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Abstract 
This paper describes methods for synthesizing the internal 
representation of a compiler into a hardware description language; 
a process often referred to as hardware compilation.  We present a 
framework for this transformation including methods to control 
the path of execution and ways to deal with the data 
communication.  We show how static single assignment  (SSA) is 
useful to reduce the amount of data communication in the 
hardware.  In some applications, SSA reduces the data 
communication by 70 fold.  We demonstrate that the placement of 
Φ-nodes by current SSA algorithms is not optimal in terms of 
minimizing data communication.  We develop a new SSA 
algorithm for Φ-node placement that considers data 
communication.  We show that our algorithm reduces the data 
communication for some applications as much as 20% as 
compared to the best-known SSA algorithm – the pruned 
algorithm. 

1 Introduction 
The increasing complexity of hardware design has brought about 
many challenges.   One of the main challenges lies in the 
specification of an application and subsequently, the mapping of 
that application into hardware.   Both of these challenges focus on 
moving the abstraction level of hardware design to the application 
level – a realm where the software community excels.  On the 
other hand, the increased complexity of hardware allows more 
functionality to be implemented in hardware.  Applications what 
we were once relegated to software because of their complexity 
can now be implemented in hardware.  Consequently, the 
traditionally distinct line between the hardware and software 
communities has blurred. 

The level of abstraction in hardware design has moved to point of 
programming languages.  There are many initiatives towards an 
application-level hardware description language (HDL) including 
SystemC [1] and SpecC [2].  Typically, these HDLs have a C-like 
semantics with additional constructs to describe parallelism and 
ease the hardware compilation process – the mapping of an 
application into hardware. 

Hardware compilation has a variety of benefits.  First and 
foremost, programmers can describe applications at a much higher 
level of abstraction.  Describing an application in a low-level 
HDL – behavioral or register transfer language (RTL) description 
– is an arduous task; it corresponds to programming in assembly.  
Obviously, if the hardware compiler can produce a low-level 
description on par with a human coded description, the benefits 

are enormous.  Furthermore, emerging systems-on-chip (SOC) 
consist of a variety of components.   An application programmer 
(or automated partitioning engine) must be able to determine the 
tradeoffs between allocating computations on the various SOC 
components.  A application-level hardware language would 
streamline this process. 

In this paper, we look into the process of hardware compilation.  
More specifically, we look at the process of automatically 
mapping an application onto a micro-architecture.  We describe a 
methodology that takes a traditional programming language (C, 
C++, Fortran) and produces a HDL description.  We describe 
methods of minimizing the interconnect of the HDL description 
using static single assignment (SSA).  We show an inherent 
deficiency of SSA and describe a new form of SSA that is better 
suited for hardware. 

In the next section, we give background material related to our 
research.  Section 3 discusses our framework for hardware 
compilation.  We show how SSA is useful to minimize 
interconnect in the hardware in Section 4.  Furthermore, we point 
out a fundamental shortcoming of traditional SSA and develop a 
new SSA algorithm to overcome this limitation.  Section 5 
presents experiments to illustrate the effect of these algorithms to 
minimize data communication.  We discuss related work in 
Section 6 and provide concluding remarks in Section 7. 

2 Preliminaries 
2.1 Control Data Flow Graphs 
We focus on the control data flow graph (CDFG) as an internal 
representation (IR).  A CDFG consists of a set of control nodes 
Ncfg and control edges Ecfg.  The control nodes are a set of basic 
blocks.  Each control node holds a number of instructions or 
computations that execute atomically.  The control edges model 
the control flow relationships between the control nodes.  The 
control nodes and control edges form a directed graph Gcfg(Ncfg, 
Ecfg).  Each control node contains a set of operations.  The data 
flow relationships between the operations in a particular control 
node can be viewed as a sequential list of instructions I or a data 
flow graph Gdfg(Vdfg,Edfg).  The conversion from I to Gdfg , and 
vice-versa, is trivial. 

As an IR, CDFGs offer many advantages.  Many high-level 
programming languages (Fortran, C, C++) can be compiled into 
CDFGs with slight modifications to the front end of pre-existing 
compilers; a pass converting a typical high-level IR into control 



flow graphs and subsequently CDFGs is possible with minimal 
modification.  Furthermore, this allows us to use the back-end of 
existing compilers to generate code for a variety of processors1.  
Additionally, data flow analysis techniques (e.g. reaching 
definitions, liveliness, constant propagation, etc.) can be applied 
directly to CDFGs.  This allows us to leverage the many well-
developed transformations to improve the quality of our hardware 
description.  Most importantly, we believe that the CDFG can be 
mapped to a variety of different micro-architectures, making it a 
good IR for a hardware compiler.   

++
+ *

*

 
Figure 1:  A Control Data Flow Graph 

 In this work, we examine the problem of mapping an application 
onto a micro-architecture.  Specifically, we look at the problem of 
synthesizing a CDFG into some hardware description language 
(HDL).  EDA tools – either academic or commercial – can 
perform optimization from that level on.  This allows us to map 
the application onto many different styles of micro-architectures.  
We could map the application to a programmable architecture like 
an FPGA or even as a full-blown ASIC implementation.  Now we 
briefly discuss methods of synthesizing data flow graphs, as these 
are the internal constructs to the CDFG. 

2.2 Architecture Synthesis 
The architecture synthesis problem has received much attention in 
the past 10 years.  Scheduling and resource binding are the two 
major stages of architecture synthesis.   

Given a set of operations with execution delays and a partial 
ordering, the scheduling problem determines the start time for 
each operation.  Additional restrictions such as timing and 
resource constraints may be added to the problem, depending on 
the microarchitecture one is targeting.  There are many algorithms 
for scheduling data flow graphs including Hu’s algorithm [3], list 
scheduling [4], and force-directed scheduling [5].  Hundreds of 
other heuristic scheduling algorithms targeting different objectives 
have been proposed.   

Resource binding is the assignment of hardware resources to one 
or more operations; it is an explicit mapping between operations 
and resources.  We refer an interested reader to DiMicheli’s book 
[4] for further details.  There are many industrial and academic 
tools that are capable of synthesizing a data flow graph. 

                                                                 
1 Processors are common system-on-a-chip components. 

Our work assumes that there is a tool to synthesize data flow 
graphs to some structural hardware language.  We look at the 
problem of synthesizing the “control” part of the CDFG.  In the 
next section, we discuss our framework for CDFG synthesis. 

3 Control Data Flow Graph Synthesis 
3.1 Controlling the Path of Execution 
Each control flow node consists of a set of inputs and a set of 
outputs.  After the computations are completed, control is 
transferred to another control flow node.  We must add a 
mechanism to direct the control flow i.e. a controller.  We focus 
on two types of control – distributed control and centralized 
control.   

Distributed control has several different entities that control the 
path of execution.  Each control node has a local controller that 
determines the next control node in the execution sequence.  
Therefore, there are direct connections between control nodes.  
Every control node is equipped with an execute port that tells it 
when to begin execution.  Additionally, each control node has a 
set of control flow indicator (CFI) ports.  There is a CFI port for 
each of the different control nodes that may follow this node in 
execution.  Equivalently, there is a CFI for each control edge 
emanating from a control node.  A CFI port connects to the 
execute port of other control nodes.  Figure 2 a) illustrates a 
simple example of distributed control. 

Often, the control flow depends on the result of the computations 
local to the currently executing control node.  For example, the 
condition for control flow may depend if a local variable is greater 
than zero.  In this case, the control node must transmit the 
condition to the centralized controller.  Then, the controller will 
determine the next control node in the execution sequence. 

Figure 2: a) Distributed Control b) Centralized Control  

Centralized control has one controller that determines the control 
node(s) that execute at any given instant.  As with distributed 
control, each control node has an execute port that initiates the 
execution of the data flow graph embedded in the control node.  
Unlike distributed control, every execute port of control node is 
connected to the controller.  Centralized control closely resembles 
the separation of control flow and data flow assumed by most 
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high-level synthesis engines.  Figure 2 b) gives an example of 
centralized control. 

Of course, one could imagine many other control schemes.  For 
example, there could be many distributed controllers, each of 
which controls a small number of nodes.  A single centralized 
controller could control these distributed controllers.  Hybrid 
local/global schemes are an interesting area of research but are out 
of the scope of this work. 

3.2 Data Communication Schemes 
In addition to determining the type of control for the CDFG, we 
must determine the method of data communication between the 
control nodes.  Once again, there is a centralized and distributed 
method of data communication.  A centralized data 
communication scheme passes the data through a centralized 
storage area such as a register bank or RAM block, depending on 
the amount of data.   This allows a memory hierarchy scheme 
where data can be cached and large amount of data can be 
accessed by the CDFG. 

A distributed data communication scheme passes the output data 
from the currently executing control node directly to the inputs of 
the control node(s) that might need the data later.  The output of a 
control node may connect to multiple other control nodes 
including itself (in the case of loops). 

As with most of engineering decisions, there are benefits and 
drawbacks to consider for each of the communication schemes.  
The distributed data communication scheme is simple to 
implement, as you do not have to worry about interfacing to bus 
and memory protocols.  Additionally, the distributed scheme has 
direct connections, meaning that the communication between 
control nodes will occur quicker compared to the centralized 
scheme; data passing does not involve writing to and reading from 
a central memory back.  Yet, the centralized scheme allows a 
sharing of resources.  The distributed scheme will have more 
connections (interconnect), many of which will not be active at a 
particular time leading to a waste of communication resources.  
Furthermore, the increased connectivity between control nodes 
may have a negative impact on the circuit’s area. 
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Figure 3: a) Distributed data communication b) Centralized 
data communication  

In the next section, we describe how data flow analysis – more 
specifically SSA – is useful to reduce the amount of data exchange 
between control nodes.  

4 Minimizing Inter-Node Communication 
In order to determine the data exchange between the control 
nodes, we establish the relationship between where data is 
generated and where data is used for calculation.    The specific 
place where data is generated is called its definition point.  A 
specific place where data is used in computation is called a use 
point.  The data generated at a particular definition point may be 
used in multiple places.  Likewise, particular use point may 
correspond to a number of different definition points; the control 
flow dictates the actual definition point at any particular moment.   

If data generated in one control node is used in a computation a 
second control node, these two control nodes must have a 
mechanism to transfer the data between them.  A distributed data 
communication scheme has a direct connection between the two 
control nodes.  If we used a centralized scheme, the first control 
node would transfer the data to memory and the second control 
node would access the memory for that data.  Regardless of the 
scheme that we use, we should try to minimize the amount of 
inter-node communication. In a centralized scheme minimizing 
the inter-node communication would have a direct impact on the 
number of memory accesses.  Also, it could reduce the number of 
components connected to the bus.  By minimizing the data 
communication in the distributed scheme, we reduce the 
interconnect between the control nodes. 

4.1 Static Single Assignment   
We can determine the relationship between the use and definition 
points through static single assignment [6,7].  Static Single 
Assignment (SSA) renames variables with multiple definitions 
into distinct variables – one for each definition point.   

We define a name to represent the contents of a storage location 
(e.g. register, memory).  A name is unspecific to SSA.  In non-
SSA code, a name represents a storage location but we may not 
know the exact location; the precise location of the name depends 
on the control flow of the program. Therefore, we call a name in 
non-SSA code a location.  SSA eliminates this confusion as each 
name represents a value that is generated at exactly one definition 
point.  The SSA definition of a name is called a value.  

In order to maintain proper program functionality, we must add 
Φ-nodes into the CDFG.  Φ-nodes are needed when a particular 
use of a name is defined at multiple points.  A Φ-node takes a set 
of possible names and outputs the correct one depending on the 
path of execution.  Φ-nodes can be viewed as an operation of the 
control node.  They can be implemented using a multiplexer.  
Figure 4 illustrates the conversion to SSA. 

SSA is accomplished in two steps, first we add Φ-nodes and then 
we rename the variables at their definition and use points.  There 
are several methods for determining the location of the Φ-nodes.  
The naïve algorithm would insert a Φ-node at each merging point 
for each original name used in the CDFG.  A more intelligent 
algorithm – called the minimal algorithm – inserts a Φ-node at the 
iterated dominance frontier of each original name [6].  The semi-
pruned algorithm builds smaller SSA form than the minimal 
algorithm.  It calculates determines if a variable is local to a basic 
block and only inserts Φ-nodes for non-local variables [7].  The 



pruned algorithm further reduces the number of Φ-nodes by only 
inserting Φ-nodes at the iterated dominance frontier of variables 
that are live at that time [8].  After the position of the Φ-nodes is 
determined, there is a pass where the variables are renamed.   

The minimal method requires O(|Ecfg| + |Ncfg|2) time for the 
calculation of the iterated dominance frontier.  The iterated 
dominance frontier and liveness analysis must be computed during 
the pruned algorithm.  There are linear or near linear time liveness 
analysis algorithms [9,10,11].  Therefore, the pruned method has 
the same asymptotic runtime as the minimal method. 

We should suppress any unnecessary data communication 
between control nodes.  Now we explain how to minimize the 
inter-node communication.   

x ← …

y ← x + x

x ← x + y

z ← x + y

x0 ← …

y0 ← x0 + x0

x1 ← x0 + y0

z0 ← x1 + y0

a)

b) x ← … x ← …

← x

x1 ← … x2 ← …

x3 ← Φ(x1,x2)
← x3

Before After

 
Figure 4: a) Conversion of Straight-line Code to SSA  b) SSA 
Conversion with Control Flow 

4.2 Minimizing Data Communication with SSA 
SSA allows us to minimize the inter-node communication.  The 
various algorithms used to create SSA all attempt to accurately 
model the actual need for data communication between the control 
nodes.  For example, if we use the pruned algorithm for SSA, we 
eliminate false data communication by using liveliness analysis, 
which eliminates passing data that will never be used again.   

SSA allows us to minimize the data communication, but it 
introduces Φ-nodes to the graph.  We must add a mechanism that 
handles the Φ-nodes.  This can be accomplished by adding an 
operation that implements the functionality of a Φ-node.  A 
multiplexer provides the needed functionality.   The input names 
are the inputs to the multiplexer.  An additional control line must 
be added for each multiplexer to determine that the correct input 
name is selected.   

A fundamental limitation of using SSA in a hardware compiler is 
the use of the iterated dominance frontier for determining the 
positioning of the Φ-nodes.  Typically, compilers use SSA for it’s 
property of a single definition point.  We are using in another way 
– as a representation to minimize the data communication between 
hardware components (CFG nodes).  In this case, the positioning 
of Φ-nodes at the iterated dominance frontier does not always 
optimize the data communication.  We must consider spatial 
properties in addition to the temporal properties of the CDFG 
when determining the position of the Φ-nodes. 

We illustrate our point with a simple example.  Figure 5 b) 
exhibits traditional SSA2 form for the code shown in Figure 5 a).  
The Φ-node is placed in control node 3.  In the traditional SSA 
scheme, the data a1 and a2 generated in node 1 and 2 respectively 
is used in node 3, but only in the Φ-node.  Then, the data a3 is 
used in node 4.  Therefore, there must be a communication 
connection from node 1 to node 3, node 2 to node 3 and node 3 to 
node 4 – a total of 3 communication links.  In part c), the Φ-node 
is distributed to node 4.  Then, we only need a communication 
connection from node 1 to node 4 and node 2 to node 4, a total of 
2 communication links. 

From this example, we can see that traditional Φ-node placement 
is not always optimal in terms of data communication.  This arises 
because Φ-nodes are traditionally placed in a temporal manner.  
The iterated dominance frontier is the first place in the timeline of 
the program where the two (or more) locations of a variable 
merge.  But, as you can see, this is not necessarily the only place 
where they can be placed.  When considering hardware 
compilation, we must think spatially as well as temporally.  By 
moving the position of the Φ-nodes, it is possible to achieve a 
better layout of our hardware design.  In order to reduce the data 
communication, we must consider the number of uses of the value 
that a Φ-node defines as well as the number of values that the Φ-
node takes as an input. 

a ← …

a ← …

← a

a1 ← …

a2 ← …

← a3

a1 ← …

a2 ← …

← a3

a3←Φ(a1,a2)

a3←Φ(a1,a2)

a) b) c)
Node 1

Node 2

Node 3

Node 4

Figure 5: Simple example showing the benefit of distributing 
the ΦΦΦΦ-node.  Part a) shows a CFG before SSA.  Part b) shows 
SSA form.  Part c) displays SSA form with the ΦΦΦΦ-node 
spatially distributed. 

4.3 An Algorithm for Spatially Distributing ΦΦΦΦ-
nodes 

The first step of spatially distributing Φ-nodes is determining 
which Φ-nodes should be moved.  We assume that we are given 
the correct temporal positioning of the Φ-nodes according to some 
SSA algorithm (e.g. minimal, semi-pruned, pruned).  The 
movement of a Φ-node depends on two factors.  The first factor is 

                                                                 
2 We use the terms “traditional SSA” and “temporal SSA” 

interchangeably to mean the SSA introduced by Cytron et al. 
[6]. 



the number of values that the Φ-node must choose between.  We 
call this the number of Φ-node source values s.  The second factor 
is the number of uses that the value of the Φ-node defines.  We 
call this the Φ-node destination value d.  Taking Figure 5 as an 
example, the Φ-node source values are a1 and a2 whereas the Φ-
node destination value is a3.  Determining s is simple; we just 
need to count the number of source values in the Φ-node.  Finding 
the number of uses of the destination value is a more difficult.  We 
can use def-use chains [12], which can be calculated during SSA. 

The relationship between the amount of communication links CT 
needed for a Φ-node in temporal SSA and the number of 
communication links CS in spatial SSA is: 

dsCT +=        dsCS ⋅=  

Using these relationships, we can easily determine if spatially 
moving a Φ-node will decrease the total amount of inter-node data 
communication.  If CS is less than CT, then moving the Φ-node is 
beneficial.  Otherwise, we should keep the Φ-node in its current 
location. 

After we have decided on which Φ-nodes we should move, we 
must determine the control node(s) where we should move the Φ-
node.  This step is rather easy, as we move the Φ-node from its 
original location to control nodes that have a use of the definition 
value of that Φ-node.  It is possible that by moving the Φ-node, 
we increase the total number of Φ-nodes in the design.  But, we 
are decreasing the total amount of inter-node data communication.  
Therefore, the amount of data communication is not directly 
dependent on number of Φ-nodes. 

1. Given a CDFG G(Ncfg, Ecfg) 
2. perform_SSA(G) 
3. calculate_def_use_chains(G) 
4. remove_back_edges(G) 
5. topological_sort(G) 
6. for each node n ∈ Ncfg 
7. for each Φ-node Φ ∈ n 
8. s ← |Φ.sources | 
9. d ← |def_use_chain(Φ.dest)| 
10. if  s ⋅ d < s + d 
11. move_to_spatial_locations(Φ) 
12. restore_back_edges(G) 
 

Figure 6: Spatial SSA Algorithm 

It is possible that a use point of the definition value of Φ-node Φ1 
is another Φ-node Φ2.  If we wish to move Φ1, we add the source 
values of Φ1 into the source values of Φ2; obviously, this action 
changes the number of source values of Φ2.  In order to account 
for such changes in source values, we must consider moving the 
Φ-nodes in a topologically sorted manner based on the CDFG 
control edges.  Of course, any back control edges must be 
removed in order to have valid topologically sorting.  We can not 
move Φ-nodes across back edges as this can induce dependencies 
between the source value and the destination value of previous 

iterations i.e. we can get a situation where b1 ← Φ(b1, …).  The 
source value b1 was produced in a previous iteration by that same 
Φ-node.  The complete algorithm for spatially distributing Φ-node 
to minimize data communication is outlined in Figure 6. 

Theorem 4.1: Given an initially correct placement of a Φ-node, 
the functionality of the program remains valid after moving the Φ-
node to the basic block(s) of all the use point(s) of the Φ-node’s 
destination value. 

Proof:  There are two cases to consider.  The first case is when the 
use point is a normal computation. The second case is when a use 
point is Φ-node, itself.    

We consider the former case first.  When we move the Φ-node 
from it’s initial basic block, we move it to the basic blocks of 
every use point of the Φ-node’s destination value d.  Therefore, 
every use of the d can still choose from the same source values.  
Hence, if the Φ-node source values where initially correct, the use 
points of d remain the same after the movement.  We must also 
insure that moving the Φ-node does not cause some other use 
point that uses the same name but has a different value.  The Φ-
node will not move past another Φ-node that has the same name 
because by construction of correct initial SSA, that Φ-node must 
have d as one of its source values. 

The proof of the second case follows similar lines to that of the 
first one.   The only difference is that instead of moving the initial 
Φ-node Φi to that basic block, we add the source values to the Φ-
node Φu that uses d.  If we move Φi before Φu, then the 
functionality of the program is correct by the same reasoning of 
the first part of proof.  Assuming that the temporal SSA algorithm 
has only one Φ-node per basic block per name, we can add the 
source values of Φi to Φu while maintain the correct program 
functionality.   

Theorem 4.2: Given a correct initial placement of Φ-nodes, the 
spatial SSA algorithm maintains the correct functionality of the 
program. 

Proof: The algorithm considers the Φ-nodes in a topologically 
sorted manner.  As a consequence of Theorem 4.1, the movement 
of a single Φ-node will not disturb the functionality of the 
program hence the Φ-node will not move past another value 
definition point with the same name.  Since we are considering the 
Φ-nodes in forward topologically sorted order, the movement of 
any Φ-node will never move past a Φ-node which has yet to be 
considered for movement.  Also, Φ-node can never move 
backwards across and edge (remember we remove back edges).  
Therefore, the algorithm will never move a value definition point 
past another value definition point with the same name.  Hence 
every use preserves the same definition after the algorithm 
completes.  This maintains the functionality of the program.  

5 Experimental Results 
To measure the effectiveness of using SSA to minimize data 
communication between control nodes, we examined a set of DSP 
functions (see Table 1).  DSP functions typically exhibit a large 
amount of parallelism making them ideal for hardware.  The DSP 
functions were taken from the MediaBench test suite [13].  The 
files were compiled into CDFGs using the SUIF compiler 
infrastructure [14] and the Machine-SUIF [15] backend. 



Table 1: MediaBench functions 

Application C File Description 

mpeg2 getblk.c DCT block decoding 

adpcm adpcm.c ADPCM to/from 16-bit 
PCM 

epic convolve.c 2D general image 
convolution 

jpeg jctrans.c Transcoding compression 

rasta fft.c Fast Fourier Transform 

rasta noise_est.c Noise estimation functions 

Function Name # Control 
Nodes 

adpcm_coder adpcm1 33 

adpcm_decoder adpcm2 26 

internal_expland convolve1 101 

internal_filter convolve2 101 

compress_output jctrans 33 

Decode_MPEG2_Intra_Block getblk1 75 

Decode_MPEG2_Non_Intra_Block getblk2 60 

decode_motion_vector motion 15 

FAST fft1 14 

FR4TR fft2 76 

comp_noisepower noise_est1 153 

Det noise_est2 12 

We performed SSA analysis with the SSA library built into 
Machine-SUIF.  The library was initially developed at Rice [16] 
and recently adapted into the Machine-SUIF compiler. 

First, we compare the amount of data flow between the control 
nodes using the different SSA algorithms.  Given two control 
nodes i and j, the edge weight w(i,j) is the amount of data 
communicated (in bits) from control node i to control node j.  The 
total edge weight (TEW) is: 

∑∑=
i j

jiwTEW ),(  

Figure 7 is a comparison of edge weights using three different 
algorithms for positioning the Φ-nodes.  We compare the 
minimal, semi-pruned and pruned algorithms.  Recall that the 
pruned algorithm is the best algorithm in terms of reducing the 
number of Φ-nodes, but worst in runtime.  The minimal algorithm 
produces many Φ-nodes, but has small runtime.  The semi-pruned 
algorithm provides a middle ground in terms of runtime and 
quality of result.   

We divide the TEW of the minimal and semi-pruned algorithm 
(respectively) by the TEW of the pruned algorithm.  We call this 
the TEW ratio.  We use the pruned algorithm as a baseline 

because it consistently produces the smallest TEW.  Referring to 
Figure 7, the TEW of the minimal algorithm is much worse than 
that of the pruned algorithm.  For example, in the benchmark fft2, 
the TEW of the minimal algorithm is over 70 times that of the 
TEW of the pruned algorithm.  The semi-pruned algorithm yields 
a TEW that is smaller than that of the minimal algorithm, but still 
slightly larger than the TEW of the pruned algorithm.  All 
algorithms have the same asymptotic runtime and the actual 
runtimes for all the algorithms over all the benchmarks were very 
small (under 1 second).  Therefore, we feel that one should use the 
pruned algorithm as it minimizes data communication much better 
than the other two algorithms.  Furthermore, the actual additional 
runtime needed to run the pruned algorithm is miniscule.  
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Figure 7: Comparison of total edge weight (TEW) between the 
minimal and semi-pruned TEW and the pruned TEW 

Each of the algorithms we compared attempt to minimize the 
number of Φ-nodes, and not the data communication.  There is 
obviously a relationship between the number of Φ-nodes and the 
amount of data communication.  Every Φ-node defines additional 
data communication, but there can be inter-node data transfer 
without Φ-nodes.  Furthermore, as we pointed out in Section 4.2, 
minimizing the number of Φ-nodes does not directly correspond 
to minimizing the data communication. 

In Figure 8, we compare the ratio of Φ-nodes and the ratio of 
TEW using the minimal and pruned algorithms.  As you can see, 
the number of Φ-nodes is highly related to the amount data 
communication.   As the Φ-node ratio increases, the TEW ratio 
increases.  Correspondingly, a large Φ-node ratio corresponds to a 
large TEW ratio.  This lends validation to the using SSA 
algorithms to first minimize inter-node communication and then 
use the spatial Φ-node repositioning to further reduce the data 
communication.  In other words, minimizing the number of Φ-
nodes is a good objective function to initially minimize data 
communication. 

Our next set of experiments focus on using spatial SSA Φ-node 
distribution to further minimize the amount of data 
communication.  Figure 9 shows the number of Φ-nodes that are 
spatially distributed by the spatial SSA algorithm.  We can see 
that these Φ-nodes are fairly common; in some of the benchmarks, 



over 35% of the Φ-nodes are spatially moved.  The average 
number of distributed Φ-nodes over all the benchmarks is 
11.65%, 18.21% and 13.56%3 for the pruned, semi-pruned and 
minimal algorithms, respectively. 
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Figure 8: A comparison of total edge weight (TEW) and the 
number of ΦΦΦΦ-nodes using the minimal and pruned algorithms. 

Figure 10 gives the percentage of TEW improvement we achieve 
by spatially distributing the nodes.  By spatially distributing the 
Φ-nodes, we reduce the TEW by 1.80%, 4.77% and 8.16% in the 
pruned, semi-pruned and minimal algorithms, respectively.  We 
believe the small amount of improvement in TEW can be 
attributed to two things.  First of all, the TEW contributed by the 
Φ-nodes is only a small portion of the total TEW.  Also, when the 
number of Φ-nodes is small, the number of Φ-nodes to distribute 
is also small.  This is apparent in the increasing trend seen by the 
pruned, semi-pruned and minimal algorithms.  There are many Φ-
nodes when we use the minimal algorithm and correspondingly, 
there TEW improvement of the minimal algorithm is the 8.16%.  
Conversely, the number of Φ-nodes in the pruned algorithm is 
small and the TEW improvement is also small.  

6 Related Work 
The idea of hardware compilation has been discussed since the 
80’s.  At that time, it was under the guise of silicon compilation 
and related closely to what is referred to as behavioral synthesis 
nowadays.   

The past 15 years have brought about a number of platforms that 
take high-level code and generate a hardware configuration for 
that platform.  The PRISM project [17] took functions 
implemented in a subset of C and compiled them to their FPGA-
like architecture.  The Garp compiler [18] takes automatically 
maps C code to their MIPS + FPGA architecture. The DeepC 
compiler [19] is the most similar to our work, as it synthesizable 
Verilog from C or Fortran. These are some of the more prevalent 

                                                                 
3 Not all of the benchmarks are included in Figure 9; the omitted 

benchmarks have 0 Φ-nodes that should be distributed, but 
these benchmarks are included in the averages. 

academic works in hardware compilation.  The SystemC [1] and 
SpecC [2] languages have created much industrial interest in 
hardware compilation.  Many companies including Synopsis and 
Cadence are exploring hardware compilation from these two 
languages. 

Many compiler techniques use SSA for analysis or transformation 
[20,21,22].  Also, there have been modifications of SSA form 
[23,24].  To the best of our knowledge, this is the first work that 
considers SSA form for hardware compilation. 
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Figure 9: Comparison of the number of spatially distributed 
ΦΦΦΦ-nodes and the total number ΦΦΦΦ-nodes using the three SSA 
algorithms. 
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7 Conclusion 
In this work, we presented methods needed for hardware 
compilation.  First, we described a framework for compiling a 
high-level application to an HDL.  The framework includes 
methods for transforming a traditional compiler IR to an RTL-
level HDL.  We illustrated how to transform the IR into a CDFG 
form.  Using the CDFG form, we explained methods to control the 
path of execution.  Furthermore, we gave methods for 
communicating data between the control nodes of the CDFG. 

We examined the use of SSA to minimize the amount of data 
communication between control nodes.  We showed that through 
the use of SSA, we reduced the amount of inter-node 
communication by 70 times in one DSP function.  We showed a 
shortcoming of SSA when it is applied to minimizing data 
communication.  The temporal positioning of the Φ-node is not 
optimal in terms of data communication.  We formulated an 
algorithm to spatially distribute the Φ-node to minimize the 
amount of data communication.  We showed that this spatial 
distribution can decrease the data communication by 20% for 
some DSP functions. 

As future work, we plan to integrate this functionality into the 
hardware compiler we creating for reconfigurable systems.  Then, 
we can examine the actual effect that minimizing data 
communication has on hardware parameters such as area, power, 
delay, etc. Additionally, we hope to find a distribution of Φ-nodes 
such that the data communication is provable minimal.   
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