AGAVE: A Visualization Tool for Parallel Programming

Chandra Krintz and Steven M. Fitzgerald
Department of Computer Science
School of Engineering and Computer Science
California State University, Northridge
Northridge, CA 91330-8281

{secsckri,sfitzger }@secs.csun.edu

Abstract

In this paper, we describe a wvisualization tool,
AGAVE, an acyclic graph assembler, wviewer, and
executor. This tool will facilitate program develop-
ment, classroom wnstruction, and performance tun-
wng for parallel programming. AGAVE will allow pro-
grammers to assemble, to view, and to execute data
flow graphs within an integrated environment. Us-
g AGAVE, a programmer will be able to construct
a parallel program and to watch the execution in the
form of an animated data flow graph. This activity
will provide valuable insight, allowing for debugging
and performance testing as synchronization and bot-
tlenecks become obvious.

1 Introduction

With the emergence of high performance, massively
parallel computers, new languages, tools, and pro-
gramming models are needed to effectively utilize the
technology. It is becoming more difficult to obtain
increased performance from the traditional von Neu-
mann model. The dataflow model has been proposed
as an alternative model because it provides high pro-
grammability, better modularity, easier program ver-
ification, and superior confinement of software errors
[AA82].

Data flow contains neither of the two basic charac-
teristics of the von Neumann computer: a single pro-
gram counter (PC) nor a global updateable memory.
First, the inherent restriction in the use of a PC, which
provides the machine with a sequence of instructions
for execution, is that it implies a central point of con-
trol. This is a fundamental limitation of the von Neu-
mann model in parallel environments because it forces
concurrency to be exploited within only a small win-
dow [AA82]. Second, globally accessible memory can
introduce side effects. Although, this memory mod-
ule provides a powerful means for sharing data struc-
tures and for communicating among various parts of

the program, it makes extraction of parallelism con-

siderably more difficult [AG94].

Data flow provides a different definition for concur-
rent execution. Advantages of data flow languages in-
clude their ability to make optimal use of implicit par-
allelism. The only sequencing constraints are the data
dependencies contained within the algorithm. An op-
eration many be performed whenever all the required
operands are available.

Many applicative languages, such as SISAL
[MSA*85], readily convert to a graph-based interme-
diate form, IFz. Such intermediate languages aid in
program generation as they readily expose available
parallelism. Graphical representations also provide a
useful mechanism for program visualization, enabling
debugging and performance enhancement. Addition-
ally, this representation is extremely useful for class-
room instruction. Such tools allow programmers to
obtain a comprehensive understanding of complicated
internal structures and data dependence in parallel
programs.

We are developing a multipurpose parallel program-
ming environment to aid teaching, software devel-
opment, and research. We have named the project
AGAVE: an Acyclic Graph Assembler, Viewer, and
Executor. This single programming environment will
provide three main functions: IFz graph assembly, [Fz
graph viewing, and IFz graph execution. This envi-
ronment is comprised of three separate modules that
communicate via sockets.

2 Background

In this section, we present an overview of two tools,
TWINE [MC92, Mil92] and GDT [MM91], and the
graph-based intermediate language, IFz, upon which
our project 1s based.

2.1 TWINE

TWINE is primarily a sequential execution engine
for the TF1 language. Programs are serialized for
sequential execution. A single valid execution or-
der is predetermined, based on a depth-first-search
(DFS) algorithm. TWINE then converts the serial-
ized graphs to C code with a tool called YIFT (Yet
Another Intermediate Form Translator). Source code
is also retained for debugging purposes. The TWINE
execution engine and its runtime system control the
execution of an IF1 graph. During execution, sys-
tem events produce internal signals. These signals
provide a mechanism by which internal packages, can
seize control of the environment and perform auxiliary
functions.

2.2 GDT

The display module of AGAVE 1is built on top of
a graph display tool, which we refer to as GDT. This
tool was developed to display acyclic graphs such as
TF1 [MM91]. The motivation behind GDT is to pro-
vide a means of visualizing data flow graphs to elimi-
nate the tedious job of analyzing the textual form of
intermediate languages. The graph layout is hierarchi-
cal and appropriate subgraphs can be easily viewed.
The tool is an 1implementation of an algorithm that
determines efficient layout of nodes and edges, and
minimizes edge crossing.

2.3 IFz

IFz [SG85] is a family of graph based languages
derived from the data flow model. These languages
were designed as an intermediate form for applicative
languages, such as SISAL. Individual operations are
represented by simple nodes, e.g., the PLUS node rep-
resents the addition operation. Compound nodes are
used to describe control-flow constructs, such as condi-
tionals and iterators. These compound nodes consist
of subgraphs that describe the individual functionality
of a control-flow construct. This interaction between
subgraphs 1s implicit, therefore, the control-flow con-
struct can be implemented differently for different ar-
chitectures.

Consider the mathematical expression, ((z+a)*(z+
b) * (b+ ¢ *a)). The data flow graph for this expres-
sion 1s depicted in Figure 1. The inherent parallelism
of the expression is made apparent by the graphical
representation. Since the nodes on the first level are
independent of each other, they can execute concur-
rently. Notice that additional information from the

source code is presented on graph edges. For exam-
ple, the %na=x indicates that the name of the variable
(x) associated with an edge.

raph of

== |

na=x fhnk=V hsl=9 Yna=a 4nk=V %sl=9

b
27 o
T

tnask fmk=Y hsl=9

fna=h Ank=V 7s1=9 fina=c fimk=V f%s1=9

1] F
3012%14

%I up graph| first graph

Figure 1: Graphical representation of

((x+a)*(x+b)*(b+c*a)) in IF1

3 The AGAVE Environment

We are developing a prototype that will be used
in a learning environment to aid in the development
of parallel programming strategies. Its purpose is to
provide both a user-friendly display tool for IFz lan-
guages and a mechanism for visualization of parallel
program execution. The three modules that comprise
AGAVE are the EXECUTOR, the VIEWER, and the
ASSEMBLER.

The EXECUTOR module is primarily the TWINE
execution engine. We have extended the package
mechanism within the tool to communicate with other
tools via sockets. Information about the execution
of individual nodes can be communicated outside the
program through sockets. In addition, we are extend-
ing sequential execution engine of TWINE to be a par-
allel execution engine. This will enable visualization
of parallel execution.

The VIEWER module of the environment is a di-
rect adaptation of the graph display tool. We have
incorporated the package methodology from TWINE
into this module so that it may receive external in-
formation through sockets. Additionally, we have in-
cluded the development of a user-friendly interface,
interaction with the AssEMBLER module, and inter-
active links between IF1 and user source code.

Since both the EXEcCUTOR and the VIEWER use
packages, interaction between the tools is simplified.
As different internal events occur, signals are passed
between the tools via the package mechanism. A

graphical overview of the environment is depicted in
Figure 2. For example, the EXECUTOR signals the
VIEWER when either a node is about to be executed
or has completed its execution. The VIEWER will then
highlight or de-highlight the corresponding node. As
these operations are performed for multiple nodes, the
execution of the graph can be visualized.

The ASSEMBLER is the third module in the environ-
ment, which will interact with both the EXECcUTOR
and the VIEWER. The ASSEMBLER is a drawing tool
that can be used to modify the graph layout manually,
to generate new graphs, and to convert user-generated
data flow graphs to the corresponding IF1 code. The
purpose of the module is to aid in the understanding
of data flow languages and to provide increased user
control over graph layout.

ASSEMBLER

DRAWING
UTILITY

f———————»To Display

EXECUTOR / X VIEWER

TWINE P P GDT
COMMUNICATION

Figure 2: The AGAVE environment. The P indi-
cates the package component of the EXECUTOR and
VIEWER.

4 Conclusion

AGAVE is an environment developed to aid in the
management of parallel programming considerations,
such as race conditions and performance tradeoffs be-
tween parallelization and communication. It incorpo-
rates three very important aspects of program devel-
opment: design, implementation, and debugging. It
is a tool that will encourage involvement by students,
faculty, and researchers in data flow by providing a
visual representation of parallel programs. It allows
visualization of implicit parallelism in programs and
provides a means for debugging and effectively utiliz-
ing parallel architectures. AGAVE builds on research
from GDT and TWINE projects and can easily be
enhanced and extended into new projects.

References

[AA82]

[AG4]

[MC92]

[Mil92]

[MM91]

[MSAT85]

[SG85]

Tilak Agerwala and Arvind. Data flow
systems. JEEE Computer, 15(2):10-13,
February 1982.

George S. Almasi and Allan Gottlieb.
Highly Parallel Computing. The Benjamin-
Cummings Publishing Company, Inc., sec-
ond edition, 1994.

Patrick J. Miller and Walter Cedenno. A
User’s Guide to TWINE, September 1992.

Patrick J. Miller. TWINE: A portable, ex-
tensible SISAL execution kernel. In Pro-
ceedings of the Second SISAL Users” Con-
ference, pages 243-256, San Diego, Califor-
nia, December 1992. Lawrence Livermore
National Laboratory, CONF-9210270.

Srdjan Mitrovic and Stephan Murer. A
tool to display hierarchical acyclic dataflow
graphs. In International Conference on

Parallel Computing Technologies, pages
304-315, September 1991.

James McGraw, Stephen Skedzielewski,
Stephen Allan, Rod Oldehoeft, Chris
Kirkham, Bill Noyce, and Robert Thomas.
SISAL: Streams and Iteration in a Sin-
gle Assignment Language, Language Refer-
ence Manual Version 1.2. Lawrence Liver-
more National Laboratory, M-146 edition,
March 1985.

Stephen Skedzielewski and John Glauert.
IF1 — An Intermediate Form for Applica-
tiwe Languages. Lawrence Livermore Na-
tional Laboratory, Livermore, CA, M-170
edition, July 1985.

