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Abstract—In 10T deployments, it is often necessary to replicate
data in failure-prone and resource-constrained computing envi-
ronments to meet the data availability requirements of smart
applications. In this paper, we evaluate the impact of correlated
failures on an off-the-shelf probabilistic replica placement strat-
egy for IoT systems via trace-driven simulation. We extend this
strategy to handle both correlated failures as well as resource
scarcity by estimating the amount of storage capacity required
to meet data availability requirements. These advancements lay
the foundation for building computing systems that are capable
of handling the unique challenge of reliable data access in low-
resource environments.

I. INTRODUCTION

In this work, we study the problem of replicating immutable
data in a deployment of resource-constrained devices that are
subject to frequent failures. Such deployments are common in
Internet of Things (IoT) settings sited in remote outdoor loca-
tions, where grid power is unavailable and wireless network
connectivity can fluctuate.

A large body of previous work [1], [2], [3], [4], [5] has
considered data replication strategies for IoT deployments,
also termed “fog and edge systems.” ElfStore [6] is a system
for replicating data that is attractive in this problem domain
because it makes placement decisions once, before the data
is distributed, based on probabilistic assumptions of device
availability. For data that is immutable or does not change
rapidly, this static approach does not require the network and
computational overheads associated with distributed consensus
protocols [7], [8] that can be difficult to support using power-
constrained devices and intermittent network connectivity.

The ElfStore [6] model assigns a reliability to each device,
which is the probability that the device is available at a
particular point in time. It then computes the probability that
at least one device in a data item’s replica set is available
at a particular point in time, and uses this to determine
which sets of devices to use for replica placement. Critically,
however, the ElfStore results (which are analytical) require
an IoT deployment to include a class of devices (termed “fog
nodes”) that do not fail. These devices implement a distributed
index of the data blocks. However, if a fog node fails, all
of the data storage nodes (termed “edge nodes”) become
unreachable, thereby introducing correlated failures in which
multiple nodes “fail” together. Thus, ElfStore’s assumption of
statistical independence of failures is invalid.
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In this work, we answer the following research questions:

o How does the presence of correlated failures in an IoT
deployment affect the availability of data replicated via a
probabilistic model?

o How can we determine the amount of additional storage
capacity that is required to meet data Service Level
Agreements (SLAs) in the face of correlated failures?

To answer these questions, we make the following contri-
butions. We evaluate the efficacy of ElfStore, a probabilistic
replication model, via discrete simulation driven by real-world
failure traces and data access patterns. In particular, we evalu-
ate replica placements against a real-world failure trace dataset
and we use spatial database benchmarking software to generate
realistic access patterns. We also propose RIOTSTORE, a
replica placement strategy that accounts for the presence of
correlated failures when replicating data on unreliable devices.
As part of RIOTSTORE, we present a heuristic to determine
the additional storage capacity required of each edge node to
meet data block SLAs in the presence of correlated failures.

II. BACKGROUND

There exists a body of work ([2], [3], [4], [5]) that studies
the problem of replica allocation in failure-prone environ-
ments. However, there is a gap in the literature when it comes
to replication in resource-scarce regimes. [2] explores replica
allocation in the context of mobile ad hoc sensor networks. The
authors propose methods to improve data availability when
there is a strong correlation between data item requests. [3]
introduces the concept of a Probabilistic Shared Risk Group
(PSRG), a model for how multiple computing elements can fail
simultaneously. The authors use Grid’5000 [9] failure traces
and a combination of analytical and Monte Carlo simulation
to evaluate service reliability. [4] uses dynamic Bayesian
networks trained on historical failure logs to infer the failure
dependencies between edge servers. The authors in [5] explore
replica placement algorithms that tolerate correlated failures in
cloud data centers. They find that the single-block problem has
an efficient solution but the complexity of replicating multiple
blocks depends on the maximum difference in replication
factor.

This prior work attempts to handle correlated failures in
data replication, but does not explore the impact of resource
constraints, particularly storage capacity constraints that are



common in IoT settings. Additionally, it is an open question
as to how to estimate the computing resources required to meet
a given level of availability.

ElfStore is a distributed data storage service designed for
IoT deployments that are heterogeneous, resource constrained,
and failure prone. ElfStore provides high availability and
content-based discovery for IoT data by combining the use
of a super-peer overlay and differential replication. The super-
peer overlay clusters IoT devices into partitions and differential
replication accounts for device reliability and available storage
capacity in its replica placement decisions.

A partition consists of a parent node (called a fog node) and
a set of child nodes (called edge nodes). Each fog manages
a non-overlapping subset of edges, coordinates with other fog
nodes, and routes client requests to its edges or to other fog
nodes. Each edge node stores replicas of data blocks and uses
them to serve client requests that have been routed to it by its
parent fog.

ElfStore makes a number of assumptions to simplify block
placement and discovery across edge devices. First, it assumes
that fog nodes never fail and that edge nodes have a predefined
failure rate that doesn’t change. When a device fails, all data
blocks stored on it are inaccessible. Second, devices have a
predefined storage capacity. Blocks are placed on devices up
to this capacity. Third, data blocks are immutable (precluding
the need for replica consistency protocols). Finally, each data
block has a known size and reliability target specified as the
probability of one or more of the edge nodes hosting a replica
of the data block being available at all times. In the ElfStore
study, this availability target is chosen, for each data block, at
random to be either 0.9, 0.99, 0.999, or 0.999.

Using this set of assumptions, ElfStore determines the
number and locations of data block replicas such that devices
come from different partitions (if possible), have sufficient
storage capacity, and the resulting placement of replicas meets
the block’s availability target. The replica placement algorithm
balances the use of fog nodes with both high and low reliability
edges, gives preference to fog nodes responsible for large
amounts of storage, and distributes replicas across fog nodes
to reduce the impact of correlated failures.

III. EVALUATING THE IMPACT OF CORRELATED FAILURES

We first investigate the impact of correlated failures on
the reliability of ElfStore [6] for spatial workloads in IoT
deployments. Spatial applications rely on low latency access to
location-aware data streams to provide real-time understand-
ing and management of complex, dynamic systems. ElfStore
provides some of the features that spatial applications require
including low latency access to highly available data sets.
Moreover, its data block immutability assumption, which
significantly simplifies replication, works well for many spatial
applications which operate on map data that changes infre-
quently or on streams of data that are append-only.

ElfStore has not been evaluated for this application domain
where all nodes have a non-vanishing probability of failure. In
particular, we study the effect of fog node failure which causes

all of the child nodes in a partition to become unreachable.
The assumption of 100% availability for all fog nodes is
not typically achievable in remote IoT settings where power
and network infrastructure can periodically become unstable.
Specifically, ElfStore assumes that fog nodes are 100% avail-
able and that edge nodes in a deployment have unchanging
and independent probabilities of being available, that, together,
form a sample from a Normal distribution with mean 0.8 and
standard deviation 0.05. As such, the joint probability that all
edge nodes within a partition will fail is vanishingly small
for even a modest number of nodes. Relaxing the assumption
of perfect fog node availability introduces the possibility that
all edge nodes within a partition are inaccessible (regardless
of whether they have failed individually). In this work, we
investigate the effect of fog node failure, and the correlated
edge node failure it induces, on the reliability of ElfStore and
its storage requirements.

To investigate ElfStore’s suitability for replicating spatial
data in IoT settings where fog node availability cannot be
100% guaranteed, we have developed a trace-based, discrete-
event simulator that is capable of using either real-world or
synthetically generated failure event traces to represent fog
and edge node behavior. In contrast, the original ElfStore
results are purely analytical, relying on standard distributional
assumptions of availability and failure independence. In addi-
tion, the simulator includes the ability to replay actual query
traces. The ElfStore work assumes a purely random access
pattern in the query stream. ElfStore also reports reliability
as the joint probability of replica availabilities. The simulator
uses the joint probability to determine replica placement
(see Equation 1) but it measures reliability as a fraction of
successful replica accesses resulting from replay of a workload
trace.

Note that ElfStore includes an efficient gossip protocol for
fog nodes to maintain a consistent view of the replica index
when new data blocks are added to the collection of data
blocks. In this work, we presuppose that such a protocol exists
for this purpose and we do not include its function in the
RIOTSTORE simulations. That is, each simulation is for a
query stream against a fixed set of data blocks whose replica
index has already been distributed across fog nodes.

A. Trace-Driven loT Deployment Simulation

The original ElfStore results are analytical. That is, they
show that the placement algorithm (described in Section II)
is able to maintain a minimum replica availability probability
for all replicated data blocks and sufficient storage. We use
the term “Service Level Agreement” or SLA to refer to the
collection of availability probabilities that must be maintained
for all data blocks. Specifically, the SLA specifies that the
fraction of accesses for any data block, when repeatedly
requested by a set of queries, will be greater than or equal
to a minimum target fraction for the block. ElfStore assigns
each block a target fraction of 0.9, 0.99, 0.999, or 0.9999,
chosen at random.



In order to determine whether a particular replica placement
meets data SLAs, we have developed a trace-based simula-
tor that is extensible in three ways. First, the RIOTSTORE
simulator can assign individual edge node availability prob-
abilities using different methods. Recall that ElfStore draws
this probability from a Normal distribution with mean 0.8 and
standard deviation 0.05. The simulator supports this method
but also one that computes availability probabilities from
failure event traces taken from real machines. Secondly, the
workload model investigated by FElfStore is one in which
each data block is equally likely to be queried (i.e. block
accesses are chosen randomly). The RIOTSTORE simulator
is able to support this workload model but also one based
on real query traces that specify a sequence of accesses to
specific blocks. Finally, the simulator is modularized so that it
can use different replica placement algorithms. We implement
both ElfStore’s placement algorithm and RIOTSTORE , which
accounts for the possibility of correlated node failures. The
modules that control node availability, query traces, and replica
placements can be changed independently, allowing for a
thorough evaluation of replica placement strategies.

Regardless of how the simulator modules are configured,
the RIOTSTORE simulator implements the ElfStore SLA by
assigning a minimum availability threshold to each data block.
In this work, to match the original ElfStore results, we assign
each data block a minimum availability of 0.9, 0.99, 0.999,
or 0.9999 (chosen at random) representing the minimum
probability that the data block will be available at the time
of a query. The simulator then uses whatever placement
algorithm has been configured to replicate the data blocks
across edge nodes subject to the constraint that a replica of
a data block will be accessible with at least its minimum
availability specification in the SLA.

Our simulator decomposes a given workload trace (consist-
ing of a set of queries) into a sequence of individual data block
requests. A request for a data block is deemed to be successful
if at least one edge node that stores a replica of it is available
at the time that the access was made. For an edge node to be
considered available at a particular time, both it and its parent
fog node must be available at that time. After a workload trace
terminates, we can determine per block whether that block’s
SLA was met by dividing the number of successful accesses
for that block by the number of total accesses for that block.
Therefore, we generate workload traces consisting of 100000
queries for our simulation to ensure, with high probability,
that each data block is accessed enough times to accurately
compute its availability.

To assign availability probabilities to each edge node, the
simulator first assigns a failure event trace, represented as a
time series of failure events, to each node. It then computes
the node’s availability as the fraction of uptime in the trace
divided by the total length of the trace. For example, if a failure
trace is assigned to an edge node that spans 24 hours, with 21
hours of uptime and 3 hour to total downtime, that edge node
will be assigned an availability of 21 < 24 = 0.875.

Note that the ElfStore placement algorithm requires that

the availability probabilities for each edge node and the
availability threshold for each data block be determined be-
fore the algorithm begins. The simulator uses the availability
probabilities computed from the failure traces assigned to each
edge node to compute the joint availability probability for each
data block during placement.

To introduce the effect of fog node failure, our simulation
also assigns a failure trace to each fog node and computes
from it the fraction of time the node is “up” to use as its
availability probability. If the availability probability for a for
a fog node is ay and the availability probability for an edge
node is a, then the availability probability A for a replicated
data block is

A=1- ] i=(arx= J] Q=a))] @

fog nodes edge nodes

where the a. probabilities are for the edge nodes where
the block is replicated, and the ay probabilities are for the
fog nodes serving the partitions that include all of the edge
nodes replicating the data. That is, the joint failure proba-
bility associated with fetching a replica within a partition
is 1 — []cqge nodes(1 — @e)) where the a. probabilities are
for the edge nodes replicating the data within the partition.
Multiplying this probability by the availability probability of
the fog node for the partition, ay, gives the joint probability
for successfully fetching a replica from the partition and thus
subtracting this product from 1 yields the failure probability
for the partition. The joint probability of failing to fetch the
replica from any partition in which it is stored is the product
of the partition failure probabilities from all of the partitions in
which it is stored. Subtracting this probability from 1 yields
the probability A that at least one replica will be available.
Note that Equation 1 captures the original ElfStore measure
of replica availability when all values if ay as set to 1.0, and
each replica is assigned the value of a. from the node to which
it has been assigned by the replica placement algorithm.

B. Real-World Failure Traces

We also evaluate RIOTSTORE using failure traces from a
1050-node Raspberry Pi cluster located at a research univer-
sity. Each node of this cluster shares a USB power distribution
unit with 41 other nodes connected via a single network
switch. There are 7 switches within the cluster. Node failures
from this system are recorded as true node failures (the node
is unresponsive), switch failures (causing all 42 to record
failure), and power supply undervoltage (which causes a node
to throttle its CPU frequency to a minimum value). Note that
undervoltage periods in this cluster vary quite substantially
across USB power supplies and individual nodes.

In this study, we consider only undervoltage failures as they
are, by far, the most frequent and also the most indicative
of IoT behavior in remote settings. Often, when IoT devices
(such as Raspberry Pi single board computers [10]) are de-
ployed outdoors, where there is no reliable network or power
infrastructure, Lithium Ion batteries recharged by PV solar



panels are also deployed to power them. Undervoltage, in these
settings, is a common occurrence and one which (to prevent
device damage) necessitates that the device remain idle. We
consider a node from the cluster to be unavailable with respect
to data block replica access if it is in an undervolt state. We
use the vegencmd command-line tool to determine if a node
is currently in this undervolt state.

There are 760 unique failure traces in this dataset, which
span the time period from Wednesday, June 4, 2025 to Thurs-
day, June 5, 2025. Because not every single Pi experienced
unavailability due to undervoltage during this time period, we
sample traces from the 20 Pis with the least uptime. For the
remainder of this paper, we will refer to this source of failure
traces as “Pil050”.

C. Spatial Application Traces

To drive our simulation with realistic data access patterns,
we generate query traces using the Jackpine spatial database
benchmark [11]. Jackpine models how end users and applica-
tions interact with spatial data, modeling spatial joins, analysis
functions, and queries based on real-world spatial applications.

We use the US Census Bureau’s TIGER [12] dataset for the
state of Texas as a dataset against which Jackpine generates
query traces. This dataset contains 13,440 places of interest
(POIs), each one represented by a point with a given latitude
and longitude, as well as some additional metadata. These
POIs are the fundamental unit of replication, meaning that
each one is stored as a 10 MB data block and replicated across
nodes. This size matches the one given in the ElfStore paper.

D. RIOTSTORE Replica Placement and Storage Sizing

We next consider the problem of determining the per-
device storage capacity required to meet the SLAs of a dataset
replicated on unreliable devices. For RIOTSTORE, we define a
replica placement strategy that both automatically determines
storage capacity requirements and determines a placement of
replicas that will meet a set of SLA targets.

The heuristic orders fog nodes by decreasing ay from
Equation 1, and for each fog node, it orders its edge nodes by
the decreasing product of ay and a.. It then orders data blocks
in terms of SLA target, from most reliable to least, so that the
data blocks that require the most reliability are prioritized over
those with weaker targets. The heuristic generates an ordered
list of fog nodes where each element contains a list of edge
nodes, annotated by available storage capacity and availability
set to ay X ae. It also generates an ordered list of data blocks
sort by SLA target.

When a traversal completes and all blocks from the block
list have been replicated so that their A values meet the
SLA requirement for each, the algorithm terminates. Upon
termination, the algorithm reports the storage required on each
edge node and the replica mapping to that storage that meets
the SLA.

As with ElfStore, RIOTSTORE determines replica place-
ments once, before receiving a stream of queries. Determining
a placement strategy that can handle a dynamically changing

population of data blocks is the subject of our ongoing
research.

Note that we explicitly disperse replicas of a data block
across fog partitions because placing replicas of a block on
edges with the same parent fog may not be able to satisfy
that block’s availability requirement. This case is handled
implicitly by equation 1, which implies that if a data block
is replicated on only one fog partition, its availability is
constrained by the availability of that fog node. The algorithm
thereby dispurses the replicas of a data block across fog nodes,
if possible. The pseudocode for the algorithm is shown below.

sort Blocks by SLA in descending order

1

2 sort Fogs by reliability in descending order

3 GroupedEdges := empty list of lists

4 for each Fog in Fogs

5 sort Fog.edges by reliability in descending

order

6 append Fog.edges to GroupedEdges

7 Edges := concatenate all lists in GroupedEdges in
order

8 StoragePerEdge := map from Edge —> integer,
default 0

9 BlockReplicas := map from Block —> list of Edges,
default {}

10 Edgelndex := 0

11 for each Block in Blocks:

12 StartIndex := Edgelndex

13 while (availability (BlockReplicas[Block]) <

Block .SLA:
14 CurrEdge := Edges[Edgelndex]
15 Edgelndex := (Edgelndex + 1) mod Edges.
size

16 if Edgelndex == StartIndex: break

17 append CurrEdge to BlockReplicas[Block]

18 StoragePerEdge [ CurrEdge J++

19 for each [Edge, Capacity] in StoragePerEdge:

20 print Capacity

21 return BlockReplicas

IV. EVALUATION

To evaluate the efficacy of this rightsizing heuristic and
replica placement strategy, we simulate a set of query traces.
We present exceedence curves for the resulting data block
availabilities. We comput availability of a data block by
dividing the number of successful requests (i.e., the number
of requests that occur when at least one replica is up) by
the number of total requests for that block, to produce a
fraction between 0 and 1. The y-axis of the exceedence curve
shows the cumulative fraction of data blocks with a simulated
availability greater than or equal to a given value on the x-axis.
In other words, the height of the exceedence curve at a given
availability level is the fraction of data blocks that meets that
availability threshold.

To ensure a fair comparison with ElfStore, we use the
same deployment configuration described in the original work.
Specifically, each simulation describes a deployment of 272
nodes in which 16 fog nodes are each responsible for 16
edge nodes. We also use the same SLA targets as the ElfStore
paper, with each data block being randomly assigned to one
of four availability thresholds: 0.9, 0.99, 0.999, and 0.9999. A
particular block’s SLA is satisfied if its computed availability



1 0Simulated availability w/ Pi1050 failures (rightsized)

—=- ElfStore -_‘_'\__\
—— RiotStore ll
0.8 Y
> ‘\
£ kY
2 )
So06 \
s \
2 T
% 0.4 B
IS \
=] 1
o ‘.
0.2 N
1
1
1
1
0'%.0 0.2 0.4 0.6 0.8 1.0
Simulated data block availability
Fig. 1. Exceedance curves of simulated data block availability generated

by unreliable fog nodes. Dotted lines are for ElfStore. Solid lines are for
RIOTSTORE . The results are for Jackpine-generated workloads, the Pi1050
failure source, and the RIOTSTORE replica placement method described in
Subsection III-D.

is greater than or equal to the threshold assigned to it. With
this set of SLAs, we expect that, after enough queries have
been made, 100% of data blocks meet the 0.9 SLA, 75% of
blocks meet the 0.99 SLA, 50% of blocks meet the 0.999
SLA, and 25% of blocks meet the 0.9999 SLA.

A. RIOTSTORE Replica Placement

Figure 1 shows the exceedence curves for this experiment.
The graph shows that the RIOTSTORE replica placement
strategy is able to meet the SLA targets by determining what
storage requirements are necessary for each edge node based
on Equation 1 (cf. Subsection III-D). RIOTSTORE meets the
SLA targets by setting extending each edge node’s capacity to
support 9666 replicas (from the 1600 limit used in the original
ElfStore work). The graph also shows that ElfStore is unable
to take advantage of the increased storage capacity and fails
to meet the SLA for the Pi1050 real-world error trace.

To summarize, the contributions of RIOTSTORE are
twofold. First, we use a joint probability calculation (Equa-
tion 1) to determine the availability of a data block in a way
that accounts for failure-prone fog nodes. Second, we present
a replica placement strategy that simultaneously determines
both the storage capacity needed by each edge node as well
as a replica placement that meets a given set of SLA targets.
Furthermore, we use discrete-even simulation to validate the
efficacy of our proposed solution.

V. CONCLUSION

In this paper, we use discrete event simulation driven by
real-world failure traces to show that meeting data availabil-
ity requirements requires a replica placement strategy that
considers both correlated and individual IoT node failures.
We present such a strategy (called RIOTSTORE) that extends
the ElfStore IoT data storage system to account for potential
fog node failures. RIOTSTORE simultaneously determines the

storage capacity needed by each edge node in a fog partition to
meet a set of SLA targets and a replica placement that meets
those targets. These advancements deepen our understanding
of how to ensure reliability in failure-prone and resource-
scarce settings, and lay the foundation for software infras-
tructure capable of handling this challenge.
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