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Abstract—In this paper, we investigate cloud platform support
that provides distributed applications with automatic service
placement across different cloud computing systems (hybrid
clouds), and that enables application developers to investigate
the impact of using different cloud-based data consistency mod-
els with their applications. By pursuing its implementation at
the cloud runtime layer (platform), we are able to provide hy-
brid cloud support without requiring application modification
or significant developer expertise.

We investigate the efficacy of such portabililty for different ap-
plication domains (web services and computationally-intensive
HPC applications, via Monte Carlo simulations). We examine
different hybrid cloud placement strategies based on cost, per-
formance, and common use cases. We evaluate the performance
of such placement strategies as well as different data consistency
policies.
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1. INTRODUCTION
Distributed computing has long offered great promise to
programmers interested in developing applications that serve
large volumes of web traffic or that operate on vast data
sets. However, accessing large numbers of machines has
traditionally been expensive enough to limit their use severely
by programmers at large. Cloud computing, a service-
oriented approach to distributed systems, has done much to
rectify this problem. Vendors of cloud computing services
provide access to a well-defined infrastructure, platforms, or
software and charge for its use using pre-determined service-
level agreements (SLAs), at a fraction of the cost of owning
and maintaining a cluster.

An SLA guarantees a specified level of service quality and/or
availability (e.g., 10Gb/s maximum IO performance or 99.9%
uptime). If the guarantees are not met, the user can request
a partial refund. In practice, such refunds are of little use:
the cost of the service that has failed is often insignificant
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compared to the costs suffered by the business operating them
(e.g., lost business for web vendors). Moreover, the onus
of reporting guarantee violation is on the customer not the
provider.

Although infrequent, all of the major cloud computing ven-
dors have suffered from service outages lasting from several
hours to several days. Amazon Web Services (AWS), an
infrastructure provider, offers access to virtual machines that
users can customize for their own applications. On April 21,
2011, machines hosted in their U.S. East Coast datacenters
failed, causing an outage of multiple hours for most users
and multiple days for others [1]. Businesses hosted solely on
AWS’s East Coast datacenters were unavailable for the dura-
tion of the outage. A noteworthy business that experienced
an outage due to this was Heroku, a cloud platform provider
that offers scalable hosting for Ruby on Rails applications.
As Heroku was hosted largely within the AWS East Coast,
Amazon’s failure caused their applications to fail, and cus-
tomers using Heroku for hosting suffered from 16 to 60 hours
of operational downtime [2]. Google also provides a platform
offering, known as App Engine, and as it is hosted entirely
on machines that Google owns. On February 24, 2010, App
Engine suffered from a Datastore outage that prevented users
from writing data to the database that App Engine utilizes for
the duration of a day [3]. Other failures across these providers
have been detailed in [4] [5][6].

To enable applications to tolerate outages such as these, cloud
vendors increasingly offer services that span multiple data
centers. For example, Amazon Elastic Compute Cloud (EC2)
users can host their applications in multiple datacenters (e.g.,
the U.S. West Coast and U.S. East Coast) so that a single
datacenter’s failure does not cause the failure of all machines
hosting the application. Doing so, however, is a manual
exercise and requires significant user expertise. The Google
App Engine cloud platform automates such use for hosted
applications, which can be written in Python, Java, and Go.
Most services that App Engine hosts only require the use of
a single datacenter, but they do offer a structured data storage
service known as the High Replication Datastore that spans
multiple datacenters. These services are only offered on-
premise, though, and are not available to run within a locally
maintained datacenter.

Although these clouds have largely been used for web ser-
vices to date, they are seeing additional use for scientific com-
puting. One particular problem domain that has found use is
the Monte Carlo simulation, by which a process is simulated
via a large number of probalistic, independent computations.
As the computations do not rely on one another, they follow
an embarrassingly parallel programming model and can be
executed in parallel. The technique is general enough that
it has seen widespread use: some uses within the Aerospace
community include target tracking of aircraft [7], flight safety
risk assessments [8], and aerospace vehicle structure sim-
ulations [9]. The popular MapReduce [10] programming
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paradigm enables support for distributed Monte Carlo sim-
ulations, and thus can be executed over Amazon and Google
App Engine through the Elastic MapReduce and MapReduce
API offerings, respectively.

Developers can take steps toward fault tolerance and cross-
cloud portability (the use of different cloud fabrics or lower
cost services by the same application) by designing their
applications for execution across different cloud systems, a
hybrid cloud deployment. This is possible in theory since
most cloud vendors today offer a similar subset of services
(e.g. un/structured data management, instance control, load
balancing, elasticity, programming models ala map-reduce,
background task execution, etc.). Unfortunately, cloud ven-
dors are disincentivized to interoperate with each other since
doing so will enable users to move between vendors more
easily, thus increasing competition. Instead, cloud vendors
“lock-in” users through the use of different service APIs,
control tools (APIs), and SLAs, which make practical hybrid
cloud use very challenging and requiring significant applica-
tion modification and complexity.

In this work, we investigate enabling hybrid cloud use via
cloud platform layer. To do so we extend the AppScale [11],
[12], [13] cloud platform – a free and open source cloud
runtime system that executes over different cloud fabrics.
Applications that use the AppScale APIs avoid lock-in since
they can execute on any cloud fabric over which AppScale
runs, i.e. the AppScale platform provides a portability layer
for applications. We use this platform to investigate the
potential of hybrid cloud deployments. In addition, we extend
the system to enable developers to control and to investigate
the characteristics of two key cloud services: consistency of
structured data and service/component placement.

Cloud providers today offer access to structured data via
distributed and highly available key-value datastore tech-
nologies. Updates to data using these technologies can be
strongly consistent (ala Google BigTable [14]), i.e., any read
that follows a write is guaranteed to see the updated value.
When there are multiple copies of the data that must be kept
consistent, this constraint can introduce overhead and limit
the degree to which such data access scales. As an alternative,
the datastore can relax this constraint so that updates are
“eventually” propagated through the system (ala Amazon
Dynamo [15]). Therefore, a read by some other user may
see an older, stale value instead of the most recent update.
Datastores implement eventual consistency by reducing the
number of replicas required to read or write a piece of data.
Although some applications require strong consistency guar-
antees, many do not and thus can benefit from the additional
scale that relaxed consistency offers. However, since eventual
consistency is a relatively new option, many developers are
unsure of how their applications might be affected by its use.
Our first AppScale extension enables developers to experi-
ment with different consistency levels offered by different
cloud datastore technologies.

Service placement is a mechanism for executing compo-
nents that an application uses on specific physical or virtual
machines (VMs). Intelligent placement of components can
improve both communication and computation performance,
e.g. heavily communicating components can be placed
“near” each other to reduce latencies. Component placement
within VMs relies on process-level isolation in contrast to the
full isolation that VM isolation provides. Like consistency,
different applications can exploit and benefit from different
placement configurations and trade offs in different ways.

However, to date there is no automated approach to intelligent
placement across cloud systems. Thus, providing such place-
ment for an application must be done manually by each indi-
vidual applications developer, requiring significant learning
curves, expertise, and deployment/configuration complexity.
Our second AppScale extension enables developers to exper-
iment with different placement options within the same [16]
and across different cloud fabrics (this work), easily and
without application modification.

We implement hybrid cloud support and facilitate experimen-
tation with data consistency and service placement for both
web service and high-performance computing (HPC) appli-
cation domains. We examine different hybrid cloud place-
ment strategies based on cost, performance, and common
use cases. We evaluate the performance of such placement
strategies as well as different data consistency policies using
real applications and disparate cloud fabrics. We find that our
extensions significantly simplify hybrid cloud application de-
ployment and lay the groundwork for cross-cloud application
portability, concurrent use, and improved fault tolerance. In
summary, with this paper we contribute:

• An automated web hosting platform that operates over
hybrid clouds without requiring application designers to be
cognizant of the number of infrastructures or the characteris-
tics of the infrastructures it runs over.
• Hybrid cloud support for strong and eventual consistency
for applications hosted within AppScale.
• Service placement techniques for hybrid cloud deploy-
ments, supporting both web applications and HPC applica-
tions within AppScale.
• An evaluation of the consistency support and placement
support over hybrid cloud deployments enabled via App-
Scale, utilizing a web application benchmark and a set of
Monte Carlo simulations similar in nature to those encoun-
tered by the Aerospace community.

In the sections that follow, we present our AppScale exten-
sions for hybrid cloud data consistency configuration (Sec-
tion 2), and service placement (Section 3). We then present
our empirical use cases, evaluation, and analysis of our
extensions (Section 4). In Sections 5 and 6, we overview
related work and conclude.

2. HYBRID CLOUD CONSISTENCY SUPPORT
Traditionally, programmers have designed systems that op-
erate within a single datacenter and operate on data with
strong consistency guarantees. Given recent advances in
cloud computing technologies both of these assumptions can
be relaxed to offer greater scalability and fault tolerance. To
help programmers understand, evaluate, and exploit these
advances, we investigate cloud platform support that allows
developers to experiment with different consistency models
and multi-cloud (hybrid) distributed application placement –
without requiring them to modify their applications. We first
investigate such support for differing data consistency models
and then consider hybrid cloud service placement.

Data Consistency Models

Non-relational datastores, commonly referred to as NoSQL
datastores, have emerged in the last decade to offer greater
scalability at the cost of a smaller feature set than those
offered by relational databases such as MySQL. One notable
feature is eventual consistency: instead of a read or write
operation requiring agreement between all holders of the data
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(known as replicas), only a subset of the replicas need be
contacted. This can result in a system that is eventually
consistent: data recently written may not be available to all
nodes in the system, and readers may receive a stale piece of
data. Gossip protocols [17] are used to update the data on
the other replicas after the initial write has been performed,
but the application must take the possibility into account of
receiving stale data. This is not always acceptable: some
applications require strong consistency at all times.

Two NoSQL datastores have emerged with support for vari-
able consistency: Cassandra [18] and Voldemort [19]. These
systems are variably consistent: specifically, the user has
control over the type of consistency used in the system.
The system can be either strongly consistent or eventually
consistent, and both datastores provide a number of relevant
configuration settings. With the Cassandra datastore, read
and write consistency is specified by the application itself,
indicating that a particular request must reach consensus by
agreement between all replicas, a majority of replicas (a
quorum), or only a single replica. A read request returns
a given piece of data but no indication of whether or not
it is stale (as the system may not know this information).
In contrast, the Voldemort datastore requires the database
administrator to create a database with a statically assigned
read and write factor (that is, the number of nodes required
for consensus in a read or write operation), and if multiple
versions exist for a piece of data, they are given to the user
with timestamp information.

These systems provide users with mechanisms for both even-
tual consistency and improved performance on strongly con-
sistent applications in certain scenarios. For example, if it
is known that the database will be used for predominantly
read operations, read operations can be set to succeed via
contacting only a single replica, and forcing write operations
to contact all replicas. This speeds up read operations at the
cost of write operations, and maintains a strongly consistent
system. If the distribution of reads to writes is fairly equal, a
quorum of replicas can be used for both operations to ensure
similar performance on these operations. If the application
can tolerate eventual consistency, then it can run with only a
single replica needed for read and write operations.

Variable Consistency via AppScale

AppScale currently provides support for the Cassandra and
Voldemort datastores, but by default configures them to use
strong consistency. This is done because a given user’s
application may require strong consistency and may break or
act incorrectly in eventually consistent modes. In this work,
we extend AppScale’s command-line tools, used by system
administrators to start and stop AppScale deployments, to
also allow users to specify the read and write policy that
applications should use.

For the Cassandra datastore, users can specify that any of
Cassandra’s acceptable read or write factors (one machine,
a quorum of replicas, or all replicas for consensus) be used.
In Voldemort, users specify the number of replicas required
for a read or write operation. Users can also specify the
number of replicas required for a given piece of data. This
allows users to specify that only a single replica is required
and to keep fast, strongly consistent access to their data, at
the cost of durability. This also allows users to quantify the
cost of varying the read, write, and replication factors within
a single cloud deployment or hybrid cloud deployments. It
also enables users to automatically deploy applications across
multiple clouds and not need to code the consistency model

or replication model into their applications.

3. HYBRID CLOUD SERVICE PLACEMENT
Service placement traditionally refers to the ability to place
essential services on the same machine or different machines.
In the web services domain, this typically entails the place-
ment of load balancers, web servers, and database nodes,
and in the HPC domain, this also entails the placement of
compute nodes. We extend this to include the placement of
cloud services. In particular, we provide support for users
to specify such placement programmatically and have the
underlying platform or infrastructure configure the services
automatically as part of the application deployment process.

Service Placement in Cloud Providers

Before looking at how we add hybrid cloud placement sup-
port to AppScale, we first examine existing solutions offered
by cloud computing vendors. Amazon offers its Elastic
Load Balancing [20] and SimpleDB [21] services to provide
optimized load balancing and database services, respectively.
These services are fully managed by Amazon. Both can
operate within multiple datacenters within a single region
(e.g., the U.S. East Coast), but users must write their own
service to replicate data across regions if needed.

Heroku and Google App Engine, operating at the platform
layer, allow users to specify the number of web servers that
should be used for the user’s application. The former exposes
these controls via a command-line interface while the latter
does so via a web interface. Both do so to give users the
ability to limit the monetary costs they incur by running their
application with a bounded number of resources or to scale
up if more machines are required.

Extending AppScale with Hybrid Cloud Service Placement

AppScale goes one step further than Heroku and Google App
Engine as a research platform and allows arbitrary services
to be placed on the same machine (colocated) if requested.
It also allows for the placement of all services in the system,
including memcache for caching support, database nodes,
and hot spares to be used in the platform as needed.

Before this work, however, placement support was largely
limited to a single cloud. AppScale does allow for dynamic
scaling of web servers and compute nodes via the Neptune
domain-specific language, and this support does extend to
hybrid cloud deployments. However, it did not allow the
user to statically specify the placement for hybrid cloud
deployments.

In this work, we extend the command-line tools that App-
Scale provides for cloud administrators (known as the App-
Scale tools) to allow them to specify hybrid cloud placement
in a manner identical to that of single cloud placement. As
an example, consider the scenario in which a single cloud is
used to run AppScale with two web servers and two database
nodes, shown in Figure 1. Configuration files are specified in
YAML [22], a markup language similar in use to XML. The
configuration file needed for this placement strategy would
be:

−−−
: m a s t e r : node−1
: a p p e n g i n e :
− node−1
− node−2
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Cloud 1 - EC2 East Coast or Eucalyptus

Figure 1. A single cloud deployment that runs application
servers and database nodes in Amazon EC2 or Eucalyptus.

App 
Server

App 
Server & 
Master

DB Node

DB Node

Cloud 1 - EC2 East Coast Cloud 2 - Private Eucalyptus Deployment

Figure 2. A hybrid cloud deployment that runs application
servers in Amazon EC2’s East Coast region and database
nodes in a privately maintained Eucalyptus cloud.

: d a t a b a s e :
− node−3
− node−4

This deployment also includes the use of a single node
(named master in these examples) that handles fault-
tolerance and database transaction semantics. The analogous
configuration file for a hybrid cloud deployment utilizing two
clouds (visually depicted in Figure 2) would be:

−−−
: m a s t e r : c loud1 −1
: a p p e n g i n e :
− c loud1 −1
− c loud1 −2
: d a t a b a s e :
− c loud2 −1
− c loud2 −2
This configuration file in particular also specifies that all of
the application servers should be placed in the first cloud and
all of the database nodes should be placed in the second cloud.
One foreseeable use case for this type of deployment would
be for scenarios where the data computed by the application
server or compute node is sensitive data that cannot be stored
on an externally managed cloud like Amazon EC2. Here,
the database nodes all run in a separate cloud, so users could
set up a locally maintained Eucalyptus cloud [23] that is
managed by trusted users.

If the user wanted to place one application server and one
database node in each cloud, the configuration file would be
slightly different (visually depicted in Figure 3):

−−−
: m a s t e r : c loud1 −1
: a p p e n g i n e :
− c loud1 −1

DB Node

App 
Server & 
Master

App 
Server

DB Node

Cloud 1 - EC2 East Coast Cloud 2 - Private Eucalyptus Deployment

Figure 3. A hybrid cloud deployment that runs one appli-
cation server and one database node in each of two clouds,
Amazon EC2 and Eucalyptus.

− c loud2 −1
: d a t a b a s e :
− c loud1 −2
− c loud2 −2

Once the user specifies their credentials for each cloud (via
environment variables), the AppScale tools spawn the node
marked master in whichever cloud has been specified. The
tools then give this node the credentials and the placement
file and instruct it to spawn the other nodes as needed. This
workflow is identical to the single cloud scenario, with the
exception that now more than a single cloud is supported.
The user’s web applications or HPC code does not need to
be aware of how many clouds are present: it is abstracted
away and handled by AppScale and Neptune.

4. EVALUATION
We next evaluate our extensions to AppScale and use them
to investigate the performance impact of utilizing eventual
consistency and placement support in hybrid cloud environ-
ments. We first present our experimental methodology and
then discuss our results.

Experimental Methodology

To evaluate the costs associated with eventual consistency
and placement support in hybrid cloud environments, we
benchmark their use with web service and HPC applica-
tions. Across all of our experiments, we run AppScale over
a hybrid cloud deployment utilizing a locally maintained
Eucalyptus cloud (located on the U.S. West Coast) and a
remotely maintained Amazon EC2 cloud (located on the
U.S. East Coast). The Eucalyptus cloud runs Eucalyptus
2.0.3 with one physical machine dedicated to use as a Cloud
Controller, Cluster Controller, and Storage Controller, while
all other machines involved act solely as Node Controllers.
We utilize AppScale 1.5.1, modified to employ our hybrid
cloud support for user-specified eventual consistency and
placement support. Neptune 0.1.1 and Cassandra 0.7.6-2
are also utilized throughout these experiments. All values
reported here represent the average of five runs.

The web service application we use is Active Cloud DB [24].
Active Cloud DB is a Google App Engine application written
in Python that provides a RESTful interface to any database
with support for the Google Datastore API. It also employs
the Google Memcache API to provide a write-through cache
to speed up database puts, gets, and deletes, and a gener-
ational cache for query operations. For these experiments,
we have disabled its use of the Memcache API to better
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understand the operation of the underlying database. In all
web service experiments, we dispatch 10,000 web operations,
each being either a read or write operation, to Active Cloud
DB. Reads and writes are sent in serial and at a 20:3 ratio,
a rate that is consistent with the web application access rate
measured in [25]. For writes, we also vary the size of the data
written, choosing randomly to write either 10, 100, or 500
characters for each entry (500 characters being the limit for
the App Engine string database type used by Active Cloud
DB).

We fix the placement strategy used to place three database
nodes in Eucalyptus and an application server in Amazon
EC2, use 2-times replication, and vary the data consistency
policy used between four policies: an eventually consis-
tent policy (read=one, write=one), a strongly consistent pol-
icy favoring reads (read=one, write=all), a strongly con-
sistent policy favoring writes (read=all, write=one), and a
strongly consistent policy favoring neither reads nor writes
(read=quorum, write=quorum). We refer to these in the re-
sults as Eventually Consistent, Reads Favored,
Writes Favored, and Read/Write Neutral, re-
spectively. As data is replicated twice over three database
nodes, the quorum case for reads and writes is equivalent to
the read-all, write-all scenario.

Our HPC application is a specialized type of Monte Carlo
simulation, known as a Stochastic Simulation Algorithm
(SSA) [26]. This algorithm, also referred to as a kinetic
Monte Carlo algorithm, is used to simulate the conditions
found in biochemical systems, and follows a similar ex-
ecution strategy to Monte Carlo simulations used by the
Aerospace community. The particular SSA we utilize in
this work is known as the Diffusive Finite State Projection
Algorithm [27], and like other Monte Carlo algorithms, is
structured in an embarrassingly parallel manner: it runs a
number of Monte Carlo simulations and takes the average
of the results seen. Previous works [16] have executed
10,000 simulations to gain statistical accuracy: here we run
1,000 simulations, as we are more interested in potential
performance gains from altering service placement or the
data consistency policy than focusing on the computation
itself. We measure both the amount of time spent executing
simulations as well as the amount of time spent storing the
results of these simulations. We currently store each result
individually after it has been calculated (providing a total of
1,000 smaller storage operations) as opposed to storing the
results after all computations have been completed (providing
a total of one large storage operation). This is done for fault-
tolerance, so that the failure of a single node does not entail
the loss of all the simulations it has computed.

We run these experiments first utilizing strong consistency
favoring writes (read=all, write=one), as this workload is
write-heavy. We then repeat the experiment under an even-
tually consistent model (read=one, write=one). We run each
of these experiments under two placement strategies. The
first (hereafter referred to as Config 1) places three database
nodes in Eucalyptus and two compute nodes in Amazon EC2
(similar to that of Figure 2). The second (hereafter referred to
as Config 2) places two database nodes in Eucalyptus, one in
Amazon EC2, and places one compute node in Eucalyptus,
and another in Amazon EC2 (similar to that of Figure 3).

Results

We begin by examining the results of Active Cloud DB
between the four data consistency policies described earlier.
Table 1 shows the average latency and throughput for 10,000

Response Time Throughput
(sec/op) (op/sec)

Eventually Consistent 0.672 ± 0.002 1.486 ± 0.004
Reads Favored 0.676 ± 0.001 1.477 ± 0.002
Writes Favored 0.670 ± 0.001 1.492 ± 0.002
Read/Write Neutral 0.699 ± 0.001 1.430 ± 0.002

Table 1. Average response time and throughput for the
Active Cloud DB benchmark with different data consistency

settings under low load.

Response Time Throughput
(sec/op) (op/sec)

Eventually Consistent 5.916 ± 0.009 0.169 ± 0.0002
Read/Write Neutral 6.030 ± 0.003 0.165 ± 0.0001

Table 2. Average response time and throughput for the
Active Cloud DB benchmark with different data consistency

settings under high load.

randomly dispatched operations. Read/write neutral performs
the worst of the policies examined, while the other three
policies perform similarly to one another. This concurrence
is due to the fact that these policies require communication
with only a single node for a read and/or write, and do not
need to dispatch requests to all nodes and wait for a majority
to respond successfully.

All 10,000 web requests dispatched in each experiment
caused the application to return an HTTP 200 response,
which indicates that the system was able to serve all web
requests without error. This is to be expected: a single
accessing thread does not provide enough traffic on its own to
overburden the multiple load balancers, application servers,
and database nodes that are host this application. However, it
is enough traffic to demonstrate a difference in performance
between the read/write neutral policy and the other policies.
It is notable that the eventually consistent policy does not
perform significantly faster than the read or write-favoring
policies. This is expected to be because of the relatively
low amount of load we are putting on the system, and we
expect that sending requests to the system in parallel would
demonstrate a larger difference between these policies.

We continue our web experiment by increasing the amount
of load on the system from a single machine with a sin-
gle accessing thread to three machines with three accessing
threads each, for a total of nine accessors. Each accessor
performs 10,000 web requests, the results of which are shown
in Table 2. As opposed to the previous experiment, we limit
ourselves to the eventually consistent policy and the strongly
consistent read-write-neutral policy. As was the case previ-
ously, all requests still return HTTP 200 codes, indicating
that all requests were successful, but we see a near-linear
slowdown with respect to response time and throughput. This
provides enough load to where we can see a more pronounced
difference between the eventually consistent policy and the
read-write-neutral policy, in favor of eventual consistency.

We next examine the results of our SSA implementation
across the two placement strategies that we described ear-
lier. Here we compare strong consistency against eventual
consistency. For the DFSP code (an SSA implementation),
we measure both the total computation time as well as the
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Strongly Consistent Eventually Consistent
(secs) (secs)

Config 1 4747.69 ± 348.18 5086.36 ± 223.21
Config 2 4655.25 ± 265.46 4680.76 ± 280.70

Table 3. Total computation times for the DFSP SSA
implementation with different placement strategies and data

consistency settings.

Strongly Consistent Eventually Consistent
(secs) (secs)

Config 1 1458.38 ± 55.48 1781.38 ± 298.66
Config 2 1334.73 ± 20.76 1691.03 ± 497.40

Table 4. Total storage times for the DFSP SSA
implementation with different placement strategies and data

consistency settings.

total amount of time spent storing data to Cassandra, referred
to as the total storage time. The total computation time for
these experiments is shown in Table 3, while the total storage
time is shown in Table 4. As expected, the total computation
time is similar regardless of which placement strategy or
data consistency setting is used (as it is independent of these
factors). However, the variance in the results has significantly
increased when we use a hybrid placement that includes
Amazon EC2.

We believe that this is due to the performance fluctuations of
Amazon EC2 itself as opposed to our extensions and system.
We have observed that we occasionally receive machines that
performed much slower than average. When we run this
experiment on machines that were either consistently fast
or slow produced results with an order of magnitude less
standard deviation (e.g., 20 seconds versus 200 seconds). As
this required us to acquire new machines for our experiment
for each of the five runs the data is averaged over, using a
single set of machines for all of the five runs is equivalent
to acquiring five equally-powered machines, and thus also
exhibits low standard deviation.

This behavior is not identical with respect to the total storage
time: here, we only saw large standard deviations in the cases
where eventual consistency was used. This is likely due to our
execution/use of Cassandra’s gossip protocol over a hybrid
cloud environment, as we were not utilizing Cassandra’s
cross-datacenter capabilities. We are looking into enabling
automated support for this and validating this hypothesis.

Regardless, we do see that using eventual consistency does
not provide a significant improvement in execution or stor-
age time, and that neither placement strategy significantly
improves the storage time. This is for the same reason as in
the web experiment: the DFSP code does not produce enough
output at a fast enough rate to burden the database to the point
where eventual consistency or a different placement strategy
would be effective.

5. RELATED WORK
Other works exist that provide support for hybrid cloud de-
ployments. As Google App Engine automatically and trans-
parently hosts web applications across multiple datacenters,
it is the closest to our work in spirit. Its High Replication

Datastore (HRD) [28] is perhaps the largest-scale automated
hybrid cloud deployment, leveraging multiple datacenters to
provide data redundancy and mask the impact of a failed
or performance-degraded datacenter. HRD also prevents
programmers from having to code their applications in a
manner that forces them to be aware of how many resources
they run over and where the resources are.

Our extensions to AppScale are done with the same moti-
vation: to provide those looking to do research on cloud
platforms with a way to run applications over hybrid cloud
resources. In particular, we emphasize that the application
must not need to be aware of where it is located and how
many resources it utilizes. In contrast to App Engine, we
provide users with a way to explicitly dictate where all
of the critical services run, allowing them to experiment
with different configurations with respect to monetary cost,
performance, or their own specific use cases. App Engine
also primarily targets the web service domain, and while
AppScale does as well, it also provides support for HPC
frameworks.

App Engine also does allow applications to set their own
read and write policies, but overrides this behavior within
transactions (transactions always are strongly consistent).
This forces the application designer to specify the consistency
settings for each read and write (if different from the default
setting). Our extensions take a different approach, and allow
a given read and write policy to be set for applications
transparently so that they do not have to change their code
to make use of it.

6. CONCLUSION
We contribute a set of extensions to the AppScale cloud plat-
form that facilitate portable use and automatic configuration
of hybrid cloud environments. We extend this portability to
the data management level to offer a choice of eventual and
strong consistency to application developers. Specifically,
we enable users to set read and write consistency settings
and automatically apply them to their application. This is
done below the application’s level of abstraction, and does
not require the application’s code to change to accomodate
it. We also allow cloud administrators to specify placement
strategies to be used within hybrid cloud environments, and
automatically deploy their services accordingly. This enables
users to quantify the effects of different levels of consistency
and different placement strategies within hybrid cloud envi-
ronments.

These contributions aid both web application developers as
well as the Aerospace community, who utilize Monte Carlo
simulations like those shown here in their own work. This
gives users an open platform with which they can experiment
with via different data consistency models and hybrid cloud
environments. Our modifications to AppScale have been
committed back to the AppScale project and can be found
at http://appscale.cs.ucsb.edu.
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