Adapting Static Single Assignment for Hardware Compilation

Ryan Kastner, Elaheh Bozorgzadeh, Seda Ogrenci Memik and Majid Sarrafzadeh

{kastner, elib, seda, majid}@cs.ucla.edu
Computer Science Department
University of California, Los Angeles
Los Angeles, CA 90095

Abstract

This paper describes methods for synthesizing the internal
representation of a compiler into a hardware description language;
a process often referred to as hardware compilation. We present a
framework for this transformation including methods to control
the path of execution and ways to deal with the data
communication. We show how static single assignment (SSA) is
useful to reduce the amount of data communication in the
hardware. In some applications, SSA reduces the data
communication by 70 fold. We demonstrate that the placement of
®-nodes by current SSA algorithms is not optimal in terms of
minimizing data communication. We develop a new SSA
algorithm for ®-node placement that considers data
communication. We show that our algorithm reduces the data
communication for some applications as much as 20% as
compared to the best-known SSA algorithm — the pruned
algorithm.

1 Introduction

The increasing complexity of hardware design has brought about
many challenges. One of the main challenges lies in the
specification of an application and subsequently, the mapping of
that application into hardware. Both of these challenges focus on
moving the abstraction level of hardware design to the application
level — a realm where the software community excels. On the
other hand, the increased complexity of hardware allows more
functionality to be implemented in hardware. Applications what
we were once relegated to software because of their complexity
can now be implemented in hardware. Consequently, the
traditionally distinct line between the hardware and software
communities has blurred.

The level of abstraction in hardware design has moved to point of
programming languages. There are many initiatives towards an
application-level hardware description language (HDL) including
SystemC [1] and SpecC [2]. Typically, these HDLs have a C-like
semantics with additional constructs to describe parallelism and
ease the hardware compilation process — the mapping of an
application into hardware.

Hardware compilation has a variety of benefits. First and
foremost, programmers can describe applications at a much higher
level of abstraction. Describing an application in a low-level
HDL — behavioral or register transfer language (RTL) description
— is an arduous task; it corresponds to programming in assembly.
Obviously, if the hardware compiler can produce a low-level
description on par with a human coded description, the benefits

are enormous. Furthermore, emerging systems-on-chip (SOC)
consist of a variety of components. An application programmer
(or automated partitioning engine) must be able to determine the
tradeoffs between allocating computations on the various SOC
components. A application-level hardware language would
streamline this process.

In this paper, we look into the process of hardware compilation.
More specifically, we look at the process of automatically
mapping an application onto a micro-architecture. We describe a
methodology that takes a traditional programming language (C,
C++, Fortran) and produces a HDL description. We describe
methods of minimizing the interconnect of the HDL description
using static single assignment (SS4). We show an inherent
deficiency of SSA and describe a new form of SSA that is better
suited for hardware.

In the next section, we give background material related to our
research. Section 3 discusses our framework for hardware
compilation. =~ We show how SSA is useful to minimize
interconnect in the hardware in Section 4. Furthermore, we point
out a fundamental shortcoming of traditional SSA and develop a
new SSA algorithm to overcome this limitation. Section 5
presents experiments to illustrate the effect of these algorithms to
minimize data communication. We discuss related work in
Section 6 and provide concluding remarks in Section 7.

2 Preliminaries

2.1 Control Data Flow Graphs

We focus on the control data flow graph (CDFG) as an internal
representation (IR). A CDFG consists of a set of control nodes
Ny, and control edges E.,. The control nodes are a set of basic
blocks. Each control node holds a number of instructions or
computations that execute atomically. The control edges model
the control flow relationships between the control nodes. The
control nodes and control edges form a directed graph G q(Ny,
E.,). Each control node contains a set of operations. The data
flow relationships between the operations in a particular control
node can be viewed as a sequential list of instructions / or a data
flow graph Guq(VyeEqn). The conversion from I to Gy, , and
vice-versa, is trivial.

As an IR, CDFGs offer many advantages. Many high-level
programming languages (Fortran, C, C++) can be compiled into
CDFGs with slight modifications to the front end of pre-existing
compilers; a pass converting a typical high-level IR into control

flow graphs and subsequently CDFGs is possible with minimal
modification. Furthermore, this allows us to use the back-end of
existing compilers to generate code for a variety of processorsf]
Additionally, data flow analysis techniques (e.g. reaching
definitions, liveliness, constant propagation, etc.) can be applied
directly to CDFGs. This allows us to leverage the many well-
developed transformations to improve the quality of our hardware
description. Most importantly, we believe that the CDFG can be
mapped to a variety of different micro-architectures, making it a
good IR for a hardware compiler.

/]
@

Figure 1: A Control Data Flow Graph

In this work, we examine the problem of mapping an application
onto a micro-architecture. Specifically, we look at the problem of
synthesizing a CDFG into some hardware description language
(HDL). EDA tools — either academic or commercial — can
perform optimization from that level on. This allows us to map
the application onto many different styles of micro-architectures.
We could map the application to a programmable architecture like
an FPGA or even as a full-blown ASIC implementation. Now we
briefly discuss methods of synthesizing data flow graphs, as these
are the internal constructs to the CDFG.

2.2 Architecture Synthesis

The architecture synthesis problem has received much attention in
the past 10 years. Scheduling and resource binding are the two
major stages of architecture synthesis.

Given a set of operations with execution delays and a partial
ordering, the scheduling problem determines the start time for
each operation. Additional restrictions such as timing and
resource constraints may be added to the problem, depending on
the microarchitecture one is targeting. There are many algorithms
for scheduling data flow graphs including Hu’s algorithm [3], list
scheduling [4], and force-directed scheduling [S]. Hundreds of
other heuristic scheduling algorithms targeting different objectives
have been proposed.

Resource binding is the assignment of hardware resources to one
or more operations; it is an explicit mapping between operations
and resources. We refer an interested reader to DiMicheli’s book
[4] for further details. There are many industrial and academic
tools that are capable of synthesizing a data flow graph.

! Processors are common system-on-a-chip components.

Our work assumes that there is a tool to synthesize data flow
graphs to some structural hardware language. We look at the
problem of synthesizing the “control” part of the CDFG. In the
next section, we discuss our framework for CDFG synthesis.

3 Control Data Flow Graph Synthesis
3.1 Controlling the Path of Execution

Each control flow node consists of a set of inputs and a set of
outputs. After the computations are completed, control is
transferred to another control flow node. We must add a
mechanism to direct the control flow i.e. a controller. We focus
on two types of control — distributed control and centralized
control.

Distributed control has several different entities that control the
path of execution. Each control node has a local controller that
determines the next control node in the execution sequence.
Therefore, there are direct connections between control nodes.
Every control node is equipped with an execute port that tells it
when to begin execution. Additionally, each control node has a
set of control flow indicator (CFI) ports. There is a CFI port for
each of the different control nodes that may follow this node in
execution. Equivalently, there is a CFI for each control edge
emanating from a control node. A CFI port connects to the
execute port of other control nodes. Figure 2 a) illustrates a
simple example of distributed control.

Often, the control flow depends on the result of the computations
local to the currently executing control node. For example, the
condition for control flow may depend if a local variable is greater
than zero. In this case, the control node must transmit the
condition to the centralized controller. Then, the controller will
determine the next control node in the execution sequence.
EXECUTE IN1 IN2 INN

a) |1 Y% %---%
Control Node

JAN
T ¥ LX

cr1 OUT1 OUT2 OUT M

EXECUTE IN1 IN2 INN

A N NEXTA N
Control Node
I LK

OuT1 OUT2 OUTM

P ol

Figure 2: a) Distributed Control b) Centralized Control

Centralized control has one controller that determines the control
node(s) that execute at any given instant. As with distributed
control, each control node has an execute port that initiates the
execution of the data flow graph embedded in the control node.
Unlike distributed control, every execute port of control node is
connected to the controller. Centralized control closely resembles
the separation of control flow and data flow assumed by most

high-level synthesis engines. Figure 2 b) gives an example of
centralized control.

Of course, one could imagine many other control schemes. For
example, there could be many distributed controllers, each of
which controls a small number of nodes. A single centralized
controller could control these distributed controllers. Hybrid
local/global schemes are an interesting area of research but are out
of the scope of this work.

3.2 Data Communication Schemes

In addition to determining the type of control for the CDFG, we
must determine the method of data communication between the
control nodes. Once again, there is a centralized and distributed
method of data communication. A centralized data
communication scheme passes the data through a centralized
storage area such as a register bank or RAM block, depending on
the amount of data. This allows a memory hierarchy scheme
where data can be cached and large amount of data can be
accessed by the CDFG.

A distributed data communication scheme passes the output data
from the currently executing control node directly to the inputs of
the control node(s) that might need the data later. The output of a
control node may connect to multiple other control nodes
including itself (in the case of loops).

As with most of engineering decisions, there are benefits and
drawbacks to consider for each of the communication schemes.
The distributed data communication scheme is simple to
implement, as you do not have to worry about interfacing to bus
and memory protocols. Additionally, the distributed scheme has
direct connections, meaning that the communication between
control nodes will occur quicker compared to the centralized
scheme; data passing does not involve writing to and reading from
a central memory back. Yet, the centralized scheme allows a
sharing of resources. The distributed scheme will have more
connections (interconnect), many of which will not be active at a
particular time leading to a waste of communication resources.
Furthermore, the increased connectivity between control nodes
may have a negative impact on the circuit’s area.

a) 444 b) +++
Control
C 1
ontro Merr}ory Node 1
Node 1 (Register
1- + 1- Bank, %
RAM, etc \‘
.L f } .L Bus
Control Control b . b .
Node 2 Node 3 Control Control
Node 2 Node 3
3+ f T T
T+ T
Control
Node 4 Control
¥ Node 4
S

Figure 3: a) Distributed data communication b) Centralized
data communication

In the next section, we describe how data flow analysis — more
specifically SSA — is useful to reduce the amount of data exchange
between control nodes.

4 Minimizing Inter-Node Communication

In order to determine the data exchange between the control
nodes, we establish the relationship between where data is
generated and where data is used for calculation. The specific
place where data is generated is called its definition point. A
specific place where data is used in computation is called a use
point. The data generated at a particular definition point may be
used in multiple places. Likewise, particular use point may
correspond to a number of different definition points; the control
flow dictates the actual definition point at any particular moment.

If data generated in one control node is used in a computation a
second control node, these two control nodes must have a
mechanism to transfer the data between them. A distributed data
communication scheme has a direct connection between the two
control nodes. If we used a centralized scheme, the first control
node would transfer the data to memory and the second control
node would access the memory for that data. Regardless of the
scheme that we use, we should try to minimize the amount of
inter-node communication. In a centralized scheme minimizing
the inter-node communication would have a direct impact on the
number of memory accesses. Also, it could reduce the number of
components connected to the bus. By minimizing the data
communication in the distributed scheme, we reduce the
interconnect between the control nodes.

4.1 Static Single Assignment

We can determine the relationship between the use and definition
points through static single assignment [6,7]. Static Single
Assignment (SSA) renames variables with multiple definitions
into distinct variables — one for each definition point.

We define a name to represent the contents of a storage location
(e.g. register, memory). A name is unspecific to SSA. In non-
SSA code, a name represents a storage location but we may not
know the exact location; the precise location of the name depends
on the control flow of the program. Therefore, we call a name in
non-SSA code a location. SSA eliminates this confusion as each
name represents a value that is generated at exactly one definition
point. The SSA definition of a name is called a value.

In order to maintain proper program functionality, we must add
®-nodes into the CDFG. ®-nodes are needed when a particular
use of a name is defined at multiple points. A ®-node takes a set
of possible names and outputs the correct one depending on the
path of execution. ®-nodes can be viewed as an operation of the
control node. They can be implemented using a multiplexer.
Figure 4 illustrates the conversion to SSA.

SSA is accomplished in two steps, first we add ®-nodes and then
we rename the variables at their definition and use points. There
are several methods for determining the location of the d-nodes.
The naive algorithm would insert a @-node at each merging point
for each original name used in the CDFG. A more intelligent
algorithm — called the minimal algorithm — inserts a ®-node at the
iterated dominance frontier of each original name [6]. The semi-
pruned algorithm builds smaller SSA form than the minimal
algorithm. It calculates determines if a variable is local to a basic
block and only inserts ®-nodes for non-local variables [7]. The

pruned algorithm further reduces the number of ®-nodes by only
inserting ®-nodes at the iterated dominance frontier of variables
that are live at that time [8]. After the position of the ®-nodes is
determined, there is a pass where the variables are renamed.

The minimal method requires O(|E,| + |Nq,g\2) time for the
calculation of the iterated dominance frontier. The iterated
dominance frontier and liveness analysis must be computed during
the pruned algorithm. There are linear or near linear time liveness
analysis algorithms [9,10,11]. Therefore, the pruned method has
the same asymptotic runtime as the minimal method.

We should suppress any unnecessary data communication
between control nodes. Now we explain how to minimize the
inter-node communication.

Before After
a) X ... Xog € ...

y ¢ X+X Yo ¢ X T Xq

XXty X X0t Yo

Z— Xty Zo <X Ty,

D) xe—.. .| [xe..]| X; .| X
A 4 l

M —x o X3 < P(x.X,)
— X;

Figure 4: a) Conversion of Straight-line Code to SSA b) SSA
Conversion with Control Flow

4.2 Minimizing Data Communication with SSA

SSA allows us to minimize the inter-node communication. The
various algorithms used to create SSA all attempt to accurately
model the actual need for data communication between the control
nodes. For example, if we use the pruned algorithm for SSA, we
eliminate false data communication by using liveliness analysis,
which eliminates passing data that will never be used again.

SSA allows us to minimize the data communication, but it
introduces ®-nodes to the graph. We must add a mechanism that
handles the ®-nodes. This can be accomplished by adding an
operation that implements the functionality of a ®-node. A
multiplexer provides the needed functionality. The input names
are the inputs to the multiplexer. An additional control line must
be added for each multiplexer to determine that the correct input
name is selected.

A fundamental limitation of using SSA in a hardware compiler is
the use of the iterated dominance frontier for determining the
positioning of the ®-nodes. Typically, compilers use SSA for it’s
property of a single definition point. We are using in another way
— as a representation to minimize the data communication between
hardware components (CFG nodes). In this case, the positioning
of ®-nodes at the iterated dominance frontier does not always
optimize the data communication. We must consider spatial
properties in addition to the temporal properties of the CDFG
when determining the position of the ®-nodes.

We illustrate our pointﬂwith a simple example. Figure 5 b)
exhibits traditional SSA~form for the code shown in Figure 5 a).
The ®-node is placed in control node 3. In the traditional SSA
scheme, the data a; and a, generated in node 1 and 2 respectively
is used in node 3, but only in the ®-node. Then, the data a; is
used in node 4. Therefore, there must be a communication
connection from node 1 to node 3, node 2 to node 3 and node 3 to
node 4 — a total of 3 communication links. In part c), the ®-node
is distributed to node 4. Then, we only need a communication
connection from node 1 to node 4 and node 2 to node 4, a total of
2 communication links.

From this example, we can see that traditional ®-node placement
is not always optimal in terms of data communication. This arises
because d-nodes are traditionally placed in a temporal manner.
The iterated dominance frontier is the first place in the timeline of
the program where the two (or more) locations of a variable
merge. But, as you can see, this is not necessarily the only place
where they can be placed. = When considering hardware
compilation, we must think spatially as well as temporally. By
moving the position of the ®-nodes, it is possible to achieve a
better layout of our hardware design. In order to reduce the data
communication, we must consider the number of uses of the value
that a ®-node defines as well as the number of values that the ®-
node takes as an input.

a) Node 1 b) C)

a¢ ... a; ...

a ...

a;D(a,a,)

—a « a,

Node 4

Figure 5: Simple example showing the benefit of distributing
the ®-node. Part a) shows a CFG before SSA. Part b) shows
SSA form. Part c) displays SSA form with the ®-node
spatially distributed.

4.3 An Algorithm for Spatially Distributing ®-
nodes

The first step of spatially distributing ®-nodes is determining
which ®-nodes should be moved. We assume that we are given
the correct temporal positioning of the ®-nodes according to some
SSA algorithm (e.g. minimal, semi-pruned, pruned). The
movement of a d-node depends on two factors. The first factor is

2 We use the terms “traditional SSA” and “temporal SSA”
interchangeably to mean the SSA introduced by Cytron et al.
[6].

the number of values that the ®-node must choose between. We
call this the number of ®-node source values s. The second factor
is the number of uses that the value of the ®-node defines. We
call this the ®-node destination value d. Taking Figure 5 as an
example, the ®-node source values are a; and a, whereas the ®-
node destination value is a;. Determining s is simple; we just
need to count the number of source values in the ®-node. Finding
the number of uses of the destination value is a more difficult. We
can use def-use chains [12], which can be calculated during SSA.

The relationship between the amount of communication links Cr
needed for a P-node in temporal SSA and the number of
communication links Cy in spatial SSA is:

C,=s+d Cs=s-d

Using these relationships, we can easily determine if spatially
moving a ®-node will decrease the total amount of inter-node data
communication. If Cs is less than Cr, then moving the ®-node is
beneficial. Otherwise, we should keep the ®-node in its current
location.

After we have decided on which ®-nodes we should move, we
must determine the control node(s) where we should move the ®-
node. This step is rather easy, as we move the ®-node from its
original location to control nodes that have a use of the definition
value of that ®-node. It is possible that by moving the ®-node,
we increase the total number of ®-nodes in the design. But, we
are decreasing the total amount of inter-node data communication.
Therefore, the amount of data communication is not directly
dependent on number of ®-nodes.

1. Given a CDFG G(N, Eog)

2. perform SSA(G)

3. calculate def use chains(G)

4. remove back edges(G)

5. topological sort(G)

6. for eachnoden e N,

7. for each ®-node @ € n

8. s ¢ |D.sources |

9. d < |def use chain(@.dest)|
10. if s-d<s+d

11. move to_spatial locations(®)
12. restore back edges(G)

Figure 6: Spatial SSA Algorithm

It is possible that a use point of the definition value of ®-node @;
is another ®-node @,. If we wish to move @;, we add the source
values of @; into the source values of @,; obviously, this action
changes the number of source values of @,. In order to account
for such changes in source values, we must consider moving the
®-nodes in a topologically sorted manner based on the CDFG
control edges. Of course, any back control edges must be
removed in order to have valid topologically sorting. We can not
move ®-nodes across back edges as this can induce dependencies
between the source value and the destination value of previous

iterations i.e. we can get a situation where b; «— @(b;, ...). The
source value b; was produced in a previous iteration by that same
®-node. The complete algorithm for spatially distributing ®-node
to minimize data communication is outlined in Figure 6.

Theorem 4.1: Given an initially correct placement of a ®-node,
the functionality of the program remains valid after moving the ®-
node to the basic block(s) of all the use point(s) of the ®-node’s
destination value.

Proof: There are two cases to consider. The first case is when the
use point is a normal computation. The second case is when a use
point is ®-node, itself.

We consider the former case first. When we move the ®-node
from it’s initial basic block, we move it to the basic blocks of
every use point of the ®-node’s destination value d. Therefore,
every use of the d can still choose from the same source values.
Hence, if the ®-node source values where initially correct, the use
points of d remain the same after the movement. We must also
insure that moving the ®-node does not cause some other use
point that uses the same name but has a different value. The ®-
node will not move past another ®-node that has the same name
because by construction of correct initial SSA, that ®-node must
have d as one of its source values.

The proof of the second case follows similar lines to that of the
first one. The only difference is that instead of moving the initial
®-node D; to that basic block, we add the source values to the ®@-
node @, that uses d. If we move @; before @, then the
functionality of the program is correct by the same reasoning of
the first part of proof. Assuming that the temporal SSA algorithm
has only one ®-node per basic block per name, we can add the
source values of @; to @, while maintain the correct program
functionality.

Theorem 4.2: Given a correct initial placement of ®-nodes, the
spatial SSA algorithm maintains the correct functionality of the
program.

Proof: The algorithm considers the ®-nodes in a topologically
sorted manner. As a consequence of Theorem 4.1, the movement
of a single ®-node will not disturb the functionality of the
program hence the ®-node will not move past another value
definition point with the same name. Since we are considering the
®-nodes in forward topologically sorted order, the movement of
any ®-node will never move past a ®-node which has yet to be
considered for movement. Also, ®-node can never move
backwards across and edge (remember we remove back edges).
Therefore, the algorithm will never move a value definition point
past another value definition point with the same name. Hence
every use preserves the same definition after the algorithm
completes. This maintains the functionality of the program.

5 Experimental Results

To measure the effectiveness of using SSA to minimize data
communication between control nodes, we examined a set of DSP
functions (see Table 1). DSP functions typically exhibit a large
amount of parallelism making them ideal for hardware. The DSP
functions were taken from the MediaBench test suite [13]. The
files were compiled into CDFGs using the SUIF compiler
infrastructure [14] and the Machine-SUIF [15] backend.

Table 1: MediaBench functions

Application C File Description
mpeg2 getblk.c DCT block decoding
adpem adpcm.c ADPCM to/from 16-bit

PCM
epic convolve.c 2D general image
convolution
jpeg jetrans.c Transcoding compression
rasta ft.c Fast Fourier Transform
rasta noise_est.c Noise estimation functions
Function Name # Control
Nodes
adpcm_coder adpeml 33
adpcm_decoder adpcm?2 26
internal expland convolvel 101
internal_filter convolve2 101
compress_output jetrans 33
Decode MPEG2 Intra Block getblkl 75
Decode MPEG2 Non Intra Block getblk2 60
decode_motion_vector motion 15
FAST fttl 14
FR4TR fft2 76
comp_noisepower noise_estl 153
Det noise_est2 12

We performed SSA analysis with the SSA library built into
Machine-SUIF. The library was initially developed at Rice [16]
and recently adapted into the Machine-SUIF compiler.

First, we compare the amount of data flow between the control
nodes using the different SSA algorithms. Given two control
nodes i and j, the edge weight w(ij) is the amount of data
communicated (in bits) from control node i to control node j. The
total edge weight (TEW) is:

TEW =YY w(i,)

Figure 7 is a comparison of edge weights using three different
algorithms for positioning the ®-nodes. We compare the
minimal, semi-pruned and pruned algorithms. Recall that the
pruned algorithm is the best algorithm in terms of reducing the
number of d-nodes, but worst in runtime. The minimal algorithm
produces many ®-nodes, but has small runtime. The semi-pruned
algorithm provides a middle ground in terms of runtime and
quality of result.

We divide the TEW of the minimal and semi-pruned algorithm
(respectively) by the TEW of the pruned algorithm. We call this
the TEW ratio. We use the pruned algorithm as a baseline

because it consistently produces the smallest TEW. Referring to
Figure 7, the TEW of the minimal algorithm is much worse than
that of the pruned algorithm. For example, in the benchmark fft2,
the TEW of the minimal algorithm is over 70 times that of the
TEW of the pruned algorithm. The semi-pruned algorithm yields
a TEW that is smaller than that of the minimal algorithm, but still
slightly larger than the TEW of the pruned algorithm. All
algorithms have the same asymptotic runtime and the actual
runtimes for all the algorithms over all the benchmarks were very
small (under 1 second). Therefore, we feel that one should use the
pruned algorithm as it minimizes data communication much better
than the other two algorithms. Furthermore, the actual additional
runtime needed to run the pruned algorithm is miniscule.

100

=) O Minimal

g [l Semi-pruned _|

>

810

»

)

.0

B 1

=

i

[

0.1 -
N N N N N
QS e @ LN SEL S

& & & PP <L or oF

> O(\ O(\ N 9 O é)\% é)\%

O O &
benchmark

Figure 7: Comparison of total edge weight (TEW) between the
minimal and semi-pruned TEW and the pruned TEW

Each of the algorithms we compared attempt to minimize the
number of ®-nodes, and not the data communication. There is
obviously a relationship between the number of ®-nodes and the
amount of data communication. Every ®-node defines additional
data communication, but there can be inter-node data transfer
without ®-nodes. Furthermore, as we pointed out in Section 4.2,
minimizing the number of ®-nodes does not directly correspond
to minimizing the data communication.

In Figure 8, we compare the ratio of ®-nodes and the ratio of
TEW using the minimal and pruned algorithms. As you can see,
the number of ®-nodes is highly related to the amount data
communication. As the ®-node ratio increases, the TEW ratio
increases. Correspondingly, a large ®-node ratio corresponds to a
large TEW ratio. This lends validation to the using SSA
algorithms to first minimize inter-node communication and then
use the spatial d-node repositioning to further reduce the data
communication. In other words, minimizing the number of ®-
nodes is a good objective function to initially minimize data
communication.

Our next set of experiments focus on using spatial SSA ®-node
distribution to further minimize the amount of data
communication. Figure 9 shows the number of ®-nodes that are
spatially distributed by the spatial SSA algorithm. We can see
that these ®-nodes are fairly common; in some of the benchmarks,

over 35% of the ®-nodes are spatially moved. The average
number of distributed ®-nodes over all the benchmarks is
11.65%, 18.21% and 13.56%t| for the pruned, semi-pruned and
minimal algorithms, respectively.

academic works in hardware compilation. The SystemC [1] and
SpecC [2] languages have created much industrial interest in
hardware compilation. Many companies including Synopsis and
Cadence are exploring hardware compilation from these two
languages.

160 Many compiler techniques use SSA for analysis or transformation
140 - TEW ratio [20,21,22]. Also, there have been modifications of SSA form
z _ _ [23,24]. To the best of our knowledge, this is the first work that
B 120 1 | —m— Phinode ratio considers SSA form for hardware compilation.
c
.= 100
: .
80
* / — 40%
S 60 3
S / / T 35%
M40 o _
by = 30%
2 20 g
E O I T T T E 25%
]
N N NN = 20% I
0'\\00 eéa, o@q, & g&\& S {b& & g
o XK g & & e ¢ T 15% -
3 o @ o
® benchmaftk & c
= 10% —
(X
Figure 8: A comparison of total edge weight (TEW) and the = 5% -
number of ®-nodes using the minimal and pruned algorithms. '-g
a 0%
&2 N
Figure 10 gives the percentage of TEW improvement we achieve 2 § R
by spatially distributing the nodes. By spatially distributing the & O pruned

®-nodes, we reduce the TEW by 1.80%, 4.77% and 8.16% in the
pruned, semi-pruned and minimal algorithms, respectively. We
believe the small amount of improvement in TEW can be
attributed to two things. First of all, the TEW contributed by the
®-nodes is only a small portion of the total TEW. Also, when the
number of ®-nodes is small, the number of ®-nodes to distribute
is also small. This is apparent in the increasing trend seen by the
pruned, semi-pruned and minimal algorithms. There are many ®-
nodes when we use the minimal algorithm and correspondingly,
there TEW improvement of the minimal algorithm is the 8.16%.
Conversely, the number of ®-nodes in the pruned algorithm is
small and the TEW improvement is also small.

6 Related Work

The idea of hardware compilation has been discussed since the
80’s. At that time, it was under the guise of silicon compilation
and related closely to what is referred to as behavioral synthesis
nowadays.

The past 15 years have brought about a number of platforms that
take high-level code and generate a hardware configuration for
that platform. The PRISM project [17] took functions
implemented in a subset of C and compiled them to their FPGA-
like architecture. The Garp compiler [18] takes automatically
maps C code to their MIPS + FPGA architecture. The DeepC
compiler [19] is the most similar to our work, as it synthesizable
Verilog from C or Fortran. These are some of the more prevalent

3 Not all of the benchmarks are included in Figure 9; the omitted
benchmarks have 0 ®-nodes that should be distributed, but
these benchmarks are included in the averages.

W semi-pruned

benchmark

0 minimal

Figure 9: Comparison of the number of spatially distributed
®-nodes and the total number ®-nodes using the three SSA
algorithms.

-_é 25% O pruned 1
= W semi-pruned
"§_ 20% Ominimal
" c "
£ 0
o8 . |]
3 H 15%
-
B
= 10% - i 1
o
£ 2
g 5% - H
c
(1]
S
* 0% s
NN N
S A FFF e P
S I G &7
© © benchmarks <

Figure 10: The percentage change in of total edge weight when
we distribute the d-nodes using the three SSA algorithms.

7 Conclusion

In this work, we presented methods needed for hardware
compilation. First, we described a framework for compiling a
high-level application to an HDL. The framework includes
methods for transforming a traditional compiler IR to an RTL-
level HDL. We illustrated how to transform the IR into a CDFG
form. Using the CDFG form, we explained methods to control the
path of execution. Furthermore, we gave methods for
communicating data between the control nodes of the CDFG.

We examined the use of SSA to minimize the amount of data
communication between control nodes. We showed that through
the use of SSA, we reduced the amount of inter-node
communication by 70 times in one DSP function. We showed a
shortcoming of SSA when it is applied to minimizing data
communication. The temporal positioning of the ®-node is not
optimal in terms of data communication. We formulated an
algorithm to spatially distribute the ®-node to minimize the
amount of data communication. We showed that this spatial
distribution can decrease the data communication by 20% for
some DSP functions.

As future work, we plan to integrate this functionality into the
hardware compiler we creating for reconfigurable systems. Then,
we can examine the actual effect that minimizing data
communication has on hardware parameters such as area, power,
delay, etc. Additionally, we hope to find a distribution of ®-nodes
such that the data communication is provable minimal.

References

[1] Open SystemC Initiative, http://www.systemc.org.

[2] D.D. Gajski, J. Zhu, R. Démer, A. Gerstlauser, S. Zhoa,
SpecC: Specification Language and Methodology, Kluwer
Academic Publishers, Boston, 2000.

[3] T.C. Hu, “Parallel Sequencing and Assembly Line
Problems”, Operations Research, no. 9, pp. 841-848, 1961.

[4] G. DeMicheli, Synthesis and Optimization of Digital
Circuits, McGraw-Hill, Inc., New York, 1994.

[5] P.Paulin and J. Knight, “Force-Directed Scheduling for the
Behavioral Synthesis of ASIC’s”, IEEE Transactions on
CAD/ICAS, vol. 8, no. 6, pp. 661-679, July 1989.

[6] R.Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman and F.
K. Zadek, “An Efficient Method of Computing Static Single
Assignment”, Proceedings of ACM Symposium on Principles
of Programming Languages, January 1989.

[7] P.Briggs, K. Cooper, T. Harvey and L. Simpson, “Practical
Improvements to the Construction and Destruction of Static
Single Assignment Form”, Software Practice and
Experience, vol. 28, no. 8, pp. 859-881, July 1998.

[8] R.Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman and F.
K. Zadek, “Efficiently Computing ®-nodes On-the-Fly”,
ACM Transactions on Programming Languages and
Systems, October 1991.

[9] S.L.Graham and M. Wegman, “A Fast and Usually Linear
Algorithm for Global Flow Analysis”, Journal of the ACM,
vol. 23, no. 1, pp. 172-202, January 1976.

[10] J. B. Karn and J. D. Ullman, “Global Data Flow Analysis and
Iterative Algorithms, Journal of the ACM, vol. 23, no. 1, pp.
158-171, January 1976.

[11] K. Kennedy. “A Survey of Data Flow Analysis Techniques”,
Program Flow Analysis: Theory and Applications, Prentice-
Hall, 1981.

[12] S. S. Muchnick, Advanced Compiler Design and
Implementation, Morgan Kaufmann Publishers, San
Francisco, 1997.

[13] C. Lee, M. Potkonjak and W. H. Maggione-Smith,
“MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems”, Proceedings of
IEEE/ACM International Symposium on Microarchitecture,
1997.

[14] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B.R.
Murphy, S.-W. Liao, E. Bugnion and M. S. Lam,
“Maximizing Multiprocessor Performance with the SUIF
Compiler”, IEEE Computer, December 1996.

[15] M. D. Smith and G. Holloway, 4An Introduction to Machine
SUIF and its Portable Libraries for Analysis and
Optimization, Division of Engineering and Applied Sciences,
Harvard University, http://www.eecs.harvard.edu/machsuif/|

[16] P. Briggs, T. Harvey and L. Simpson, Static Single
Assignment Construction, Implementation documentation,
1996. Available at
[ftp:/fip.cs.rice.edu/public/compilers/ai/SSA.ps |

[17] A. Smith, M. Wazlowski, L. Agarwal, T. Lee, E. Lam, P.
Athans, H. Silverman and S. Ghosh, ”PRISM II Compiler
and Architecture”, Proceedings of IEEE Workshop on
FPGA-based Custom Computing Machines, April, 1993.

[18] T. J. Callahan, J. R. Hauser and J. Wawrzynek, “The Garp
Architecture and C Compiler”, IEEE Computer, vol. 33, no.
4, April, 2000.

[19] J. Babb, M. Rinard, C. A. Moritz, W. Lee, M. Frank, R.
Barua and S. Amarasinghe, “Parallelizing Applications into
Silicon”, Proceedings of Field-Programmable Custom
Computing Machines, 1999.

[20] B. Alpern, M. N. Wegman and F. K. Zadeck, “Detecting
Equality of Variables in Programs”, Proceedings of
Principals of Programming Languages, Jan. 1988.

[21] P. Briggs and K. D. Cooper, “Effective Partial Redundancy
Elimination”, Proceedings of Programming Language
Design and Implementation, June 1994.

[22] P. Briggs, K. D. Cooper and L. T. Simpson, “Value
Numbering”, Software — Practice and Experience, vol. 27,
no. 6, June 1997.

[23] L. Carter, B. Simon, B. Calder, L. Carter and J. Ferrante,
“Predicated Static Single Assignment”, Proceedings of
Parallel Architectures and Compilation Techniques, Oct.
1999.

[24] W. Amme, N. Dalton, J. von Ronne and M. Franz,
“SafeTSA: A Type Safe and Referentially Secure Mobile-
Code Representation Based on Static Single Assignment
Form”, Proceedings of Programming Language Design and
Implementation, June 2001.

http://www.eecs.harvard.edu/machsuif/
ftp://ftp.cs.rice.edu/public/compilers/ai/SSA.ps

	Introduction
	Preliminaries
	Control Data Flow Graphs
	Architecture Synthesis

	Control Data Flow Graph Synthesis
	Controlling the Path of Execution
	Data Communication Schemes

	Minimizing Inter-Node Communication
	Static Single Assignment
	Minimizing Data Communication with SSA
	An Algorithm for Spatially Distributing (-nodes

	Experimental Results
	Related Work
	Conclusion

