a
structure that consists solely of the runtime header and the data sections that make up the CIL portion of
the image.

32- and 64-Bit Support

Support for both 32-bit and 64-bit requires a number of accommodations in the file format design,
including:

• Support for agnostic-sized integers

• Data fix-ups

Although 64-bit is not fully supported in this version of the CLI, the underpinnings are reflected in this
specification since moving toward 64-bit is integral to the design of the file format and the runtime.

20 Emitting A Valid CLI Image
This section covers the structure of the file headers, section headers, and extensions to the native PE data
that may be used by the runtime.

20.1 File Headers
The image starts with an MS-DOS header, followed by the COFF header, and PE header.

20.1.1 Signature

The PE format calls for an MS-DOS stub to be placed at the front of the module. This stub is then used
to tell DOS users that the module cannot be run in DOS mode.

At offset 0x3c is the offset to the PE signature. The signature will remain “PE\0\0” as it is today.

20.1.2 COFF Header

Immediately after the signature is the COFF header consisting of the following:

Offset Size Field Description

0 2 Machine Number identifying type of target machine. See below

2 2 Number of Sections Number of sections; indicates size of the Section Table,
which immediately follows the headers

4 4 Time/Date Stamp Time and date the file was created

8 4 Pointer to Symbol Table The COFF symbol table is not used. Set this value to 0

12 4 Number of Symbols Always 0

16 2 Optional Header Size Size of the optional header, the format is described below

18 2 Characteristics Flags indicating attributes of the file

20.1.2 .1 Machine Type

If an image is intended to run on a single processor type, then the machine type should be set
accordingly. If the image is intended to run on more than one processor type, runtime images will
use a machine type of IMAGE_FILE_MACHINE_I386

20.1.2.2 Characterist ics

An image that contains native code may have any of the standard flags from the PE file format
specification as appropriate.

A CIL-only dll has the following characteristics:

Flag Value Description
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IMAGE_FILE_EXECUTABLE_IMA
GE

0x0002 Image only. Indicates that the image file is valid and
can be run. If this flag is not set, it generally
indicates a linker error

IMAGE_FILE_LINE_NUMS_STRIP
PED

0x0004 COFF line numbers have been removed

IMAGE_FILE_LOCAL_SYMS_STRI
PPED

0x0008 COFF symbol table entries for local symbols have
been removed

IMAGE_FILE_DEBUG_STRIPPED 0x0200 Debugging information removed from image file

IMAGE_FILE_DLL 0x2000 The image file is a dynamic-link library (DLL).
Such files are considered executable files for almost
all purposes, although they cannot be directly run

Currently we do not anticipate support for IMAGE_FILE_SYSTEM (to produce device drivers and
systems level code written in CIL)

20.1.3 Optional Header

The PE/COFF Optional Header is required for a runtime image1. It is located immediately after the
COFF Header and is sometimes referred to as the PE Header. This header contains the following
information:

Offset Size Header part Description

0 28 Standard fields These are defined for all implementations of COFF,
including UNIX®.

28 68 NT-specific fields These include additional fields to support specific
features of Windows NT (for example, subsystem)

96 128 Data directories These fields are address/size pairs for special tables,
found in the image file and used by the operating system
(for example, Import Table and Export Table)

20.1.3 .1 Optional Header Standard Fields

These fields are required for all COFF files. They contain loader information as follows:

Offset Size Field Description

0 2 Magic Unsigned integer identifying the state of the image file.
Set this value to 0x10B, meaning an executable file

2 1 LMajor Linker major version number, tool specific

3 1 LMinor Linker minor version number, tool specific

4 4 Code Size Size of the code (text) section, or the sum of all code
sections if there are multiple sections

8 4 Initialized Data Size Size of the initialized data section, or the sum of all such
sections if there are multiple data sections

12 4 Uninitialized Data
Size

Size of the uninitialized data section (BSS), or the sum of
all such sections if there are multiple BSS sections

16 4 Entry Point RVA Address of entry point, relative to image base, when
executable file is loaded into memory. See the section
below on entry points

1 It is called optional because when the COFF format is used for an object file it is not required
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20 4 Base Of Code Address, relative to image base, of beginning of code
section, when loaded into memory

24 4 Base Of Data Address, relative to image base, of beginning of data
section, when loaded into memory

20.1.3 .2 Optional Header Windows NT-Specif ic Fields

These fields are Windows NT specific:

Offset Size Field Description

28 4 Image Base Preferred address of first byte of image when loaded into
memory; must be a multiple of 64K

32 4 Section Alignment Alignment (in bytes) of sections when loaded into
memory. Must be greater or equal to File Alignment.
Default is the page size for the architecture

36 4 File Alignment Alignment factor (in bytes) used to align pages in image
file. Valid values are a power of 2 between 512 and 64K.
Unless otherwise necessary, use 512

40 2 OS Major Major version number of required OS

42 2 OS Minor Minor version number of required OS

44 2 User Major Major version number of image

46 2 User Minor Minor version number of image

48 2 SubSys Major Major version number of subsystem

50 2 SubSys Minor Minor version number of subsystem

52 4 Reserved

56 4 Image Size Size, in bytes, of image, including all headers; must be a
multiple of Section Alignment

60 4 Header Size Combined size of MS-DOS Header, PE Header, and
Object Table

64 4 File Checksum Image file checksum. The algorithm for computing is
incorporated into IMAGHELP.DLL. The following are
checked for validation at load time: all drivers, any DLL
loaded at boot time, and any DLL that ends up in the
server

68 2 SubSystem Subsystem required to run this image. See note below

70 2 DLL Flags Obsolete

72 4 Stack Reserve Size Size of stack to reserve. Only the Stack Commit Size is
committed; the rest is made available one page at a time,
until reserve size is reached. Stacks for CIL will be
handled by the runtime. This value should be set using
the same switches as used today

76 4 Stack Commit Size Size of stack to commit

80 4 Heap Reserve Size Size of local heap space to reserve. Only the Heap
Commit Size is committed; the rest is made available one
page at a time, until reserve size is reached

84 4 Heap Commit Size Size of local heap space to commit
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88 4 Loader Flags Obsolete

92 4 Number of Data
Directories

Number of data-dictionary entries in the remainder of the
Optional Header. Each describes a location and size

20.1.3 .2 .1 SubSystem Sett ings

The runtime Loader itself does not do anything with the subsystem setting of the PE. The value
chosen, however, can impact on what Windows platforms the image may be run. For example,
setting this value to IMAGE_SUBSYSTEM_WINDOWS_CE_GUI means the image can’t be run
on any non-CE device. In addition, IMAGE_SUBSYSTEM_NATIVE is not supported because the
runtime cannot run in kernel mode for this release. It is recommend that either
IMAGE_SUBSYSTEM_WINDOWS_GUI or IMAGE_SUBSYSTEM_WINDOWS_CUI be used
for this setting.

20.1.3.2 .2 Stack Reserve Size

For now, the default stack size should be used

Recommended size information will be supplied in a later release.

20.1.3.3 Optional Header Data Directories

Data directories give the address and size of tables used by Windows. Each data directory entry is as
follows:

typedef struct _IMAGE_DATA_DIRECTORY {

DWORD RVA;

DWORD Size;

} IMAGE_DATA_DIRECTORY, *PIMAGE_DATA_DIRECTORY;

The first field, RVA, is the relative virtual address of the table. The RVA is the address of the table,
when loaded, relative to the base address of the image. The second field gives the size in bytes. The
data directories, which form the last part of the Optional Header, are listed below.

Offset Size Field Description

96 8 Export Table Export Table address and size

104 8 Import Table Import Table address and size

112 8 Resource Table Resource Table address and size

120 8 Exception Table Exception Table address and size. For
Managed Native Code, this table will contain
the MIH mapping information for the Code
Manager

128 8 Certificate Table Attribute Certificate Table address and size

136 8 Base Relocation Table Base Relocation Table address and size

144 8 Debug Debug data starting address and size

152 8 Copyright Copyright string address and length

160 8 Global Ptr Relative virtual address of the global pointer
register. Size member of this structure is set to
0

168 8 TLS Table Thread Local Storage (TLS) Table address
and size
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176 8 Load Config Table Load Configuration Table address and size

184 8 Bound Import Bound Import Table address and size

192 8 IAT Import Address Table address and size

200 8 Delay Import Descriptor Address and size of the Delay Import
Descriptor

208 8 Runtime Header Runtime Header with directories for runtime
data

216 8 Reserved

20.1.4 Storing Runtime Data in Sections

The runtime defines several types of data formats that are used by the engine to execute code. This
includes things like the metadata, CIL method bodies, garbage-collection encodings, and others. Each
type of data may be placed in any part of the PE image so long as the section the data is placed in has
the same attributes as required. Each data format described in the following section identifies what type
of page attributes the data must have in the final image.

1.2.2 Runtime Header

Directory entry IMAGE_DIRECTORY_COR_DESCRIPTOR contains the location of the runtime
Header in the image. This header contains all of the runtime-specific data entries and other
information. The header should be placed in a read only, sharable section of the image. This header is
defined as follows:

Offset Size Field Description

0 4 Cb Size of the header in bytes

4 2 MajorRuntimeVersion The minimum version of the runtime required to
run this program. This value matches the
COR_VERSION_MAJOR macro the runtime is
compiled with

6 2 MinorRuntimeVersion The minor portion of the version. Use the
COR_VERSION_MINOR macro

8 8 MetaData Location and size of the meta data in this image

16 4 Flags Flags describing this runtime image. See
“Runtime Flags” below

20 4 EntryPointToken Token for the MethodDef of the entry point for
the image

24 8 Resources Location of CLI resources. These resources are
not the same as the WIN32 resource section of
the PE file

32 8 StrongNameSignature Location of the hash data for this PE file used by
the CLI loader for binding and versioning

40 8 CodeManagerTable Location and size of the Code Manager Table.
See below

48 8 VTableFixups Location and size of an array of locations in the
file that contain an array of function pointers
(e.g., vtable slots). See discussion below
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56 8 ExportAddressTableJumps Location and size of an array of RVA’s to where
jump thunks are written

64 8 EEInfoTable Reserved for IOJ2

72 8 HelperTable Reserved for IOJ

80 8 DynamicInfo Reserved for IOJ

88 8 DelayLoadInfo Reserved for IOJ

96 8 ModuleImage Reserved for IOJ

104 8 ExternalFixups Reserved for IOJ

112 8 RidMap Reserved for IOJ

120 8 DebugMap Reserved for IOJ

128 8 IPMap OBSOLETE: this directory is being replaced by
the P-Data map already defined in the PE
specification

More details on parts of this header are included below. Those directories that are specific to Managed
Native Code can be found in the chapter that covers MNC.

1.2.2 .1 Runtime Header Definit ion

Following is the structure definition for the header:

// CLI header structure

typedef struct IMAGE_COR20_HEADER
{

// Header versioning
DWORD cb;
WORD MajorRuntimeVersion;
WORD MinorRuntimeVersion;

// Symbol table and startup information
IMAGE_DATA_DIRECTORY MetaData;
DWORD Flags;
DWORD EntryPointToken;

// Binding information
IMAGE_DATA_DIRECTORY Resources;
IMAGE_DATA_DIRECTORY StrongNameSignature;

// Regular fixup and binding information
IMAGE_DATA_DIRECTORY CodeManagerTable;
IMAGE_DATA_DIRECTORY VTableFixups;
IMAGE_DATA_DIRECTORY ExportAddressTableJumps;

// Managed Native Code
IMAGE_DATA_DIRECTORY EEInfoTable;
IMAGE_DATA_DIRECTORY HelperTable;
IMAGE_DATA_DIRECTORY DynamicInfo;

2 “Install-O-Jit” – an informal term that describes how you can have the runtime engine compile the IL in
PE modules and save the compiled, native code. This would typically be done when you install an
application on a computer – thus the name.
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IMAGE_DATA_DIRECTORY DelayLoadInfo;
IMAGE_DATA_DIRECTORY ModuleImage;
IMAGE_DATA_DIRECTORY ExternalFixups;
IMAGE_DATA_DIRECTORY RidMap;
IMAGE_DATA_DIRECTORY DebugMap;
IMAGE_DATA_DIRECTORY IPMap;

} IMAGE_COR20_HEADER;

20.1.5 .2 Runtime Flags

The following flags describe this runtime image and are used by the loader.

Flag Value Description

COMIMAGE_FLAGS_ILONLY 0x00000001 Image contains only CIL code so that it is not
required to run on a specific CPU. Any native
code in the module is the x86 startup stub which
may safely be ignored if the OS is runtime aware

COMIMAGE_FLAGS_32BITREQUIR
ED

0x00000002 Image may only be loaded into a 32-bit process

COMIMAGE_FLAGS_TRACKDEBU
GDATA

0x00010000 When set, the runtime and JIT are required to
track debugging information about methods.
See the Debugging Architecture Specification
for more details.

20.1.5.3 Entry Point Meta Data Token

The entry point token is always a MethodDef token (refer to the Metadata Interfaces spec for details
on metadata tokens). The signature and implementation flags in metadata for the method indicate
how the entry is run. The entry point, if given, is always a managed method using the DEFAULT
calling convention.

For a DLL image, the entry point is one of:

• int DllMain(HINSTANCE, DWORD, void *)

For an EXE image, the entry point is one of:

• unsigned main(void)

• void DEFAULT main(System.String[])

Although this approach means that the runtime has parsing smarts built into it, it offers the ability for
any tool (like the assembler) to have a default implementation. A tool is always free to insert their
own entry point wrapper using “unsigned main(void)” which in turn parses the command line and
delegates to the user’s entry point code of the same signature.

The entry point RVA in the PE header must always be either the x86 entry point stub (which loads
and calls the Runtime), or be 0 (for a runtime aware version of Windows only). If Managed and
Unmanaged code are mixed in the same image, this is still the case. To make an unmanaged method
the entry point for an image, define a PInvoke MethodDef for the method and use that token. For
example, here is a dump of the metadata for a C++ console application with an unmanaged entry
point supplied by a static copy of the CRT:

Global functions

Method #1
-------------------------------------------------------

MethodName: _mainCRTStartup (06000008)
Flags : [Public] [Static] [ReuseSlot] [PinvokeImpl] (00002011)
RVA : 0x00001116
ImplFlags : [Native] [Unmanaged] [Implemented] (00000014)
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CallCnvntn: [DEFAULT]
ReturnType: UI4
No arguments.
Pinvoke Map Data:
Entry point:
Module ref: 1a000001
Mapping flags: [NoMangle] [CharSetNotSpec] [CallConvStdcall]

(00000301)
Ordinal: 00000000

ModuleRef #1
-------------------------------------------------------

ModuleRef: (1a000001) :
GUID : {00000000-0000-0000-0000-000000000000}
MVID : {00000000-0000-0000-0000-000000000000}

20.1.5 .4 VTable Fixup

Certain unmanaged C++ classes, which choose not to follow the common type system runtime model,
may have virtual functions which need to be represented in a v-table. These v-tables are laid out by
the C++ compiler, not by the runtime. Finding the correct v-table slot and calling indirectly through
the value held in that slot is also done by the compiler. V-tables are emitted into a read-write section
of the PE file. (This is different from unmanaged native code, where a v-table can be placed in a
read-only section and shared between processes.) It is recommended that a tool try to emit v-tables
adjacent to each other in the image in order to minimize the number of entries in this table (ie: you
can do all v-tables with 1 entry if they are all adjacent). The runtime header contains the location and
size of an array that looks like:

#define COR_VTABLE_32BIT 0x01 // V-table slots are 32-bits in
size.
#define COR_VTABLE_64BIT 0x02 // V-table slots are 64-bits in
size.
#define COR_VTABLE_FROM_UNMANAGED 0x04 // If set, transition from
unmanaged.
#define COR_VTABLE_CALL_MOST_DERIVED 0x10 // Call most derived method
described by

// token, only valid for
virtuals.

typedef struct _IMAGE_COR_VTABLEFIXUP
{

ULONG RVA; // Offset of v-table array in image.
USHORT Count; // How many entries at location.
USHORT Type; // COR_VTABLE_xxx type of entries.

} IMAGE_COR_VTABLEFIXUP;

Each entry in this array describes a contiguous array of v-table slots of the specified size. Each slot
starts out initialized to the metadata token value for the method they need to call. At image load
time, the runtime Loader will turn each entry into a pointer to machine code for the CPU and can be
called directly.

This structure is also used for managed native code transitions. Please see the chapter on Managed
Native Code for more details.
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20.1.5.5 Resources

This header entry points to the CLI managed resources for an image, not to be confused with the
traditional Win32 resource format. Please see the resource specification for more details on the
format of this data.

20.1.5 .6 Strong Name Signature

This header entry points to the strong name hash for an image that can be used to deterministically
identify a module from a referencing point. The routines in StrongName.h in the public SDK can be
used work with this data. Please see the Design Specification for Assembly Metadata for more
details.

20.2 Section Headers
The section headers come immediately after the COFF optional header (PE Header). Refer to the
“Microsoft® Portable Executable and Common Object File Format Specification” for settings on standard
sections.

The runtime data for a module is always located through the runtime Header. The only requirement on a
tool that emits this data is to place the data in a section which has the required characteristics. Currently
all of the runtime data for a module (meta data, method bodies, etc.) are read only and may be placed in
any read only section. The data may be shared between processes safely.

20.3 Modif ications to Existing PE Data
Runtime modules may contain any data one currently finds in a valid PE image, including resources,
imports/exports, data, and code. See the PE specification for more details. This section calls out specific
areas where we use existing data in the runtime.

20.3.1 Import Address Table (IAT)

The IAT is used for one of the following:

1. To import mscoree.dll (ie: the runtime engine) for the x86 loader thunk

2. In a mixed managed/unmanaged image, for legacy imports

The IAT burns into the image slots for methods of a fixed size and is therefore not portable between 32
and 64-bit systems. For this reason, it is ideal to use the metadata to import legacy methods and data
through the PInvoke feature. For an image using the IAT only to import the runtime, the IAT is
completely ignored and therefore not a problem (presumes an OS loader which is CLI-aware).

20.3.2 Export Section ( .edata)

Exporting as unmanaged native is interesting when one is implementing an existing interface (such as
Win32, print drivers, or ODBC), but you want to write your code using the runtime. The EAT will
always have pointers to unmanaged code as down-level clients expect this. There are no plans to use
the EAT/IAT to directly export/import managed methods. Rather the metadata should be used to
perform this duty.

Please see the Export Address Table Jumps directory entry for more details on how to export methods
as unmanaged from an image.

20.3.3 Thread Local Storage Table

The programmer may mark an instance of a static field as TLS. This means that the memory for the
instance is associated with the logical thread being executed. Each logical thread has its own copy of
the instance of the variable. For an CIL image, a compiler generates instructions to access the field as
they would any other piece of static data, by specifying the RVA of the data. The runtime does a range
check of the RVA on the instruction to see if it falls in the TLS table, and if so, it abstracts the location
of the memory relative to the thread automatically.

Per the current Windows standard, only PEs in the originating EXE or explicitly imported DLL’s
(through the IAT) are included in the calculation for TLS data at process startup. DLLs that are
dynamically loaded later may not successfully use the TLS attribute. Runtime does not change this
restriction.
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TLS storage for native code is unchanged from the current PE specification. The same restrictions
apply.

20.3.4 Relocations

Relocations in a pure CIL image are required only for the x86 startup stub which access the IAT to load
the runtime engine on down level loaders. On an OS which is runtime-aware and marked for CIL-only
execution, the relocation section, IAT, and any native code is ignored.

When building a mixed CIL/native image, relocations may be needed as they are in a traditional image.

Finally, if the image contains embedded RVAs in user data, then relocations must be emitted for these
references. Relocations are not required nor recommended for arguments to CIL instructions (such as
ldptr). These extra relocations are used by tools that need to rewrite or modify the image in some
manner, such as a linker which combines images together.

21 Common Intermediate Language
This section describes how to format and emit CIL methods in the image. A method consists of a
COR_ILMETHOD method structure and the instructions for the method. A call descriptor contains an RVA
to this method structure. There is no required ordering for methods in this section, which allows a tuning
tool to reorder the methods if better locality of reference and working set size can be obtained by so doing

The COR_ILMETHOD describes all information about a method that is not needed by callers of the method.
This includes:

1. Amount of resources needed for the Operand stack

2. Amount of resources for local variables as well as which local variables contain pointers into the
garbage collected heap

3. Amount of resources for the locspace instruction

4. Exception handling information

Unfortunately, the description of the operand stack and the local variable frame is complicated by the fact
that stack slots can hold items of unknown size. The size of I and REF types is unknown by the code
generator, as well as by-value objects, don’t even have a upper bound on their size.

21.1 Local Variable Layout
One function of the COR_ILMETHOD structure is to indicate the layout of the local variables. This is
needed for two reasons.

1. To be able to find all pointers into the garbage-collected heap at GC time

2. To indicate the sizes of the local variables so the local frame can be calculated

When local variables are present, use the COR_ILMETHOD_FAT structure definition and provide a value
for the LocalVarSigTok field. This is a metadata token for a signature that describes the precise layout of
each local on the stack. Please see the MetadataStructures spec for more details on signature tokens.

21.2 File Format Structure Definitions
This section contains the layout of the data structures used to describe an CIL method and its exceptions.
C language definitions can be found in the CORHDR.H file in the SDK. In addition, some unsupported
C++ style declarations can be found in CORHLPR.*, also in the SDK. These helpers greatly simplify
emitting and decoding the file format structures and are used in the runtime engine itself.

21.2.1 Method Body

The body of a method is defined in the general form.

Exception handling data is emitted after the method body. If exception-handling data is present, then
CorILMethod_MoreSects must be specified in the method header and for each chained item after that.
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21.2.1 .1 Method Header Type Values

The three least significant bits of the first byte of the method header indicate what type of header is
present. These 3 bits will be one and only one of the following:

Value Value Description

CorILMethod_TinyFormat 2 The method header is defined by the
IMAGE_COR_ILMETHOD_TINY structure and the
size of the code is even

CorILMethod_TinyFormat1 6 The method header is defined by the
IMAGE_COR_ILMETHOD_TINY structure and the
size of the code is odd. Using two values for tiny
allows for an extra bit of size data

CorILMethod_FatFormat 3 The method header is defined by the
IMAGE_COR_ILMETHOD_FAT structure

21.2.1 .2 Tiny Format

The IMAGE_COR_ILMETHOD_TINY structure comes in two flavors with a 5 or 6 bit length
encoding. The following is true for all tiny headers:

• No local variables are allowed

• No exceptions

• No extra data sections

• The operand stack need be no bigger than 8 bytes

The first encoding has the following format:

Start Bit Count of Bits Description

0 2 CorILMethod_TinyFormat = 0x2

2 6 Size of the method body immediately following this
header. Used only when the size of the method is
even and under 2^6

The second encoding has the following format:

Start Bit Count of Bits Description

0 3 CorILMethod_TinyFormat1 = 0x6

3 5 Size of the method body immediately following this
header. Used only when the size of the method is odd
and under 2^5

21.2.1 .3 Fat Format

The fat format is used whenever the Tiny format won’t work. This may be true for one or more of
the following reasons:

• The method is too large to encode the size

• There are exceptions

• There are extra data sections

• There are local variables

• The operand stack needs more than 8 bytes
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The encoding of the first byte of the header in this case is as follows:

Start Bit Count of Bits Description

0 2 CorILMethod_Fat = 0x3

2 1 Reserved

3 1 CorILMethod_MoreSects = 0x8 or 0 to indicate no
more sections

4 1 CorILMethod_InitLocals = 0x10 or 0 to indicate no
local variable init

The rest of the Fat format is described below

21.2.1 .4 IMAGE_COR_ILMETHOD

The metadata points to an instance of this structure. Method headers must be DWORD aligned.
There are two possible formats to emit, Tiny or Fat. This structure is a union of these two types.
The first byte indicates which type is present (see the “Method Header Type Values” for more
details)

typedef union
{

COR_ILMETHOD_TINY Tiny;
COR_ILMETHOD_FAT Fat;

} COR_ILMETHOD;

21.2.1 .5 IMAGE_COR_ILMETHOD_TINY

This structure must always be DWORD aligned. The layout of this structure is as follows:

typedef struct IMAGE_COR_ILMETHOD_TINY
{

BYTE Flags_CodeSize;
} IMAGE_COR_ILMETHOD_TINY;

See the description of the header above.

21.2.1 .6 IMAGE_COR_ILMETHOD_FAT

This structure must always be DWORD aligned. The layout of this structure is as follows:

typedef struct IMAGE_COR_ILMETHOD_FAT
{

unsigned Flags : 12; // Flags
unsigned Size : 4; // size in DWords of this structure

(currently 3)
unsigned MaxStack : 16; // maximum number of items (I4, I, I8,

obj ...),
// on the operand stack

DWORD CodeSize; // size of the code
DWORD LocalVarSigTok; // token that indicates the signature of

the local
// vars (0 means none)

} IMAGE_COR_ILMETHOD_FAT;

Offset Size Field Description

0 12 bits Flags Flags (described below)
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12 bits 4 bits Size Size of this header expressed as the count of
DWORDs occupied

16 bits 16 bits MaxStack Maximum number of items on the operand stack

4 4 CodeSize Size in bytes of the actual method body

8 4 LocalVarSigTok Meta Data token for a signature describing the
layout of the local variables for the method. 0
means there are no local variables present

21.2.1.6 .1 Flags for Method Headers

The first byte of a method header may also contain the following flags, valid only for the Fat
format, that indicate how the method is to be executed:

Flag Value Description

CorILMethod_InitLocals 0x0010 Call default constructor on all local variables

CorILMethod_MoreSects 0x0008 Set to indicate a section attribute follows the current
attribute. Used to chain in exception information
among other things

21.2.2 Section Data

Certain types of data may be found after a method header. Currently only exceptions are described in
such a way, but other usages are envisioned. These sections are only valid when the method is encoded
with an IMAGE_COR_ILMETHOD_FAT header with the CorILMethod_MoreSects bit set. Section
data must be DWORD aligned after the end of the method body as described by the method header.

Every section is at least two bytes. The first byte of the section data contains the flags describing the
section as follows:

Flag Value Description

CorILMethod_Sect_Reserved 0 Reserved for future use

CorILMethod_Sect_EHTable 1 Exception handling data. See the
IMAGE_COR_ILMETHOD_SECT_EH structure for
more encoding details

CorILMethod_Sect_OptILTable 2 Reserved for future use

CorILMethod_Sect_FatFormat 0x40 Data format is of the fat variety, meaning there is a 3
byte length. If not set, the header is small with a 1
byte length

CorILMethod_Sect_MoreSects 0x80 Another data section occurs after this current section

21.2.3 IMAGE_COR_ILMETHOD_SECT_EH

Exceptions are declared as an extra section of data that comes after a method header. This structure
defines an element of the Exception Handling information for a method. The structure must be emitted
on a DWORD boundary. This structure is a union of the
IMAGE_COR_ILMETHOD_SECT_EH_SMALL and IMAGE_COR_ILMETHOD_SECT_EH_FAT
structure types, depending on how much data is present.

21.2.3 .1 IMAGE_COR_ILMETHOD_SECT_EH_SMALL

The layout of this structure as is a follows:

typedef struct IMAGE_COR_ILMETHOD_SECT_EH_SMALL
{

IMAGE_COR_ILMETHOD_SECT_SMALL SectSmall;
WORD Reserved;
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IMAGE_COR_ILMETHOD_SECT_EH_CLAUSE_SMALL Clauses[1]; // actually
variable size
} IMAGE_COR_ILMETHOD_SECT_EH_SMALL;

Offset Size Field Description

0 1 Kind CorExceptionFlag type for this block

1 1 DataSize Size of the data for the block not including the header

2 2 Reserved DWORD padding

4 n Clauses One or more clauses as defined by DataSize

21.2.3.2 CorExceptionFlag Values

The following flag values are used for each exception-handling clause:

Flag Value Description

COR_ILEXCEPTION_CLAUSE_NONE 0x0000

COR_ILEXCEPTION_CLAUSE_FILTER 0x0001 Entry is for an exception filter

COR_ILEXCEPTION_CLAUSE_FINALLY 0x0002 A finally clause

COR_ILEXCEPTION_CLAUSE_FAULT 0x0004 Fault clause (finally that is called on
exception only)

21.2.3 .3 IMAGE_COR_ILMETHOD_SECT_EH_CLAUSE_SMALL

The small form of the exception clause should be used whenever the code size for the try block and
handler code is smaller than or equal to 256 bytes. The format for a small exception clause is as
follows:

typedef struct IMAGE_COR_ILMETHOD_SECT_EH_CLAUSE_SMALL
{

CorExceptionFlag Flags : 16;
unsigned TryOffset : 16;
unsigned TryLength : 8; // relative to start of try

block
unsigned HandlerOffset : 16;
unsigned HandlerLength : 8; // relative to start of

handler
union {

DWORD ClassToken;
DWORD FilterOffset;

};
} IMAGE_COR_ILMETHOD_SECT_EH_CLAUSE_SMALL;

Offset Size Field Description

0 2 Flags CorExceptionFlag type for this block

2 2 TryOffset Offset of a try block

4 1 TryLength Length in bytes of the try block

5 2 HandlerOffset Location of the handler for this try block

7 1 HandlerLength Size of the handler code in bytes
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8 4 ClassToken Meta data token for a type-based exception handler

8 4 FilterOffset Offset in method body for filter-based exception
handler

21.2.3 .4 IMAGE_COR_ILMETHOD_SECT_EH_FAT

Used to describe a large exception clause that will not fit in the
COR_ILMETHOD_SECT_EH_SMALL structure.

typedef struct IMAGE_COR_ILMETHOD_SECT_EH_FAT
{

IMAGE_COR_ILMETHOD_SECT_FAT SectFat;
IMAGE_COR_ILMETHOD_SECT_EH_CLAUSE_FAT Clauses[1]; // actually

variable size
} IMAGE_COR_ILMETHOD_SECT_EH_FAT;

Offset Size Field Description

0 1 Kind Which type of exception block is being used

1 3 DataSize How big is the data excluding the header size

4 n Clauses One or more clauses describing exception handling

21.2.4 IMAGE_COR_ILMETHOD_SECT_EH_CLAUSE_FAT

Use this structure when the smaller clause cannot handle the size of the data. The layout of this
structure is as follows:

typedef struct IMAGE_COR_ILMETHOD_SECT_EH_CLAUSE_FAT
{

CorExceptionFlag Flags;
DWORD TryOffset;
DWORD TryLength; // relative to start of try block
DWORD HandlerOffset;
DWORD HandlerLength; // relative to start of handler
union {

DWORD ClassToken; // use for type-based exception
handlers

DWORD FilterOffset; // use for filter-based exception
handlers

// (COR_ILEXCEPTION_FILTER is
set)

};
} IMAGE_COR_ILMETHOD_SECT_EH_CLAUSE_FAT;

Offset Size Field Description

0 4 Flags CorExceptionFlag type for this block

4 4 TryOffset Offset of a try block

8 4 TryLength Length in bytes of the try block

12 4 HandlerOffset Location of the handler for this try block

16 4 HandlerLength Size of the handler code in bytes

20 4 ClassToken Meta data token for a type-based exception handler
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20 4 FilterOffset Offset in method body for filter-based exception handler

22 Code Transitions
For first release of the runtime product, one is allowed to mix unmanaged native code and managed CIL code
in the same image. Not supported but planned for a future release is “Managed Native Code”, which is
managed code emitted using the native instructions for a given CPU instead of CIL. This section of the
specification documents the layout of these mixed images.

Following is a definition of terms:

Managed Code that requires the runtime for execution. A managed program can use
the common type system and take advantage of other runtime features that an
unmanaged program cannot. Additional metadata is required in the image to
be managed. This includes information about garbage collection, exception
handling, and the locations of methods in the file. A managed program
cannot run without the assistance, at runtime, of the CLI

Unmanaged Code that does not require the runtime for execution. This code may not use
the common type system or other features of the runtime. Traditional native
code (before the CLI) is considered unmanaged

Code Manager A code manager contains the code required to walk the state of a running
program (such as tracing the stack and track GC references). CLI supports
pluggable code managers, and provides default versions for JIT’ed code,
CIL, and F-Jit

Thunk A (typically) small piece of code used to provide a transition between two
pieces of code where special handling is required

22.1 Call Transitions
22.1.1 Transit ion Types

A Transition is any boundary between types of code that requires special handling. When the caller and
the callee code have the same properties, then no special transition is required to make the call. There
are three main categories discussed where transitions may be required:

Runtime Type A method may be mnaged or unmanaged. Transitions between the two types
in either direction require a thunk

Code Type A method body may be stored in CIL, Opt-CIL3, or native byte codes.
Transition between CIL and Opt-CIL is handled by the Runtime. Transitions
between any form of CIL and Native require a thunk

Location Type The implementation for a method may appear either in the local image, or may be
imported from another image. When calling an imported method, a thunk may
be required.

Any permutation of types above can result in the requirement for a thunk. This thunk is generated by
the runtime during execution and will set up the correct state for the call. For example, when making a
transition from managed to unmanaged, the GC state for the thread is marked as pre-emptive (meaning
it will not read or write GC reference) and an exception filter is put in place to protect the managed
code from errors that occur. It is beyond the scope of this document to describe the different types of
thunks and their contents.

3 Opt-IL is not supported for first release of the product. Some file format elements allow this format for
future use.
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22.1.1.1 Effects on Like Pieces of Code

If the caller and callee have the same properties (say managed-native calling managed-native in the
same module), then there is no special handling required. Only the minimal amount of metadata
should be emitted in this case, and normal code generation rules apply (ie: just make a PC relative
call to the target).

22.1.1.2 Effects on CIL Code

When the caller is any form of CIL, the runtime has complete control over the execution of the code.
It will almost always be JIT-compiled, in which case the jitter may generate any transition thunks
inline with the code.

22.1.1 .3 Effects on Native Code

When the caller is native code, there is no opportunity to change code once the compiler has emitted
it4. Because of this, a mechanism is required which allows the runtime to provide the thunk capable
of setting up the right state. The rest of this section describes this mechanism in detail.

22.2 Runtime Header Support for Transitions
This section contains descriptions of directory entries in the header to support managed native code.

22.2.1 VTableFixups

The VTableFixups directory entry is used to declare transitions. In order to have a transition, for
example from managed to unmanaged, one does the following:

1. Allocate a slot in a read/write portion of the file

2. Point a IMAGE_COR_VTABLEFIXUP entry at the slot

3. Set the Type to indicate managed to unmanaged

4. Place the token of the target in the slot

The following transition types are interesting:

Combination Description

managed to

managed Token

For non-common type system v-table fix-ups. For
example, a C++ compiler creating its own v-tables

managed to

unmanaged Token

For calling an unmanaged call site within a PE image
where full PInvoke metadata is not required

COR_VTABLE_FROM_UNMANAGED to

managed Token

For calling a managed call site from unmanaged code,
such as in a classic v-table

Unmanaged to unmanaged through a transition is not interesting and not supported.

22.2.2 Export Address Table Fix-ups

Exporting a managed method using an unmanaged entry point is supported through the EAT. Only
unmanaged entry points may be found in the EAT to provide compatibility with down level loaders.
One uses the metadata to import/export managed methods in managed code.

In a pure CIL image, the EAT itself would be sufficient to find all of these fix-up entries. But in a
mixed managed/unmanaged image, only those EAT entries that need a thunk are to be fixed up and
touching other entries would cause corruption. Therefore, the ExportAddressTableJumps table is used
to identify which entries in the EAT are for managed methods.

Building an export table amounts to the following steps:

4 Note that we could consider modifying the code in the .text section, but this causes the pages to be
marked writable in the process using up extra working set size. This solution was discarded.
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1. Use the VTableFixup support described above to allocate an unmanaged to managed slot

2. Put the token of the managed method to be exported into this slot

3. Allocate a 32-byte piece of memory, called the “EAT Jump Thunk”, in the image that will not
move. Put the address of this memory in the EAT of the PE format for the method.

4. Initialize the first 4 bytes of the EAT Jump Thunk with the RVA of the slot allocated in step #1.
Initialize the next 4 bytes after this RVA to zero (reserved for future use)

5. Create the ExportAddressTableJumps table and put the RVA of the EAT Jump Thunk into this
table.

6. At runtime, the following sequence of events takes place:

7. The OS loader will do the transitive closure of all IAT’s of all images being loaded. This will
take the address from each EAT and place it into the IAT before any user code runs.

8. When the runtime loader runs, it will process all VTableFixup table entries and will replace the
token from step #2 above with a pointer to an unmanaged thunk for the managed method.

9. Next the runtime loader walks the ExportAddressTableJumps entries to find EAT Jump Thunks
that need to get replaced. It uses the RVA stored in the jump thunk to find the address of the
unmanaged thunk from the previous step. Finally, it replaces the EAT Jump Thunk contents
with a native jump instruction which jumps to the unmanaged thunk.

It is worth pointing out a couple of caveats that drove this design:

• On down-level OS loaders, the runtime loader runs only when the OS turns control over
to the PE entry point. Therefore, the EAT cannot be initialized until that point. By
requiring the EAT Jump Thunk, this requirement is met. On future OS’s that cannot
encode the jump thunk in the predetermined sized limit, an OS change is required.

• Calling an EAT entry for a managed function in your DLL’s initialization routine is
forbidden.

• The runtime loader does not track the location of the thunks it builds. Because of this,
using the VTableFixup table allows the same thunk to be shared many times. The
second 4 bytes of the EAT Jump Thunk are set to zero in case this restriction is
removed in the future and an alternate way of building the data is required.

23 Entry Points
This section contains an overview of entry point handling in loaded images.

23.1 Runtime API’s
The following API’s are exported from mscoree.dll and are used to bootstrap the runtime.

23.1.1 _CorExeMain

This method is called to start execution of an executable program. The API will retrieve the handle of
the image using GetModuleHandle(NULL). The module is then added to the loaded module list.

__int32 __stdcall _CorExeMain();

23.1.2 _CorDllMain

This method is called for the entry point of a DLL. This routine uses the handle to the module passed in
to add the module to the loaded list.

__int32 __stdcall _CorDllMain(HINSTANCE, DWORD, void *);
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23.1.3 Entry Points for Windows CE

Windows CE throws out the PE header to reduce overall working set. Because of this, all required data
from the PE header is passed to the runtime entry points at runtime. The prototypes on this platform are
therefore different.

23.2 Shut Down Requirements
The runtime must be given a chance to shut itself down in the process in order to do things like GC
finalization, and cleanup for COM interop. This is done as transparently as possible from a developer’s
point of view. However, some problems can occur with ill-behaved applications. One such example is
creating an unmanaged executable image (ie: a .exe) that supplies its own entry point but does not call
ExitProcess. Such an application may work if it were single threaded, but would fail to work with the
runtime as the runtime system threads do not get a notification to shut down.

23.3 Entry Point Stubs
23.3.1 Runtime Aware OS Loader

A runtime-aware operating system can recognize a runtime image by checking directory entry 14 in the
PE header. The general loading algorithm is as follows:

1. If directory entry 14 is not set, the image is not runtime-aware and should be loaded using
normal load sequences.

2. If the CPU type is not x86, and does not match the current CPU, the OS should reject the image
with an error.

3. If the CPU type is x86, check the flags in the heading for COMIMAGE_FLAGS_ILONLY.
When this bit is set, it means the x86 code in the image is just a loader stub, and should be
ignored. If this flag is not set, the image requires an x86 capable CPU to run.

If the image is a 32-bit PE format, and the flags in the runtime header have the
COMIMAGE_FLAGS_32BITREQUIRED bit set, the image cannot be loaded in a 64-bit process. In
this case, the OS should reject the load with an error.

If the image is a PE 32+ PE format (64-bit), then the image must be loaded into a 64-bit process.

23.3.2 Non Runtime Aware OS Loader

Existing supported platforms include Win ‘9x and x86 NT 4.0 and above5. For this reason, runtime
images should emit an x86 startup stub that these OS platforms will understand and load. The load
algorithm is therefore:

1. The OS will validate the image is an x86 image (Intel only), and page the image into the
process.

2. The OS will invoke the native entry point, which is an x86 load stub. This stub will call the
entry point API of mscoree (_CorExeMain or _CorDllMain) through the IAT section of the
image.

3. The mscoree entry point code will use the module handle to load the runtime metadata out of
the image, including the user’s entry point specified in the runtime header, if one was given.

4. The runtime will then invoke the user’s entry point code, jitting it if required.

23.3.3 Sample x86 Stubs

The following stubs are used by runtime tools when emitting applications:

//*****************************************************************************
// Stubs.h
//

5 Windows CE version 3 is a runtime-aware OS loader. The runtime will not work on a Windows CE
platform before this version.
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// This file contains a template for the default entry point stubs of a runtime
// CIL only program. One can emit these stubs (with some fix-ups) and make
// the code supplied the entry point value for the image. The fix-ups will
// in turn cause mscoree.dll to be loaded and the correct entry point to be
// called.
//
//*****************************************************************************
#pragma once

//*****************************************************************************
// This stub is designed for a Windows application. It will call the
// _CorExeMain function in mscoree.dll. This entry point will in turn load
// and run the CIL program.
//
// void ExeMain(void)
// {
// _CorExeMain();
// }
//
// The code calls the imported functions through the iat, which must be
// emitted to the PE file. The two addresses in the template must be replaced
// with the address of the corresponding iat entry which is fixed up by the
// loader when the image is paged in.
//*****************************************************************************
static const BYTE ExeMainTemplate[] =
{

// Jump through IAT to _CorExeMain
0xFF, 0x25, // jmp iat[_CorDllMain entry]

0x00, 0x00, 0x00, 0x00, // address to replace

};

#define ExeMainTemplateSize sizeof(ExeMainTemplate)
#define CorExeMainIATOffset 2

//*****************************************************************************
// This stub is designed for a Windows application. It will call the
// _CorDllMain function in mscoree.dll with with the base entry point
// for the loaded DLL.
// This entry point will in turn load and run the CIL program.
//
// BOOL APIENTRY DllMain( HANDLE hModule,
// DWORD ul_reason_for_call,
// LPVOID lpReserved )
// {
// return _CorDllMain(hModule, ul_reason_for_call, lpReserved);
// }

// The code calls the imported function through the iat, which must be
// emitted to the PE file. The address in the template must be replaced
// with the address of the corresponding iat entry which is fixed up by the
// loader when the image is paged in.
//*****************************************************************************

static const BYTE DllMainTemplate[] =
{
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// Call through IAT to CorDllMain
0xFF, 0x25, // jmp iat[_CorDllMain entry]

0x00, 0x00, 0x00, 0x00, // address to replace
};

#define DllMainTemplateSize sizeof(DllMainTemplate)
#define CorDllMainIATOffset 2

#elif defined(_ALPHA_)

const BYTE ExeMainTemplate[] =
{

// load the high half of the address of the IAT
0x00, 0x00, 0x7F, 0x27, // ldah t12,_imp__CorExeMain(zero)

// load the contents of the IAT entry into t12
0x00, 0x00, 0x7B, 0xA3, // ldl t12,_imp__CorExeMain(t12)
// jump to the target address and don't save a return address
0x00, 0x00, 0xFB, 0x6B, // jmp zero,(t12),0

};

#define ExeMainTemplateSize sizeof(ExeMainTemplate)
#define CorExeMainIATOffset 0

const BYTE DllMainTemplate[] =
{

// load the high half of the address of the IAT
0x42, 0x00, 0x7F, 0x27, // ldah t12,_imp__CorDLLMain(zero)

// load the contents of the IAT entry into t12
0x04, 0x82, 0x7B, 0xA3, // ldl t12,_imp__CorDLLMain(t12)
// jump to the target address and don't save a return address
0x00, 0x00, 0xFB, 0x6B, // jmp zero,(t12),0

};

#define DllMainTemplateSize sizeof(DllMainTemplate)
#define CorDllMainIATOffset 0

24 Metadata Format
To be specified.
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