
ECMA/TC39TG3/2000/3

Draft Standard ECMA-xxx
October 2000

S t a n d a r d i z i n g I n f o r ma t i o n a n d C o mmu n i c a t i o n S ys t e ms

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: ht tp : / /www.ecma.ch - In ternet: helpdesk@ecma.ch

Common Language Infrastructure (CLI )

Part 3: IL Instruction Set

Draft 01 – October 2000



This contribution is being provided “AS IS”, and the SPONSORS EXPRESSLY DISCLAIM ANY
AND ALL WARRANTIES REGARDING THIS CONTRIBUTION, INCLUDING ANY
WARRANTY THAT THIS CONTRIBUTION DOES NOT VIOLATE THE RIGHTS OF OTHERS
OR IS FIT FOR A PARTICULAR PURPOSE.



Brief History

This ECMA Standard has been adopted by the ECMA General Assembly of ....





- i -

Table of contents

1 Scope 2

1.1 Data Types 2

1.1.1 Numeric Data Types 2

1.1.2 Object References 4

1.1.3 Runtime Pointer Types 4

1.2 Instruct ion Variant Table 7

1.2.1 Opcode Encodings 7

1.3 Stack Transi t ion Diagram 13

1.4 English Descr ipt ion 13

1.5 Verifiabi l i ty 13

1.6 Operand Type Table 13

1.7 Signature Matching 16

2 Base Instructions 17

3 Object Model Instructions 89

4 Annotations 120

5 Sample Code Sequences 130

5.1 Value types 130



- 2 -

1 Scope

This specification is a detailed description of the Common Language Intermediate (CIL)
instruction set, part of the specification of the Common Language Infrastructure. Part 1
describes the architecture of the CLI and provides an overview of a large number of issues
relating to the CIL instruction set. That overview is essential to an understanding of the
instruction set as described here.

Each instruction description describes a set of related CLI machine instructions. Each
instruction definition consist of five parts:

• A table describing the binary format, assembly language notation and description
of each variant of the instruction. See the Instruction Variant Table section.

• A stack transition diagram that describes the state of the evaluation stack before
and after the instruction is executed. See the Stack Transition Diagram section.

• An English description of the instruction. See the English Description section.

• A list of exceptions that might be thrown by the instruction. See Part 1 for details.

• A section describing the verifiability conditions associated with the instruction.
See Verifiability.

In addition, operations that have a numeric operand also specify an operand type table that
describes how they operate based on the type of the operand. See the Operand Type Table
section.

1.1 Data Types

While the Common Type System (CTS) defines a rich type system and the Common
Language Specification (CLS) specifies a subset that can be used for language
interoperability, the CLI itself deals with a much simpler set of types. These types,
collectively known as the “basic CLI types,” are:

• A subset of the full numeric types (I4, I8, I, and F)

• Object references (O) but without distinction between the type of object
referenced

• Pointer types (U, *, and &) without distinction as to the type pointed to

1.1.1 Numeric Data Types

The CLI only tracks the numeric types I4 (4 byte signed integers), I8 (8 byte signed
integers), I (native size integers), and F (native size floating point numbers). The CIL
instruction set, however, allows additional data types to be implemented:

• Short integers. The model is that the evaluation stack only holds 4 or 8 byte
integers, but other locations (arguments, local variables, statics, array
elements, fields) may hold 1 or 2 byte integers. Loading from these locations
onto the stack either zero-extends (ldind.u*, ldelem.u*, etc.) or sign-extends
(ldind.i*, ldelem.i*, etc.) to a 4 byte value. Storing to integers (stind.u1,
stelem.i2, etc.) truncates. Use the conv.ovf.* instructions to detect when this
truncation results in a value that doesn’t correctly represent the original
value.



Page 3

Convert instructions that yield short integer values actually leave an I4 (32-
bit) value on the stack, but it is guaranteed that only the low bits have
meaning (i.e. the more significant bits are all zero for the unsigned
conversions or a sign extension for the signed conversions). To correctly
simulate the full set of short integer operations a conversion to the short form
is required before the div, rem, shr, comparison and conditional branch
instructions.

In addition to the explicit conversion instructions there are four cases where
the CLI handles short integers in a special way:

1. Assignment to a local (stloc) or argument (starg) whose type is
declared to be a short integer type automatically truncates to the size
specified for the local or argument.

2. Loading from a local (ldloc) or argument (ldarg) whose type is
declared to be a short signed integer type automatically sign extends.

3. Calling a procedure with an argument that is a short integer type is
equivalent to assignment to the argument value, so it truncates.

4. Returning a value from a method whose return type is a short integer
can be thought of as storing into a short integer within the called
procedure (i.e. the CLI automatically truncates) and loading from a
short integer within the calling procedure (i.e. the CLI automatically
zero- or sign-extends).

In the last two cases it is up to the native calling convention to determine whether
values are actually truncated or extended, as well as whether this is done in the
called procedure or the calling procedure. The CIL instruction sequence is
unaffected and it is as though the CIL sequence included an appropriate conv
instruction.

• 4 byte integers. The shortest value actually stored on the stack is a 4-byte
integer. These can be converted to 8-byte integers or native-size integers
using conv.* instructions. Native-size integers can be converted to 4-byte
integers, but doing so is not portable across architectures. The conv.i4 and
conv.u4 can be used for this conversion if loss of precision is desirable; the
conv.ovf.i4 and conv.ovf.u4 instructions can be used to detect the loss of
information. Arithmetic operations allow 4-byte integers to be combined
with native size integers, resulting in native size integers. 4-byte integers
may not be directly combined with 8-byte integers (they must be converted to
8-byte integers first).

• Native size integers. Native size integers can be combined with 4-byte
integers using any of the normal arithmetic instructions, and the result will be
a native-size integer. Native size integers must be explicitly converted to 8-
byte integers before they can be combined with 8-byte integers.

• 8 byte integers. Supporting 8 byte integers on 32 bit hardware is expensive,
whereas 32 bit arithmetic is available and efficient on current 64 bit
hardware. For this reason, numeric instructions allow I4 and I data types to
be intermixed (yielding the largest type used as input), but these types cannot



- 4 -
be combined with I8s. Instead, an I or I4 must be explicitly converted to I8
before it can be combined with an I8.

• Unsigned integers. Special instructions are used to interpret integers on the
stack as though they were unsigned, rather than tagging the stack locations as
being unsigned.

• Floating point numbers. Storage locations for floating point numbers
(statics, array elements, and fields of classes) are of fixed size. The
supported storage sizes are R4 (4 byte real numbers in IEEE754 single
precision format), R8 (8 byte real numbers in IEEE754 double precision
format), and RPrecise (a fixed size for any given architecture, at least 64 bits
wide, and as precise as can be efficiently supported on that architecture).

Everywhere else (on the evaluation stack, as arguments, as return types, and as local
variables) floating point numbers are represented using the internal F type. This
type can be thought of as starting at the size of value loaded from storage and then
expanding as needed. This design allows the CLI to choose a platform-specific high-
performance representation for floating point numbers until they are placed in
storage locations. For example, it may be able to leave floating point variables in
hardware registers that provide more precision than a user has requested. At the
same time, CIL generators can force operations to respect language-specific rules
for representations through the use of conversion instructions.

When a value of type F is put in a storage location it is automatically coerced to the
required size, which may involve a loss of precision or the creation of an out-of-
range marker (a NaN). To detect values that cannot be converted to a particular
storage type, use a conversion instruction (conv.r4, conv.r8, conv.r4result,
conv.r8result, or conv.rprecise) and then check for a non-finite value using
ckfinite. To detect underflow when converting to a particular storage type, a
comparison to zero is required before and after the conversion.

1.1.2 Object References

Object references (type O) are completely opaque. There are no arithmetic
instructions that allow object references as operands, and the only comparison
operations permitted are equality (and inequality) between two object references.
There are no conversion operations defined on object references. Object references
are created by certain CIL object instructions (notably newobj and newarr). Object
references can be passed as arguments, stored as local variables, returned as values,
and stored in arrays and as fields of objects.

1.1.3 Runtime Pointer Types

There are three kinds of pointers: unmanaged pointer, managed pointers, and transient
pointers. For pointers into the same array or object (see Part 1), the following
arithmetic operations are defined:

• Adding an integer to a pointer, where the integer is interpreted as a number of
bytes, results in a pointer of the same kind.

• Subtracting an integer (number of bytes) from a pointer results in a pointer of
the same kind. Note that subtracting a pointer from an integer is not
permitted.



Page 5

• Two pointers, regardless of kind, can be subtracted from one another,
producing an integer that specifies the number of bytes between the addresses
they reference.

None of these operations is allowed in verifiable code.

It is important to understand the impact on the garbage collector of using arithmetic
on the different kinds of pointers. Since unmanaged pointers never reference memory
that is controlled by the garbage collector, performing arithmetic on them can
endanger the memory safety of the system (hence it is not verifiable) but since they
are not reported to the garbage collector there is no impact on its operation.
Similarly, transient pointers are not reported to the garbage collector and arithmetic
can be performed without impact on garbage collection.

Managed pointers, however, are reported to the garbage collector. As part of garbage
collection both the contents of the location to which they point and the pointer itself
can be modified. The garbage collector will ignore managed pointers if they point
into memory that is not under its control (the evaluation stack, the call stack, static
memory, or memory under the control of another allocator). If, however, a managed
pointer refers to memory controlled by the garbage collector it must point to either a
field of an object, an element of an array, or the address of the element just past the
end of an array. If address arithmetic is used to create a managed pointer that refers
to any other location (an object header or a gap in the allocated memory) the garbage
collector’s operation is unspecified.

1.1.3 .1 Unmanaged Pointers

Unmanaged pointers are the traditional pointers used in languages like C and C++.
There are no restrictions on their use, although for the most part they result in code
that cannot be verified. While it is perfectly legal to mark locations that contain
unmanaged pointers as though they were unsigned integers (and this is, in fact, how
they are treated by the CLI), it is often better to mark them as unmanaged pointers
to a specific type of data. This is done by using ELEMENT_TYPE_PTR in a
signature for a return value, local variable or an argument or by using a pointer
type for a field or array element.

Unmanaged pointers are not reported to the garbage collector and can be used in
any way that an integer can be used.

• It is best to think of unmanaged pointers as unsigned (i.e. use conv.ovf.u
rather than conv.ovf.i, etc.).

• Verifiable code cannot use unmanaged pointers to reference memory (i.e. it
treats them as integers, not pointers).

• Unverified code can pass an unmanaged pointer to a method that expects a
managed pointer. This is safe only if one of the following is true:

1. The unmanaged pointer refers to memory that is not in memory
managed by the garbage collector

2. The unmanaged pointer refers to a field within an object

3. The unmanaged pointer refers to an element within an array

4. The unmanaged pointer refers to the location where the element
following the last element in an array would be located



- 6 -
1.1.3 .2 Managed Pointers (type &)

Managed pointers (&) may point to a field of an object, a field of a value type, an
element of an array, or the address where an element just past the end of an array
would be stored (for pointer indexes into managed arrays). Managed pointers
cannot be null, and they must be reported to the garbage collector, even if they do
not point to managed memory.

Managed pointers are specified by using ELEMENT_TYPE_BYREF in a signature
for a return value, local variable or an argument or by using a by-ref type for a
field or array element.

• Managed pointers can be passed as arguments and stored in local variables.

• If you pass a parameter by reference, the corresponding argument is a
managed pointer.

• Managed pointers cannot be stored in static variables, array elements, or
fields of objects or value types.

• Managed pointers are not interchangeable with object references.

• A managed pointer cannot point to another managed pointer, but it can
point to an object reference or a value type.

• Managed pointers that do not point to managed memory can be converted
(using conv.u or conv.ovf.u) into unmanaged pointers, but this is not
verifiable.

• Unverified code that erroneously converts a managed pointer into an
unmanaged pointer can seriously compromise the integrity of the CLI.
This conversion is only safe if one of the following is known to be true:

1. the managed pointer does not point into the garbage collector’s
memory area

2. the memory referred to has been pinned for the entire time that
the unmanaged pointer is in use

3. a garbage collection cannot occur while the unmanaged pointer
is in use

1.1.3.3 Transient Pointers (type *)

Transient pointers (*) are intermediate between managed and unmanaged pointers.
They are created within the CLI by certain CIL instructions, but users cannot
declare locations of this type. When a transient pointer is passed as an argument,
returned as a value, or stored into a user-visible location it is converted either to a
managed pointer or an unmanaged pointer depending on the type specified for the
destination.

• The CIL instructions that create transient pointers (ldloca, ldarga, ldsflda
when the type of the field is not an object) are guaranteed to produce
pointers to data that is not in managed memory.

• Transient pointers need not be reported to the garbage collector, and they
are automatically converted to managed or unmanaged pointers when



Page 7

necessary (on method call or when stored into a local or argument that
requires a managed pointer).

• Transient pointers can exist only on the evaluation stack within a single
method.

• The verifier treats transient pointers as managed pointers.

1.2 Instruction Variant Table

Each variant of an instruction is described in this table. The format column of the table
describes the reference opcode assigned to the instruction variant, along with any
arguments that follow the instruction in the instruction stream. A typical instruction
format entry might look like

FE 0A <U2>

Boldface numbers represent literal bytes in the instruction stream. In the example above
the instruction is encoded by the byte FE followed by the byte 0A. Italicized type
names represent numbers that should follow in the instruction stream. In the example
above a 2-byte quantity that is to be treated as an unsigned integer directly follows the
FE 0A opcode.

Any of the fixed size primitive types (I1, U1, I2, U2, I4, U4, I8, U8, R4, and R8) can
appear in opcode format descriptions. These types define the number of bytes for the
argument and how it should be interpreted (signed, unsigned or floating point). In
addition, a metadata token can appear, indicated as <T>. Tokens are encoded as a 4-
byte unsigned integer. All argument numbers are encoded least significant byte first
(little endian). Bytes for instruction opcodes and arguments are packed as tightly as
possible (no alignment padding is done).

The assembly format column defines an assembly code mnemonic for the instruction
variant. For those instructions that have instruction stream arguments, this column also
assigns names to each of the arguments to the instruction. For each instruction
argument, there is a name in the assembly format. These names are used later in the
instruction description.

1.2.1 Opcode Encodings

The CIL opcode space is encoded using one, two, and four byte opcodes. One byte
encodings range from 0x00 through 0xEF and are all reserved, even if not currently in
use. Two byte encodings start with 0xF0 through 0xFE. Of these, the set beginning
with 0xFE are reserved for future expansion by Microsoft and the other sets are
unspecified and must not be used. Four byte encodings begin with 0xFF and must not
be used.

The currently defined encodings are specified in Table 1: Opcode Encodings.

Table 1: Opcode Encodings

0x00 nop

0x01 break

0x02 ldarg.0

0x03 ldarg.1

0x04 ldarg.2

0x05 ldarg.3

0x06 ldloc.0

0x07 ldloc.1



- 8 -
0x08 ldloc.2

0x09 ldloc.3

0x0a stloc.0

0x0b stloc.1

0x0c stloc.2

0x0d stloc.3

0x0e ldarg.s

0x0f ldarga.s

0x10 starg.s

0x11 ldloc.s

0x12 ldloca.s

0x13 stloc.s

0x14 ldnull

0x15 ldc.i4.m1

0x16 ldc.i4.0

0x17 ldc.i4.1

0x18 ldc.i4.2

0x19 ldc.i4.3

0x1a ldc.i4.4

0x1b ldc.i4.5

0x1c ldc.i4.6

0x1d ldc.i4.7

0x1e ldc.i4.8

0x1f ldc.i4.s

0x20 ldc.i4

0x21 ldc.i8

0x22 ldc.r4

0x23 ldc.r8

0x25 dup

0x26 pop

0x27 jmp

0x28 call

0x29 calli

0x2a ret

0x2b br.s

0x2c brfalse.s

0x2d brtrue.s

0x2e beq.s

0x2f bge.s

0x30 bgt.s

0x31 ble.s

0x32 blt.s

0x33 bne.un.s

0x34 bge.un.s

0x35 bgt.un.s

0x36 ble.un.s

0x37 blt.un.s

0x38 br

0x39 brfalse

0x3a brtrue

0x3b beq

0x3c bge

0x3d bgt

0x3e ble

0x3f blt

0x40 bne.un

0x41 bge.un

0x42 bgt.un

0x43 ble.un

0x44 blt.un

0x45 switch

0x46 ldind.i1

0x47 ldind.u1

0x48 ldind.i2



Page 9

0x49 ldind.u2

0x4a ldind.i4

0x4c ldind.i8

0x4d ldind.i

0x4e ldind.r4

0x4f ldind.r8

0x50 ldind.ref

0x51 stind.ref

0x52 stind.i1

0x53 stind.i2

0x54 stind.i4

0x55 stind.i8

0x56 stind.r4

0x57 stind.r8

0x58 add

0x59 sub

0x5a mul

0x5b div

0x5c div.un

0x5d rem

0x5e rem.un

0x5f and

0x60 or

0x61 xor

0x62 shl

0x63 shr

0x64 shr.un

0x65 neg

0x66 not

0x67 conv.i1

0x68 conv.i2

0x69 conv.i4

0x6a conv.i8

0x6b conv.r4

0x6c conv.r8

0x6d conv.u4

0x6e conv.u8

0x6f callvirt

0x70 cpobj

0x71 ldobj

0x72 ldstr

0x73 newobj

0x74 castclass

0x75 isinst

0x76 conv.r.un

0x77 ann.data.s

0x78 box

0x79 unbox

0x7a throw

0x7b ldfld

0x7c ldflda

0x7d stfld

0x7e ldsfld

0x7f ldsflda

0x80 stsfld

0x81 stobj

0x82 conv.ovf.i1.un

0x83 conv.ovf.i2.un

0x84 conv.ovf.i4.un

0x85 conv.ovf.i8.un

0x86 conv.ovf.u1.un

0x87 conv.ovf.u2.un

0x88 conv.ovf.u4.un

0x89 conv.ovf.u8.un



- 10 -
0x8a conv.ovf.i.un

0x8b conv.ovf.u.un

0x8d newarr

0x8e ldlen

0x8f ldelema

0x90 ldelem.i1

0x91 ldelem.u1

0x92 ldelem.i2

0x93 ldelem.u2

0x94 ldelem.i4

0x96 ldelem.i8

0x97 ldelem.i

0x98 ldelem.r4

0x99 ldelem.r8

0x9a ldelem.ref

0x9b stelem.i

0x9c stelem.i1

0x9d stelem.i2

0x9e stelem.i4

0x9f stelem.i8

0xa0 stelem.r4

0xa1 stelem.r8

0xa2 stelem.ref

0xb3 conv.ovf.i1

0xb4 conv.ovf.u1

0xb5 conv.ovf.i2

0xb6 conv.ovf.u2

0xb7 conv.ovf.i4

0xb8 conv.ovf.u4

0xb9 conv.ovf.i8

0xba conv.ovf.u8

0xc2 refanyval

0xc3 ckfinite

0xc6 mkrefany

0xc7 ann.call

0xc8 ann.catch

0xc9 ann.dead

0xca ann.hoisted

0xcb ann.hoisted_call

0xcc ann.lab

0xcd ann.def

0xce ann.ref.s

0xcf ann.phi

0xd0 ldtoken

0xd1 conv.u2

0xd2 conv.u1

0xd3 conv.i

0xd4 conv.ovf.i

0xd5 conv.ovf.u

0xd6 add.ovf

0xd7 add.ovf.un

0xd8 mul.ovf

0xd9 mul.ovf.un

0xda sub.ovf

0xdb sub.ovf.un

0xdc endfinally

0xdd leave

0xde leave.s

0xdf stind.i

0xe0 conv.u

0xfe 0x00 arglist

0xfe 0x01 ceq

0xfe 0x02 cgt

0xfe 0x03 cgt.un



Page 11

0xfe 0x04 clt

0xfe 0x05 clt.un

0xfe 0x06 ldftn

0xfe 0x07 ldvirtftn

0xfe 0x09 ldarg

0xfe 0x0a ldarga

0xfe 0x0b starg

0xfe 0x0c ldloc

0xfe 0x0d ldloca

0xfe 0x0e stloc

0xfe 0x0f localloc

0xfe 0x11 endfilter

0xfe 0x12 unaligned.

0xfe 0x13 volatile.

0xfe 0x14 tail.

0xfe 0x15 initobj

0xfe 0x16 ann.live

0xfe 0x17 cpblk

0xfe 0x18 initblk

0xfe 0x19 ann.ref

0xfe 0x1a rethrow

0xfe 0x1c sizeof

0xfe 0x1d refanytype

0xfe 0x22 ann.data

0xfe 0x23 ann.arg





- 13 -

1.3 Stack Transit ion Diagram

The stack transition diagram displays the state of the evaluation stack before and after the instruction is
executed. Below is a typical stack transition diagram.

…, value1, value2

…, result

This diagram indicates that the stack must have at least two elements on it, and in the definition the
topmost value (“top of stack” or “most recently pushed”) will be called value2 and the value underneath
(pushed prior to value2) will be called value1. (In diagrams like this, the stack grows to the right, along
the page). The instruction removes these values from the stack and replaces them by another value, called
result in the description.

1.4 English Description

The English description describes any details about the instructions that are not immediately apparent once
the format and stack transition have been described.

1.5 Verif iabil i ty

Memory safety is a property that ensures programs running in the same address space are correctly isolated
from one another (see Part 1). Thus, it is desirable to test whether programs are memory safe prior to
running them. Unfortunately, it is provably impossible to do this with 100% accuracy. Instead, the CLI
can test a stronger restriction, called verifiability. Every program that is verified is memory safe, but some
programs that are not verifiable are still memory safe.

It is perfectly acceptable to generate CIL code that is not verifiable, but which is known to be memory safe
by the compiler writer. Several important uses of CIL instructions are not verifiable, such as the pointer
arithmetic versions of add that are required for the faithful and efficient compilation of C programs. For
non-verifiable code, memory safety is the responsibility of the compiler writer.

CIL contains a verifiable subset. The Verifiability description gives details of the conditions under which
a use of an instruction falls within the verifiable subset of CIL. The verifier tracks the types of values in
much finer detail than is required for the basic functioning of the CLI, because it is checking that an CIL
code sequence respects not only the basic rules of the CLI with respect to the safety of garbage collection,
but also the typing rules of the CTS. This helps to guarantee the sound operation of the entire CLI..

The verifiability section of each operation description specifies requirements both for correct CIL
generation and for verification. Correct CIL generation always requires guaranteeing that the top items on
the stack correspond to the types shown in the stack transition diagram. The verifiability section specifies
only requirements for correct CIL generation that not captured in that diagram. The verifier tests both the
requirements for correct CIL generation and the specific verification conditions that are described with the
instruction. The operation of CIL sequences that do not meet the CIL correctness requirements is
unspecified. The operation of CIL sequences that meet the correctness requirements but is not verifiable
may violate type safety and hence violate security or memory access constraints.

1.6 Operand Type Table

Many CIL operations take numeric operands on the stack. These fall into several different categories,
depending on how they deal with the types of the operands. The following operand tables summarize the
legal operand types and the resulting type. Notice that the type referred to here is the type as tracked by
the CLI rather than the more detailed types used by tools such as the CIL verifier. The types tracked by
the CLI are: I4, I8, I, F, O, &, and *.

Table 2: Binary Numeric Operations

A op B (used for add, div, mul, rem, and sub, applies to all instructions unless specific instructions are
specified in the table). The shaded uses are not verifiable, while items marked “-“ indicate incorrectly
formed CIL sequences.



- 14 -

B’s type
A’s type

I4 I8 I F & O *

I4 I4 - I - & (add) - * (add)

I8 - I8 - - - - -

I I - I - & (add) - * (add)

F - - - F - - -

& & (add,
sub)

- & (add,
sub)

- I (sub) - I (sub)

O - - - - - - -

* * (add,
sub)

- * (add,
sub)

- I (sub) - I (sub)

Table 3: Unary Numeric Operations

Used for the neg instruction. All these uses of this instruction are verifiable.

Operand
Type

I4 I8 I F & O *

Result
Type

I4 I8 I F - - -

Table 4: Binary Comparison or Branch Operations

These return a boolean value or branch based on the top two values on the stack. Used for beq, bge,
bge.un, bgt, bgt.un, ble, ble.un, blt, blt.un, bne, bne.un, ceq, cgt, cgt.un, clt, clt.un. Items marked “!!!!”
indicate that all instructions are valid. Items marked “-” indicate invalid CIL sequences. If only a subset of
instructions are permitted, the valid instructions are shown in the corresponding cell.

I4 I8 I F & O *

I4 !!!! - !!!! - - - -

I8 - !!!! - - - - -

I !!!! - !!!! - beq[.s],
bne.un[.s],
ceq

- beq[.s],
bne.un[.s],
ceq

F - - - !!!! - - -

& - - beq[.s],
bne.un[.s],ce
q

- !!!! (Note) - !!!! (Note)

O - - - - - beq[.s],
bne.un[.s],
ceq

-

* - - beq[.s],
bne.un[.s],
ceq

- !!!! (Note) - !!!! (Note)

Note: Except for beq, bne.un (or short versions) or ceq these combinations only make sense if both
operands are known to be pointers to elements of the same array.



- 15 -

Table 5: Integer Operations

These operate only on integer types. Used for and, div.un, not, or, rem.un, shl, shr, xor. The div.un
and rem.un instructions treat their arguments as unsigned integers and produce the bit pattern
corresponding to the unsigned result. As described in the CLI Specification, however, the CLI makes no
distinction between signed and unsigned integers on the stack. The not instruction is unary and returns the
same type as the input. The shl and shr instructions return the same type as their first operand and their
second operand must be of type U. All items marked “-“ indicate incorrectly formed CIL sequences, while
the others are verifiable.

I4 I8 I F & O *

I4 I4 - I - - - -

I8 - I8 - - - - -

I I - I - - - -

F - - - - - - -

& - - - - - - -

O - - - - - - -

* - - - - - - -

Table 6: Overflow Arithmetic Operations

These operations generate an exception if the result cannot be represented in the target data type. Used
for add.ovf, add.ovf.un, mul.ovf, mul.ovf.un, sub.ovf, sub.ovf.un The shaded uses are not verifiable,
while items marked “-“ indicate incorrectly formed CIL sequences.

I4 I8 I F & O *

I4 I4 - I - &
add.ovf.un

- *
add.ovf.un

I8 - I8 - - - - -

I I - I - &
add.ovf.un

- *
add.ovf.un

F - - - - - - -

& &
add.ovf.un
,
sub.ovf.un

- &
add.ovf.un
,
sub.ovf.un

- I
sub.ovf.un

- I
sub.ovf.un

O - - - - - - -

* *
add.ovf.un
,
sub.ovf.un

- *
add.ovf.un
,
sub.ovf.un

- I
sub.ovf.un

- I
sub.ovf.un

Table 7: Conversion Operations



- 16 -

These operations convert from one numeric type to another. The result type is guaranteed to be
representable as the data type specified as part of the operation (i.e. the conv.u2 instruction returns a
value that can be stored in a U2). The stack, however, can only store values that are a minimum of 4 bytes
wide. Used for the conv.<to type>, conv.ovf.<to type>, and conv.ovf.<to type>.un instructions. The
shaded uses are not verifiable, while items marked “-“ indicate incorrectly formed CIL sequences.

Output
Operand

I1/U1
I2/U2

I4/U4 I8 U8 I

I4 Truncate1 No-op Sign extend Zero extend Sign extend

I8 Truncate1 Truncate1 No-op No-op Truncate1

I Truncate1 Truncate1 Sign extend Zero extend No-op

F Trunc to 02 Trunc to 02 Trunc to 02 Trunc to 02 Trunc to 02

& - - - Stop GC
Tracking

-

O - - - - -

* - - - Zero extend -

Output
Operand

U All R Types

I4 Zero extend To Float

I8 Truncate1 To Float

I No-op To Float

F Trunc to 02 Change Precision3

& Stop GC Tracking -

O - -

* No-op -

Note 1: “Truncate” means that the number is truncated (i.e. the higher-order bits are set to zero) to the
desired size. If the destination type is signed, the most-significant bit of the truncated value is then sign-
extended to fill the full output size. Thus, converting 257 (0x101) to I1 or U1 yields 1, but truncating 129
(0x81) to U1 yields 129 (0x81) while truncating it to I1 yields –126 (0xF...F81)

Note 2: “Trunc to 0” means that the floating point number will be converted to an integer by truncation
toward zero. Thus 1.1 is converted to 1 and –1.1 is converted to –1.

Note 3: Converts from the current precision available on the evaluation stack to the precision specified
by the instruction. If the stack has more precision than the output size the conversion is performed using
the IEEE 754 “round to nearest” mode to compute the low order bit of the result.

1.7 Signature Matching

While the CLI deals only with 7 types (I4, I, I8, F, O, &, and *) the metadata supplies a much richer model
for parameters of methods. The verifier is responsible for ensuring the detailed type matching expected
for memory safety. The shaded uses are not verifiable, while the items marked “No” are incorrect CIL
sequences. The CLI uses the rules in Table 8: Signature Matching when passing data from one method to
another:

Table 8: Signature Matching



- 17 -

Stack
Parameter

I4 I I8 F & O *

I1 Note 1 Note 1 No No No No No

U1 Note 1 Note 1 No No No No No

I2 Note 1 Note 1 No No No No No

U2 Note 1 Note 1 No No No No No

I4 OK Note 1 No No No No No

U4 As is Note 2 No No No No No

I8 Sign extend Sign extend OK No No No No

U8 Zero
extend

Zero
extend

OK No No No No

I Sign extend OK No No No No No

U Zero
extend

Zero
extend

No No Note 3 No No GC
tracking

R4 No No No Round No No No

R8 No No No Round No No No

R No No No Round No No No

Class No No No No No OK No

Value
Type (Note
4)

Note 5 Note 5 Note 5 Note 5 No No No

By-Ref
( & )

No Start GC
tracking

No No OK No Start GC
tracking

Ref Any
(Note 6)

No No No No No No No

1. The CLI provides an implicit conv.* instruction to generate the correct parameter type.

2. On a 32-bit machine passing an I argument to a U4 parameter involves no conversion. On a 64-bit
machine it is treated as described in note 1.

3. See Managed Pointers (type &). This conversion is not provided automatically by the CLI.

4. The CLI’s stack can contain a value type. These may only be passed if the particular value type
on the stack exactly matches the class required by the corresponding parameter.

5. Passing a primitive type to a parameter that is required to be a value type is not allowed

6. There are special instructions to construct and pass a Ref Any.

foo

2 Base Instructions

These instructions form a “Turing Complete” set of basic operations. They are independent of the object
model that may be employed. Operations that are specifically related to the CTS’s object model are
contained in the Object Model Instructions section. Annotations, which are used with OptIL but can be
ignored by most CIL processors, are described in the Annotations section.



- 18 -

add - add numeric values

Format Assembly Format Description

58 add Add two values, returning a new value

Stack Transition:

…, value1, value2

…, result
Description:

The add instruction adds value2 to value1 and pushes the result on the stack. Overflow is not detected for integral operations
(but see add.ovf); floating point overflow returns +inf or -inf.

The acceptable operand types and their corresponding result data type is encapsulated in Table 2: Binary Numeric
Operations.

Exceptions:

None.

Verifiability:

See Table 2: Binary Numeric Operations.



- 19 -

add.ovf.<signed> - add integer values with overflow check

Format Assembly Format Description

D6 add.ovf Add signed integer values with overflow check.

D7 add.ovf.un Add unsigned integer values with overflow check.

Stack Transition:

…, value1, value2

…, result
Description:

The add.ovf instruction adds value1 and value2 and pushes the result on the stack. The acceptable operand types and their
corresponding result data type is encapsulated in Table 6: Overflow Arithmetic Operations.

Exceptions:

OverflowException is thrown if the result can not be represented in the result type.

Verifiability:

See Table 6: Overflow Arithmetic Operations.



- 20 -

and - bitwise AND

Format Instruction Description

5F and Bitwise AND of two integral values, returns an integral value

Stack Transition:

…, value1, value2

…, result
Description:

The and instruction computes the bitwise AND of the top two values on the stack and pushes the result on the stack. The
acceptable operand types and their corresponding result data type is encapsulated in Table 5: Integer Operations.

Exceptions:

None.

Verifiability:

See Table 5: Integer Operations.



- 21 -

arglist - get argument list

Format Assembly Format Description

FE 00 arglist return argument list handle for the current method

Stack Transition:

…

…, argListHandle
Description:

The arglist instruction returns an opaque handle (an unmanaged pointer, type I) representing the argument list of the current
method. This handle is valid only during the lifetime of the current method. The handle can, however, be passed to other
methods as long as the current method is on the thread of control. The arglist instruction may only be executed within a
method that takes a variable number of arguments.

Rationale: This instruction is needed to implement the C ‘va_*’ macros used to implement procedures like ‘printf’. It is
intended for use with the class library implementation of System.ArgIterator.

Exceptions:

None.

Verifiability:

It is incorrect CIL generation to emit this instruction except in the body of a method whose signature indicates it accepts a
variable number of arguments. Within such a method its use is verifiable, but the verifer requires that the result be treated as a
specific value type which is private to the System.ArgIterator class.



- 22 -

beq.<length> – branch on equal

Format Assembly Format Description

3B <I4> beq target branch to target if equal

2E <I1> beq.s target branch to target if equal, short form

Stack Transition:

…, value1, value2

…
Description:

The beq instruction transfers control to target if value1 is equal to value2. The effect is identical to performing a ceq
instruction followed by a brtrue target. Target is represented as a signed offset (4 bytes for beq, 1 byte for beq.s) from the
beginning of the instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by the ordinary branch instructions
(use the leave instruction instead). These transfers are severely restricted; see Part 1 for details. If an instruction has one or
more prefix codes, control can only be transferred to the first of these prefixes.

Exceptions:

None.

Verifiability:

Correct CIL must observe all of the control transfer rules specified above and must guarantee that the top two items on the
stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible way of reaching
the destination instruction. See the verifier specification for more details.



- 23 -

bge.<length> – branch on greater than or equal to

Format Assembly Format Description

3C <I4> bge target branch to target if greater than or equal to

2F <I1> bge.s target branch to target if greater than or equal to, short form

Stack Transition:

…, value1, value2

…
Description:

The bge instruction transfers control to target if value1 is greater than or equal to value2. The effect is identical to performing a
clt instruction followed by a brfalse target. Target is represented as a signed offset (4 bytes for bge, 1 byte for bge.s) from the
beginning of the instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by the ordinary branch instructions
(use the leave instruction instead). These transfers are severely restricted; see Part 1 for details. If an instruction has one or
more prefix codes, control can only be transferred to the first of these prefixes.

Exceptions:

None.

Verifiability:

Correct CIL must observe all of the control transfer rules specified above and must guarantee that the top two items on the
stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible way of reaching
the destination instruction. See the verifier specification for more details.



- 24 -

bge.un.<length> – branch on greater than or equal to, unsigned or unordered

Format Assembly Format Description

41 <I4> bge.un target branch to target if greater than or equal to (unsigned or
unordered)

34 <I1> bge.un.s target branch to target if greater than or equal to (unsigned or
unordered), short form

Stack Transition:

…, value1, value2

…
Description:

The bge.un instruction transfers control to target if value1 is greater than or equal to value2, when compared unsigned (for
integer values) or unordered (for float point values). The effect is identical to performing a clt.un instruction followed by a
brfalse target. Target is represented as a signed offset (4 bytes for bge.un, 1 byte for bge.un.s) from the beginning of the
instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by the ordinary branch instructions
(use the leave instruction instead). These transfers are severely restricted; see Part 1 for details. If an instruction has one or
more prefix codes, control can only be transferred to the first of these prefixes.

Exceptions:

None.

Verifiability:

Correct CIL must observe all of the control transfer rules specified above and must guarantee that the top two items on the
stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible way of reaching
the destination instruction. See the verifier specification for more details.



- 25 -

bgt.<length> – branch on greater than

Format Assembly Format Description

3D <I4> bgt target branch to target if greater than

30 <I1> bgt.s target branch to target if greater than, short form

Stack Transition:

…, value1, value2

…
Description:

The bgt instruction transfers control to target if value1 is greater than value2. The effect is identical to performing a cgt
instruction followed by a brtrue target. Target is represented as a signed offset (4 bytes for bgt, 1 byte for bgt.s) from the
beginning of the instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by the ordinary branch instructions
(use the leave instruction instead). These transfers are severely restricted; see Part 1 for details. If an instruction has one or
more prefix codes, control can only be transferred to the first of these prefixes.

Exceptions:

None.

Verifiability:

Correct CIL must observe all of the control transfer rules specified above and must guarantee that the top two items on the
stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible way of reaching
the destination instruction. See the verifier specification for more details.



- 26 -

bgt.un.<length> – branch on greater than, unsigned or unordered

Format Assembly Format Description

42 <I4> bgt.un target branch to target if greater than (unsigned or unordered)

35 <I1> bgt.un.s target branch to target if greater than (unsigned or unordered), short
form

Stack Transition:

…, value1, value2

…
Description:

The bgt.un instruction transfers control to target if value1 is greater than value2, when compared unsigned (for integer values)
or unordered (for float point values). The effect is identical to performing a cgt.un instruction followed by a brtrue target.
Target is represented as a signed offset (4 bytes for bgt.un, 1 byte for bgt.un.s) from the beginning of the instruction following
the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by the ordinary branch instructions
(use the leave instruction instead). These transfers are severely restricted; see Part 1 for details. If an instruction has one or
more prefix codes, control can only be transferred to the first of these prefixes.

Exceptions:

None.

Verifiability:

Correct CIL must observe all of the control transfer rules specified above and must guarantee that the top two items on the
stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible way of reaching
the destination instruction. See the verifier specification for more details.



- 27 -

ble.<length> – branch on less than or equal to

Format Assembly Format Description

3E <I4> ble target branch to target if less than or equal to

31 <I1> ble.s target branch to target if less than or equal to, short form

Stack Transition:

…, value1, value2

…
Description:

The ble instruction transfers control to target if value1 is less than or equal to value2. The effect is identical to performing a cgt
instruction followed by a brfalse target. Target is represented as a signed offset (4 bytes for ble, 1 byte for ble.s) from the
beginning of the instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by the ordinary branch instructions
(use the leave instruction instead). These transfers are severely restricted; see Part 1 for details. If an instruction has one or
more prefix codes, control can only be transferred to the first of these prefixes.

Exceptions:

None.

Verifiability:

Correct CIL must observe all of the control transfer rules specified above and must guarantee that the top two items on the
stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible way of reaching
the destination instruction. See the verifier specification for more details.



- 28 -

ble.un.<length> – branch on less than or equal to, unsigned or unordered

Format Assembly Format Description

43 <I4> ble.un target branch to target if less than or equal to (unsigned or unordered)

36 <I1> ble.un.s target branch to target if less than or equal to (unsigned or unordered),
short form

Stack Transition:

…, value1, value2

…
Description:

The ble.un instruction transfers control to target if value1 is less than or equal to value2, when compared unsigned (for integer
values) or unordered (for float point values). The effect is identical to performing a cgt.un instruction followed by a brfalse
target. Target is represented as a signed offset (4 bytes for ble.un, 1 byte for ble.un.s) from the beginning of the instruction
following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by the ordinary branch instructions
(use the leave instruction instead). These transfers are severely restricted; see Part 1 for details. If an instruction has one or
more prefix codes, control can only be transferred to the first of these prefixes.

Exceptions:

None.

Verifiability:

Correct CIL must observe all of the control transfer rules specified above and must guarantee that the top two items on the
stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible way of reaching
the destination instruction. See the verifier specification for more details.



- 29 -

blt.<length> – branch on less than

Format Assembly Format Description

3F <I4> blt target branch to target if less than

32 <I1> blt.s target branch to target if less than, short form

Stack Transition:

…, value1, value2

…
Description:

The blt instruction transfers control to target if value1 is less than value2. The effect is identical to performing a clt instruction
followed by a brtrue target. Target is represented as a signed offset (4 bytes for blt, 1 byte for blt.s) from the beginning of the
instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by the ordinary branch instructions
(use the leave instruction instead). These transfers are severely restricted; see Part 1 for details. If an instruction has one or
more prefix codes, control can only be transferred to the first of these prefixes.

Exceptions:

None.

Verifiability:

Correct CIL must observe all of the control transfer rules specified above and must guarantee that the top two items on the
stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible way of reaching
the destination instruction. See the verifier specification for more details.



- 30 -

blt.un.<length> – branch on less than, unsigned or unordered

Format Assembly
Format

Description

44 <I4> blt.un target branch to target if less than (unsigned or unordered)

37 <I1> blt.un.s target branch to target if less than (unsigned or unordered), short
form

Stack Transition:

…, value1, value2

…
Description:

The blt.un instruction transfers control to target if value1 is less than value2. The effect is identical to performing a clt.un
instruction followed by a brtrue target. Target is represented as a signed offset (4 bytes for blt.un, 1 byte for blt.un.s) from
the beginning of the instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by the ordinary branch instructions
(use the leave instruction instead). These transfers are severely restricted; see Part 1 for details. If an instruction has one or
more prefix codes, control can only be transferred to the first of these prefixes.

Exceptions:

None.

Verifiability:

Correct CIL must observe all of the control transfer rules specified above and must guarantee that the top two items on the
stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible way of reaching
the destination instruction. See the verifier specification for more details.



- 31 -

bne.un<length> – branch on not equal or unordered

Format Assembly Format Description

40 <I4> bne.un target branch to target if unequal or unordered

33 <I1> bne.un.s target branch to target if unequal or unordered, short form

Stack Transition:

…, value1, value2

…
Description:

The bne.un instruction transfers control to target if value1 is not equal to value2, when compared unsigned (for integer values)
or unordered (for float point values). The effect is identical to performing a ceq instruction followed by a brfalse target. Target
is represented as a signed offset (4 bytes for bne.un, 1 byte for bne.un.s) from the beginning of the instruction following the
current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by the ordinary branch instructions
(use the leave instruction instead). These transfers are severely restricted; see Part 1 for details. If an instruction has one or
more prefix codes, control can only be transferred to the first of these prefixes.

Exceptions:

None.

Verifiability:

Correct CIL must observe all of the control transfer rules specified above and must guarantee that the top two items on the
stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible way of reaching
the destination instruction. See the verifier specification for more details.



- 32 -

br.<length> – unconditional branch

Format Assembly Format Description

38 <I4> br target branch to target

2B <I1> br.s target branch to target, short form

Stack Transition:

…,

…
Description:

The br instruction unconditionally transfers control to target. Target is represented as a signed offset (4 bytes for br, 1 byte for
br.s) from the beginning of the instruction following the current instruction.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by the ordinary branch instructions
(use the leave instruction instead). These transfers are severely restricted; see Part 1 for details. If an instruction has one or
more prefix codes, control can only be transferred to the first of these prefixes.

Rationale: While a leave instruction can always be used instead of a br instruction, doing so may increase the resources
required to compile from CIL to native code and/or lead to inferior native code. Therefore CIL generators should use a br
instruction in preference to a leave instruction when both are legal.

Exceptions:

None.

Verifiability:

Correct CIL must observe all of the control transfer rules specified above.

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible way of reaching
the destination instruction. See the verifier specification for more details.



- 33 -

break – breakpoint instruction

Format Assembly Format Description

01 break inform a debugger that a breakpoint has been reached.

Stack Transition:

…,

…
Description:

The break instruction is for debugging support. It signals the CLI to inform the debugger that a break point has been tripped.
It has no other effect on the interpreter state.

The break instruction has the smallest possible instruction size so that code can be patched with a breakpoint with minimal
disturbance to the surrounding code.

Exceptions:

None.

Verifiability:

The break instruction is always verifiable.



- 34 -

brfalse.<length> - branch on false, null, or zero

Format Assembly Format Description

39 <I4> brfalse target branch to target if value is zero (false)

2C <I1> brfalse.s target branch to target if value is zero (false), short form

39 <I4> brnull target branch to target if value is null (alias for brfalse)

2C <I1> brnull.s target branch to target if value is null (alias for brfalse.s), short form

39 <I4> brzero target branch to target if value is zero (alias for brfalse)

2C <I1> brzero.s target branch to target if value is zero (alias for brfalse.s), short form

Stack Transition:

…, value

…
Description:

The brfalse instruction transfers control to target if value (of type I) is zero (false). If value is non-zero (true) execution
continues at the next instruction.

If the value is an object reference (type O), a managed pointer (type &) or transient pointer (type *), then brnull (an alias for
brfalse) transfers control if it represents the null object (see ldnull).

Target is represented as a signed offset (4 bytes for brfalse, 1 byte for brfalse.s) from the beginning of the instruction
following the current instruction.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by the ordinary branch instructions
(use the leave instruction instead). These transfers are severely restricted; see Part 1 for details. If an instruction has one or
more prefix codes, control can only be transferred to the first of these prefixes.

Exceptions:

None.

Verifiability:

Correct CIL must observe all of the control transfer rules specified above and must guarantee there is a minimum of one item
on the stack.

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible way of reaching
the destination instruction. See the verifier specification for more details.



- 35 -

brtrue.<length> - branch on non-false or non-null

Format Assembly Format Description

3A <I4> brtrue target branch to target if value is non-zero (true)

2D <I1> brtrue.s target branch to target if value is non-zero (true), short form

3A <I4> brinst target branch to target if value is a non-null object reference (alias for
brtrue)

2D <I1> brinst.s target branch to target if value is a non-null object reference, short
form (alias for brtrue.s)

Stack Transition:

…, value

…
Description:

The brtrue instruction transfers control to target if value (of type I) is nonzero (true). If value is zero (false) execution
continues at the next instruction.

If the value is an object reference (type O) then brinst (an alias for brtrue) transfers control if it represents an instance of an
object (i.e. isn’t the null object reference, see ldnull).

Target is represented as a signed offset (4 bytes for brtrue, 1 byte for brtrue.s) from the beginning of the instruction following
the current instruction.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by the ordinary branch instructions
(use the leave instruction instead). These transfers are severely restricted; see Part 1 for details. If an instruction has one or
more prefix codes, control can only be transferred to the first of these prefixes.

Exceptions:

None.

Verifiability:

Correct CIL must observe all of the control transfer rules specified above and must guarantee there is a minimum of one item
on the stack.

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible way of reaching
the destination instruction. See the verifier specification for more details.



- 36 -

call – call a method

Format Assembly Format Description

28 <T> call method Call method described by method

Stack Transition:

…, arg1, arg2 … argn

…, retVal (not always returned)
Description:

The call instruction calls the method indicated by the descriptor method. Method is a metadata token (either a methodref or
methoddef) that indicates the method to call and the number, type, and order of the arguments that have been placed on the
stack to be passed to that method as well as the calling convention to be used. See Part 1 for a detailed description of the CIL
calling sequence. The call instruction may be immediately preceded by a tail. prefix to specify that the current method state
should be released before transferring control. If the call would transfer control to a method of higher trust than the origin
method the stack frame will not be released; instead, the execution will continue silently as if the tail. prefix had not been
supplied.

The metadata token carries sufficient information to know whether the call is to a static method, an instance method, or a global
function. In all of these cases the destination address is determined from the metadata token (See the callvirt instruction for
calling virtual methods or methods on interfaces).

The arguments are placed on the stack in left-to-right order. That is, the first argument is computed and placed on the stack,
then the second argument, etc. There are three important special cases:

1 Calls to an instance (or virtual, see below) method must push that instance reference (the this pointer) before any of the
user-visible arguments. The this pointer must not be null. The signature carried in the metadata does not contain an
entry in the parameter list for the this pointer but uses a bit to indicate whether the method requires passing the this
pointer.

2 It is legal to call a virtual method using call (rather than callvirt); this indicates that the method is to be resolved using the
class specified by method rather than as specified dynamically from the object being invoked. This is used, for
example, to compile calls to “methods on super” (i.e. the statically known parent class).

3 The call instruction may not be used to call a delegate’s Invoke method: callvirt must be used instead.

Exceptions:

SecurityException may be thrown if system security does not grant the caller access to the called method. The security check
may occur when the CIL is converted to native code rather than at runtime.

Verifiability:

Correct CIL ensures that the stack contains the correct number and type of arguments for the method being called.

For a typical use of the call instruction, the verifier checks that (a) method refers to a valid methodref or methoddef token; (b)
the types of the objects on the stack are consistent with the types expected by the method call, and (c) the method is accessible
from the callsite.

The call instruction may also be used to call an object’s superclass constructor, or to initialize a value type location by calling
an appropriate constructor, both of which are treated as special cases by the verifier. A call annotated by tail. is also a special
case.



- 37 -

calli– indirect method call

Format Assembly Format Description

29 <T> calli callsitedescr Call method indicated on the stack with arguments described by
callsitedescr.

Stack Transition:

…, arg1, arg2 … argn, ftn

… retVal (not always returned)

Description:

The calli instruction calls ftn (a pointer to a method entry point) with the arguments arg1 … argn. The types of these
arguments are described by the signature callsitedescr. See Part 1 for a description of the CIL calling sequence. The calli
instruction may be immediately preceded by a tail. prefix to specify that the current method state should be released before
transferring control. If the call would transfer control to a method of higher trust than the origin method the stack frame will not
be released; instead, the execution will continue silently as if the tail. prefix had not been supplied.

The ftn argument is assumed to be a pointer to native code (of the target machine) that can be legitimately called with the
arguments described by callsitedescr (a metadata token for a stand-alone signature,. Such a pointer can be created using the
ldftn or ldvirtftn instructions, or have been passed in from native code.

The standalone signature specifies the number and type of parameters being passed, as well as the calling convention. The
calling convention is not checked dynamically, so code that uses a calli instruction will not work correctly if the destination
does not actually use the specified calling convention.

The arguments are placed on the stack in left-to-right order. That is, the first argument is computed and placed on the stack,
then the second argument, etc. The argument-building code sequence for an instance or virtual method must push that instance
reference (the this pointer, which must not be null) before any of the user-visible arguments.

Exceptions:

SecurityException may be thrown if the system security does not grant the caller access to the called method. The security
check may occur when the CIL is converted to native code rather than at runtime.

Verifiability:

Correct CIL requires that the function pointer contains the address of a method whose signature matches that specified by
callsitedescr and that the arguments correctly correspond to the types of the destination function’s parameters.

The verifier checks that ftn is a pointer to a function generated by ldftn or ldvirtfn. Since these pointers may not be passed as
values in verifiable code, this means that the pointer must have been generated somewhere in the current method body.



- 38 -

ceq - compare equal

Format Assembly Format Description

FE 01 ceq push 1 (of type I4) if value1 equals value2, else 0

Stack Transition:

…, value1, value2

…, result
Description:

The ceq instruction compares value1 and value2. If value1 is equal to value2, then 1 (of type I4) is pushed on the stack.
Otherwise 0 (of type I4) is pushed on the stack.

For floating point number, ceq will return 0 if the numbers are unordered (either or both are NaN). The infinite values are
equal to themselves.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

Exceptions:

None.

Verifiability:

Correct CIL provides two values on the stack whose types match those specified in Table 4: Binary Comparison or
Branch Operations. There are no additional verification requirements.



- 39 -

cgt - compare greater than

Format Assembly Format Description

FE 02 cgt push 1 (of type I4) if value1 > value2, else 0

Stack Transition:

…, value1, value2

…, result

Description:

The cgt instruction compares value1 and value2. If value1 is strictly greater than value2, then 1 (of type I4) is pushed on the
stack. Otherwise 0 (of type I4) is pushed on the stack

For floating point numbers, cgt returns 0 if the numbers are unordered (that is, if one or both of the arguments are NaN).

As per IEEE 754 spec, infinite values are ordered with respect to normal numbers (e.g +infinity > 5.0 > -infinity).

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

Exceptions:

None.

Verifiability:

Correct CIL provides two values on the stack whose types match those specified in Table 4: Binary Comparison or
Branch Operations. There are no additional verification requirements.



- 40 -

cgt.un - compare greater than, unsigned or unordered

Format Assembly Format Description

FE 03 cgt.un push 1 (of type I4) if value1 > value2, unsigned or unordered, else
0

Stack Transition:

…, value1, value2

…, result

Description:

The cgt.un instruction compares value1 and value2. A value of 1 (of type I4) is pushed on the stack if any of the following is
true:

• for floating point numbers, value1 is not ordered with respect to value2

• for integer values, value1 is strictly greater than value2 when considered as unsigned numbers

Otherwise 0 (of type I4) is pushed on the stack.

As per IEEE 754 spec, infinite values are ordered with respect to normal numbers (e.g +infinity > 5.0 > -infinity).

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

Exceptions:

None.

Verifiability:

Correct CIL provides two values on the stack whose types match those specified in Table 4: Binary Comparison or
Branch Operations. There are no additional verification requirements.



- 41 -

ckfinite – check for a finite real number

Format Assembly Format Description

C3 ckfinite throw ArithmeticException if value is not a finite number

Stack Transition:

…, value

…, value

Description:

The ckfnite instruction throws ArithmeticException if value (a floating point number) is either a “not a number” value (NaN)
or +- infinity value. Ckfinite leaves the value on the stack if no exception is thrown. Execution is unspecified if value is not a
floating point number.

Exceptions:

ArithmeticException is thrown if value is not a ‘normal’ number.

Note:   A special exception or a subclass of ArithmeticException may be more appropriate so 
that the offending value can be passed to the exception handler. 

Verifiability:

Correct CIL guarantees that value is a floating-point number. There are no additional verification requirements.



- 42 -

clt - compare less than

Format Assembly Format Description

FE 04 clt push 1 (of type I4) if value1 < value2, else 0

Stack Transition:

…, value1, value2

…, result

Description:

The clt instruction compares value1 and value2. If value1 is strictly less than value2, then 1 (of type I4) is pushed on the stack.
Otherwise 0 (of type I4) is pushed on the stack

For floating point numbers, clt will return 0 if the numbers are unordered (that is one or both of the arguments are NaN).

As per IEEE 754 spec, infinite values are ordered with respect to normal numbers (e.g +infinity > 5.0 > -infinity).

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

Exceptions:

None.

Verifiability:

Correct CIL provides two values on the stack whose types match those specified in Table 4: Binary Comparison or
Branch Operations. There are no additional verification requirements.



- 43 -

clt.un - compare less than, unsigned or unordered

Format Assembly Format Description

FE 05 clt.un push 1 (of type I4) if value1 < value2, unsigned or unordered, else
0

Stack Transition:

…, value1, value2

…, result

Description:

The clt.un instruction compares value1 and value2. A value of 1 (of type I4) is pushed on the stack if any of the following is
true:

• value1 is strictly less than value2 (as for clt)

• for floating point numbers, value1 is not ordered with respect to value2

• for integer values, value1 is strictly less than value2 when considered as unsigned numbers

Otherwise 0 (of type I4) is pushed on the stack.

Unlike clt, clt.un returns 1 if the numbers are unordered (that is, if one or both of the arguments are NaN).

As per IEEE 754 spec, infinite values are ordered with respect to normal numbers (e.g +infinity > 5.0 > -infinity).

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

Exceptions:

None.

Verifiability:

Correct CIL provides two values on the stack whose types match those specified in Table 4: Binary Comparison or
Branch Operations. There are no additional verification requirements.



- 44 -

conv.<to type> - data conversion

Format Assembly Format Description

67 conv.i1 Convert to I1, pushing I4 on stack

68 conv.i2 Convert to I2, pushing I4 on stack

69 conv.i4 Convert to I4, pushing I4 on stack

6A conv.i8 Convert to I8, pushing I8 on stack

6B conv.r4 Convert to R4, pushing F on stack

6C conv.r8 Convert to R8, pushing F on stack

D2 conv.u1 Convert to U1, pushing I4 on stack

D1 conv.u2 Convert to U2, pushing I4 on stack

6D conv.u4 Convert to U4, pushing I4 on stack

6E conv.u8 Convert to U8, pushing I8 on stack

D3 conv.i Convert to I, pushing I on stack

E0 conv.u Convert to U, pushing I on stack

76 conv.r.un Convert unsigned integer to floating point, pushing F on stack

Stack Transition:

…, value

…, result
Description:

Convert the value on top of the stack to the type specified in the opcode, and leave that converted value on the top of the stack.
Note that integer value of 4 bytes or less are extended to I4 (not I) when they are loaded onto the evaluation stack, and floating
point values are converted to the F type.

Conversion from floating point numbers to integral values truncates the number toward zero. When converting from an R8 to
an R4, precision may be lost. If value is too large to fit in an R4, the IEEE positive infinity (if value is positive) or IEEE
negative infinity (if value is negative) is returned. If overflow occurs converting one integer type to another the high order bits
are silently truncated. If the result is smaller than an I4, then the value is sign-extended to fill the slot.

If overflow occurs converting a floating-point type to an integer the value returned is unspecified. The conv.r.un operation
takes an unsigned integer off of the stack and replaces it with a floating-point number with precision sufficient to represent the
integer exactly where possible.

No exceptions are ever thrown. See conv.ovf for instructions that will throw an exception when the result type can not properly
represent the result value.

The acceptable operand types and their corresponding result data type is encapsulated in

Table 7: Conversion Operations.

Exceptions:

None.

Verifiability:



- 45 -

Correct CIL has at least one value, of a type specified in

Table 7: Conversion Operations, on the stack. The same table specifies a restricted set of types that are acceptable in
verified code.



- 46 -

conv.ovf.<to type> - data conversion with overflow detection

Format Assembly Format Description

B3 conv.ovf.i1 Convert to an I1 (on the stack as I4) and throw an exception on
overflow

B5 conv.ovf.i2 Convert to an I2 (on the stack as I4) and throw an exception on
overflow

B7 conv.ovf.i4 Convert to an I4 (on the stack as I4) and throw an exception on
overflow

B9 conv.ovf.i8 Convert to an I8 (on the stack as I8) and throw an exception on
overflow

B4 conv.ovf.u1 Convert to a U1 (on the stack as I4) and throw an exception on
overflow

B6 conv.ovf.u2 Convert to a U2 (on the stack as I4) and throw an exception on
overflow

B8 conv.ovf.u4 Convert to a U4 (on the stack as I4) and throw an exception on
overflow

BA conv.ovf.u8 Convert to a U8 (on the stack as I8) and throw an exception on
overflow

D4 conv.ovf.i Convert to an I (on the stack as I) and throw an exception on
overflow

D5 conv.ovf.u Convert to a U (on the stack as I) and throw an exception on
overflow

Stack Transition:

…, value

…, result
Description:

Convert the value on top of the stack to the type specified in the opcode, and leave that converted value on the top of the stack.
If the value cannot be represented, an exception is thrown.

Conversions from floating point numbers to integral values truncate the number toward zero. Note that integer value of 4 bytes
or less are extended to I4 (not I) on the evaluation stack.

The acceptable operand types and their corresponding result data type is encapsulated in

Table 7: Conversion Operations.

Exceptions:

OverflowException is thrown if the result can not be represented in the result type

Verifiability:

Correct CIL has at least one value, of a type specified in

Table 7: Conversion Operations, on the stack. The same table specifies a restricted set of types that are acceptable in
verified code.



- 47 -

conv.ovf.<to type>.un – unsigned data conversion with overflow detection

Format Assembly Format Description

82 conv.ovf.i1.un Convert unsigned to an I1 (on the stack as I4) and throw an
exception on overflow

83 conv.ovf.i2.un Convert to unsigned an I2 (on the stack as I4) and throw an
exception on overflow

84 conv.ovf.i4.un Convert to unsigned an I4 (on the stack as I4) and throw an
exception on overflow

85 conv.ovf.i8.un Convert to unsigned an I8 (on the stack as I8) and throw an
exception on overflow

86 conv.ovf.u1.un Convert to unsigned a U1 (on the stack as I4) and throw an
exception on overflow

87 conv.ovf.u2.un Convert to unsigned a U2 (on the stack as I4) and throw an
exception on overflow

88 conv.ovf.u4.un Convert to unsigned a U4 (on the stack as I4) and throw an
exception on overflow

89 conv.ovf.u8.un Convert to unsigned a U8 (on the stack as I8) and throw an
exception on overflow

8A conv.ovf.i.un Convert to unsigned an I (on the stack as I) and throw an
exception on overflow

8B conv.ovf.u.un Convert to unsigned a U (on the stack as I) and throw an
exception on overflow

Stack Transition:

…, value

…, result
Description:

Convert the value on top of the stack to the type specified in the opcode, and leave that converted value on the top of the stack.
If the value cannot be represented, an exception is thrown. The item at the top of the stack is treated as an unsigned value.

Conversions from floating point numbers to integral values truncate the number toward zero. Note that integer value of 4 bytes
or less are extended to I4 (not I) on the evaluation stack.

The acceptable operand types and their corresponding result data type is encapsulated in

Table 7: Conversion Operations.

Exceptions:

OverflowException is thrown if the result can not be represented in the result type

Verifiability:

Correct CIL has at least one value, of a type specified in

Table 7: Conversion Operations, on the stack. The same table specifies a restricted set of types that are acceptable in
verified code.



- 48 -

cpblk - copy data from memory to memory

Format Instruction Description

FE 17 cpblk Copy data from memory to memory

Stack Transition:

…, destaddr, srcaddr, size

…
Description:

The cpblk instruction copies size (of type U4) bytes from address srcaddr (of type *, I, or &) to address destaddr (of type *, I,
or &). The behavior of cpblk is unspecified if the source and destination areas overlap.

cpblk assumes that both destaddr and srcaddr are aligned to the natural size of the machine (but see the unaligned. prefix
instruction). The cpblk instruction may be immediately preceded by the unaligned. prefix instruction to indicate that either the
source or the destination is unaligned. It is an appropriate expansion of methods like C’s memcpy.

The operation of the cpblk instruction may be altered by an immediately preceding volatile. or unaligned. prefix instruction.

Exceptions:

InvalidAddressException may be thrown if an invalid address is detected.

Verifiability:

The cpblk instruction is never verifiable. Correct CIL ensures the conditions specified above.



- 49 -

div - divide values

Format Assembly Format Description

5B div Divide two values to return a quotient or floating point result

Stack Transition:

…, value1, value2

…, result
Description:

The div instruction computes value1 divided by value2 and pushes the result on the stack. The type of the values and result are
the same.

Floating point division is per IEE754 spec. In particular division of a finite number by 0 produces the correctly signed infinite
value and

0 / 0 = NaN

infinity / infinity = NaN.

X / infinity = 0

The acceptable operand types and their corresponding result data type is encapsulated in Table 2: Binary Numeric
Operations.

Exceptions:

Integral operations throw ArithmeticException if the result can not be represented in the result type. This can happen if value1
is the maximum negative value, and value2 is -1.

Integral operations throw DivideByZeroException if value2 is zero.

Note: On the x86 an ArithmeticOverflowException is thrown when computing (minint div –1).

Floating-point operations never throw an exception (they produce NaNs instead, see Part 1).

Verifiability:

See Table 2: Binary Numeric Operations.



- 50 -

div.un - divide integer values, unsigned

Format Assembly Format Description

5C div.un Divide two values, unsigned, returning a quotient

Stack Transition:

…, value1, value2

…, result
Description:

The div instruction computes value1 divided by value2, both taken as unsigned integers, and pushes the result on the stack.

The acceptable operand types and their corresponding result data type is encapsulated in Table 5.

Exceptions:

DivideByZeroException is thrown if value2 is zero.

Verifiability:

See Table 5: Integer Operations.



- 51 -

dup – duplicate the top value of the stack

Format Assembly Format Description

25 dup duplicate value on the top of the stack

Stack Transition:

…, value

…, value, value
Description:

The dup instruction duplicates the top element of the stack.

Exceptions:

None.

Verifiability:

No additional requirements.



- 52 -

endfilter – end filter clause of SEH

Format Assembly Format Description

FE 11 endfilter End filter clause of SEH exception handling

Stack Transition:

…, value

…
Description:

Return from filter clause of an exception (see the Exception Handling section of Part 1 for a discussion of exceptions). Value
(which must be of type I4 and is one of a specific set of values) is returned from the filter clause. It should be one of:

• exception_continue_execution (-1) to continue execution at the instruction after the one which raised the exception
(currently treated as 0)

• exception_continue_search (0) to continue searching for an exception handler

• exception_execute_handler (1) to start the second phase of exception handling where finally blocks are run until the
handler associated with this filter clause is located. Then the handler is executed.

Other integer values will produce unspecified results.

The entry point of a filter, as shown in the method’s exception table, must be the (lexically) first instruction in the filter’s code
block. The endfilter must be the (lexically) last instruction in the filter’s code block (hence there can only be one endfilter for
any single filter block). After executing the endfilter instruction, control logically flows back to the CLI exception handling
mechanism.

Control cannot be transferred into a filter block except through the exception mechanism. Control cannot be transferred out of
a filter block except through the use of a throw instruction or executing the final endfilter instruction. In particular, it is not
legal to execute a ret or leave instruction within a filter block. It is not legal to embed a try block within a filter block.

Exceptions:

None.

Verifiability:

Correct CIL guarantees the control transfer restrictions specified above. There are no additional verification requirements.



- 53 -

endfinally – end finally clause of an exception block

Format Assembly Format Description

DC endfault End fault clause of an exception block

DC endfinally End finally clause of an exception block

Stack Transition:

…

…
Description:

Return from finally clause of an exception block, see the Exception Handling section of Part 1 for details. Signals the end of
the finally clause so that stack unwinding can continue until the exception handler is invoked. The endfinally instruction
transfers control back to the CLI exception mechanism. This then searches for the next finally clause in the chain, if the
protected block was exited with a leave instruction. If the protected block was exited with an exception, the CLI will search for
the next finally or fault, or enter the exception handler chosen during the first pass of exception handling.

An endfinally instruction may only appear lexically within a finally block. Unlike the endfilter instruction, there is no
requirement that the block end with an endfinally instruction, and there can be as many endfinally instructions within the block
as required.

Control cannot be transferred into a finally block except through the exception mechanism. Control cannot be transferred out
of a finally block except through the use of a throw instruction or executing the endfinally instruction. In particular, it is not
legal to “fall out” of a finally block or to execute a ret or leave instruction within a finally block.

Exceptions:

None.

Verifiability:

Correct CIL guarantees the control transfer restrictions specified above. There are no additional verification requirements.



- 54 -

initblk - initialize a block of memory to a value

Format Assembly Format Description

FE 18 initblk Set a block of memory to a given byte

Stack Transition:

…, addr, value, size

…
Description:

The initblk instruction sets size (of type U4) bytes starting at addr (of type I, &, or *) to value (of type U1). initblk assumes
that addr is aligned to the natural size of the machine (but see the unaligned. prefix instruction). It is an appropriate expansion
of methods like C’s memset.

The operation of the initblk instructions may be altered by an immediately preceding volatile. or unaligned. prefix instruction.

Exceptions:

InvalidAddressException may be thrown if an invalid address is detected.

Verifiability:

The initblk instruction is never verifiable. Correct CIL code ensures the restrictions specified above.



- 55 -

jmp – jump to method

Format Assembly Format Description

27 <T> jmp method Exit current method and jump to specified method

Stack Transition:

…

…
Description:

Transfer control to the method specified by method, which is a metadata token (either a methodref or methoddef). The current
arguments are transferred to the destination method.

The evaluation stack must be empty when this instruction is executed. The calling convention, number and type of arguments
at the destination address must match that of the current method.

The jmp instruction cannot be used to transferred control out of a try, filter, catch, or finally block. See Part 1.

Exceptions:

None.

Verifiability:

The jmp instruction is never verifiable. Correct CIL code obeys the control flow restrictions specified above.



- 56 -

ldarg.<length> - load argument onto the stack

Format Assembly Format Description

FE 09 <U2> ldarg num Load argument numbered num onto stack.

0E <U1> ldarg.s num Load argument numbered num onto stack, short form.

02 ldarg.0 Load argument 0 onto stack

03 ldarg.1 Load argument 1 onto stack

04 ldarg.2 Load argument 2 onto stack

05 ldarg.3 Load argument 3 onto stack

Stack Transition:

…

…, value
Description:

The ldarg num instruction pushes the incoming argument numbered num (see Part 1) onto the evaluation stack. The ldarg
instruction can be used to load a value type or a primitive value onto the stack by copying it from an incoming argument. The
type of the value is the same as the type of the argument, as specified by the current method’s signature.

The ldarg.0, ldarg.1, ldarg.2, and ldarg.3 instructions are efficient encodings for loading any one of the first 4 arguments.
The ldarg.s instruction is an efficient encoding for loading the 5th through 256th argument.

For procedures that take a variable-length argument list, the ldarg instructions can be used only for the initial fixed arguments,
not those in the variable part of the signature.

Arguments that hold an integer value smaller than 4 bytes long are expanded to type I4 when they are loaded onto the stack.
Floating-point values are expanded to their native size (type F).

Exceptions:

None.

Verifiability:

Correct CIL guarantees that num is a valid argument index. See the Verifier Specification for more details on how the verifier
determines the type of the value loaded onto the stack.



- 57 -

ldarga.<length> - load an argument address

Format Assembly Format Description

FE 0A <U2> ldarga argNum fetch the address of argument argNum.

0F <U1> ldarga.s argNum fetch the address of argument argNum, short form

Stack Transition:

…,

…, address of argument number argNum
Description:

The ldarga instruction fetches the address (of type *, i.e. transient pointer) of argument argNum. The address will always be
aligned to a natural boundary on the target machine (cf. cpblk and initblk). The short form (ldarga.s) should be used for
arguments 0 through 255.

For procedures that take a variable-length argument list, the ldarga instructions can be used only for the initial fixed arguments,
not those in the variable part of the signature.

Rationale: ldarga is used for by-ref parameter passing (see Part 1). In other cases, ldarg and starg should be used.

Exceptions:

None.

Verifiability:

Correct CIL ensures that argNum is a valid argument index. See the Verifier Specification for more details.



- 58 -

ldc.<type> - load numeric constant

Format Assembly Format Description

20 <I4> ldc.i4 num Push num of type I4 onto the stack as I4.

21 <I8> ldc.i8 num Push num of type I8 onto the stack as I8.

22 <R4> ldc.r4 num Push num of type R4 onto the stack as F.

23 <R8> ldc.r8 num Push num of type R8 onto the stack as F.

16 ldc.i4.0 Push 0 onto the stack as I4.

17 ldc.i4.1 Push 1 onto the stack as I4.

18 ldc.i4.2 Push 2 onto the stack as I4.

19 ldc.i4.3 Push 3 onto the stack as I4.

1A ldc.i4.4 Push 4 onto the stack as I4.

1B ldc.i4.5 Push 5 onto the stack as I4.

1C ldc.i4.6 Push 6 onto the stack as I4.

1D ldc.i4.7 Push 7 onto the stack as I4.

1E ldc.i4.8 Push 8 onto the stack as I4.

15 ldc.i4.m1 Push -1 onto the stack as I4.

15 ldc.i4.M1 Push -1 of type I4 onto the stack as I4 (alias for ldc.i4.m1).

1F <I1> ldc.i4.s num Push num onto the stack as I4, short form.

Stack Transition:

…

…, num
Description:

The ldc num instruction pushes number num onto the stack. There are special short encodings for the integers –128 through
127 (with especially short encodings for –1 through 8). All short encodings push 4 byte integers on the stack. Longer
encodings are used for 8 byte integers and 4 and 8 byte floating point numbers.

There are three ways to push an 8 byte integer constant onto the stack

1 use the ldc.i8 instruction for constants that must be expressed in more than 32 bits

2 use the ldc.i4 instruction followed by a conv.i8 for constants that require 9 to 32 bits

3 use a short form instruction followed by a conv.i8 for constants that can be expressed in 8 or fewer bits

There is no way to express a floating point constant that has a larger range or greater precision than a 64 bit IEEE 754 number,
since these representations are not portable across architectures.

Exceptions:

None.

Verifiability:

The ldc instruction is always verifiable.



- 59 -

ldftn - load method pointer

Format Assembly Format Description

FE 06 <T> ldftn method Push a pointer to a method referenced by method on the stack

Stack Transition:

…

…, ftn
Description:

The ldftn instruction pushes an unmanaged pointer (type I) to the native code implementing the method described by method (a
metadata token, either a methoddef or methodref, onto the stack. The value pushed can be called using the calli instruction if
it references a managed method (or a stub that transitions from managed to unmanaged code).

The value returned points to native code using the calling convention specified by method. Thus a method pointer can be
passed to unmanaged native code (e.g. as a callback routine). Note that the address computed by this instruction may be to a
thunk produced specially for this purpose (for example, to re-enter the CIL interpreter when a native version of the method isn’t
available).

Exceptions:

None.

Verifiability:

Correct CIL requires that method is a valid methoddef or methodref token. The verifier tracks the type of the value pushed in
more detail than the “I” type, remembering that it is a method pointer. Such a method pointer can then be used with calli or to
construct a delegate.



- 60 -

ldind.<type> - load value indirect onto the stack

Format Assembly Format Description

46 ldind.i1 Indirect load value of type I1 as I4 on stack.

48 ldind.i2 Indirect load value of type I2 as I4 stack.

4A ldind.i4 Indirect load value of type I4 as I4 stack.

4C ldind.i8 Indirect load value of type I8 as I8 stack.

47 ldind.u1 Indirect load value of type U1 as I4 stack.

49 ldind.u2 Indirect load value of type U2 as I4 stack.

4A ldind.u4 Indirect load value of type U4 as I4 stack.
(alias for ldind.i4).

4E ldind.r4 Indirect load value of type R4 as F stack.

4C ldind.u8 Indirect load value of type U8 as I8 stack (alias for
ldind.i8).

4F ldind.r8 Indirect load value of type R8 as F stack.

4D ldind.i Indirect load value of type I as I stack

50 ldind.ref Indirect load value of type object ref as O on stack.

Stack Transition:

…, addr

…, value
Description:

The ldind instruction indirectly loads a value from address addr (an integer, I, managed pointer, &, or transient pointer, *) onto
the stack. The source value is indicated by the instruction suffix. All of the ldind instructions are shortcuts for a ldobj
instruction that specifies the corresponding built-in value class.

Note that integer value of 4 bytes or less are extended to I4 (not I) when they are loaded onto the evaluation stack. Floating
point values are converted to F type when loaded onto the evaluation stack.

Correct CIL ensures that the ldind instructions is used in a manner consistent with the type of the pointer.

The address specified by addr must be aligned to the natural size of objects on the machine or an InvalidAddressException
may occur (but see the unaligned. prefix instruction). The results of all CIL instructions that return addresses (e.g. ldloca and
ldarga) are safely aligned. For datatypes larger than 1 byte, the byte ordering is dependent on the target CPU. Code that is
written that depends on byte ordering may not run on all platforms.

The operation of the ldind instructions may be altered by an immediately preceding volatile. or unaligned. prefix instruction.

Rationale: Signed and unsigned forms for the small integer types are needed so that the CLI can know whether to sign extend
or zero extend. The ldind.u8 and ldind.u4 variants are provided for convenience; they are simply aliases for ldind.i8 and
ldind.i4 respectively.

Exceptions:

InvalidAddressException may be thrown if an invalid address is detected.

Verifiability:



- 61 -

Correct CIL only uses an ldind instruction in a manner consistent with the type of the pointer. These instructions cannot be
used in verified code.



- 62 -

ldloc - load local variable onto the stack

Format Assembly Format Description

FE 0C<U2> ldloc indx Load local variable of index indx onto stack.

11 <U1> ldloc.s indx Load local variable of index indx onto stack, short form.

06 ldloc.0 Load local variable 0 onto stack.

07 ldloc.1 Load local variable 1 onto stack.

08 ldloc.2 Load local variable 2 onto stack.

09 ldloc.3 Load local variable 3 onto stack.

Stack Transition:

…

…, value
Description:

The ldloc indx instruction pushes the contents of the local variable with index indx onto the evaluation stack. Local variables
are initialized to 0 before entering the method only if the initialize flag on the method is true (see Part 1). The ldloc.0, ldloc.1,
ldloc.2, and ldloc.3 instructions provide an efficient encoding for accessing the first four local variables. The ldloc.s
instruction provides an efficient encoding for accessing the 5th through 256th local variable.

The type of the value is the same as the type of the local variable, which is specified in the method header. See Part 1.

Local variables that are smaller than 4 bytes long are expanded to type I4 when they are loaded onto the stack. Floating-point
values are expanded to their native size (type F).

Exceptions:

None.

Verifiability:

Correct CIL ensures that indx is a valid local index. See the Verifier Specification for more details about how the verifier
determines the type of local variables.



- 63 -

ldloca.<length> - load local variable address

Format Assembly Format Description

FE 0D <U2> ldloca index Load address of local variable with index indx

12 <U1> ldloca.s index Load address of local variable with index indx, short form

Stack Transition:

…

…, address
Description:

The ldloca instruction pushes the address of the local variable with index onto the stack. The value pushed on the stack is
already aligned correctly for use with instructions like ldind and stind. The result is a transient pointer (type *). The ldloca.s
instruction provides an efficient encoding for use with the first 256 local variables.

Exceptions:

None.

Verifiability:

Correct CIL ensures that indx is a valid local index. See the Verifier Specification for more details on how the verifier
determines the type of a local variable.



- 64 -

ldnull – load a null pointer

Format Assembly Format Description

14 ldnull Push null GC reference on the stack

Stack Transition:

…

…, null value
Description:

The ldnull pushes a null reference (type O) on the stack. It is not legal to dereference this null value. They are used to
initialize locations before they become live or when they become dead.

Exceptions:

None.

Verifiability:

The ldnull instruction is always verifiable, and produces a value that the verifier considers compatible with any other reference
type.



- 65 -

leave.<length> – exit a protected region of code

Format Assembly Format Description

DD <I4> leave target Exit a protected region of code.

DE <I1> leave.s target Exit a protected region of code, short form

Stack Transition:

…,

…,
Description:

The leave instruction unconditionally transfers control to target. Target is represented as a signed offset (4 bytes for leave, 1
byte for leave.s) from the beginning of the instruction following the current instruction.

The leave instruction is similar to the br instruction, but it can be used to exit a try, filter, or catch block whereas the ordinary
branch instructions can only be used to transfer control within such a block. The leave instruction empties the evaluation stack
and ensures that the appropriate surrounding finally blocks are executed.

It is not legal to use a leave instruction to exit a finally block. To ease code generation for exception handlers it is legal from
within a catch block to use a leave instruction to transfer control to any instruction within the associated try block.

If an instruction has one or more prefix codes, control can only be transferred to the first of these prefixes.

Exceptions:

None.

Verifiability:

Correct CIL requires the destination be within the current method. The verifier will check the type-consistency of the stack,
locals and arguments for every possible way of reaching the destination instruction. See the Verifier Specification for more
details.



- 66 -

localloc – allocate space in the local dynamic memory pool

Format Assembly Format Description

FE 0F localloc Allocate space from the local memory pool.

Stack Transition:

…, size

…, address
Description:

The localloc instruction allocates size (type U) bytes from the local dynamic memory pool and returns the address (a transient
pointer, type *) of the first allocated byte. The block of memory returned is initialized to 0 only if the initialize flag on the
method is true (see Part 1). The area of memory is newly allocated. When the current method returns the local memory pool is
available for reuse.

Address is aligned so that any primitive data type can be stored there using the stind instructions and loaded using the ldind
instructions.

The evaluation stack must be empty when this instruction is executed.

Rationale: Localloc is used to create local aggregates whose size must be computed at runtime. It can be used for C’s
intrinsic alloca method.

Exceptions:

ExecutionEngineException is thrown if the stack is not empty at the time this instruction is executed.

StackOverflowException is thrown if there is insufficient memory to service the request.

Verifiability:

Correct CIL only uses this instruction within a method that has a non-zero local allocation area size. This instruction is never
verifiable.



- 67 -

mul - multiply values

Format Assembly Format Description

5A mul Multiply values

Stack Transition:

…, value1, value2

…, result
Description:

The mul instruction multiplies value1 by value2 and pushes the result on the stack. Integral operations silently truncate the
upper bits on overflow (see mul.ovf).

For floating point types, 0 * infinity = NaN.

The acceptable operand types and their corresponding result data type is encapsulated in Table 2: Binary Numeric
Operations.

Exceptions:

None.

Verifiability:

See Table 2: Binary Numeric Operations.



- 68 -

mul.ovf.<type> - multiply integer values with overflow check

Format Assembly Format Description

D8 mul.ovf Multiply signed integer values. Signed result must fit in same
size

D9 mul.ovf.un Multiply unsigned integer values. Unsigned result must fit in
same size

Stack Transition:

…, value1, value2

…, result
Description:

The mul.ovf instruction multiplies integers, value1 and value2, and pushes the result on the stack. An exception is thrown if
the result will not fit in the result type.

The acceptable operand types and their corresponding result data type is encapsulated in Table 6: Overflow Arithmetic
Operations.

Exceptions:

OverflowException is thrown if the result can not be represented in the result type.

Verifiability:

See

Table 7: Conversion Operations.



- 69 -

neg - negate

Format Assembly Format Description

65 neg Negate value

Stack Transition:

…, value

…, result
Description:

The neg instruction negates value and pushes the result on top of the stack. The return type is the same as the operand type.

Negation of integral values is standard twos complement negation. In particular, negating the most negative number (which
does not have a positive counterpart) yields the most negative number. To detect this overflow use the sub.ovf instruction
instead (i.e. subtract from 0).

Negating a floating point number cannot overflow; negating NaN returns NaN.

The acceptable operand types and their corresponding result data type is encapsulated in Table 3: Unary Numeric
Operations.

Exceptions:

None.

Verifiability:

See Table 3: Unary Numeric Operations.



- 70 -

nop – no operation

Format Assembly Format Description

00 nop Do nothing

Stack Transition:

…,

…,
Description:

The nop operation does nothing. It is intended to fill in space if bytecodes are patched.

Exceptions:

None.

Verifiability:

The nop instruction is always verifiable.



- 71 -

not - bitwise complement

Format Assembly Format Description

66 not Bitwise complement

Stack Transition:

…, value

…, result
Description:

Compute the bitwise complement of the integer value on top of the stack and leave the result on top of the stack. The return
type is the same as the operand type.

The acceptable operand types and their corresponding result data type is encapsulated in Table 5: Integer Operations.

Exceptions:

None.

Verifiability:

See Table 5: Integer Operations.



- 72 -

or - bitwise OR

Format Instruction Description

60 or Bitwise OR of two integer values, returns an integer.

Stack Transition:

…, value1, value2

…, result
Description:

The or instruction computes the bitwise OR of the top two values on the stack and leaves the result on the stack.

The acceptable operand types and their corresponding result data type is encapsulated in Table 5: Integer Operations.

Exceptions:

None.

Verifiability:

See Table 5: Integer Operations.



- 73 -

pop – remove the top element of the stack

Format Assembly Format Description

26 pop pop a value from the stack

Stack Transition:

…, value

…
Description:

The pop instruction removes the top element from the stack.

Exceptions:

None.

Verifiability:

No additional requirements.



- 74 -

rem - compute remainder

Format Assembly Format Description

5D rem Remainder of dividing value1 by value2

Stack Transition:

…, value1, value2

…, result
Description:

result = value1 rem value2 satisfies the following conditions:

(n*value2)+result = value1,

where n is an integer,

0 ≤ |result| < |value2|, and

sign(result) = sign(value2)

The rem instruction computes result and pushes it on the stack.

For floating point types, rem is defined by the IEEE 754 spec. In particular, if value2 is zero or value1 is infinity the result is
NaN. If value2 is infinity, the result is value1 (negated for –infinity).

The acceptable operand types and their corresponding result data type is encapsulated in Table 2: Binary Numeric
Operations.

Exceptions:

Integral operations throw DivideByZeroException if value2 is zero.

Note:   On the x86 an ArithmeticOverflowException is thrown when computing (minint rem –1). 

Example:

+14 rem +3 is 2 (n = 4)

+14 rem -3 is -1 (n = 5)

-14 rem +3 is 1 (n = -5)

-14 rem -3 is -2 (n = 4)

Verifiability:

See Table 2: Binary Numeric Operations.



- 75 -

rem.un - compute integer remainder, unsigned

Format Assembly Format Description

5E rem.un Remainder of unsigned dividing value1 by value2

Stack Transition:

…, value1, value2

…, result
Description:

result = value1 rem.un value2 satisfies the following conditions:

(n*value2)+result = value1,

where n is an integer,

0 ≤ result < value2

The rem.un instruction computes result and pushes it on the stack. Rem.un treats its arguments as unsigned integers, while
rem treats them as signed integers. Rem.un is unspecified for floating point numbers.

The acceptable operand types and their corresponding result data type is encapsulated in Table 5: Integer Operations.

Exceptions:

Verifiability:

See Table 5: Integer Operations.



- 76 -

ret – return from method

Format Assembly Format Description

2A Ret Return from method, possibly returning a value

Stack Transition:

retVal on callee evaluation stack (not always present)

…, retVal on caller evaluation stack (not always present)
Description:

Return from the current method. The return type of the current method determines the type of value to be fetched from the top
of the stack and copied onto the stack of the method that called the current method. The evaluation stack for the current
method must be empty except for the value to be returned.

The ret instruction cannot be used to transfer control out of a try, filter, catch, or finally block. From within a try or catch,
use the leave instruction with a destination of a ret instruction that is outside all enclosing exception blocks. Because the filter
and finally blocks are logically part of exception handling, not the method in which their code is embedded, correctly generate
CIL does not perform a method return from within a filter or finally. See Part 1.

Exceptions:

None.

Verifiability:

Correct CIL obeys the control constraints describe above. Verification requires that the type of retVal is compatible with the
declared return type of the current method.



- 77 -

shl - shift integer left

Format Assembly Format Description

62 shl Shift an integer to the left (shifting in zeros)

Stack Transition:

…, value, shiftAmount

…, result
Description:

The shl instruction shifts value (an integer) left by the number of bits specified by shiftAmount. shiftAmount is of type U. The
return type is the same as value. The return value is unspecified if shiftAmount is greater than or equal to the size of value.

The acceptable operand types and their corresponding result data type is encapsulated in Table 5: Integer Operations.

Exceptions:

None.

Verifiability:

See Table 5: Integer Operations.



- 78 -

shr - shift integer right

Format Assembly Format Description

63 shr Shift an integer right, (shift in sign), return an integer

Stack Transition:

…, value, shiftAmount

…, result
Description:

The shr instruction shifts value (an integer) right by the number of bits specified by shiftAmount. shiftAmount is of type U. The
return type is the same as value. The return value is unspecified if shiftAmount is greater than or equal to the width of value.
shr replicates the high order bit on each shift, preserving the sign of the original value in the result.

The acceptable operand types and their corresponding result data type is encapsulated in Table 5: Integer Operations.

Exceptions:

None.

Verifiability:

See Table 5: Integer Operations.



- 79 -

shr.un - shift integer right, unsigned

Format Assembly Format Description

64 shr.un Shift an integer right, (shift in zero), return an integer

Stack Transition:

…, value, shiftAmount

…, result
Description:

The shr.un instruction shifts value (an integer) right by the number of bits specified by shiftAmount. shiftAmount is of type
U4. The return type is the same as value. The return value is unspecified if shiftAmount is greater than or equal to the width of
value. Shr.un inserts a zero bit on each shift.

The acceptable operand types and their corresponding result data type is encapsulated in Table 5: Integer Operations.

Exceptions:

None.

Verifiability:

See Table 5: Integer Operations.



- 80 -

starg.<length> - store a value in an argument slot

Format Assembly Format Description

FE 0B <U2> starg num Store a value to the argument numbered num

10 <U1> starg.s num Store a value to the argument numbered num, short form

Stack Transition:

… value

…,
Description:

The starg num instruction pops a value from the stack and places it in argument slot num (see Part 1). The type of the value
must match the type of the argument, as specified in the current method’s signature. The starg.s instruction provides an
efficient encoding for use with the first 256 arguments.

For procedures that take a variable argument list, the starg instructions can be used only for the initial fixed arguments, not
those in the variable part of the signature.

Storing into arguments that hold an integer value smaller than 4 bytes long truncates the value as it moves from the stack to the
argument. Floating-point values are rounded from their native size (type F) to the size associated with the argument.

Exceptions:

None.

Verifiability:

Correct CIL requires that num is a valid argument slot.

The verifier also checks that the basic CLI type of the value matches the basic CLI type of the argument, as specified in the
current method’s signature. The verifier then considers the new verification type of the argument slot to then be the same as the
verification type of value (verification types are more detailed than CLI types). The rules change slightly if the address of the
argument slot has been taken prior to this instruction using ldarga - see the Verifier Specification for more details.



- 81 -

stind.<type> - store value indirect from stack

Format Assembly Format Description

52 stind.i1 Store value of type I1 into memory at address

53 stind.i2 Store value of type I2 into memory at address

54 stind.i4 Store value of type I4 into memory at address

55 stind.i8 Store value of type I8 into memory at address

56 stind.r4 Store value of type R4 into memory at address

57 stind.r8 Store value of type R8 into memory at address

DF stind.i Store value of type I into memory at address

51 stind.ref Store value of type object ref (type O) into memory at address

Stack Transition:

…, addr, val

…
Description:

The stind instruction stores a value val at address addr (an unmanaged pointer, type I, transient pointer, type *, or managed
pointer, type &). The address specified by addr must be aligned to the natural size of val or an InvalidAddressException may
occur (but see the unaligned. prefix instruction). The results of all CIL instructions that return addresses (e.g. ldloca and
ldarga) are safely aligned. For datatypes larger than 1 byte, the byte ordering is dependent on the target CPU. Code that is
written that depends on byte ordering may not run on all platforms.

Type safe operation requires that the stind instruction be used in a manner consistent with the type of the pointer. Code that
uses the stind instruction cannot be verified except in certain stylized sequences.

The operation of the stind instruction may be altered by an immediately preceding volatile. or unaligned. prefix instruction.

Exceptions:

InvalidAddressException may be thrown if an invalid address is detected.

Verifiability:

Correct CIL ensures that addr be a pointer whose type is known and is assignment compatible with that of val. These
instructions are not verifiable.



- 82 -

stloc - pop value from stack to local variable

Format Assembly Format Description

FE 0E <U2> stloc indx Pop value from stack into local variable indx.

13 <U1> stloc.s indx Pop value from stack into local variable indx, short form.

0A stloc.0 Pop value from stack into local variable 0.

0B stloc.1 Pop value from stack into local variable 1.

0C stloc.2 Pop value from stack into local variable 2.

0D stloc.3 Pop value from stack into local variable 3.

Stack Transition:

…, value

…
Description:

The stloc indx instruction pops the top value off the evalution stack and moves it into local variable indx (see Part 1). The type
of value must match the type of the local variable as specified in the current method’s locals signature. The stloc.0, stloc.1,
stloc.2, and stloc.3 instructions provide an efficient encoding for the first four local variables; the stloc.s instruction provides
an efficient encoding for the 5th through 256th local variables.

Storing into locals that hold an integer value smaller than 4 bytes long truncates the value as it moves from the stack to the
argument. Floating-point values are rounded from their native size (type F) to the size associated with the argument.

Exceptions:

None.

Verifiability:

Correct CIL requires that indx is a valid local index.

The verifier also checks that the basic CLI type of the value matches the basic CLI type of the local, as specified in the current
method’s locals signature. The verifier then considers the new verification type of the argument slot to then be the same as the
verification type of value (verification types are more detailed than CLI types). The rules change slightly if the address of the
local variable has been taken prior to this instruction using ldloca - see the Verifier Specification for more details.



- 83 -

sub - subtract numeric values

Format Assembly Format Description

59 sub Subtract value2 from value1, returning a new value

Stack Transition:

…, value1, value2

…, result
Description:

The sub instruction subtracts value2 from value1 and pushes the result on the stack. Overflow is not detected for the integral
operations (see sub.ovf); for floating point operands, sub returns +inf on positive overflow, -inf on negative overflow, and zero
on floating point underflow.

The acceptable operand types and their corresponding result data type is encapsulated in Table 2: Binary Numeric
Operations.

Exceptions:

None.

Verifiability:

See Table 2: Binary Numeric Operations.



- 84 -

sub.ovf.<type> - subtract integer values, checking for overflow

Format Assembly Format Description

DA sub.ovf Subtract I from an I. Signed result must fit in same size

DB sub.ovf.un Subtract U from a U. Unsigned result must fit in same size

Stack Transition:

…, value1, value2

…, result
Description:

The sub.ovf instruction subtracts value2 from value1 and pushes the result on the stack. The type of the values and the return
type is specified by the instruction. An exception is thrown if the result does not fit in the result type.

The acceptable operand types and their corresponding result data type is encapsulated in Table 6: Overflow Arithmetic
Operations.

Exceptions:

OverflowException is thrown if the result can not be represented in the result type.

Verifiability:

See Table 6: Overflow Arithmetic Operations.



- 85 -

switch – table switch on value

Format Assembly Format Description

45 <U4> <I4>… <I4> switch t1, t2 … tn jump to one of n values

Stack Transition:

…, value

…,
Description:

The switch instruction implements a table jump. The format of the instruction itself is a U4 representing the number of targets
N, followed by N I4 values representing target locations. The targets are represented as offsets from the beginning of the
instruction following the switch instruction.

The switch instruction pops value (an I4) off the stack and compares it as an unsigned integer to N. If value is less than N,
value is used as an index into the target array (starting at 0), and execution continues at the selected target. If value is not less
than N, execution continues at the next instruction (fall through).

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by the ordinary branch instructions
(use the leave instruction instead). These transfers are severely restricted; see Part 1 for details. If an instruction has one or
more prefix codes, control can only be transferred to the first of these prefixes.

Exceptions:

None.

Verifiability:

Correct CIL obeys the control transfer constraints listed above. In addition, verification requires the type-consistency of the
stack, locals and arguments for every possible way of reaching all destination instructions. See the verifier specification for
more details.



- 86 -

tail. (prefix code) – subsequent call terminates current method

Format Assembly Format Description

FE 14 tail. Subsequent call terminates current method

Description:

The tail. instruction must immediately precede a call, calli, or callvirt instruction. It indicates that the current method’s stack
frame should be removed before the call instruction is executed. It implies that the value returned from the following call is
also the value returned by the current method, and the call can therefore be converted into a cross-method jump.

The stack must be empty except for the arguments being transferred by the following call. The instruction following the call
instruction must be a ret. Thus the only legal code sequence is

tail. call (or calli or callvirt) somewhere
ret

Correct CIL must not branch to the call instruction, but it may branch to the subsequent ret.

The call instruction cannot be used to transferred control out of a try, filter, catch, or finally block. See Part 1.

The current frame cannot be discarded when control is transferred from untrusted code to trusted code, since this would
jeopardize code identity security. The .NET Framework security checks may therefore cause the tail. to be ignored, leaving a
standard call instruction. Similarly, in order to allow the exit of a synchronized region to occur after the call returns, the tail.
prefix is ignored when used to exit a method that is marked synchronized.

There may also be implementation-specific restrictions that prevent the tail. prefix from being obeyed in certain cases. While
an implementation is free to ignore the tail. prefix under these circumstances, they should be clearly documented as they can
affect the behavior of programs.

Rationale: tail. calls allow some linear space algorithms to be converted to constant space algorithms and are required by
some functional programming languages. In the presence of ldloca and ldarga instructions it isn’t always possible for a
compiler from CIL to native code to optimally determine when a tail. can be automatically inserted.

Exceptions:

None.

Verifiability:

Correct CIL obeys the control transfer constraints listed above. In addition, no transient or managed pointers can be passed to
the method being called if they point into the stack frame that is about to be removed. The return type of the method being
called must be compatible with the return type of the current method. Verification requires that no transient or managed
pointers are passed to the method being called, since it does not track pointers into the current frame. See the Verification
Specification for more details.



- 87 -

unaligned. (prefix code) – subsequent pointer instruction may be unaligned

Format Assembly Format Description

FE 12 <U1> unaligned.
alignment

Subsequent pointer instruction may be unaligned

Stack Transition:

..., addr

..., addr
Description:

Unaligned. specifies that address (an unmanaged pointer, I) on the stack is not aligned to the natural size of the immediately
following ldind, stind, ldfld, stfld, ldobj, stobj, initblk, or cpblk instruction. That is, for a ldind.i4 instruction the alignment
of addr may not be to a 4-byte boundary. For initblk and cpblk the default alignment is architecture dependent (4-byte on 32-
bit CPUs, 8-byte on 64-bit CPUs). Code generators that do not restrict their output to a 32-bit word size (see Part 1 and Part 2)
must use unaligned. if the alignment is not known at compile time to be 8-byte.

The value of alignment must be 1, 2, or 4 and means that the generated code should assume that addr is byte, double byte, or
quad byte aligned, respectively. Note that transient pointers (type *) are always aligned.

While the alignment for a cpblk instruction would logically require two numbers (one for the source and one for the
destination), there is no noticeable impact on performance if only the lower number is specified.

The unaligned. and volatile. prefixes may be combined in either order. They must immediately precede a ldind, stind, ldfld,
stfld, ldobj, stobj, initblk, or cpblk instruction. Only the volatile. prefix is allowed for the ldsfld and stsfld instructions.

Exceptions:

None.

Verifiability:

Correct CIL requires that unaligned. be immediately followed by instructions as listed above.



- 88 -

volatile. (prefix code) - subsequent pointer reference is volatile

Format Assembly Format Description

FE 13 volatile. Subsequent pointer reference is volatile

Stack Transition:

..., addr

..., addr
Description:

volatile. specifies that addr is a volatile address (i.e. it may be subject to change by an external action) and the results of
reading that location cannot be cached or that multiple stores to that location cannot be suppressed. Marking an access as
volatile. affects only that single access; other accesses to the same location must be marked separately. Access to volatile
locations need not be performed atomically.

The unaligned. and volatile. prefixes may be combined in either order. They must immediately precede a ldind, stind, ldfld,
stfld, ldobj, stobj, initblk, or cpblk instruction. Only the volatile. prefix is allowed for the ldsfld and stsfld instructions.

Exceptions:

None.

Verifiability:

Correct CIL requires that volatile. be immediately followed by instructions as listed above.



- 89 -

xor - bitwise XOR

Format Assembly Format Description

61 xor Bitwise XOR of integer values, returns an integer

Stack Transition:

..., value1, value2

..., result
Description:

The xor instruction computes the bitwise XOR of the top two values on the stack and leaves the result on the stack.

The acceptable operand types and their corresponding result data type is encapsulated in Table 5: Integer Operations.

Exceptions:

None.

Verifiability:

See Table 5: Integer Operations.

3 Object Model Instructions

The instructions described in the base instruction set are independent of the object model being executed.
Those instructions correspond closely to what would be found on a real CPU. The object model instructions
are less primitive than the base instructions in the sense that they could be built out of the base instructions
and calls to the underlying operating system.

Rationale: The object model instructions provide a common, efficient implementation of a set of services used by
many (but by no means all) higher-level languages. They embed in their operation a set of conventions defined by the
common type system. This include (among other things):

Field layout within an object

Layout for late bound method calls (vtables)

Memory allocation and reclamation

Exception handling

Boxing and unboxing to convert between reference-based Objects and Value Types

For more details, Part 1



- 90 -

box – convert value type to object reference

Format Assembly Format Description

78 <T> box valueType Convert valueTypePtr of type valueType to a true object
reference

Stack Transition:

…, valueType

…, obj
Description:

Effectively a value type has two separate representations (see Part 1) within the CLI:

• A ‘raw’ form used when a value type is embedded within another object.

• A ‘boxed’ form, where the data in the value type is wrapped (boxed) into an object so it can exist as independent entity.

The box instruction converts the ‘raw’ pointer valueType (an unboxed value type) into an instance of type Object (of type O).
This is accomplished by creating a new object instance and copying the data from valueType into the newly allocated object.
ValueType is a metadata token (a typeref or typedef) indicating the type of valueType.

Exceptions:

OutOfMemoryException is thrown if there is insufficient memory to satisfy the request.

TypeLoadException is thrown if class cannot be found. This is typically detected when CIL is converted to native code rather
than at runtime.

Verifiability:

Correct CIL ensures that valueTypr is of the correct value type, and that valueType is a typeref or typedef metadata token for
that value type.



- 91 -

callvirt – call a method associated, at runtime, with an object

Format Assembly Format Description

6F <T> callvirt method Call a method associated with obj

Stack Transition:

…, obj, arg1, … argN

…, returnVal (not always returned)
Description:

The callvirt instruction calls a late-bound method on an object. That is, the method is chosen based on the runtime type of obj
rather than the compile-time class visible in the method metadata token. Callvirt can be used to call both virtual methods and
interface methods. See Part 1 for a detailed description of the CIL calling sequence. The callvirt instruction may be
immediately preceded by a tail. prefix to specify that the current stack frame should be released before transferring control. If
the call would transfer control to a method of higher trust than the origin method the stack frame will not be released.

method is a metadata token (a methoddef or methodref) that provides the name, class and signature of the method to call. In
more detail, callvirt can be thought of as follows. Associated with obj is the class of which it is an instance. If obj’s class
defines a non-static method that matches the indicated method name and signature, this method is called. Otherwise all classes
in the superclass chain of obj’s class are checked in order. It is an error if no method is found.

Callvirt pops the object and the arguments off the evaluation stack before calling the method. If the method has a return value,
it is pushed on the stack upon method completion. On the callee side, the obj parameter is accessed as argument 0, arg1 as
argument 1 etc.

The arguments are placed on the stack in left-to-right order. That is, the first argument is computed and placed on the stack,
then the second argument, etc. The this pointer (always required for callvirt) must be pushed before any of the user-visible
arguments, and it is not allowed to be null. The signature (carried in the metadata associated with method) need not contain an
entry in the parameter list for the this pointer.

Note that a virtual method may also be called using the call instruction.

Exceptions:

MissingMethodException may be thrown if a non-static method with the indicated name and signature could not be found in
obj’s class or any of its superclasses. This is typically detected when CIL is converted to native code, rather than at runtime.

NullReferenceException is thrown if obj is null.

SecurityException may be thrown if system security does not grant the caller access to the called method. The security check
may occur when the CIL is converted to native code rather than at runtime.

Verifiability:

Correct CIL ensures that the destination method exists and the values on the stack correspond to the types of the parameters of
the method being called.

In its typical use, callvirt is verifiable if (a) the above restrictions are met, (b) the verification type of obj is consistent with the
method being called, (c) the verification types of the objects on the stack are consistent with the types expected by the method
call, and (d) the method is visible from the callsite. A callvirt annotated by tail. is a special case.



- 92 -

castclass – cast an object to a class

Format Assembly Format Description

74 <T> castclass class Cast obj to class

Stack Transition:

…, obj

…, obj2
Description:

The castclass instruction attempts to cast obj (an O) to the class. Class is a metadata token (a typeref or typedef) indicating
the desired class. If the class of the object on the top of the stack does not implement class (if class is an interface) and is not a
subclass of class (if class is a regular class) then an InvalidCastException is thrown.

If obj is null, castclass succeeds and returns null. This behavior differs from isInst.

Notice that the castclass instruction may change the representation of the object: obj and obj2 need not be identical.

Exceptions:

InvalidCastException is thrown if obj cannot be cast to class.

TypeLoadException is thrown if class cannot be found. This is typically detected when CIL is converted to native code rather
than at runtime.

Verifiability:

Correct CIL ensures that class is a valid TypeRef or TypeDef token, and that obj is always either null or a reference to an
object, i.e. of type O. Verifiable code may require the use of castclass to correctly detect the type of an object, as described in
the verifier specification.



- 93 -

cpobj - copy a value type

Format Assembly Format Description

70 <T> cpobj classTok Copy a value type from srcValObj to destValObj

Stack Transition:

…, destValObj, srcValObj

…,
Description:

The cpobj instruction copies the value type located at the address specified by srcValObj (an unmanaged pointer, I, a transient
pointer, *, or a managed pointer, &) to the address specified by destValObj (also a pointer). Behavior is unspecified if
srcValObj and dstValObj are not pointers to instances of the class represented by classTok (a typeref or typedef), or if
classTok does not represent a value type.

Exceptions:

InvalidAddressException may be thrown if an invalid address is detected.

Rationale: Verified code uses this instruction only when both srcValObj and destValObj are known to contain valid
addresses, so an implementation may choose to check addresses or not without affecting the security of verified code.

Verifiability:

Correct CIL ensures that classTok is a valid TypeRef or TypeDef token for a value type, as well as that srcValObj and
destValObj are both pointers to locations of that type.

Verification requires, in addition, that srcValObj and destValObj are both either transient or managed pointers (not unmanaged
pointers).



- 94 -

initobj - initialize a value type

Format Assembly Format Description

FE 15 <T> initobj classTok Initialize a value type

Stack Transition:

…,addrOfValObj

…,
Description:

The initobj instruction initializes all the fields of the object represented by the address addrOfValObj (of type I, &, or *) to
null or a 0 of the appropriate primitive type. After this method is called, the instance is ready for the constructor method to be
called. Behavior is unspecified if either valObj is a not pointer to instances of the class represented by classTok (a typeref or
typedef), or classTok does not represent a value type.

Notice that, unlike newobj, the constructor method is not called by initobj. Initobj is intended for initializing value types,
while newobj is used to allocate and initialize objects.

Exceptions:

None.

Verifiability:

Correct CIL ensures that classTok is a valid typeref or typedef token specifying a value type, and that valObj is a pointer to an
instance of that value type.



- 95 -

isinst – test if an object is an instance of a class or interface, returning NULL or an instance of that class or interface

Format Assembly Format Description

75 <T> isinst class test if obj is an instance of class, returning NULL or an
instance of that class or interface

Stack Transition:

…, obj

…, result
Description:

The isinst instruction tests whether obj (type O) is an instance of class. Class is a metadata token (a typeref or typedef)
indicating the desired class. If the class of the object on the top of the stack implements class (if class is an interface) or is a
subclass of class (if class is a regular class) then it is cast to the type class and the result is pushed on the stack, exactly as
though castclass had been called. Otherwise NULL is pushed on the stack. If obj is NULL, isinst returns NULL.

Exceptions:

TypeLoadException is thrown if class cannot be found. This is typically detected when CIL is converted to native code rather
than at runtime.

Verifiability:

Correct CIL ensures that class is a valid typeref or typedef token indicating a class, and that obj is always either null or an
object reference, i.e. of type O.



- 96 -

ldelem.<type> – load an element of an array

Format Assembly Format Description

90 ldelem.i1 Load the element at index with type I1 onto the top of the stack as
an I4

92 ldelem.i2 Load the element at index with type I2 onto the top of the stack as
an I4

94 ldelem.i4 Load the element at index with type I4 onto the top of the stack as
an I4

96 ldelem.i8 Load the element at index with type I8 onto the top of the stack as
an I8

91 ldelem.u1 Load the element at index with type U1 onto the top of the stack
as an I4

93 ldelem.u2 Load the element at index with type U2 onto the top of the stack
as an I4

94 ldelem.u4 Load the element at index with type U4 onto the top of the stack
as an I4 (alias for ldelem.i4)

96 ldelem.u8 Load the element at index with type U8 onto the top of the stack
as an I8 (alias for ldelem.i8)

98 ldelem.r4 Load the element at index with type R4 onto the top of the stack
as an F

99 ldelem.r8 Load the element at index with type R8 onto the top of the stack
as an F

97 ldelem.i Load the element at index with type I onto the top of the stack as
an I

9A ldelem.ref Load the element at index, an object, onto the top of the stack as
an O

Stack Transition:

…, array, index

…, value
Description:

The ldelem instruction loads the value of the element with index index (of type U) in the zero-based one-dimensional array
array and places it on the top of the stack. Arrays are objects and hence represented by a value of type O. The return value is
indicated by the instruction.

For one-dimensional arrays that aren’t zero-based and for multidimensional arrays, the array class provides a LoadElement
method.

Note that integer value of 4 bytes or less are extended to I4 (not I) when they are loaded onto the evaluation stack. Floating
point values are converted to F type when loaded onto the evaluation stack.

Exceptions:

NullReferenceException is thrown if array is null.



- 97 -

IndexOutOfRangeException is thrown if index is larger than the bound of array.

ArrayTypeMismatchException is thrown if array doesn’t hold elements of the required type.

Verifiability:

Correct CIL code requires that array is either null or an array.



- 98 -

ldelema – load address of an element of an array

Format Assembly Format Description

8F <T> ldelema class Load the address of element at index onto the top of the stack

Stack Transition:

…, array, index

…, value
Description:

The ldelema instruction loads the address of the element with index index (of type U) in the zero-based one-dimensional array
array (of element type class) and places it on the top of the stack. Arrays are objects and hence represented by a value of type
O. The return value is a managed pointer (type &).

For one-dimensional arrays that aren’t zero-based and for multidimensional arrays, the array class provides a
LoadElementAddress method.

Exceptions:

NullReferenceException is thrown if array is null.

IndexOutOfRangeException is thrown if index is larger than the bound of array.

ArrayTypeMismatchException is thrown if array doesn’t hold elements of the required type.

Verifiability:

Correct CIL ensures that class is a typeref or typedef token to a class, and that array is indeed always either null or an array.



- 99 -

ldfld – load field of an object

Format Assembly Format Description

7B <T> ldfld field Push the value of field of object obj on the stack

Stack Transition:

…, obj

…, value
Description:

The ldfld instruction pushes onto the stack the value of a field of obj. obj must be an object (type O), a managed pointer (type
&), an unmanaged pointer (type I), a transient pointer (type *), or an instance of a value type. The use of an unmanaged pointer
is not permitted in verified code. field is a metadata token (a fieldref or fielddef) that must refer to a field member. The return
type is that associated with field. ldfld pops the object reference off the stack and pushes the value for the field in its place.
The field may be either an instance field (in which case obj must not be null) or a static field.

The ldfld instruction may be preceded by either or both of the unaligned. and volatile. prefixes.

Exceptions:

NullReferenceException is thrown if obj is null and the field is not static.

MissingFieldException is thrown if field is not found in the metadata. This is typically checked when CIL is converted to
native code, not at runtime.

Verifiability:

Correct CIL ensures that field is a valid token referring to a field, and that obj will always have a type compatible with that
required for the lookup being performed. For verifiable code, obj may not be an unmanaged pointer.



- 100 -

ldflda – load field address

Format Assembly Format Description

7C <T> ldflda field Push the address of field of object obj on the stack

Stack Transition:

…, obj

…, address
Description:

The ldflda instruction pushes the address of a field obj. obj is either an object, type O, a managed pointer, type &, an
unmanaged pointer, type I, or a transient pointer, type *. The use of an unmanaged pointer is not allowed in verified code. The
value returned by ldflda is a managed pointer (type &) unless obj is an unmanaged pointer, in which case it is an unmanaged
pointer (type I).

field is a metadata token (a fieldref or fielddef) that must refer to a field member.

Exceptions:

InvalidOperationException is thrown if the obj is not within the application domain from which it is being accessed. The
address of a field that is not inside the accessing application domain cannot be loaded.

MissingFieldException is thrown if field is not found in the metadata. This is typically checked when CIL is converted to
native code, not at runtime.

NullReferenceException is thrown if obj is null and the field isn’t static.

Verifiability:

Correct CIL ensures that field is a valid fieldref token and that obj will always have a type compatible with that required for the
lookup being performed.

Note: Using ldflda to compute the address of a static, init-only field and then using the resulting pointer to modify that value
outside the body of the class initializer may lead to unpredictable behavior. It cannot, however, compromise memory integrity
or type safety so it is not tested by the verifier.



- 101 -

ldlen – load the length of an array

Format Assembly Format Description

8E ldlen push the length (of type U) of array on the stack

Stack Transition:

…, array

…, length
Description:

The ldlen instruction pushes the length of array (a zero-based, one-dimensional array) on the stack.

Arrays are objects and hence represented by a value of type O. The return value is a U.

Exceptions:

NullReferenceException is thrown if array is null.

Verifiability:

Correct CIL ensures that array is indeed always either null or a zero-based, one dimensional array.



- 102 -

ldobj - copy value type to the stack

Format Assembly Format Description

71 <T> ldobj classTok Copy instance of value type classTok to the stack.

Stack Transition:

…, addrOfValObj

…, valObj

Description:

The ldobj instruction copies the value pointed to by addrOfValObj (of type managed pointer, &, transient pointer, *, or
unmanaged pointer, U) to the top of the stack. The number of bytes copied depends on the size of the class represented by
classTok. ClassTok is a metadata token (a typeref or typedef) representing a value type.

Rationale: The ldobj instruction is used to pass a value type as a parameter. See Part 1.

It is unspecified what happens if valObj is not an instance of the class represented by ClassTok or if ClassTok does not
represent a value type.

The operation of the ldobj instruction may be altered by an immediately preceding volatile. or unaligned. prefix instruction.

Exceptions:

TypeLoadException is thrown if class cannot be found. This is typically detected when CIL is converted to native code rather
than at runtime.

Verifiability:

Correct CIL ensures that classTok is a metadata token representing a value type and that valObj is a pointer to a location
containing an initialized value of the type specified by classTok. Verifiable code additionally requires that valObj is a transient
or managed pointer.



- 103 -

ldsfld – load static field of a class

Format Assembly Format Description

7E <T> ldsfld field Push the value of field on the stack

Stack Transition:

…,

…, value
Description:

The ldsfld instruction pushes the value of a static (shared among all instances of a class) field on the stack. field is a metadata
token (a fieldref or fielddef) referring to a static field member. The return type is that associated with field.

The ldsfld instruction may have a volatile. prefix.

Exceptions:

Verifiability:

Correct CIL ensures that field is a valid metadata token referring to a static field member.



- 104 -

ldsflda – load static field address

Format Assembly Format Description

7F <T> ldsflda field Push the address of the static field, field, on the stack

Stack Transition:

…,

…, address
Description:

The ldsflda instruction pushes the address (a transient pointer, type *, if field refers to a type whose memory is managed;
otherwise an unmanaged pointer, type I) of a static field on the stack. field is a metadata token (a fieldref or fielddef) referring
to a static field member.

Exceptions:

MissingFieldException is thrown if field is not found in the metadata. This is typically checked when CIL is converted to
native code, not at runtime.

Verifiability:

Correct CIL ensures that field is a valid metadata token referring to a static field member.



- 105 -

ldstr – load a literal string

Format Assembly Format Description

72 <T> ldstr string push a string object for the literal string

Stack Transition:

…,

…, string
Description:

The ldstr instruction pushes a new string object representing the literal stored in the metadata as string (which must be a string
literal).

The ldstr instruction allocates memory and performs any format conversion required to convert from the form used in the file
to the string format required at runtime. The CLI guarantees that the result of a ldstr instruction referring to two metadata
tokens that have the same sequence of characters returns precisely the same string object (a process known as “string
interning”).

Exceptions:

None.

Verifiability:

Correct CIL requires that mdToken is a valid string literal metadata token.



- 106 -

ldtoken - load the runtime representation of a metadata token

Format Assembly Format Description

D0 <T> ldtoken token Convert metadata token to its runtime representation

Stack Transition:

…

…, unmanaged pointer
Description:

The ldtoken instruction pushes an unmanaged pointer (type I) to the runtime representation of a metadata token. The token
must be one of:

A methoddef or methodref describing a particular method, in which case the description of the method (not the address, cf.
ldftn and ldvirtftn) is pushed on the stack.

A typedef or typeref describing a class, value type, or implementation.

A fielddef or fieldref describing a particular field of a class, value type, or implementation.

The value pushed on the stack is useful only for special-purpose class library routines such as those that are used for type-safe
access to a variable argument list (see the arglist instruction).

Exceptions:

None.

Verifiability:

Correct CIL requires that token describes a valid metadata token.



- 107 -

ldvirtftn - load a virtual method pointer

Format Assembly Format Description

FE 07 <T> ldvirtftn mthd Push address of virtual method mthd on the stack

Stack Transition:

… object

…, ftn
Description:

The ldvirtftn instruction pushes an unmanaged pointer (type I) to the native code implementing the virtual method associated
with object and described by the method reference mthd (a metadata token, either a methoddef or methodref) onto the stack.
The value pushed can be called using the calli instruction if it references a managed method (or a stub that transitions from
managed to unmanaged code).

The value returned points to native code using the calling convention specified by method. Thus a method pointer can be
passed to unmanaged native code (e.g. as a callback routine) if that routine expects the corresponding calling convention. Note
that the address computed by this instruction may be to a thunk produced specially for this purpose (for example, to re-enter the
CLI when a native version of the method isn’t available)

Exceptions:

None.

Verifiability:

Correct CIL ensures that method is a valid methoddef or methodref token. The verifier tracks the type of the value pushed in
more detail than the “I” type, remembering that it is a method pointer. Such a method pointer can then be used in verified code
with calli or to construct a delegate.



- 108 -

mkrefany – push a typed reference on the stack

Format Assembly Format Description

C6 <T> mkrefany class push a typed reference to ptr of type class onto the stack

Stack Transition:

…, ptr

…, typedRef
Description:

The mkrefany instruction supports the passing of dynamically typed references. Ptr must be a pointer (type &, *, or I) which is
the address of a piece of data. Class is the class token (a typeref or typedef) describing the type of ptr. Mkrefany pushes a
typed reference on the stack, an opaque descriptor of ptr and class. The only legal operation on a typed reference on the stack
is to pass it to a method that requires a typed reference as a parameter. The callee can then use the refanytype and refanyval
instructions to retrieve the type (class) and address (ptr) respectively.

The verifier will fail if it cannot deduce that ptr is a pointer to an instance of class.

Exceptions:

TypeLoadException is thrown if class cannot be found. This is typically detected when CIL is converted to native code rather
than at runtime.

Verifiability:

Correct CIL ensures that class is a valid typeref or typedef token describing some type and that ptr is pointer to that type.
Verification additionally requires that ptr be a transient or managed pointer.



- 109 -

newarr – create a zero-based, one-dimensional array

Format Assembly Format Description

8D <T> newarr etype create a new array with elements of type etype

Stack Transition:

…, numElems

…, array
Description:

The newarr instruction pushes a reference to a new zero-based, one-dimensional array whose elements are of type elemtype, a
metadata token (a typeref or typedef). Numelems (of type U) indicates the array bound (note: this is an unsigned integer).
Valid array indexes are 0 ≤ index < numElems. The elements of an array can be any type, including value types.

Zero-based, one-dimensional arrays of numbers are created using a metadata token referencing the appropriate value type
(System.Int32, etc.). Elements of the numeric arrays are initialized to 0 of the appropriate type.

One-dimensional arrays that aren’t zero-based and multidimensional arrays are created using newobj rather than newarr.
More commonly, they are created using the methods of System.Array class in the .NET Base Framework.

Exceptions:

OutOfMemoryException is thrown if there is insufficient memory to satisfy the request.

Verifiability:

Correct CIL ensures that elemType is a valid typeref or typedef token.



- 110 -

newobj – create a new object

Format Assembly Format Description

73 <T> newobj ctor allocate an uninitialized object and call ctor

Stack Transition:

…, arg1, … argN

…, obj
Description:

The newobj instruction creates a new object or a new instance of a value type. Ctor is a metadata token (a methodref or
methodef that must be marked as a constructor) that indicates the name, class and signature of the constructor to call. If a
constructor exactly matching the indicated name, class and signature cannot be found, MissingMethodException is thrown.

The newobj instruction allocates a new instance of the class associated with constructor and initializes all the fields in the new
instance to 0 (of the proper type) or null as appropriate. It then calls the constructor with the given arguments along with the
newly created instance. After the constructor has been called, the now initialized object reference is pushed on the stack.

From the constructor’s point of view, the uninitialized object is argument 0 and the other arguments passed to newobj follow in
order.

All zero-based, one-dimensional arrays are created using newarr, not newobj. On the other hand, all other arrays (more than
one dimension, or one-dimensional but not zero-based) are created using newobj.

Value types are not usually created using newobj. They are usually allocated either as arguments or local variables, using
newarr (for zero-based, one-dimensional arrays), or as fields of objects. Once allocated, they are initialized using initobj.
However, the newobj instruction can be used to create a new instance of a value type on the stack, which can then be passed as
an argument, stored in a local, etc.

Exceptions:

OutOfMemoryException is thrown if there is insufficient memory to satisfy the request.

MissingMethodException is thrown if a constructor method with the indicated name, class and signature could not be found.
This is typically detected when CIL is converted to native code, rather than at runtime.

Verifiability:

Correct CIL ensures that constructor is a valid methodref or methoddef token, and that the arguments on the stack are
compatible with those expected by the constructor. The verifier considers a delegate constructor as a special case, checking
that the method pointer passed in as the second argument under the notional type I does indeed refer to a method of the correct
type.



- 111 -

refanytype – load the type out of a typed reference

Format Assembly Format Description

FE 1D refanytype Push the type token stored in a typed reference

Stack Transition:

…, TypedRef

…, type
Description:

Retrieves the type token embedded in TypedRef. See the mkrefany instruction.

Exceptions:

None.

Verifiability:

The refanytype instruction is always verifiable.



- 112 -

refanyval – load the address out of a typed reference

Format Assembly Format Description

C2 <T> refanyval type Push the address stored in a typed reference

Stack Transition:

…, TypedRef

…, address
Description:

Retrieves the address (of type &) embedded in TypedRef. The type of reference in TypedRef must match the type specified by
type (a metadata token, either a typedef or a typeref). See the mkrefany instruction.

Exceptions:

None.

Verifiability:

The refanyval instruction is always verifiable.



- 113 -

rethrow – rethrow the current exception

Format Assembly Format Description

FE 1A rethrow Rethrow the current exception

Stack Transition:

…,

…,
Description:

The rethrow instruction is only permitted within the body of a catch handler (see Part 1). It throws the same exception that
was caught by this handler.

Exceptions:

The original exception is thrown.

Verifiability:

Correct CIL uses this instruction only within the body of a catch handler.



- 114 -

sizeof – load the size in bytes of a value type

Format Assembly Format Description

FE 1C <T> sizeof valueType Push the size, in bytes, of a value type as a U4

Stack Transition:

…,

…, size (4 bytes, unsigned)
Description:

Returns the size, in bytes, of a value type. ValueType must be a metadata token (a typeref or typedef) the specifies a value
type.

Rationale: The definition of a value type can change between the time the CIL is generated and the time that it is loaded for
execution. Thus, the size of the type is not always known when the CIL is generated. The sizeof instruction allows CIL code to
determine the size at runtime without the need to call into the .NET Framework class library. The computation can occur
entirely at JIT time.

Exceptions:

None.

Verifiability:

Correct CIL ensures that valueType is a typeref or typedef referring to a value type.



- 115 -

stelem.<type> – store an element of an array

Format Assembly Format Description

9C stelem.i1 Replace array element at index with the I1 value on the stack

9D stelem.i2 Replace array element at index with the I2 value on the stack

9E stelem.i4 Replace array element at index with the I4 value on the stack

9F stelem.i8 Replace array element at index with the I8 value on the stack

A0 stelem.r4 Replace array element at index with the R4 value on the stack

A1 stelem.r8 Replace array element at index with the R8 value on the stack

9B stelem.i Replace array element at index with the i value on the stack

A2 stelem.ref Replace array element at index with the ref value on the stack

Stack Transition:

…, array, index, value

…,
Description:

The stelem instruction replaces the value of the element with zero-based index index (of type U) in the one-dimensional array
array with value. Arrays are objects and hence represented by a value of type O.

Note that stelem.ref implicitly casts value to the element type of array before assigning the value to the array element. This
cast can fail, even for verified code. Thus the stelem.ref instruction may throw the InvalidCastException.

For one-dimensional arrays that aren’t zero-based and for multidimensional arrays, the array class provides a StoreElement
method.

Exceptions:

NullReferenceException is thrown if array is null.

IndexOutOfRangeException is thrown if index is larger than the bound of array.

ArrayTypeMismatchException is thrown if array doesn’t hold elements of the required type.

Verifiability:

Correct CIL requires that array be a zero-based, one-dimensional array.



- 116 -

stfld – store into a field of an object

Format Assembly Format Description

7D <T> stfld field Replace the value of field of the object obj with val

Stack Transition:

…, obj, value

…,
Description:

The stfld instruction replaces the value of a field of an obj (an O) or via a pointer (type I, &, or *) with value. field is a
metadata token (a fieldref or fielddef) that refers to a field member reference. stfld pops the value and the object reference off
the stack and updates the object.

The stfld instruction may have a prefix of either or both of unaligned. and volatile..

Exceptions:

NullReferenceException is thrown if obj is null and the field isn’t static.

MissingFieldException is thrown if field is not found in the metadata. This is typically checked when CIL is converted to
native code, not at runtime.

Verifiability:

Correct CIL ensures that field is a valid token referring to a field, and that obj and value will always have types appropriate for
the assignment being performed. For verifiable code, obj may not be an unmanaged pointer.

Note: Using stfld to change the value of a static, init-only field outside the body of the class initializer may lead to
unpredictable behavior. It cannot, however, compromise memory integrity or type safety so it is not tested by the verifier.



- 117 -

stobj - store a value type from the stack into memory

Format Assembly Format Description

81 <T> stobj classTok Store a value of type classTok from the stack into memory

Stack Transition:

…, addr, valObj

…,

Description:

The stobj instruction copies the value type valObj into the address specified by addr (a pointer of type I, *, or &). The
number of bytes copied depends on the size of the class represented by classTok. ClassTok is a metadata token (a typeref or
typedef) representing a value type.

It is unspecified what happens if valObj is not an instance of the class represented by ClassTok or if classTok does not represent
a value type.

The operation of the stobj instruction may be altered by an immediately preceding volatile. or unaligned. prefix instruction.

Exceptions:

TypeLoadException is thrown if class cannot be found. This is typically detected when CIL is converted to native code rather
than at runtime.

Verifiability:

Correct CIL ensures that classTok is a metadata token representing a value type and that valObj is a pointer to a location
containing an initialized value of the type specified by classTok. In addition, verifiable code requires that valObj be a transient
or managed pointer.



- 118 -

stsfld – store a static field of a class

Format Assembly Format Description

80 <T> stsfld field Replace the value of field with val

Stack Transition:

…, val

…,
Description:

The stsfld instruction replaces the value of a static field with a value from the stack. field is a metadata token (a fieldref or
fielddef) that must refer to a static field member. Stsfld pops the value off the stack and updates the static field.

The stsfld instruction may be prefixed by volatile..

Exceptions:

MissingFieldException is thrown if field is not found in the metadata. This is typically checked when CIL is converted to
native code, not at runtime.

Verifiability:

Correct CIL ensures that field is a valid token referring to a static field, and that value will always have a type appropriate for
the assignment being performed.



- 119 -

throw – throw an exception

Format Assembly Format Description

7A throw Throw an exception

Stack Transition:

…, object

…,
Description:

The throw instruction throws the exception object (type O) on the stack. For details of the exception mechanism, see Part 1.

While the CLI permits any object to be thrown, the common language specification (CLS) describes a specific exception
class that must be used for language interoperability.

Exceptions:

NullReferenceException is thrown if obj is null.

Verifiability:

Correct CIL ensures that class a valid TypeRef token indicating a class, and that obj is always either null or an object
reference, i.e. of type O.



- 120 -

unbox – Convert boxed value type to its raw form

Format Assembly Format Description

79 <T> unbox valuetype Extract the value type data from obj, its boxed representation

Stack Transition:

…, obj

…, valueTypePtr
Description:

Effectively a value type has two separate representations (see Part 1) within the CLI:

• A ‘raw’ form used when a value type is embedded within another object.

• A ‘boxed’ form, where the data in the value type is wrapped (boxed) into an object so it can exist as an independent entity.

The unbox instruction converts obj (of type O), the boxed representation of a value type, to valueTypePtr (a managed pointer,
type &), its unboxed form. ValueType is a metadata token (a typeref or typedef) indicating the type of value type contained
within obj. If obj is not a boxed instance of ValueType, an InvalidCastException is thrown.

Unlike box, which is required to make a copy of a value type for use in the object, unbox is not required to copy the value type
from the object. Typically it simply computes the address of the value type that is already present inside of the boxed object.

Exceptions:

InvalidCastException is thrown if obj is not a boxed valueType.

NullReferenceException is thrown if obj is null.

TypeLoadException is thrown if class cannot be found. This is typically detected when CIL is converted to native code rather
than at runtime.

Verifiability:

Correct CIL ensures that valueType is a typeref or typedef metadata token for some value type, and that obj is always an
object reference, i.e. of type O.

4 Annotations

In addition to the instructions described earlier, CIL includes a set of instructions that can be ignored by most processors. They
are used to convey additional information for the use of particular CIL processors (typically for use in OptIL, a specialized
version of CIL created by an optimizing compiler and consumed by a special JIT compiler).



- 121 -

ann.call – start of simple calling sequence

Format Assembly Format Description

C7 <T> ann.call signature Begin the calling sequence for a method of the specified
signature

Stack Transition:

…,

…,
Description:

The ann.call instruction flags the start of a simple calling sequence that will be terminated by a call instruction (call, calli,
callvirt, or jmp) and will pass arguments as specified by signature, a metadata token (a stand-alone signature). As with the
calli instruction, signature specifies the number and type of the arguments being passed as well as the calling convention.

There are significant restrictions on the code that is permitted to occur between the ann.call instruction and the call instruction
with which it corresponds.

Exceptions:

None.

Verifiability:

Not verifiable.



- 122 -

ann.catch – start an exception filter or handler

Format Assembly Format Description

C8 ann.catch start an exception filter or handler

Stack Transition:

…,

…,
Description:

The ann.catch instruction indicates that an exception filter or handler is beginning. At these locations the stack contains an
item that cannot be predicted by a simple scan of the CIL instruction stream.

Exceptions:

None.

Verifiability:

Not verifiable.



- 123 -

ann.data – multi-byte no operation

Format Assembly Format Description

FE 22 <U4> … ann.data count … multi-byte no operation

Stack Transition:

…,

…,
Description:

The ann.data instruction allows uninterpreted information to be inserted in the instruction stream. There are count bytes of
data following the 4-byte count in the instruction.

Exceptions:

None.

Verifiability:

Not verifiable.



- 124 -

ann.dead – stack location is no longer live

Format Assembly Format Description

C9 <U2> ann.dead location stack location is no longer live

Stack Transition:

…,

…,
Description:

The ann.dead instruction notifies an CIL processor that a stack location (local variable or argument) that would otherwise
appear to contain a legitimate value should not, in fact, be reported to the garbage collector. If location is 0 or greater, the
locationth local variable is now dead. If location is negative, the locationth argument (numbered from –1 as leftmost argument)
is now dead.

Exceptions:

None.

Verifiability:

Not verifiable.



- 125 -

ann.def – SSA definition node

Format Assembly Format Description

CD ann.def SSA definition node

Stack Transition:

…,

…,
Description:

The ann.def instruction is used to embed an SSA (single static assignment) graph into the CIL instruction stream. The ann.def
instruction assigns a node number to the output of the next CIL instruction. The node numbers are assigned sequentially, from
0, through the method. A new node number is allocated for each ann.def and ann.phi instruction.

Exceptions:

None.

Verifiability:

Not verifiable.



- 126 -

ann.hoisted– start of the simple portion of a hoisted calling sequence

Format Assembly Format Description

CA ann.hoisted start of the simple portion of a hoisted calling sequence

Stack Transition:

…,

…,
Description:

The ann.hoisted instruction must follow an ann.hoisted_call instruction. It indicates that the complex portion of the argument
evaluation has been completed and that the subsequent instructions are part of a simple calling sequence. The overall calling
sequence begins with the ann.hoisted instruction and terminates with the subsequent call instruction (call, calli, callvirt,or
jmp).

Exceptions:

None.

Verifiability:

Not verifiable.



- 127 -

ann.hoisted_call – start of complex argument evaluation

Format Assembly Format Description

CB <T> ann.hoisted_call
signature

start of argument evaluation for a call to a method with the
specified signature

Stack Transition:

…,

…,
Description:

The ann.hoisted_call instruction flags the start of a calling sequence that will be terminated by a call instruction (call, calli,
callvirt, or jmp) and will pass arguments as specified by signature, a metadata token (a stand-alone signature). As with the
calli instruction, signature specifies the number and type of the arguments being passed as well as the calling convention.

Unlike calls that use the ann.call instruction the arguments to be passed with ann.hoisted_call can be arbitrarily complex, but
the calling sequence is divided into two parts. The complex evaluation is performed starting with the ann.hoisted_call
instruction, then argument computation, then an ann.hoisted instruction, then a simple calling sequence.

Exceptions:

None.

Verifiability:

Not verifiable.



- 128 -

ann.live – mark a stack location as live

Format Assembly Format Description

FE 16 <U2> ann.live location Mark a stack location as live

Stack Transition:

…,

…,
Description:

The ann.live instruction notifies an CIL processor that a stack location (local variable or argument) that would otherwise
appear not to contain a legitimate value should, in fact, be reported to the garbage collector. If location is 0 or greater, the
locationth local variable is now live. If location is negative, the locationth argument (numbered from –1 as leftmost argument)
is now live.

Exceptions:

None.

Verifiability:

Not verifiable.



- 129 -

ann.phi – SSA ΦΦΦΦ node

Format Assembly Format Description

CF <U1> <U2>
…

ann.def n node1 … SSA definition node

Stack Transition:

…,

…,
Description:

The ann.phi instruction is used to embed an SSA (single static assignment) graph into the CIL instruction stream. The ann.phi
instruction indicates that n existing nodes (nodei) are to be merged into a new node. Node numbers are assigned sequentially,
from 0, through the method. A new node number is allocated for each ann.def and ann.phi instruction.

Exceptions:

None.

Verifiability:

Not verifiable.



- 130 -

ann.ref.<length> – SSA reference node

Format Assembly Format Description

FE 19 <U2> ann.ref n SSA definition node

CE <U1> ann.ref.s n SSA definition node, short form

Stack Transition:

…,

…,
Description:

The ann.ref instruction is used to embed an SSA (single static assignment) graph into the CIL instruction stream. The ann.ref
instruction specifies that the output of the next CIL instruction is the same as the value computed at node n. The node numbers
are assigned sequentially, from 0, through the method. A new node number is allocated for each ann.def and ann.phi
instruction.

Exceptions:

None.

Verifiability:

Not verifiable.

5 Sample Code Sequences

There should be sample on delegates, value types, ref-any, and varargs at the very least.

5.1 Value types
To be supplied. Fragments:

For example, to create a value type MyValueType in the third local variable, use the following code
sequence:

ldloca 3 ; Load address of variable

dupRef ; For constructor

initobj MyValueType ; Clear the instance

call MyValueType::<init> ; Call the constructor

For example, to pass local variable 3 as a parameter to a method, the following code is generate:

ldloca 3 ; Address of local variable 3

ldobj ; Copy to stack

For example, if the second argument to a method is a value type named MyValueType that contains a
field named MyField, the contents of that field can be accessed as follows:

ldarga 2 ; Address of argument 2

ldfld MyValueType::MyField

For example consider the body of an instance method of a value type that returns a value type as a result.
This will have two hidden parameters: argument 0 is the this pointer (a by-ref pointer to the method’s



- 131 -

instance) and argument 1 is the address where the return value should be stored. So to return the instance
itself as the result, the following code is generated:

ldarga 0 ; Address of instance itself

ldarga 1 ; Address for returned value

cpobj ; Copy this to return value





Free printed copies can be ordered from:
ECMA
114 Rue du Rhône
CH-1204 Geneva
Switzerland

Fax: +41 22 849.60.01
Email: documents@ecma.ch

Files of this Standard can be freely downloaded from the ECMA web site (www.ecma.ch). This site gives full
information on ECMA, ECMA activities, ECMA Standards and Technical Reports.



ECMA
114 Rue du Rhône
CH-1204 Geneva
Switzerland

See inside cover page for obtaining further soft or hard copies.


	Scope
	Data Types
	Numeric Data Types
	Object References
	Runtime Pointer Types
	Unmanaged Pointers
	Managed Pointers (type &)
	Transient Pointers (type *)


	Instruction Variant Table
	Opcode Encodings

	Stack Transition Diagram
	English Description
	Verifiability
	Operand Type Table
	Signature Matching

	Base Instructions
	Object Model Instructions
	Annotations
	Sample Code Sequences
	Value types


