
Adaptive On-the-Fly Compression
Chandra Krintz and Sezgin Sucu

Abstract—We present a system called the Adaptive Compression Environment (ACE) that automatically and transparently applies

compression (on-the-fly) to a communication stream to improve network transfer performance. ACE uses a series of estimation
techniques to make short-term forecasts of compressed and uncompressed transfer time at the 32KB block level. ACE considers

underlying networking technology, available resource performance, and data characteristics as part of its estimations to determine

which compression algorithm to apply (if any). Our empirical evaluation shows that, on average, ACE improves transfer performance
given changing network types and performance characteristics by 8 to 93 percent over using the popular compression techniques that

we studied (Bzip, Zlib, LZO, and no compression) alone.

Index Terms—Adaptive compression, dynamic, performance prediction, mobile systems.

!

1 INTRODUCTION

DUE to recent advances in Internet technology, the
demand for network bandwidth has grown rapidly.

New distributed computing technologies, such as mobile
computing, P2P systems [10], Grid computing [11], Web
Services [7], and multimedia applications (that transmit
video, music, data, graphics files), cause bandwidth
demand to double every year [21]. Not only does the
volume of data transmitted by these applications increase,
but so does the frequency of transmission. As a result, novel
techniques are needed that increase the network bandwidth
available to Internet applications.

Compression is one such technique that increases the
amount of bandwidth available to an application. Compres-
sion can be used offline (before compressed transfer
commences) or on-the-fly (as the data is generated).
Compression techniques reduce the amount of data
transmitted by eliminating much of the redundancy that
is characteristic in most data sets.

Unfortunately, there are several limitations inherent in
the use of compression for efficient data communication.
First, compression techniques vary in their performance
characteristics: compressed size, compression time, and
decompression time. Techniques are either optimized to be
fast or to enable significant compaction. This trade-off is
fundamental to performing compression due to the algo-
rithmic complexity required to remove a significant portion
of the redundancy in the data. Thus, no single compression
technique enables the best performance for all data formats.

Second, compression performance is dependent upon the
performance and availability of the underlying resources,
e.g., network bandwidth and latency, CPU loads. This
performance varies significantly across technologies as well
as over time for the same technology. The latter impacts
mobile devices like laptops for which the underlying

networking technology available changes regularly, e.g., a
user connects her laptop to an ISDN link at home, takes her
laptop towork and connects via a 100Mb/sEthernet link, and
attends a conference or visits a coffee shopwhere she uses the
wireless communication infrastructure that is available. The
compression technique that performs best for this user will
depend on the network she is connected to. Moreover, as the
load changes at communication end-points or on the network
itself, the best-performing compression technique for the
same network can also change.

Each of these limitations makes it increasingly difficult
for users to identify the best compression technique in all
circumstances. In this paper, we present a novel compres-
sion system that identifies the best compression technique
automatically and transparently. Our system, called the
Adaptive Compression Environment (ACE), intercepts
program communication and applies compression on-the-
fly. On-the-fly compression is useful to or required by many
applications due to storage capacity (limited or abundant),
or to the nature of the data-generation process, e.g.,
dynamic Web and data streaming applications.

ACE adaptively selects a compression technique that best
suites the underlying networking technology, performance
available, and data characteristics, to improve communica-
tion performance. To enable this, ACE predicts whether
applying compression will be profitable, and when it is,
which compression algorithm to apply. ACE selects
between a number of well-known, competitive, compres-
sion techniques including Bzip [3], Zlib [26], and LZO [18].
To make predictions of underlying resource performance,
ACE employs the Network Weather Service (NWS) [24],
[23], an efficient and accurate forecasting toolkit used in
Computational Grid [9] systems. ACE couples NWS
predictions with those from its own internal models that
estimate compression performance and changes in data
compressibility, i.e., entropy.

We empirically compare ACE to commonly used
compression techniques: no compression, Bzip, LZO, and
Zlib. Given different network and end-point performance,
each of these techniques outperforms the others for
different transfer scenarios. ACE is able to perform

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 1, JANUARY 2006 15

. The authors are with the Computer Science Department, University of
California, Santa Barbara, CA 93106-5110.
E-mail: {ckrintz, sucu}@cs.ucsb.edu.

Manuscript received 28 Jan. 2004; revised 16 Nov. 2004; accepted 30 Mar.
2005; published online 28 Nov. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0027-0104.

1045-9219/06/$20.00 ! 2006 IEEE Published by the IEEE Computer Society

similarly to the best performing technique in all scenarios.
The key contribution made by ACE is that it can adapt to
changing performance levels (CPU and network perfor-
mance). We investigate three such scenarios in which the
underlying network technology changes and when CPU
and network load changes. We show that ACE is able to
improve transfer performance by 8 to 93 percent on average
across the experiments and scenarios that we investigated.

In the following section, we overview the ACE system
and the extant technologies that it employs and extends. We
overview the ACE design and implementation in Section 3
and its prediction system in Section 4. We then present our
empirical evaluation of ACE in Section 5, the related work
in Section 6, and conclude in Section 7.

2 THE ADAPTIVE COMPRESSION ENVIRONMENT

(ACE)

To evaluate the efficacy with which we can apply
compression automatically and transparently based on
predictions of future resource performance and data
entropy, we developed the Adaptive Compression Envir-
onment (ACE). ACE couples two different extant technol-
ogies: The Open Runtime Platform (ORP) [6], [1] from the
Intel Microprocessor Research Lab (MRL), and the Network
Weather Service (NWS) [25], [23] from the University of
California, Santa Barbara.

ORP is an open-source, dual compiler, adaptive compila-
tion system for Java. We selected ORP because of its efficient
implementation and cutting-edge technologies (dynamic
compilation and adaptive optimization). ACE, however, is
not Java-dependent. That is, we can implement the ACE
modules in an operating system, e.g., Linux. However, we
chose to prototype our techniques in a Java Virtual Machine
due to the reduced complexity of the system implementation
(over Linux) and to our extensive prior experience with the
language and execution environment.

We extended ORP with a module that transparently
intercepts TCP/IP socket communications and automati-
cally decides when to apply compression and which
compression technique to use. Since compression perfor-
mance (compressed or uncompressed transfer time, com-
pression speed, and decompression speed) depends on the
availability and performance of the underlying resources
(network, CPU), we also extended ORP with an interface to
the Network Weather Service (NWS).

The NWS is an open-source, resource performance
measurement and prediction toolkit, developed for Com-
putational Grid Environments [9], [2]. The NWS monitors
and makes periodic measurements of a wide range of
resources including CPU, memory, network latency and
bandwidth, and disk latency. Lightweight processes, called
NWS sensors, execute on the devices of interest and sample
the performance. The sensors communicate their data to a
distributed storage system. When users of the toolkit
require a prediction of future resource performance, the
NWS prediction system treats the stored data values as a
time series, applies a set of very fast, adaptive, statistical
forecasting techniques, and returns an accurate, short-term
performance estimate [24]. The NWS exports a well-defined

interface through which ACE can efficiently acquire the
predictions and actual measurements; ACE uses the latter
to evaluate the efficacy of its decisions.

ACE intercepts (blocking) TCP/IP socket communica-
tions made by Java programs. When a connection between
two hosts is established, ACE registers the host IP addresses
with the (possibly remote) NWS system. Each host executes
an NWS CPU and network bandwidth sensor that are
initiated by ACE if they are not already running.

When ACE determines that a transmission of sufficient
length is beingmade, it queries the NWS system for forecasts
of future network bandwidth and latency between the hosts
and the future CPU availability of each. In addition to
predictions of underlying resource performance, ACE uses
past socket behavior, predicted compression ratio, feedback
on the accuracy of its previous compression decisions, and
the characteristics of the available compression algorithms, to
compute the predicted transfer performance. Using this in-
formation, ACE decides when to apply compression and
which compression technique to use (if any).

ACE identifies when an incoming stream is compressed
and decompresses it. ACE forwards the decompressed data
to the application. We next describe the primary compo-
nents of the ACE.

3 ACE IMPLEMENTATION

To enable transparent compression at the TCP socket level,
ACE intercepts calls within the native socket implementa-
tion. That is, ACE does not modify the code of the programs
that are executing, in any way. ACE intercepts socket
connect, accept, read, write, send, and recv calls.

ACE determines when to compress by monitoring socket
write1 behavior. ACE considers data in 32KB blocks. We
selected a 32KB block size by collecting compression
performance metrics for a large number of diverse file
types and three different compression algorithms (LZO,
Bzip, and Zlib). We empirically evaluated block sizes
ranging from 4KB to 128KB. The 32KB block size exhibited
the best trade-off across file types and metrics.

Once ACE identifies a potential opportunity for on-the-
fly compression (i.e., at least 32KB is being transmitted), it
employs its prediction system to determine whether
compression will improve transfer performance. If com-
pression will be beneficial, then ACE compresses and
transmits the block; otherwise, it transmits the block
uncompressed.

ACE appends a 4-byte header to each block to indicate
the block size (which is required by some decompression
algorithms). This header also indicates the compression
technique used, if any. To indicate that a block is not
compressed, we use a negative value for the size. At the
destination, ACE extracts the size and, if it is nonnegative,
extracts the identifier of the compression technique used to
compress the block. ACE then decompresses the block
using this algorithm.

16 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 1, JANUARY 2006

1. We use the term write to mean a socket write or send call.

3.1 Compression Algorithms

We considered three popular compression algorithms for
use in ACE. They are LZO [18], Zlib [26], and Bzip [3]. In
addition to their wide-spread use, we selected these
algorithms due to the relative performance differences of
each.

We evaluated the performance of compression techni-
ques using three metrics: Compression ratio which is
compressed size

uncompressed size, compression rate which is the number of bytes
compressed per microsecond, and decompression rate which
is the number of bytes decompressed per microsecond. LZO
has a fast compression and decompression rate but a large
compression ratio, i.e., it reduces the redundancy in a file to
a lesser degree than either Bzip or Zlib. Bzip enables the
best compression ratio at the cost of compression and
decompression time. The performance characteristics of
Zlib falls between that of LZO and Bzip.

We analyzed the performance metrics for each algorithm
for a number of different file types which we describe in our
evaluation section. The performance difference between the
different algorithms remains relatively constant across each
file. LZO performance is more variable than Zlib and Bzip.
The files exhibit different block-level behavior (which was
in some cases highly variable); however, the relative
difference between algorithms is consistent.

3.2 Pipeline Model versus Sequential Model

Since ACE intercepts communication at the socket write
level, it does not have complete knowledge of the
transmission behavior of the program. ACE does not know
the total size of the data, the frequency with which it will
arrive, or its characteristics, e.g., whether it is a file or if it is
data that is being generated dynamically. To estimate these
details, ACE uses past socket behavior. We developed two
different performance models to predict future socket
behavior using this information.

The first performance model is the sequential model. Using
this model, ACE assumes that successive calls to the socket
write method are temporally disjoint such that compression
cannot be overlapped with data transfer or decompression.
ACE uses this model for applications that send data
infrequently or at periods which preclude overlap. Using
this model, ACE computes the transfer time of a compressed
block, TCðl;rÞ, between host l and host r as:

Tcðl; rÞ ¼
32KB

CR $NWS BW ðl; rÞ
þ ClðCRÞ þDrðCRÞ;

where CR, ClðCRÞ, andDrðCRÞ are the predicted values for
compression ratio, compression time, and decompression
time, respectively. NWS BWðl; rÞ is the bandwidth be-
tween the local and remote hosts as predicted by the NWS.

ACE computes uncompressed transfer time as Tuðl; rÞ ¼
32KB

NWS BWðl;rÞ and compares this value with the compressed
transfer time to make a decision. If the uncompressed
transfer time is larger, the sequential model selects
compression, otherwise the original data is sent.

Alternately, it may be possible to overlap compression
with data transfer or decompression. We refer to the
number of bytes the sender is sending per second as the
data generation rate. When the data generation rate is high,

ACE can overlap compression and transmission with
decompression. For such cases, ACE employs a second
performance model, called the pipeline model.

The pipeline model divides the transfer process into five
components. The data generation rate is the number of bytes
sent by the sender per second. The compression rate is the
number of bytes compressed per second at the sender. The
effective transfer rate is the number of bytes per second
required for compressed transmission. The decompression
rate is the number of bytes decompressed per second at the
receiver. The data consumption rate is the number of bytes
read per second by the application at the receiver.

The speed of the pipeline is determined by the slowest
component in the pipeline. When this speed is greater than
the available bandwidth between the sender and the
receiver, ACE compresses the data; otherwise, ACE sends
the data uncompressed.

ACE initially assumes infrequent or intermittent trans-
mission and uses the sequential model. As the sender
transmits data, ACE observes the frequency of transfer as
well as transmission size. When ACE detects that the data
generation speed exceeds the available bandwidth, ACE
switches to pipeline model.

ACE computes the data consumption rate of the receiver
for the pipeline model indirectly. For each TCP/IP socket
connection, the operating systems at each end point will
allocate buffers in their respective kernel spaces. When the
receiver does not consume data fast enough, the buffer at
the receiver will fill up and the send calls from the sender
will block until there is space available for the send. This
process will automatically slow the rate at which ACE
sends data and, thus, reduce the data generation rate of the
sender. This indirect method precludes the need to change
the semantics of the read/write socket calls and allows ACE
to adjust to the data consumption rate at the receiver
without requiring ACE to measure and communicate this
information (which would impose additional overhead).

Regardless of the performance model, ACE computes
each component of the model for every available compression
algorithm. ACE then selects the compression algorithm
which will lead to the best performance (if any). Before
sending each 32KB block of data, ACE invokes the
appropriate performance model parameterized by fore-
casted values for available bandwidth and CPU (local and
remote), as well as compression ratio and compression and
decompression time for the next block. As mentioned
previously, the NWS provides predictions to ACE of
network bandwidth, latency, and CPU availability. In the
next section, we describe how ACE predicts the remaining
parameters.

4 ACE PREDICTION SYSTEM

To forecast when to apply compression, ACE must predict
compression ratio, compression time, and decompression
time for each implemented compression algorithm. ACE
uses these values within its sequential or pipeline model to
estimate compressed and uncompressed transfer time.

4.1 Predicting Compression Ratio
To predict compression ratio for a block using a specific
compression algorithm, ACE uses the compression ratio of
the previous block. ACE can use this methodology as long

KRINTZ AND SUCU: ADAPTIVE ON-THE-FLY COMPRESSION 17

as it continues to compress. However, there may come a
point at which ACE decides not to compress. For example,
if the previous block is not compressible or if the CPU loads
at either end of the transmission are high enough to negate
the benefit from the use of compression. In such cases, ACE
does not have a recent compression ratio to use as an
estimate.

One solution to this problem is to monitor changes in the
CPU and network performance. When changes occur that
make applying compression profitable, ACE can start using
compression again. However, even when bandwidth and
CPU loads remain constant, changes in the entropy of the
data stream may make compression desirable again. For
example, a program which sends a compressed JPEG image
through a socket may later send a large number of text
messages that are highly compressible. To capture both
cases, ACE monitors changes in resource performance and
periodically reintroduces compression to evaluate the
compressibility of the data stream.

In the worst-case (in which the data stream is already
compressed), the periodic introduction of compression by
ACE will increase the total data transfer time rather than
decreasing it. To limit degradation in transfer performance,
ACE adapts the length of time it waits before reintroducing
compression. Specifically, ACE identifies an initial period
using forecasts of CPU load and network bandwidth. ACE
multiplies this value by 10 (determined empirically) to
compute the amount of time it should wait before trying to
use compression again. At the end of each period, ACE
applies compression and determines whether doing so
improved transfer performance (by using the actual resource
and compression performance of the block once it transfers).
If compression does not improve performance, ACE in-
creases the weight value by 1; ACE then repeats this process
until compression pays off (if ever). If compression ever turns
out to be a good decision ACE resets the weight to 10.

To predict compression ratio, we must consider one
additional detail. ACE selects between different compres-
sion algorithms depending upon the performance of each.
As such, for each block, ACE must predict the compression
ratio of all algorithms. Since the algorithm used to compress
the last block will be different from the other compression

algorithms in the system, we need a way to predict the
compression ratio of one technique using that of another.

Since compression algorithms enable different compres-
sion ratios, we cannot assume that the ratio achieved by one
technique will be the same for all other techniques. We
therefore empirically analyzed the relationship between the
compression ratios achieved by the compression algorithms
in our system: LZO, Zlib, and Bzip. Fig. 1 shows the
relationship between the compression ratios for each pair of
algorithms. The x-axis and y-axis show the compression
ratio for each of two different algorithms. A point in the
graph represents one block of data in each of the files we
studied. We place each point according to the compression
ratio achieved by each algorithm.

We refer to the set of files that we used to generate this
data as our training set. We employ the training set to
profile the performance characteristics of compression
techniques offline. We use this profile information to
parameterize the ACE prediction functions. We describe
this set of files in our empirical evaluation section. They
include files in a number of different, commonly used,
formats. These files are different from those that we use as
part of our performance evaluation of ACE.

In all three graphs, there is an approximately linear
relationship between the compression ratio of the different
algorithms despite their significant implementation differ-
ences. From these point data sets, we compute a regression
line that we use within ACE to approximate the compres-
sion ratio of one algorithm given that of another. This
technique enables ACE to predict compression ratio with
very few operations. There is some error in performing such
an approximation. However, our empirical evaluation
shows that such error does not prevent ACE from achieving
significant gains in transfer performance.

4.2 Predicting Compression and
Decompression Time

To compute compression time, we profiled compression
performance on each machine on which ACE executes. We
implemented this process as part of ACE installation; it can
be redone manually if ever the hardware changes. We must
ensure that the machine is unloaded during profiling since
ACE will combine this profiled rate with estimates of the

18 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 1, JANUARY 2006

Fig. 1. Comparison of compression ratio of two algorithms. Graph (a) compares LZO and Zlib, graph (b) compares LZO and Bzip, and graph (c)
compares Zlib and Bzip. Each point represents one block of data from a number of different files; we placed each point according to the compression
ratio achieved by each respective algorithm. The data indicates that there is a linear relationship between the compression ratios of each techniques.
ACE uses the regression line parameters from this data to predict the compression ratio from one technique using another.

resource performance that is available at the time of
transmission (program execution and communication), to
accurately predict whether compression will improve
transfer performance.

We compressed each block 100 times and averaged the
compression time for each across our training files. The
results indicate that compression ratio and compression
time as well as compression ratio and decompression time
exhibit a near-linear relationship for each of the compres-
sion algorithms we investigated. Thus, we generate a linear
regression for compression time and ratio and decompres-
sion time and ratio, similarly to our regression lines for
predicting compression ratios across compression algo-
rithms. ACE uses this function to efficiently approximate
compression and decompression time from compression
and decompression ratio at runtime.

Adding a new compression algorithm to ACE requires
that these sameexperimentsbe run for thenewalgorithm, i.e.,
to compute the relationship between compression ratio and
compression/decompression time aswell as the relationship
between compression ratio of the new algorithm and that of
the existing algorithms. However, the number of compar-
isons that must be performed for each 32KB block increases
linearlywith the number of available algorithmswithinACE.
As such, algorithms should be chosen carefully. The over-
head of finding the best compression algorithm may reduce
the savings enabledbyadaptive compression if thenumberof
available algorithms is very large.

5 EVALUATION

To evaluate the efficacy of ACE, we performed a number of
experiments. We first describe our empirical methodology
and then present our experimental results.

5.1 Experimental Methodology
For each experiment that we conducted, we used a simple
server and a client program written in Java. The server acts
as an FTP server and the client requests files from this
server. For each file, the client measures the time required to
receive and possibly decompress the file. The client requests
the same file several times and computes the average of the
measured timings.

We acquired the files that we studied from well-known
compression corpora, including the Canterbury Corpus [5]
and Calgary Corpus [4]. The Canterbury Corpus is a new
corpus introduced to replace the old Calgary Corpus. The
Calgary Corpus, despite its age, remains a well-respected
corpus that is frequently used for the comparison of
compression algorithms. Both corpora include both Eng-
lish text (bibliography, book, paper, etc.) and nontext
sources (picture, object code, geophysical data, etc.). In
addition to these files, we collected several other files
from various Internet sources. ACE only considers
applying compression to transmissions larger than 32KB.
ACE, therefore, has no impact on the performance of
transmissions smaller than 32KB. We thus omit corpus
files that are smaller than 32KB in size.

We profiled the compression performance of the ACE
compression algorithms using a subset of these data files.
As described in Section 4.2, we compute regression lines
from this data that ACE uses to make fast estimates of
compression and decompression speed for a given com-
pression ratio. To ensure that our experimental results are
fair and realistic, we evaluate ACE using a completely
different set of files called benchmark files. We list both of
these subsets, their types, their contents, and their sizes in
Table 1. We divided the files into training and benchmark
files arbitrarily, but in such a way that different file formats
were included in both. The total size of the training files is
23MB. The total size of the benchmark files is 37MB. All of

KRINTZ AND SUCU: ADAPTIVE ON-THE-FLY COMPRESSION 19

TABLE 1
Training and Benchmark Files

We used the training set to collect profile information from the compression techniques that we considered; we generated regression lines from this
data which ACE uses to make fast predictions of compression and decompression time for arbitrary transfers given a predicted compression ratio.
We evaluate ACE using a different set of files (to reflect arbitrary transfers), which we call benchmark files. The table data shows the file types, the
size of the files in kilobytes, and the total size of all of the files in each set.

the results that we present in this section are for the
benchmark file set.

We used two campus networks to evaluate our system;
we refer to them as Fast and Slow. Fast exhibits an average
bandwidth of 71Mb/s, consists of 100Mb Ethernet, and
links two cross-campus computers at the University of
California, Santa Barbara (UCSB). Slow is a cross-country
link between UCSB an the University of Tennessee,
Knoxville (UTK); it provides an average bandwidth of
1.7Mb/s.

We used three machines at the end points of these
network links: suns (a Pentium 4 2.4GHz Xeon with 2GB
RAM) and heat (a Pentium 4 2.4GHz Xeon with 512MB
RAM) at UCSB, and gibson (a dual 500MHz Pentium 3
with 512MB RAM) at UTK. Suns and heat are connected via
the fast network and suns and gibson are connected via the
slow network. The server is executed on suns in both cases.

For each experiment, we considered unloaded and
loaded resources (CPU and network) to evaluate the
performance of ACE and other compression techniques
given a wide range of resource performance conditions. The
levels of CPU load that we considered include: No Load in
which there are no other processes running, Medium Load in
which there are four dummy processes running (client
hosts) and eight running (if the host is the server), Heavy
Load in which there are eight dummy processes (client
hosts) and 20 (if the host is the server), and Very Heavy Load
in which there are 180 dummy (server only). The dummy
processes are programs that repeatedly execute floating
point operations.

To observe the effect of network performance variation
on ACE, we also introduced artificial network load for the
fast network. We introduced three levels of network load.
Each traffic generator pair periodically exchange 4KB of
data repeatedly. For the unloaded level, there is no traffic
generator running, for medium load there are 12 traffic
generators and for heavy traffic load there are 20 traffic
generators running. On average, we experience an average
bandwidth of 20Mb/s with medium load and 3Mb/s with
heavy load.

5.2 Results

We empirically compared the performance of ACE to four
compression scenarios: Never, Zlib, Bzip, and LZO. With
Never, ACE transfers data without compression. For Zlib,

ACE compresses and transfers data in 32KB blocks and then
decompresses the compressed data at the client using Zlib.
Similarly for Bzip and LZO, ACE uses only the respective
algorithms. The data we present for ACE includes all of the
overheads introduced by ACE, including NWS access and
forecasting.

We first present a set of results for different underlying
resource performance conditions (different load levels) for
each network type. These load levels do not change
dynamically during the experiments.

5.2.1 Fast Network Results

The results for the Fast network are shown in Table 2 as
total transfer time in seconds. The first column in each table
is the network load, the second column is the server CPU
load (suns), and the third column is the client CPU load
(heat). Column 4 shows the results when compression is
never used (Never), columns 5, 6, and 7 show the cases in
which Zlib, Bzip, and LZO, respectively, is always used.
Column 8 shows the performance results of ACE. We show
only a subset of all possible experiment combinations for
brevity. The results are representative of the omitted data
however. Each compression technique, including no com-
pression, enables the best performance under different
conditions.

The bold values distinguish the best-performing case. For
the fast network, the most common, best-performing algo-
rithm is LZO. We expect this since the network performance
is fast enough (even under heavy load) not to warrant a high
degree of compression. In a few cases, ACE is the best-
performing configuration. This occurs since ACE is able to
use a combination of compression techniques for a single
stream leading to a better combination of compression ratio,
compression time, and decompression time.

In every case, ACE enables performance that is similar to
that of the best-performing algorithm. The differences
between ACE and the best-performing algorithm for these
results as well for the slow network results in the next
section are due to the three types of overhead imposed by
ACE. First, ACE applies compression initially to determine
whether the stream is compressible. If it is not, or if
compression will not improve performance, this test is pure
overhead. Moreover, this overhead can be significant when
ACE attempts to apply Bzip—due to the large compression
time cost that Bzip imposes.

20 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 1, JANUARY 2006

TABLE 2
Fast Network Results

The other two sources of overhead are due to prediction
error and computation overhead. Both the NWS and the
internal ACE model estimations introduce some error. A
large enough error can cause ACE to make the wrong
decision. A wrong decision causes ACE to either apply
compression when it should not or to avoid compression
when it is necessary. The most common reason for
misprediction by ACE is at the start of file transfer. ACE
requires some history to make accurate decisions. Until this
information is available, ACE is unable to make educated
estimations. The final source of overhead is due to the
computation required for ACE to estimate the compression
performance for each of the individual compression
algorithms (as well as no compression).

Of these three overheads, when the best performing
technique is no-compression, the first source of overhead
(introduction of compression) is the primary cause for the
difference between ACE and no-compression. When the
best-performing technique is another compression techni-
que, the primary ACE overhead is the introduction of
compression.

In the final three columns, we present the percent
degradation over the best-performing case (column 9), the
percent improvement over the worst-performing case (col-
umn 10), and the percent improvement over the worst-
performing case when Bzip is excluded (column 11), due to
ACE. We include the latter case (without Bzip) since Bzip is
never the best-performing case due to its high compression
and decompression costs. The column 9 data shows the
overhead that ACE imposes over the ideal case: A user
transmits files, performing compression on-the-fly, and uses
an oracle to identify the best-performing algorithm. The
average degradation over the best-performing algorithmdue
to ACE across all experiments (including those omitted from
the table) is 89 percent due to the short transfer times. This
percentage equates to 14.2 seconds.

The percent improvement over the worst-case shows the
benefit that is available due to ACE making the compres-
sion decisions for a user that, in every case, selects the
poorest-performing compression technique. These results

are biased to some degree since Bzip is never selected for
this network; however, it exemplifies the point that ACE
can save a user that arbitrarily applies a random compres-
sion technique without insight into its efficacy. Due to the
bias from including Bzip in these results (percent improve-
ment over the worst-case), we also show the results when
we omit Bzip from this comparison (column 11 in the table).
On average, ACE improves performance by 90 percent over
Bzip and by 52 percent over the best-performing case when
Bzip is not included.

We next present a set of individual results that provide
more detail about the performance of ACE. Fig. 2 shows
two graphs for two different load configurations: Unloaded
network, Heavy server, Medium client (Fig. 2a) and
Unloaded network, Heavy server, Heavy client (Fig. 2b).
For each file in graph (Fig. 2a), ACE performs similarly to
the best case, LZO. For some of the files in graph (Fig. 2b),
ACE is unable to achieve the performance of the best case.
This is because ACE periodically tries more computation-
ally costly algorithms, such as Zlib or Bzip; this causes ACE
to spend more time on compression unnecessarily. How-
ever, the overhead introduced by ACE is small for each file.

5.2.2 Slow Network Results

Table 3 shows the transfer times (in seconds) using the Slow
network for a representative subset of our experimental
results. The bold values identify the best-performing case
which changes for different load configurations. We again
provide the percent degradation over the best case
(column 9), percent improvement over the worst case
(column 10), and the percent improvement over the
worst-performing case when Bzip is excluded (column 11),
due to ACE. Overall, ACE again performs similarly to the
best-performing case for different underlying resource load
conditions.

We further break down the results into individual
configurations in Fig. 3. For all results for the Slow network,
the network is unloaded. Fig. 3a shows the experimental
results for the Slow network and an unloaded server and
client load configuration. Fig. 3b shows the individual

KRINTZ AND SUCU: ADAPTIVE ON-THE-FLY COMPRESSION 21

Fig. 2. A detailed look at example Fast network results. The x-axis shows the individual files used in the experiment. The y-axis is time in seconds.

results for the very-heavy-loaded-server and unloaded-
client configuration. ACE enables transfer performance that
is similar to the best compression algorithm for all files. For
the Slow network, attempting to use Bzip does not have any
significant effect on the overall performance.

5.2.3 Adaptivity to Changing Conditions

In the prior sections, we showed how ACE compares to
individual compression techniques for different load
scenarios. The performance of the underlying resources in
these experiments does not change over time since we
employed artificial load and performed our experiments at
night. Our results show how effectively ACE enables
transfer performance similar to that of the best-performing
technique.

A more realistic setting is one in which the load changes
over time. It is in such a setting that ACE has the advantage
over any single technique. For example, if a user transfers
files back and forth between her laptop and her file server
using different networking technologies, e.g., the wireless
network at the conference, the 100Mb/s Ethernet in her
office, the cable modem at her house, ACE can significantly
improve her overall transfer performance. Moreover, as the
performance varies for a single network connection, ACE
can adapt to these changes to outperform any single
compression technique potentially.

To empirically evaluate the use of ACE in such settings,
we constructed three scenarios in which performance

changed over time. In Scenario1, the user uses both the
Fast network and the Slow network. This scenario is similar
to that experienced by a student using her laptop on the
University network in a research lab from early morning
(no contention) to midday (increased contention and shared
CPU use) and then moving to a wireless connection at a
local coffee shop in the afternoon (light contention) to
evening (heavy contention). Using the format Network:Net-
workLoad-ServerCPULoad-ClientCPULoad, we specify this
scenario as Fast:Unloaded-Unloaded-Unloaded ! Fas-
t:Heavy-Medium-Medium ! Slow:Unloaded-Unloaded-
Unloaded ! Slow:Unloaded-Very Heavy-Heavy.

The other two scenarios exemplify other performance
transitions using the same network. Scenario2 uses only the
Fast network. The transition for this scenario is from heavy
to light to heavy (as in a student lab before, during, and
after lunch time): Fast:Unloaded-Heavy-Heavy ! Fast:Me-
dium-Unloaded-Unloaded ! Fast:Heavy-Heavy-Medium.
Scenario3 uses only the Slow network. The transition for this
scenario is: Slow:Unloaded-Unloaded-Heavy ! Slow:Un-
loaded-Medium-Heavy ! Slow:Unloaded-VeryHeavy-
Heavy. This scenario represents behavior similar to that of
a popular Web server, the network load to which increases
from afternoon to evening (as an increasing number of users
finish their workday).

For each scenario, we transfered all of the benchmark
files during each load level. We then computed the percent
improvement in transfer performance enabled by ACE over
using any single compression algorithm. Fig. 4 shows the
results for each scenario. The x-axis shows each of the

22 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 1, JANUARY 2006

TABLE 3
Slow Network Results

Fig. 3. A detailed look at example Slow network results. The x-axis shows the individual files used in the experiment. The y-axis is time in seconds.

compression techniques to which we compare ACE. The
bars for each compression technique represent the percent
improvement due to ACE over using the technique alone
across the scenario. The results indicate that ACE signifi-
cantly outperforms Bzip (by 89-93 percent on average),
which is a very popular and widely used compression
utility. ACE outperforms always using Zlib by 52-79 percent
on average and LZO by 8-16 percent. ACE improves
performance over never using compression by 9-20 percent,
on average.

6 RELATED WORK

Our work focuses on increasing the transfer speed using
compression. Related work includes systems that apply
compression on-the-fly.

We developed one such system in prior work, called
DCFS: The Dynamic Compression Format Selection System
[17]. DCFS uses NWS forecasts of dynamic network
performance to guide its selection of a precompressed Java
bytecode program file. Each program file is compressed
with a number of different compression algorithms. All
versions are stored on disk. DCFS predicts which file
should transmitted (and decompressed) on-the-fly. ACE is
significantly more general than DCFS in that it can be used
for any type of file (not just Java bytecode) and performs on-
the-fly compression. With DCFS, we focused on domain-
specific compression algorithms, such as PACK [20] and
JAR [14], as well as gzip [12] to increase the performance of
Java programs that are executed remotely. Another sig-
nificant difference between DCFS and ACE is that DCFS
does not consider remote CPU availability.

We extendedDCFS for on-the-fly compression in an initial
version of ACE described in [22]. In this system, we
considered only a single compression technique, Zlib, and
did not detail the ACE implementation. The prior system
determined adaptively only whether to apply Zlib compres-
sion or not. Herein, we extend this system to enable ACE

selection across multiple compression techniques. In addi-
tion, with this work, we perform a much more extensive
empirical evaluation of the ACE system.

In work other than our own, the authors of [19], present a
dynamic compression system for text files called Network
conscious text compression system (NCTCSys). NCTCSys
considers only network performance and server load. This
prior work is restricted to text files and primarily intended
for Web servers. Our system, in contrast, dynamically
adapts to all types of files as well as to the entropy within a
single file. In addition, we consider CPU load which our
results indicate, is vital for improved transfer performance
in an Internet setting. Moreover, this prior work only
considers the number of clients the server processes and
uses heuristics to make compression decisions, rather than
using strict mathematical models. NCTCSys uses its own
modules to detect and measure the network bandwidth. It
does not make performance predictions. NCTCSys selects
the compression technique based on various factors, e.g.,
client line speed, the number of clients, and server load.

In [13], the author uses Remos [8], a network perfor-
mance prediction system much like the NWS, to guide
compression decisions. Remos provides statistical informa-
tion about its data to applications, e.g., confidence level,
error rate, etc. Unlike the NWS though, Remos makes its
measurements at the network level. It uses the low-level
SNMP protocol to query routers and switches to estimate
the performance characteristics of the underlying network.
NWS takes the end-to-end approach and it is TCP/IP-
based. As a result, the NWS reports more accurately the
performance that TCP/IP-based applications experience.

This prior work also differs from ACE in that it does not
consider remote CPU load in the computation of decom-
pression time. In addition, both compression rate and
compression ratio are computed based on the type of the
data which must be known prior to transfer. ACE requires
no such information a priori. In addition, many file types
are too general to make an accurate estimate. For example,
binary files exhibit a wide range of compression character-
istics which cannot be estimated using a limited number of
samples. We overcome this limitation in our system by
sampling the compressibility of blocks online and by using
regression lines to predict compression time for a wide
range of file formats.

In addition, this prior work considers only the impact of
compression and transmission. Our work shows that
decompression is an important part of the overall transmis-
sion performance. This prior work considers the possible
overlap between compression and transmission of data as
we do in our system. The system predicts compression time
and compression ratio based on the type of file being
transmitted. The study claims that the standard deviation
within each type of file category for compression ratio is
very small; thus, it is reasonable to use the type of the file as
a guide for a prediction of its compression ratio. However,
we believe that this claim is not true, since our empirical
evaluation of different file types shows that files can exhibit
large variations in compressibility.

A form of adaptive compression that is similar to the
systemwe describe herein is the systemdescribed in [16] and
is extended in [15]. The goal of this prior work is to vary the
compression level (of a single compression technique) on-the-
fly so that the network is never under-utilized. This work

KRINTZ AND SUCU: ADAPTIVE ON-THE-FLY COMPRESSION 23

Fig. 4. The performance of ACE under various performance scenarios.
The bars show the percent improvement in transfer performance (y-axis)
due to ACE over each of the individual compression techniques alone
(x-axis). The transition for scenario1 is Fast:Unloaded-Unloaded-
Unloaded ! Fast:Heavy-Medium-Medium ! Slow:Unloaded-Un-
loaded-Unloaded ! Slow:Unloaded-Very Heavy-Heavy. The transition
for scenario2 is Fast:Unloaded-Heavy-Heavy ! Fast:Medium-Un-
loaded-Unloaded ! Fast:Heavy-Heavy-Medium. The transition for
scenario3 is Slow:Unloaded-Unloaded-Heavy ! Slow:Unloaded-Med-
ium-Heavy ! Slow:Unloaded-VeryHeavy-Heavy.

assumes that higher compression levels will result in better
compression ratio. We find that this is not always true, e.g.,
when data is not compressible. In addition, using a higher
level usually results in longer compression times.Our system
also differs in that it uses forecasts of future resource
performancewhich effectively prevents oscillations reported
in this prior work. Finally, this prior work does not use the
remote CPU availability information to make compression
decisions, thus it is subject to higher error than that produced
by our system.

7 CONCLUSIONS

We present ACE, an adaptive compression environment
that improves Internet transfer performance by dynamically
selecting between competitive compression algorithms and
applying on-the-fly compression transparently. ACE makes
its decisions by predicting and comparing transfer perfor-
mance for both uncompressed and compressed transfer.
ACE is able to adapt to the changes in resource performance
and network technology (as occurs for mobile devices), as
well as to the compressibility of the data.

We evaluated ACE using a wide range of performance
scenarios, i.e., network loads, CPU loads at each end point,
and changes in the underlying network technology. We
found that when the communication performance is steady,
ACE performs similarly to the best-performing compres-
sion technique that it implements. Perhaps more impor-
tantly though, ACE does considerably better than the worst-
performing (yet popular) compression algorithm. On
average, we found that ACE improves performance over
the worst case by 50-90 percent for all files that we studied.
The benefits from using ACE, in addition to the provision of
protection from selecting the “wrong” compression techni-
que, become apparent when the underlying communication
performance varies or the network technology changes (as
for a mobile laptop). Our results indicates that ACE can
improve transfer performance by 8-93 percent over com-
monly used compression algorithms in such cases.

ACKNOWLEDGMENTS

The authors thank the reviewers for their insightful
suggestions that helped them to significantly improve the
final version of this paper. This work was funded in part by
US National Science Foundation grants No. NGS-0204019
and No. EHS-0209195, and Intel Corporation.

REFERENCES

[1] A. Adl-Tabatabai, M. Cierniak, G. Lueh, V. Parikh, and J.
Stichnoth, “Fast, Effective Code Generation in a Just-in-Time Java
Compiler,” Proc. ACM SIGPLAN ’98 Conf. Programming Language
Design and Implementation, Oct. 2000.

[2] F. Berman, G. Fox, and T. Hey, Grid Computing: Making the Global
Infrastructure a Reality. Wiley and Sons, 2003.

[3] BZIP Compression, http://sources.redhat com/bzip2/, 2005.
[4] Calgary corpus, http://links.uwaterloo.ca/calgary.corpus.html+,

2005.
[5] Canterbury corpus, http://corpus.canterbury.ac.nz/+, 2005.
[6] M. Cierniak, G. Lueh, and J. Stichnoth, “Practicing JUDO: Java

under Dynamic Optimizations,” Proc. ACM SIGPLAN 2000 Conf.
Programming Language Design and Implementation, Oct. 2000.

[7] Microsoft Corp., Microsoft.Net, http://www.microsoft.com/
net/+, 2005.

[8] A. DeWitt, T. Gross, B. Lowekamp, N. Miller, P. Steenkiste, J.
Subhlok, and D. Sutherland, “ReMoS: A Resource Monitoring
System for Network-Aware Applications,” Technical Report
CMU-CS-97-194, Dept. of Computer Science, Carnegie-Mellon
Univ., Dec. 1998.

[9] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers, Inc., 1998.

[10] Gnutella, http://www.gnutella.com/+, 2005.
[11] Grid Portal Collaboration, http://www.globus.org/retreat00/

presentations/ngridproxynovotny/, 2005.
[12] Gzip homepage, http://www.gzip.org/+, 2005.
[13] N. Hu, “Network Aware Data Transmission with Compression,”

Technical Report CMU-CS-01-164, Dept. of Computer Science,
Carnegie-Mellon Univ., 2001.

[14] Sun Microsystems Inc., The Java ARchive Utility, http://
java.sun.com/products/jdk/1.1/docs/tooldocs/solaris/jar.html,
2005.

[15] E. Jeannot, B. Knutsson, and M. Björkman, “Adaptive Online Data
Compression,” Proc. IEEE Int’l Symp. High Performance Distributed
Computing ’02, July 2002.

[16] B. Knutsson and M. Bjorkman, “Adaptive End-To-End Compres-
sion for Variable-Bandwidth Communication,” Computer Net-
works, vol. 31, no. 7, pp. 767-779, Apr. 1999.

[17] C. Krintz and B. Calder, “Reducing Transfer Delay with Dyanamic
Selection of Wire-Transfer Formats,” Proc. IEEE Int’l Symp. High
Performance Distributed Computing (HPDC), Aug. 2001.

[18] Lempel-Ziv-Oberhumer (LZO) Compression, 2005, http://
www.oberhumer.com/opensource/lzop/.

[19] N. Motgi and A. Mukherjee, “Network Conscious Text Compres-
sion System (NCTCSys),” Proc. Int’l Conf. Information Technology:
Coding and Computing, Apr. 2001.

[20] W. Pugh, “Compressing Java Class Files,” Proc. SIGPLAN ’99 Conf.
Programming Language Design and Implementation, May 1999.

[21] P. Sevcik, “Internet Bandwidth: It’s Time for Accountability,”
Business Comm. Rev., vol. 31, no. 1, pp. 1-3, Jan. 2001.

[22] S. Sucu and C. Krintz, “ACE: A Resource-Aware Adaptive
Compression Environment,” Proc. Int’l Conf. Information Technol-
ogy: Coding and Computing (ITCC ’03), Apr. 2003.

[23] R. Wolski, “Dynamically Forecasting Network Performance Using
the Network Weather Service,” Cluster Computing, 1998.

[24] R. Wolski, “Experiences with Predicting Resource Performance
On-Line in Computational Grid Settings,” ACM SIGMETRICS
Performance Evaluation Rev., vol. 30, no. 4, pp. 41-49, Mar. 2003.

[25] R. Wolski, N. Spring, and J. Hayes, “The Network Weather
Service: A Distributed Resource Performance Forecasting Service
for Metacomputing,” Future Generation Computer Systems, 1999.

[26] ZLib compression library, http://www.gzip.org/zlib/+, 2005.

Chandra Krintz is an assistant professor at the
University of California, Santa Barbara (UCSB).
She joined the UCSB faculty in 2001 after
receiving the MS and PhD degrees in computer
science from the University of California, San
Diego (UCSD) under the advisement of Dr. Brad
Calder. Chandra’s research interests include
automatic and adaptive compiler, virtual runtime,
and operating system techniques that improve
performance (for high-end systems) and in-

crease battery life (for mobile, resource-constrained devices). In
particular, her work focuses on exploiting repeating patterns in the
time-varying behavior of underlying resources, applications, and work-
loads to guide dynamic optimization and specialization of program and
system components.

Sezgin Sucu is a PhD student in the Computer Science Department at
the University of California, Santa Barbara (UCSB). Sezgin received his
the MS degree from UCSB in June of 2003, under the advisement of
Dr. Chandra Krintz. His MS thesis is entitled “Resource-Aware Lossless
Compression.” He is currently studying under the advisement of Dr. Tao
Yang in the area cluster-based network services.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

24 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 1, JANUARY 2006

