
AGAVE� A Visualization Tool for Parallel Programming

Chandra Krintz and Steven M� Fitzgerald

Department of Computer Science

School of Engineering and Computer Science

California State University� Northridge

Northridge� CA ����������

fsecsckri�s	tzgerg
secs�csun�edu

Abstract

In this paper� we describe a visualization tool�

AGAVE� an acyclic graph assembler� viewer� and

executor� This tool will facilitate program develop�

ment� classroom instruction� and performance tun�

ing for parallel programming� AGAVE will allow pro�

grammers to assemble� to view� and to execute data

�ow graphs within an integrated environment� Us�

ing AGAVE� a programmer will be able to construct

a parallel program and to watch the execution in the

form of an animated data �ow graph� This activity

will provide valuable insight� allowing for debugging

and performance testing as synchronization and bot�

tlenecks become obvious�

� Introduction

With the emergence of high performance� massively
parallel computers� new languages� tools� and pro�
gramming models are needed to e�ectively utilize the
technology� It is becoming more di�cult to obtain
increased performance from the traditional von Neu�
mann model� The data�ow model has been proposed
as an alternative model because it provides high pro�
grammability� better modularity� easier program ver�
i�cation� and superior con�nement of software errors
�AA�	
�

Data �ow contains neither of the two basic charac�
teristics of the von Neumann computer� a single pro�
gram counter �PC nor a global updateable memory�
First� the inherent restriction in the use of a PC� which
provides the machine with a sequence of instructions
for execution� is that it implies a central point of con�
trol� This is a fundamental limitation of the von Neu�
mann model in parallel environments because it forces
concurrency to be exploited within only a small win�
dow �AA�	
� Second� globally accessible memory can
introduce side e�ects� Although� this memory mod�
ule provides a powerful means for sharing data struc�
tures and for communicating among various parts of

the program� it makes extraction of parallelism con�
siderably more di�cult �AG��
�

Data �ow provides a di�erent de�nition for concur�
rent execution� Advantages of data �ow languages in�
clude their ability to make optimal use of implicit par�
allelism� The only sequencing constraints are the data
dependencies contained within the algorithm� An op�
eration many be performed whenever all the required
operands are available�

Many applicative languages� such as SISAL
�MSA���
� readily convert to a graph�based interme�
diate form� IFx� Such intermediate languages aid in
program generation as they readily expose available
parallelism� Graphical representations also provide a
useful mechanism for program visualization� enabling
debugging and performance enhancement� Addition�
ally� this representation is extremely useful for class�
room instruction� Such tools allow programmers to
obtain a comprehensive understanding of complicated
internal structures and data dependence in parallel
programs�

We are developing a multipurpose parallel program�
ming environment to aid teaching� software devel�
opment� and research� We have named the project
AGAVE� an Acyclic Graph Assembler� Viewer� and
Executor� This single programming environment will
provide three main functions� IFx graph assembly� IFx
graph viewing� and IFx graph execution� This envi�
ronment is comprised of three separate modules that
communicate via sockets�

� Background

In this section� we present an overview of two tools�
TWINE �MC�	� Mil�	
 and GDT �MM��
� and the
graph�based intermediate language� IFx� upon which
our project is based�



��� TWINE

TWINE is primarily a sequential execution engine
for the IF� language� Programs are serialized for
sequential execution� A single valid execution or�
der is predetermined� based on a depth��rst�search
�DFS algorithm� TWINE then converts the serial�
ized graphs to C code with a tool called YIFT �Yet
Another Intermediate Form Translator� Source code
is also retained for debugging purposes� The TWINE
execution engine and its runtime system control the
execution of an IF� graph� During execution� sys�
tem events produce internal signals� These signals
provide a mechanism by which internal packages� can
seize control of the environment and perform auxiliary
functions�

��� GDT

The display module of AGAVE is built on top of
a graph display tool� which we refer to as GDT� This
tool was developed to display acyclic graphs such as
IF� �MM��
� The motivation behind GDT is to pro�
vide a means of visualizing data �ow graphs to elimi�
nate the tedious job of analyzing the textual form of
intermediate languages� The graph layout is hierarchi�
cal and appropriate subgraphs can be easily viewed�
The tool is an implementation of an algorithm that
determines e�cient layout of nodes and edges� and
minimizes edge crossing�

��� IFx

IFx �SG��
 is a family of graph based languages
derived from the data �ow model� These languages
were designed as an intermediate form for applicative
languages� such as SISAL� Individual operations are
represented by simple nodes� e�g�� the Plus node rep�
resents the addition operation� Compound nodes are
used to describe control��ow constructs� such as condi�
tionals and iterators� These compound nodes consist
of subgraphs that describe the individual functionality
of a control��ow construct� This interaction between
subgraphs is implicit� therefore� the control��ow con�
struct can be implemented di�erently for di�erent ar�
chitectures�

Consider the mathematical expression� ��x�a��x�
b � �b � c � a� The data �ow graph for this expres�
sion is depicted in Figure �� The inherent parallelism
of the expression is made apparent by the graphical
representation� Since the nodes on the �rst level are
independent of each other� they can execute concur�
rently� Notice that additional information from the

source code is presented on graph edges� For exam�
ple� the �na�x indicates that the name of the variable
�x associated with an edge�

Figure �� Graphical representation of
��x�a��x�b��b�c�a in IF�

� The AGAVE Environment

We are developing a prototype that will be used
in a learning environment to aid in the development
of parallel programming strategies� Its purpose is to
provide both a user�friendly display tool for IFx lan�
guages and a mechanism for visualization of parallel
program execution� The three modules that comprise
AGAVE are the Executor� the Viewer� and the
Assembler�

The Executor module is primarily the TWINE
execution engine� We have extended the package
mechanismwithin the tool to communicate with other
tools via sockets� Information about the execution
of individual nodes can be communicated outside the
program through sockets� In addition� we are extend�
ing sequential execution engine of TWINE to be a par�
allel execution engine� This will enable visualization
of parallel execution�

The Viewer module of the environment is a di�
rect adaptation of the graph display tool� We have
incorporated the package methodology from TWINE
into this module so that it may receive external in�
formation through sockets� Additionally� we have in�
cluded the development of a user�friendly interface�
interaction with the Assembler module� and inter�
active links between IF� and user source code�

Since both the Executor and the Viewer use
packages� interaction between the tools is simpli�ed�
As di�erent internal events occur� signals are passed
between the tools via the package mechanism� A



graphical overview of the environment is depicted in
Figure 	� For example� the Executor signals the
Viewer when either a node is about to be executed
or has completed its execution� The Viewer will then
highlight or de�highlight the corresponding node� As
these operations are performed for multiple nodes� the
execution of the graph can be visualized�

TheAssembler is the third module in the environ�
ment� which will interact with both the Executor
and the Viewer� The Assembler is a drawing tool
that can be used to modify the graph layout manually�
to generate new graphs� and to convert user�generated
data �ow graphs to the corresponding IF� code� The
purpose of the module is to aid in the understanding
of data �ow languages and to provide increased user
control over graph layout�

ASSEMBLER

DRAWING
UTILITY

COMMUNICATION

VIEWER

PTWINE

EXECUTOR

P

IFx

To Display

GDT

Figure 	� The AGAVE environment� The P indi�
cates the package component of the Executor and
Viewer�

� Conclusion

AGAVE is an environment developed to aid in the
management of parallel programming considerations�
such as race conditions and performance tradeo�s be�
tween parallelization and communication� It incorpo�
rates three very important aspects of program devel�
opment� design� implementation� and debugging� It
is a tool that will encourage involvement by students�
faculty� and researchers in data �ow by providing a
visual representation of parallel programs� It allows
visualization of implicit parallelism in programs and
provides a means for debugging and e�ectively utiliz�
ing parallel architectures� AGAVE builds on research
from GDT and TWINE projects and can easily be
enhanced and extended into new projects�

References

�AA�	
 Tilak Agerwala and Arvind� Data �ow
systems� IEEE Computer� ���	�������
February ���	�

�AG��
 George S� Almasi and Allan Gottlieb�
Highly Parallel Computing� The Benjamin�
Cummings Publishing Company� Inc�� sec�
ond edition� �����

�MC�	
 Patrick J� Miller and Walter Cede�no� A

User�s Guide to TWINE� September ���	�

�Mil�	
 Patrick J� Miller� TWINE� A portable� ex�
tensible SISAL execution kernel� In Pro�

ceedings of the Second SISAL Users� Con�

ference� pages 	���	��� San Diego� Califor�
nia� December ���	� Lawrence Livermore
National Laboratory� CONF��	��	���

�MM��
 Srdjan Mitrovic and Stephan Murer� A
tool to display hierarchical acyclic data�ow
graphs� In International Conference on

Parallel Computing Technologies� pages
�������� September �����

�MSA���
 James McGraw� Stephen Skedzielewski�
Stephen Allan� Rod Oldehoeft� Chris
Kirkham� Bill Noyce� and Robert Thomas�
SISAL� Streams and Iteration in a Sin�

gle Assignment Language� Language Refer�

ence Manual Version ���� Lawrence Liver�
more National Laboratory� M���� edition�
March �����

�SG��
 Stephen Skedzielewski and John Glauert�
IF� � An Intermediate Form for Applica�

tive Languages� Lawrence Livermore Na�
tional Laboratory� Livermore� CA� M����
edition� July �����


