
The Jalapeño virtual
machine

by B. Alpern
C. R. Attanasio
J. J. Barton
M. G. Burke
P. Cheng
J.-D. Choi
A. Cocchi
S. J. Fink
D. Grove
M. Hind
S. F. Hummel
D. Lieber

V. Litvinov
M. F. Mergen
T. Ngo
J. R. Russell
V. Sarkar
M. J. Serrano
J. C. Shepherd
S. E. Smith
V. C. Sreedhar
H. Srinivasan
J. Whaley

Jalapeño is a virtual machine for JavaTM servers
written in the Java language. To be able to
address the requirements of servers
(performance and scalability in particular),
Jalapeño was designed “from scratch” to be as
self-sufficient as possible. Jalapeño’s unique
object model and memory layout allows a
hardware null-pointer check as well as fast
access to array elements, fields, and methods.
Run-time services conventionally provided in
native code are implemented primarily in Java.
Java threads are multiplexed by virtual
processors (implemented as operating system
threads). A family of concurrent object allocators
and parallel type-accurate garbage collectors is
supported. Jalapeño’s interoperable compilers
enable quasi-preemptive thread switching and
precise location of object references. Jalapeño’s
dynamic optimizing compiler is designed to
obtain high quality code for methods that are
observed to be frequently executed or
computationally intensive.

Jalapeño is a Java** virtual machine (Jvm) for
servers. The memory constraints on a server are

not as tight as they are on other platforms. On the
other hand, a Jvm for servers must satisfy require-
ments such as the following that are not as stringent
for client, personal, or embedded Jvms:

1. Exploitation of high-performance processors—Cur-
rent just-in-time (JIT) compilers do not perform
the extensive optimizations for exploiting mod-
ern hardware features (memory hierarchy, in-
struction-level parallelism, multiprocessor paral-
lelism, etc.) that are necessary to obtain
performance comparable with statically compiled
languages.

2. SMP scalability—Shared-memory multiprocessor
(SMP) configurations are very popular for server
machines. Some Jvms map Java threads directly
onto heavyweight operating system threads. This
leads to poor scalability of multithreaded Java
programs on an SMP as the numbers of Java
threads increases.

3. Thread limits—Many server applications need to
create new threads for each incoming request.
However, due to operating system constraints,
some Jvms are unable to create a large number
of threads and hence can only deal with a limited
number of simultaneous requests. These con-
straints are severely limiting for applications that

rCopyright 2000 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 0018-8670/00/$5.00 © 2000 IBM ALPERN ET AL. 211

need to support thousands of users simulta-
neously.

4. Continuous availability—Server applications must
be able to satisfy incoming requests while running
continuously for long durations (e.g., several
months). This does not appear to be a priority
for current Jvms.

5. Rapid response—Most server applications have
stringent response-time requirements (e.g., at
least 90 percent of requests must be served in less
than a second). However, many current Jvms per-
form nonincremental garbage collection leading
to severe response-time failures.

6. Library usage—Server applications written in Java
code are typically based on existing libraries
(beans, frameworks, components, etc.) rather
than being written “from scratch.” However, since
these libraries are written to handle generic cases,
they often perform poorly on current Jvms.

7. Graceful degradation—As the requests made on
a server oversaturate its capacity to fulfill them,
it is acceptable for the performance of the server
to degrade. It is not acceptable for the server to
crash.

In Jalapeño, Requirement 1 is addressed by a dy-
namic optimizing compiler; lighter-weight compil-
ers are provided for code that has not been shown
to be a performance bottleneck. Requirements 2 and
3 are addressed by the implementation of lightweight
threads in Jalapeño. Implementing Jalapeño in the
Java language addressed Requirement 4: Java type
safety aids in producing correct code, and the Java
automatic storage management prevents “dangling
pointers” and reduces “storage leaks.” We expect
Requirement 5 to be satisfied by the concurrent and
incremental memory management algorithms cur-
rently being investigated. Requirement 6 will be sat-
isfied by specialization transformations in the Jala-
peño optimizing compiler that tailor the dynamically
compiled code for a library (for example) to the call-
ing context of the server application. Although we
know of no programmatic way to guarantee satis-
faction of Requirement 7, we try not to lose sight of
it.

The paper is organized as follows. The next section
considers implementation issues. The following sec-
tion presents the Jalapeño Jvm, including its object
model and memory layout and its run-time, thread
and synchronization, memory management, and
compilation subsystems. Following sections exam-
ine Jalapeño’s optimizing compiler, describe Jala-
peño’s current functional status and give some pre-

liminary performance results, and discuss related
work. The final section presents our conclusions. Two
appendices are included to explain how Jalapeño’s
run-time services evade some Java restrictions
while preserving the integrity of the language for
Jalapeño’s users, and to detail the process of boot-
strapping Jalapeño.

Design and implementation issues

The goal of the Jalapeño project is to produce a
world-class server Jvm “from scratch.” Our approach
is to create a flexible test bed where novel virtual
machine ideas can be explored, measured, and eval-
uated. Our development methodology avoids pre-
mature optimization: simple mechanisms are initially
implemented and are refined only when they are ob-
served to be performance bottlenecks.

Portability is not a design goal: where an obvious per-
formance advantage can be achieved by exploiting
the peculiarities of Jalapeño’s target architecture—
PowerPC* architecture1 SMPs (symmetrical multi-
processors) running AIX* (Advanced Interactive
Executive)2—we feel obliged to take it. Thus,
Jalapeño’s object layout and locking mechanisms are
quite architecture-specific. On the other hand, we
are aware that we may want to port Jalapeño to some
other platform in the future. Thus, where perfor-
mance is not an issue, we endeavor to make Jala-
peño as portable as possible. For performance as well
as portability, we strive to minimize Jalapeño’s de-
pendence on its host operating system.

The original impetus for building Jalapeño in the
Java language was to see if it could be done.3 The
development payoffs of using a modern, object-ori-
ented, type-safe programming language with auto-
matic memory management have been considerable.
(For instance, we have encountered no dangling
pointer bugs, except for those introduced by early
versions of our copying garbage collectors which, of
necessity, circumvented the Java memory model.)
We expect to achieve performance benefits from Java
development as well: first, no code need be executed
to bridge an interlinguistic gap between user code
and run-time services; and second, because of this
seamless operation, the optimizing compiler can
simultaneously optimize user and run-time code, and
even compile frequently executed run-time services
in line within user code.

The Jalapeño implementation must sometimes evade
the restrictions of the Java language. At the same

ALPERN ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000212

time, Jalapeño must enforce these restrictions on its
users. Jalapeño’s mechanism for performing such
controlled evasions is presented in Appendix A.

Very little of Jalapeño is not written in the Java lan-
guage. The Jalapeño virtual machine is designed to
run as a user-level AIX process. As such, it must use
the host operating system to access the underlying
file system, network, and processor resources. To ac-
cess these resources, we were faced with a choice:
the AIX kernel could be called directly using low-level
system calling conventions, or it could be accessed
through the standard C library. We chose the latter
path to isolate ourselves from release-specific oper-
ating system kernel dependencies. This required that
a small portion of Jalapeño be written in C rather
than Java code.

To date, the amount of C code required has been
small (about 1000 lines). About half of this code con-
sists of simple “glue” functions that relay calls be-
tween Java methods and the C library. The only pur-
pose of this code is to convert parameters and return
values between Java format and C format. The other
half of the C code consists of a “boot” loader and
two signal handlers. The boot loader allocates mem-
ory for the virtual machine image, reads the image
from disk into memory, and branches to the image
startup code (see Appendix B). The first signal han-
dler captures hardware traps (generated by null
pointer dereferences) and trap instructions (gener-
ated for array bounds and divide-by-zero checks),
and relays these into the virtual machine, along with
a snapshot of the register state. The other signal han-
dler passes timer interrupts (generated every 100 mil-
liseconds) to the running Jalapeño system.

Jvm organization

Following subsections describe Jalapeño’s object
model, run-time subsystem, thread and synchroni-
zation subsystem, memory management subsystem,
and compiler subsystem.

Java objects are laid out to allow fast access to field
and array elements, to achieve hardware null pointer
checks, to provide a four-instruction virtual-method
dispatch, and to enable less frequent operations such
as synchronization, type-accurate garbage collection,
and hashing. Fast access to static objects and meth-
ods is also supported.

In conventional Jvms, run-time services—exception
handling, dynamic type checking, dynamic class load-

ing, interface invocation, input and output, reflec-
tion, etc.—are implemented by native methods writ-
ten in C, C11, or assembler. In Jalapeño these
services are implemented primarily in Java code.

Rather than implement Java threads as operating
system threads, Jalapeño multiplexes Java threads
on virtual processors, implemented as AIX pthreads.4

Jalapeño’s locking mechanisms are implemented
without operating system support.

Jalapeño supports a family of memory managers,
each consisting of an object allocator and a garbage
collector. All allocators are concurrent. Currently,
all collectors are stop-the-world, parallel, and type-
accurate collectors. Generational and nongenera-
tional, copying and noncopying managers are sup-
ported. Incremental collectors are being investigated.

Jalapeño does not interpret bytecodes. Instead these
are compiled to machine code before execution. Jala-
peño supports three interoperable compilers that ad-
dress different trade-offs between development time,
compile time, and run time. These compilers are in-
tegral to Jalapeño’s design: they enable thread sched-
uling, synchronization, type-accurate garbage collec-
tion, exception handling, and dynamic class loading.

Object model and memory layout. Values in the Java
language are either primitive (e.g., int, double, etc.)
or they are references (that is, pointers) to objects.
Objects are either arrays having components or sca-
lars having fields. Jalapeño’s object model is gov-
erned by four criteria:

● Field and array accesses should be fast.
● Virtual method dispatch should be fast.
● Null pointer checks should be performed by the

hardware.
● Other (less frequent) Java operations should not

be prohibitively slow.

Assuming the reference to an object is in a register,
the object’s fields can be accessed at a fixed displace-
ment in a single instruction. To facilitate array ac-
cess, the reference to an array points to the first (ze-
roth) component of an array and the remaining
components are laid out in ascending order. The
number of components in an array, its length, is kept
just before its first component.

The Java language requires that an attempt to ac-
cess an object through a null object reference gen-
erate a NullPointerException. In Jalapeño, refer-

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 ALPERN ET AL. 213

ences are machine addresses, and null is represented
by Address 0. The AIX operating system permits loads
from low memory, but accesses to very high mem-
ory, at small negative offsets from a null pointer, nor-
mally cause hardware interrupts.5 Thus, attempts to
index off a null Jalapeño array reference are trapped
by the hardware, because array accesses require load-
ing the array length, which is 24 bytes off the array
reference. A hardware null-pointer check for field
accesses is effected by locating fields at negative off-
sets from the object reference.

In summary, in Jalapeño, arrays grow up from the
object reference (with the array length at a fixed neg-
ative offset), while scalar objects grow down from the
object reference with all fields at a negative offset
(see Figure 1). A field access is accomplished with
a single instruction using base-displacement address-
ing. Most array accesses require three instructions.
A single trap instruction verifies that the index is
within the bounds of the array. Except for byte (and
boolean) arrays, the component index must then be
shifted to get a byte index. The access itself is ac-
complished using base-index addressing.

Object headers. A two-word object header is asso-
ciated with each object. This header supports virtual
method dispatch, dynamic type checking, memory
management, synchronization, and hashing. It is lo-
cated 12 bytes below the value of a reference to the
object. (This leaves room for the length field in case
the object is an array, see Figure 1.)

One word of the header is a status word. The status
word is divided into three bit fields. The first bit field
is used for locking (described later). The second bit
field holds the default hash value of hashed objects.
The third bit field is used by the memory manage-
ment subsystem. (The size of these bit fields is de-
termined by build-time constants.)

The other word of an object header is a reference
to the Type Information Block (TIB) for the object’s
class. A TIB is an array of Java object references. Its
first component describes the object’s class (including
its superclass, the interfaces it implements, offsets
of any object reference fields, etc.). The remaining
components are compiled method bodies (execut-

ALPERN ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000214

able code) for the virtual methods of the class. Thus,
the TIB serves as Jalapeño’s virtual method table.

Virtual methods. Method bodies are arrays of ma-
chine instructions (ints). A virtual method dispatch
entails loading the TIB pointer at a fixed offset off
the object reference, loading the address of the
method body at a given offset off the TIB pointer,
moving this address to the PowerPC “link-register,”
and executing a branch-and-link instruction—four
instructions.

Static fields and methods (and others). All static fields
and references to all static method bodies are stored
in a single array called the Jalapeño Table of Con-
tents (JTOC). A reference to this array is maintained
in a dedicated machine register (the JTOC register).
All of Jalapeño’s global data structures are acces-
sible through the JTOC. Literals, numeric constants,
and references to string constants are also stored in
the JTOC. To enable fast common-case dynamic type
checking, the JTOC also contains references to the
TIB for each class in the system. The JTOC is depicted

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 ALPERN ET AL. 215

in Figure 2. Although declared to be an array of ints,
the JTOC contains values of all types. A JTOC descrip-
tor array, coindexed with the JTOC, identifies the en-
tries containing references.

Method invocation stacks. Jalapeño’s stack layout is
depicted in Figure 3. There is a stack frame for each
method invocation. (The optimizing compiler may
omit stack frames for leaf and inline methods.) A
stack frame contains space to save nonvolatile reg-
isters, a local data area where usage is compiler-de-
pendent, and an area for parameters that are to be
passed to called methods and that will not fit in Jala-
peño’s volatile registers. The last three words in a
stack frame are: a compiled-method identifier (identi-
fying information about the method for the stack
frame), a next-instruction pointer (the returned address
of any called method), and a previous-frame pointer.

Method invocation stacks and the JTOC are the only
two Jalapeño structures that violate the Java lan-
guage requirement that arrays not contain both prim-
itives and references. Since neither is directly acces-

sible to users, this is not a lapse of security. However,
in order to facilitate type-accurate garbage collec-
tion, Jalapeño’s compilers must maintain reference
maps (described later) that allow location of the ob-
ject references in a stack.

Run-time subsystem. Through judicious exploitation
of the MAGIC class (see Appendix A), Jalapeño’s run-
time subsystem provides, (mostly) in Java code, ser-
vices—exception handling, dynamic type checking,
dynamic class loading, interface invocation, I/O, re-
flection, etc.—that are conventionally implemented
with native code.

Exceptions. A hardware interrupt is generated if a
null pointer is dereferenced, an array index is out of
bounds, an integer is divided by zero, or a thread’s
method-invocation stack overflows. These interrupts
are caught by a small C interrupt handler that causes
a Java method to be run. This method builds the ap-
propriate exception and passes it to the deliverEx-
ception method. The deliverException method is
called with software-generated exceptions as well.
It has two responsibilities. First, it must save in the
exception object information that would allow a stack
trace to be printed if one is needed. It does this by
“walking” up the stack and recording the compiled
method identifiers and next-instruction pointers for
each stack frame. Second, it must transfer control
to the appropriate “catch” block. This also involves
walking the stack. For each stack frame, it locates
the compiled-method object for the method body
that produced the stack frame. It calls a method of
this object to determine if the exception happened
within an appropriate “try” block. If so, control is
transferred to the corresponding catch block. If not,
any locks held by the stack frame are released and
it is deallocated. The next stack frame is then con-
sidered. If no catch block is found, the thread is killed.

Dynamic class loading. One of the innovative features
of the Java language is its provision for loading
classes during the execution of an application. When
a Jalapeño compiler encounters a bytecode (putstatic
or invokevirtual, for example) that refers to a class
that has not been loaded, it does not load the class
immediately. Rather, the compiler emits code that
when executed first ensures that the referenced class
is loaded (and resolved and instantiated) and then
performs the operation. Note that when this code
is generated the compiler cannot know the actual
offset values (because they are not assigned until the
class is loaded) of fields and methods of the class
(e.g., the JTOC index assigned to a static field). The

ALPERN ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000216

baseline compiler (Jalapeño’s compilers are de-
scribed later) handles this uncertainty by emitting
code that calls a run-time routine that performs any
necessary class loading and then overwrites the call
site with the code the baseline compiler would have
produced had the class been resolved at initial code
generation time. This is particularly tricky on an SMP
with processors that adhere to a relaxed memory con-
sistency model.6

The optimizing compiler uses an alternative ap-
proach based on an added level of indirection; when
executed, the code it emits loads a value from an off-
set array. If the offset value is valid (nonzero), it is
used to complete the operation. If the offset is in-
valid, the required class is loaded and, in the pro-
cess, the offset array is updated to contain valid val-
ues for all of the class’s methods and fields. For each
dynamically linked site, the baseline compiler’s ap-
proach incurs substantial overhead the first time the
site is executed, but every subsequent execution in-
curs no overhead, while the optimizing compiler’s
approach incurs a small overhead on every execu-
tion of the site. However, the optimizing compiler
is not normally called on a method until the method
has executed several times; any dynamically linked
site this compiler sees can be assumed to be very
rarely executed. It is not yet clear which approach
would be most appropriate for the quick compiler.

Input and output. I/O requires operating system sup-
port. To read a block from a file, an AIX stack frame
is constructed and an operating system routine is
called (through the C library) with an address to
which to copy its result. This address is a Java array.
Care is taken to prevent a copying garbage collector
from moving this object until the call is complete (see
Appendix A for details). So far, we have not observed
a performance degradation from delaying garbage
collection until the read completes. Other I/O ser-
vices are handled similarly.

Reflection. Java’s reflection mechanism allows run-
time access to fields (given their names and types)
and run-time invocation of methods (given their sig-
natures). It is easy for Jalapeño to support reflective
field access: the name is turned into an offset and
the access is performed at the appropriate raw mem-
ory address. Reflective method invocation is a little
harder. The address of the method body is obtained
by finding the signature in a table. An artificial stack
frame is constructed. (Since this stack frame does
not contain any object references, it is not necessary
to build a reference map for it.) The method’s pa-

rameters are carefully unwrapped and loaded into
registers. The method is then called. When it returns,
the artificial stack frame must be disposed of, and
the result wrapped and returned to the reflective call.

Thread and synchronization subsystem. Rather than
mapping Java threads to operating system threads
directly, Jalapeño multiplexes Java threads on vir-
tual processors that are implemented as AIX pthreads.
This decision was motivated by three concerns. We
needed to be able to effect a rapid transition between
mutation (by normal threads) and garbage collec-
tion. We wanted to implement locking without us-
ing AIX services. We want to support rapid thread
switching.

Currently, Jalapeño establishes one virtual processor
for each physical processor. Additional virtual pro-
cessors may eventually be used to mask I/O latency.
The only AIX service required by the subsystem is
a periodic timer interrupt provided by the incinterval
system call. Jalapeño’s locking mechanisms make no
system calls.

Quasi-preemption. Jalapeño’s threads are neither
“run-until-blocked” nor fully preemptive. Reliance
on voluntary yields would not have allowed Jalapeño
to make the progress guarantees required for a server
environment. We felt that arbitrary preemption
would have radically complicated the transition to
garbage collection and the identification of object
references on thread stacks. In Jalapeño, a thread
can be preempted, but only at predefined yield points.

The compilers provide location information for ob-
ject references on a thread’s stack at yield points.
Every method on the stack is at a safe point (described
later). This allows compilers to optimize code (by
maintaining an internal pointer, for example) be-
tween safe points that would frustrate type-accurate
garbage collection if arbitrary preemption were al-
lowed.

Locks. Concurrent execution on an SMP requires syn-
chronization. Thread scheduling and load balancing
(in particular) require atomic access to global data
structures. User threads also need to synchronize ac-
cess to their global data. To support both system and
user synchronization, Jalapeño has three kinds of
locks.

A processor lock is a low-level primitive used for
thread scheduling (and load balancing) and to im-
plement Jalapeño’s other locking mechanisms. Pro-

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 ALPERN ET AL. 217

cessor locks are Java objects with a single field that
identifies the virtual processor that owns the lock.
If the field is null, the lock is not owned. The identity
of a virtual processor is maintained in a dedicated
processor (PR) register. To acquire a processor lock
for the thread it is running, a virtual processor:

● Loads the lock owner field making a CPU reser-
vation (PowerPC lwarx)

● Checks that this field is null
● Conditionally stores the PR register into it (Pow-

erPC stwcx)

If the stwcx succeeds, the virtual processor owns the
lock. If the owner field is not null (another virtual
processor owns the lock), or if the stwcx instruction
fails, the virtual processor will try again (i.e., spin).
A processor lock is unlocked by storing null into the
owner field. Processor locks cannot be acquired re-
cursively. Because processor locks “busy wait,” they
must only be held for very short intervals. A thread
may not be switched while it owns a processor lock
for two reasons: because it could not release the lock
until it resumes execution, and because our imple-
mentation would improperly transfer ownership of
the lock to the other threads that execute on the vir-
tual processor.

Jalapeño’s other locking mechanisms are based on
thin locks:7,8 bits in an object header are used for lock-
ing in the absence of contention; these bits identify a
heavyweight lock when there is contention. Jalapeño’s
approach differs in two ways from the previous work.
In the previous work, the heavyweight locking mech-
anism was an operating system service; here it is a
Java object. Here, if Thread A has a thin lock on an
object, Thread B can promote the lock to a thick lock.
In the previous work, only the thread that owned a
thin lock could promote it.

A bit field in the status word of an object header (see
earlier discussion) is devoted to locking. One bit tells
whether or not a thick lock is associated with the ob-
ject. If so, the rest of this bit field is the index of this
lock in a global array. This array is partitioned into
virtual-processor regions to allow unsynchronized al-
location of thick locks. If the thick bit is not set, the
rest of the bit field is subdivided into two: the thin-
lock owner subfield identifies the thread (if any) hold-
ing a thin lock on the object. (The sizes of the bit
fields can be adjusted to support up to half a million
threads.) The recursion count subfield encodes the
number of times the owner holds the lock: unlike a
processor lock, a thin lock can be recursively ac-

quired. If the object is not locked, the entire locking
bit field is zero.

To acquire a thin lock, a thread sets the thin-lock
owner bit field to its identifier. This is only allowed
if the locking bit field is zero. The identifier of the
thread currently running on a virtual processor is
kept in a dedicated thread identifier (TI) register.
Again, lwarx and stwcx instructions are used to en-
sure that the thin lock is acquired atomically.

A thick lock is a Java object with six fields. The mu-
tex field is a processor lock that synchronizes access
to the thick lock. The associatedObject is a reference
to the object that the thick lock currently governs.
The ownerId field contains the identifier of the thread
that owns the thick lock, if any. The recursionCount
field records the number of times the owner has
locked the lock. The enteringQueue field is a queue
of threads that are contending for the lock. And, the
waitingQueue field is a queue of threads awaiting no-
tification on the associatedObject.

Conversion of a thin lock to a thick one entails:

1. Creating a thick lock
2. Acquiring its mutex
3. Loading the object’s status word setting a reser-

vation (lwarx)
4. Conditionally storing (stwcx) the appropriate val-

ue—thick-lock bit set and the index for this thick
lock—into the locking bit field of the object
header

5. Repeating Steps 3 and 4 until the conditional store
succeeds

6. Filling in the fields of the thick lock to reflect the
object’s status

7. Releasing the thick lock’s mutex

There are two details to be considered about lock-
ing on the PowerPC. First, the reservation (of a lwarx)
could be lost for a variety of reasons other than con-
tention, including a store to the same cache line as
the word with the reservation or an operating sys-
tem context switch of the virtual processor. Second,
before a lock (of any kind) is released, a sync instruc-
tion must be executed to ensure that the caches in
other CPUs see any changes made while the lock was
held. Similarly, after a lock is acquired, an isync in-
struction must be executed so that no subsequent
instruction executes in a stale context.

Thread scheduling. Jalapeño implements a lean
thread scheduling algorithm that is designed to have

ALPERN ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000218

a short path length, to minimize synchronization, and
to provide some support for load balancing. Thread
switching (and locks) are used to implement the yield
and sleep methods of java.lang.Object and the wait,
notify, and notifyAll methods of java.lang.Thread as well
as quasi-preemption. A thread switch consists of the
following operations:

● Saving the state of the old thread
● Removing a new thread from a queue of threads

waiting to execute
● Placing the old thread on some thread queue (lock-

ing the queue if necessary)
● Releasing the process lock (if any) guarding ac-

cess to this queue
● Restoring the new thread’s state and resuming its

execution

In the processor object associated with a virtual pro-
cessor there are three queues of executable threads.
An idleQueue holds an idle thread that will execute
whenever there is nothing else to do. A readyQueue
holds other ready-to-execute threads. Only the vir-
tual processor associated with them can access these
two queues, so they need not be locked to be up-
dated. This virtual processor is the only one that re-
moves threads from a transferQueue. However, other
virtual processors can put threads on this queue, so
access to it is synchronized by a processor lock. The
transferQueue is used for load balancing.

Monitors. The Java language supports the monitor
abstraction9 to allow user-level synchronization.
Conceptually, there is a monitor associated with ev-
ery Java object. However, few monitors are ever used.
Typically, a thread acquires the monitor on an ob-
ject by executing one of the object’s synchronized
methods. Only a handful of monitors are held at any
one time. A thread can (recursively) acquire the same
monitor multiple times, but no thread can acquire
a monitor held by another. Jalapeño uses its locking
mechanisms to implement this functionality.

When a thread attempts to acquire the monitor for
an object, there are six cases, depending on who owns
the monitor for the object, and whether the object
has a thick lock associated with it:

1. Object not owned—no thick lock. The thread ac-
quires a thin lock on the object as described pre-
viously. (This is by far the most prevalent case.)

2. Object owned by this thread—no thick lock. The
thread increments the recursion-count bit field of
the status word using lwarx and stwcx instructions.

This synchronization is necessary since another
virtual processor might simultaneously convert
the thin lock to a thick one. If this bit field over-
flows, the thin lock is converted to a thick lock.

3. Object owned by another thread—no thick lock.
This is the interesting case. Three options are
available. The thread could: try again (busy wait),
yield and try again (giving other threads a chance
to execute), or convert the thin lock to a thick one
(Case 6). We are investigating various combina-
tions of these three options.

4. Object not owned—thick lock in place. We ac-
quire the mutex for the thick lock, check that the
lock is still associated with the object, store the
thread index (TI) register in the ownerId field, and
release the mutex. By the time the mutex has been
acquired, it is possible that the thick lock has been
unlocked and even disassociated from the object.
In this extremely rare case, the thread starts over
trying to acquire the monitor for the object.

5. Object owned by this thread—thick lock in place.
We bump the recursionCount. Synchronization is
not needed since only the thread that owns a thick
lock can access its recursionCount field (or release
the lock).

6. Object owned by another thread—thick lock in
place. We acquire the mutex, check that the lock
is still associated with the appropriate object, and
yield to the enteringQueue, releasing the mutex at
the same time.

We are exploring two issues associated with re-
leasing a monitor: what to do with threads on the
enteringQueue when a thick lock is unlocked, and
when to disassociate a thick lock from an object.

Memory management subsystem. Of all of the Java
language features, automatic garbage collection is
perhaps the most useful and the most challenging
to implement efficiently. There are many approaches
to automatic memory management,10,11 no one of
which is clearly superior in a server environment.
Jalapeño is designed to support a family of inter-
changeable memory managers. Currently, each man-
ager consists of a concurrent object allocator and a
stop-the-world, parallel, type-accurate garbage col-
lector. The four major types of managers supported
are: copying, noncopying, generational copying, and
generational noncopying.

Concurrent object allocation. Jalapeño’s memory
managers partition heap memory into a large-object
space and a small-object space. Each manager uses
a noncopying large-object space, managed as a se-

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 ALPERN ET AL. 219

quence of pages. Requests for large objects are sat-
isfied on a first-fit basis. After a garbage collection
event, adjacent free pages are coalesced.

To support concurrent allocation of small objects by
copying managers, each virtual processor maintains

a large chunk of local space from which objects can
be allocated without requiring synchronization.
(These local chunks are not logically separate from
the global heap: an object allocated by one virtual
processor is accessible from any virtual processor that
gets a reference to it.) Allocation is performed by
incrementing a space pointer by the required size
and comparing the result to the limit of the local
chunk. If the comparison fails (not the normal case),
the allocator atomically obtains a new local chunk
from the shared global space. This technique works
without locking unless a new chunk is required. The
cost of maintaining local chunks is that memory frag-
mentation is increased slightly, since each chunk may
not be filled completely.

Noncopying managers divide the small-object heap
into fixed-size blocks (currently 16 kilobytes). Each
block is dynamically subdivided into fixed-size slots.
The number of these sizes (currently 12), and their
values, are build-time constants that can be tuned
to fit an observed distribution of small-object sizes.
When an allocator receives a request for space, it
determines the size of the smallest slot that will sat-
isfy the request, and obtains the current block for
that size. To avoid locking overhead, each virtual pro-
cessor maintains a local current block of each size.
If the current block is full (not the normal case), it
makes the next block for that size with space avail-
able the current block. If all such blocks are full (even
more rare), it obtains a block from the shared pool
and makes the newly obtained block current. Since
the block sizes and the number of slot sizes are rel-
atively small, the space impact of replicating the cur-
rent blocks for each virtual processor is insignificant.

From mutation to collection. Each virtual processor
has a collector thread associated with it. Jalapeño
operates in one of two modes: either the mutators
(normal threads) are running and the collection
threads are idle, or the mutators are idle and the col-
lection threads are running. Garbage collection is
triggered when a mutator explicitly requests it, when
a mutator makes a request for space that the allo-
cator cannot satisfy, or when the amount of avail-
able memory drops below a predefined threshold.

Scalability requires that the transition between
modes be accomplished as expeditiously as possible.
During mutation, all collector threads are in a wait-
ing state. When a collection is requested, the col-
lector threads are notified and scheduled (normal-
ly, as the next thread to execute) on their virtual
processors. When a collector thread starts execut-
ing, it disables thread switching on its virtual pro-
cessor, lets the other collector threads know it has
control of its virtual processor, performs some ini-
tialization, and synchronizes with the other collec-
tors (at the first rendezvous point, described later).
When each collector knows that the others are ex-
ecuting, the transition is complete.

Note that when all the collector threads are running,
all the mutators must be at yield points. It is not nec-
essary to redispatch any previously pending muta-
tor thread to reach this point. When the number of
mutator threads is large, this could be an important
performance consideration. Since all yield points in
Jalapeño are safe points, the collector threads may
now proceed with collection.

After the collection has completed, the collector
threads re-enable thread switching on their virtual
processors and then wait for the next collection. Mu-
tator threads start up automatically as the collector
threads release their virtual processors.

Parallel garbage collection. Jalapeño’s garbage col-
lectors are designed to execute in parallel. Collec-
tor threads synchronize among themselves at the end
of each of three phases. For this purpose Jalapeño
provides a rendezvous mechanism whereby no thread
proceeds past the rendezvous point until all have
reached it.

In the initialization phase, a copying collector thread
copies its own thread object and its virtual-proces-
sor object. This ensures that updates to these objects
are made to the new copy and not to the old copy,
which will be discarded after the collection.

Jalapeño supports a family
of memory managers
for object allocation

and garbage collection.

ALPERN ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000220

The noncopying managers associate with each block
of memory a mark array and an allocation array, with
one entry in each array for each slot. During initial-
ization, all mark array entries are set to zero. All col-
lector threads participate in this initialization.

In the root identification and scan phase, all collec-
tors behave similarly. Collector threads contend for
the JTOC and for each mutator thread stack, scan-
ning them in parallel for roots (that is, object ref-
erences conceptually outside the heap), which are
marked and placed on a work queue. Then the ob-
jects accessible from the work queue are marked.
The marking operation is synchronized so exactly one
collector marks each live object. As part of marking
an object, a copying collector will copy its bits into
the new space and overwrite the status word of the
old copy with a forwarding pointer to the new copy.
(One of the low-order bits of this pointer is set to
indicate that the object has been forwarded.)

Roots in the JTOC are identified by examining the
coindexed descriptor array that identifies the type
of each entry. Roots in a thread stack are identified
by analyzing the method associated with each stack
frame. Specifically, the local data area will have any
of the stack frame’s ordinary roots; the parameter
spill area may have roots for the next (called) meth-
od’s stack frame; the nonvolatile register save area
might contain roots from some earlier stack frame.
Roots are located by examining the compiler-built
reference maps that correspond to the methods on
the stack and tracking which stack frames save which
nonvolatile registers.

The global work queue is implemented in virtual-
processor-local chunks to avoid excessive synchro-
nization. An object removed from the work queue
is scanned for object references. (The offsets of these
references are obtained from the class object that
is the first entry in the object’s TIB.) For each such
reference, the collector tries to mark the object. If
it succeeds, it adds the object to the work queue. In
the copying collectors the marking (whether it suc-
ceeds or fails) returns the new address of the ref-
erenced object.

In the completion phase, copying collectors simply
reverse the sense of the occupied and available por-
tions of the heap. Collector threads obtain local
chunks from the now empty “nursery” in prepara-
tion for the next mutator cycle. A noncopying col-
lector thread performs the following steps:

● If this was a minor collection by the generation col-
lector, mark all old objects as live (identified from
the current allocation arrays).

● Scan all mark arrays to find free blocks, and re-
turn them to the free block list.

● For all blocks not free, exchange mark and allo-
cation arrays: the unmarked entries in the old mark
array identify slots available for allocation.

Performance issues. We are actively investigating both
noncopying and copying memory managers to un-
derstand more fully the circumstances under which
each is to be preferred and to explore possibilities
for hybrid solutions. (The noncopying large-object
space is an example of a hybrid solution.) The ma-
jor advantages of a copying memory manager lie in
the speed of object allocation, and the compaction
of the heap performed during collection (providing
better cache performance). The major advantages
of a noncopying memory manager lie in faster col-
lection (objects are not copied), better use of avail-
able space (copying managers waste half this space),
and simpler interaction between mutators and col-
lectors. (The optimizing compiler will be able to pur-
sue more aggressive optimizations, if it does not have
to be concerned that objects might move at every
safe point.) A system with a copying manager would
run overall faster between collections; a system with
a noncopying manager would offer smaller pause
times.

A noncopying policy would greatly simplify a con-
current memory manager (one in which mutators and
collectors run at the same time): it would eliminate
the need for a read barrier and simplify the write
barrier.

Compiler subsystem. Jalapeño executes Java byte-
codes by compiling them to machine instructions at
run time. Three different, but compatible, compil-
ers are in use or under development. Development
of Jalapeño depended upon early availability of a
transparently correct compiler. This is the role of
Jalapeño’s baseline compiler. However, by construc-
tion, it does not generate high-performance target
code.

To obtain high-quality machine code for methods
that are observed to be computationally intensive,
Jalapeño’s optimizing compiler (described in the next
section) applies traditional static compiler optimi-
zations as well as a number of new optimizations that
are specific to the dynamic Java context. The cost
of running the optimizing compiler is too high for

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 ALPERN ET AL. 221

it to be profitably employed on methods that are only
infrequently executed.

Jalapeño’s quick compiler will compile each method
as it executes for the first time. It balances compile-
time and run-time costs by applying a few highly
effective optimizations. Register allocation is the
most important of these because the PowerPC has
generous (32 fixed, 32 floating) register resources and
most register operations are one cycle, while stor-
age references may require several (sometimes very
many) cycles.

The quick compiler tries to limit compile time by an
overall approach of minimal transformation, efficient
data structures, and few passes over the source and
derived data. The source bytecode is not translated
to an intermediate representation. Instead, the byte-
code is “decorated,” with the results of analysis and
optimization, in objects related to each bytecode in-
struction. Optimizations performed include copy
propagation to eliminate temporaries introduced by
the stack-based nature of Java bytecode. The quick
compiler’s primary register allocator uses a graph col-
oring algorithm.12 Coloring is not appropriate (due
to long compile time) for some methods (long one-
basic-block static initializers that need many symbolic
registers, for example). For such methods, the quick
compiler has a simpler, faster algorithm. We will in-
vestigate heuristics to detect these cases. We also
plan to add inline compilation of short methods that
are final, static, or constructors and to explore local-
context (peephole) optimizations.

The code produced by all three compilers must sat-
isfy Jalapeño’s calling and preemption conventions.
They ensure that threads executing the methods they
compile will respond in a timely manner to attempts
to preempt them. Currently, explicit yield points are
compiled into method prologues. Eventually, yield
points will be needed on the “back edges” of loops
that cannot be shown to contain other yield points.

The compilers are also responsible for maintaining
tables that support exception handling and that al-
low the memory managers to find object references
on thread stacks. (These tables are also used by Jala-
peño’s debugger.) When a garbage collection event
takes place, each of the methods represented on the
thread stack will be at a garbage collection safe point.
Safe points are the call sites, dynamic link sites,
thread yield sites, possible exception-throw sites, and
allocation request sites. For any given safe point
within a method body, the compiler that created the

method body must be able to describe where the live
references exist. A reference map identifies, for each
safe point, the locations of object references.

We have not yet implemented a comprehensive strat-
egy to select compilers for methods. Switching from
the quick to the optimizing compiler will be done
based on run-time profiling in the manner of Self.13,14

A dynamic optimizing compiler

We anticipate that the bulk of the computation on
a Java application will involve only a fraction of the
Java source code. Jalapeño’s optimizing compiler is
intended to ensure that these bytecodes are compiled
efficiently. The optimizing compiler is dynamic: it
compiles methods while an application is running.
In the future, the optimizing compiler will also be
adaptive: it will be invoked automatically on com-
putationally intensive methods. The goal of the op-
timizing compiler is to generate the best possible
code for the selected methods on a given compile-
time budget. In addition, its optimizations must de-
liver significant performance improvements while
correctly preserving Java’s semantics for exceptions,
garbage collection, and threads. Reducing the cost
of synchronization and other thread primitives is es-
pecially important for achieving scalable perfor-
mance on SMP servers. Finally, it should be possible
to retarget the optimizing compiler to a variety of
hardware platforms with minimal effort. Building a
dynamic optimizing compiler that achieves these
goals is a major challenge.

This section provides an overview of the Jalapeño
optimizing compiler; further details are available
elsewhere.15–17 The optimizing compiler’s structure
is shown in Figure 4.

From bytecode to intermediate representations. The
optimizing compiler begins by translating Java byte-
codes to a high-level intermediate representation (HIR).
This is one of three register-based intermediate rep-
resentations that share a common implementation.
(Register-based representations provide greater flex-
ibility for code motion and code transformation than
do representations based on trees or stacks. They
also allow a closer fit to the instruction sets of Jala-
peño’s target architectures.) Instructions of these in-
termediate representations are n-tuples: an opera-
tor and zero or more operands. Most operands
represent symbolic registers, but they can also rep-
resent physical registers, memory locations, con-
stants, branch targets, or types. Java’s type structure

ALPERN ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000222

is reflected in these intermediate representations:
there are distinct operators for similar operations
on different primitive types, and operands carry type
information.17 Instructions are grouped into ex-
tended basic blocks that are not terminated by
method calls or by instructions that might cause an
exception to be thrown. (Extra care is required when
performing data flow analysis or code motion on
these extended basic blocks.)16,17 These intermedi-
ate representations also include space for the cach-
ing of such optional auxiliary information as reach-
ing-definition18 sets, dependence graphs, and
encodings of loop-nesting structure.

The translation process discovers the extended-basic-
block structure of a method, constructs an exception
table for the method, and creates HIR instructions
for bytecodes. It discovers and encodes type infor-

mation that can be used in subsequent optimizations
and that will be required for reference maps. Cer-
tain simple “on-the-fly” optimizations—copy prop-
agation, constant propagation, register renaming for
local variables, dead-code elimination, etc.—are also
performed.19 (Even though more extensive versions
of these optimizations are performed in later opti-
mization phases, it is worthwhile to perform them
here because doing so reduces the size of the gen-
erated HIR and hence subsequent compile time.) In
addition, suitably short final or static methods are
moved in line.

Copy propagation is an example of an on-the-fly op-
timization performed during the translation. Java
bytecodes often contain instruction sequences that
perform a calculation and store the result into a lo-
cal variable. A naive approach to intermediate rep-

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 ALPERN ET AL. 223

resentation generation results in the creation of a
temporary register for the result of the calculation
and an additional instruction to move the value of
this register into the local variable. A simple copy
propagation heuristic eliminates many of these un-
necessary temporary registers. When storing from
a temporary into a local variable, the most recently
generated instruction is inspected. If this instruction
created the temporary to store its result, it is mod-
ified to write this result directly to the local variable
instead.

Translation proceeds by abstract interpretation of the
bytecodes. The types (and values if known at com-
pile time) of local variables and the entries on the
execution stack as defined by the Java Virtual Ma-
chine Specification20 form the symbolic state of the
abstract interpretation. (Because these types are not
statically available from Java bytecodes, all Jalape-
ño’s compilers must, in effect, track this symbolic
state.) Abstract interpretation of a bytecode involves
generating the appropriate HIR instruction(s) and up-
dating the symbolic state.

The main loop of the translation algorithm uses a
work list containing blocks of code with their start-
ing symbolic states. Initially, this work list contains
the entries for code beginning at bytecode 0 and for
each of the method’s exception handlers (with empty
symbolic states). Code blocks are successively re-
moved from the work list and interpreted as if they
were extended basic blocks. If a branch is encoun-
tered, the block is split and pieces of it are added
to the work list. (At control-flow join points, the val-
ues of stack operands may differ on different incom-
ing edges, but the types of these operands must
match.21 An element-wise meet operation is used on
the stack operands to update the symbolic state at
these points.19) If a branch is forward, the piece from
the beginning of the block to the branch is tenta-
tively treated as a completed extended basic block.
The pieces from the branch to its target and from
the target to the end of the block are added to the
work list. If the branch is backward, the piece from
the branch to the end of the block is added to the
work list. If the target of a backward branch is in the
middle of an already-generated extended basic block,
this block is split at the target point. If the stack is
not empty at the target point, the block must be re-
generated because its start state may be incorrect.

To minimize the number of times HIR is generated
for the same bytecodes, a simple greedy algorithm
selects the block with the lowest starting bytecode

index for abstract interpretation. This simple heu-
ristic relies on the fact that, except for loops, all con-
trol-flow constructs are generated in topological or-
der, and that the control-flow graph is reducible.
Fortuitously, this heuristic seems to obtain optimal
extended-basic-block orderings for methods com-
piled with current Java source compilers.

High-level optimization. The instructions in the HIR
are closely patterned after Java bytecodes, with two
important differences—HIR instructions operate on
symbolic register operands instead of an implicit
stack, and the HIR contains separate operators to im-
plement explicit checks for run-time exceptions (e.g.,
array-bounds checks). The same run-time check can
often cover more than one instruction. (For exam-
ple, incrementing A[i] may involve two separate ar-
ray accesses, but requires only a single bounds check.)
Optimization of these check instructions reduces ex-
ecution time and facilitates additional optimization.

Currently, simple optimization algorithms with mod-
est compile-time overheads are performed on the
HIR. These optimizations fall into three classes:

1. Local optimizations. These optimizations are lo-
cal to an extended basic block, e.g., common sub-
expression elimination, elimination of redundant
exception checks, and redundant load elimination.

2. Flow-insensitive optimizations. To optimize across
basic blocks, the Java Virtual Machine Specifi-
cation assurance that “every variable in a Java pro-
gram must have a value before it is used”20 is ex-
ploited. If a variable is only defined once, then
that definition reaches every use. For such var-
iables, “def-use” chains are built, copy propaga-
tion performed, and dead code eliminated with-
out any expensive control-flow or data-flow
analyses. Additionally, the compiler performs a
conservative flow-insensitive escape analysis for
scalar replacement of aggregates and semantic ex-
pansion transformations of calls to standard Java
library methods.22

This technique catches many optimization oppor-
tunities, but other cases can only be detected by
flow-sensitive algorithms.

3. In-line expansion of method calls. To expand a
method call in line at the HIR level, the HIR for
the called method is generated and patched into
the HIR of the caller. A static size-based heuristic
is currently used to control automatic in-line ex-

ALPERN ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000224

pansion of calls to static and final methods. For
nonfinal virtual method calls, the optimizing com-
piler predicts the receiver of a virtual call to be
the declared type of the object. It guards each in-
line virtual method with a run-time test to verify
that the receiver is predicted correctly, and to de-
fault to a normal virtual method invocation if it
is not. This run-time test is safe in the presence
of dynamic class loading.

Since Jalapeño is written in Java, the same frame-
work used to expand application methods in line can
also be used to expand calls to run-time methods in
line (notably for synchronization and for object al-
location). In general, it is possible to expand calls in
line all the way from the application code through
Java libraries down to the Jalapeño run-time system,
providing excellent opportunities for optimization.

Low-level optimization. After high-level analyses
and optimizations have been performed, HIR is con-
verted to a low-level intermediate representation (LIR).
The LIR expands HIR instructions into operations that
are specific to the Jalapeño virtual machine’s object
layout and parameter-passing conventions. For ex-
ample, virtual method invocation is expressed as a
single HIR instruction analogous to the invokevirtual
bytecode. This single HIR instruction is converted into
three LIR instructions that obtain the TIB pointer
from an object, obtain the address of the appropri-
ate method body from the TIB, and transfer control
to the method body.

Since field and header offsets are now available as
constants, new opportunities for optimization are ex-
posed. In principle, any high-level optimization could
also be performed on the LIR. However, since the
LIR can be two to three times larger than the cor-
responding HIR, more attention needs to be paid to
compile-time overhead when performing LIR opti-
mizations. Currently, local common subexpression
elimination is the only optimization performed on
LIR. Since HIR and LIR share the same infrastruc-
ture, the code that performs common subexpression
elimination on HIR can be reused without modifi-
cation on LIR.

Also, as the last step of low-level optimization, a de-
pendence graph is constructed for each extended ba-
sic block.17 The dependence graph is used for instruc-
tion selection (see next subsection). Each node of
the dependence graph is an LIR instruction, and each
edge corresponds to a dependence constraint be-
tween a pair of instructions. Edges are built for true,

anti, and output dependences17 for both registers and
memory. Control, synchronization, and exception de-
pendence edges are also built. Synchronization con-
straints are modeled by introducing synchronization
dependence edges between synchronization opera-
tions (monitor_enter and monitor_exit) and memory
operations. These edges prevent code motion of
memory operations across synchronization points.
Java exception semantics20 is modeled by exception
dependence edges connecting different exception
points in an extended basic block. Exception depen-
dence edges are also added between these excep-
tion points and register write operations of local var-
iables that are “live” in exception handler blocks, if
there are any in the method. This precise modeling
of dependence constraints enables aggressive code
reordering in the next optimization phase.

Instruction selection and machine-specific optimi-
zation. After low-level optimization, the LIR is con-
verted to machine-specific intermediate representation
(MIR). The current MIR reflects the PowerPC archi-
tecture. (Additional sets of MIR instructions can be
introduced if Jalapeño is ported to different archi-
tectures.) The dependence graphs for the extended
basic blocks of a method are partitioned into trees.
These are fed to a bottom-up rewriting system
(BURS),23 which produces the MIR. Then symbolic
registers are mapped to physical registers. A prologue
is added at the beginning, and an epilogue at the end,
of each method. Finally, executable code is emitted.

BURS is a code-generator generator, analogous to
scanner and parser generators. Instruction selection
for a desired target architecture is specified by a tree
grammar. Each rule in the tree grammar has an as-
sociated cost (reflecting the size of instructions gen-
erated and their expected cycle times) and code-gen-
eration action. The tree grammar is processed to
generate a set of tables that drive the instruction se-
lection phase at compile time.

There are two key advantages of using BURS tech-
nology for instruction selection. First, the tree-pat-
tern matching performed at compile time uses dy-
namic programming to find a least-cost parse (with
respect to the costs specified in the tree grammar)
for any input tree. Second, the cost of building the
BURS infrastructure can be amortized over several
target architectures. The architecture-specific com-
ponent is relatively short; Jalapeño’s PowerPC tree
grammar is about 300 rules.

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 ALPERN ET AL. 225

The tree-pattern matching in BURS was originally de-
veloped for code generation from tree-based inter-
mediate representations, usually in the absence of
global optimizations. Previous approaches to parti-
tioning directed acyclic graphs for tree-pattern
matching considered only graphs containing register-
true-dependence edges.24 Our approach is more gen-

eral because it considers partitioning in the presence
of both register and nonregister dependences. The
legality constraints for this partitioning are non-
trivial. 25

After the MIR is constructed, live variable analysis
is performed to determine the live ranges of sym-
bolic registers and the stack variables that hold ob-
ject references at garbage-collection-safe points. The
standard live variable analysis18 has been modified
to handle the extended basic blocks of the factored
control flow graph as described by Choi, et al.16

Next, the optimizing compiler employs the linear scan
global register-allocation algorithm26 to assign phys-
ical machine registers to symbolic MIR registers. This
algorithm is not based on graph coloring, but greed-
ily allocates physical to symbolic registers in a single
linear time scan of the symbolic registers’ live ranges.
This algorithm is several times faster than graph col-
oring algorithms and results in code that is almost
as efficient. More sophisticated (and more costly)
register allocation algorithms will eventually be used
at higher levels of optimization (see next subsection).
(The irony of currently using a more expensive al-
gorithm in the quick compiler than in the optimiz-
ing compiler is not lost on the authors.)

A method prologue allocates a stack frame, saves
any nonvolatile registers needed by the method, and
checks to see if a yield has been requested. The ep-
ilogue restores any saved registers and deallocates
the stack frame. If the method is synchronized, the

prologue locks, and the epilogue unlocks, the indi-
cated object.

The optimizing compiler then emits binary execut-
able code into the array of ints that is the method
body. This assembly phase also finalizes the excep-
tion table and the reference map of the instruction
array by converting intermediate-instruction offsets
into machine-code offsets.

Levels of optimization. The optimizing compiler can
operate at different levels of optimization. Each level
encompasses all the optimizations at the previous
levels and some additional ones. Level 1 contains ex-
actly the optimizations described above. (Primarily
for debugging purposes, there is a Level 0, which is
like Level 1 without any high-level or low-level op-
timizations.) Two levels of more aggressive optimi-
zation are planned.

Level 2 optimizations will include code specializa-
tion, intraprocedural flow-sensitive optimizations
based on static single assignment (SSA) form (both
scalar27 and array28) sophisticated register alloca-
tion, and instruction scheduling. Instruction sched-
uling is currently being implemented. It uses an MIR
dependence graph built with the same code that
builds the LIR dependence graph used by BURS.

Level 3 optimizations will include interprocedural
analysis and optimizations. Currently, interproce-
dural escape analysis29 and interprocedural optimi-
zation of register saves and restores15 are being im-
plemented.

Modalities of operation. The optimizing compiler’s
front end (translation to HIR and high-level optimi-
zations) is independent of Jalapeño’s object layout
and calling conventions. This front end is being used
in a bytecode optimization project.30

The intended mode of operation for the optimizing
compiler is as a component of an adaptive Jvm. Fig-
ure 5 shows the overall design of such a virtual ma-
chine. The optimizing compiler is the key constit-
uent of Jalapeño’s adaptive optimization system,
which will also include on-line measurement and con-
troller subsystems currently under development. The
on-line measurement subsystem will monitor the per-
formance of individual methods using both software
sampling and profiling techniques and information
from a hardware performance monitor. The control-
ler subsystem will be invoked when the on-line mea-
surement subsystem detects that a certain perfor-

The optimizing compiler’s
front end is independent

of Jalapeño’s object layout
and calling conventions.

ALPERN ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000226

mance threshold has been reached. The controller
will use the profiling information to build an “op-
timization plan” that describes which methods should
be compiled and with what optimization levels. The
optimizing compiler will then be invoked to compile
methods in accordance with the optimization plan.
The on-line measurement subsystem can continue
monitoring individual methods, including those al-
ready optimized, to trigger further optimization
passes as needed.

In addition to the dynamic compilation mode de-
scribed above, the optimizing compiler can be used
as a static compiler as shown in Figure 6. In this
mode, the optimized code generated by the optimiz-
ing compiler is stored in the boot image (see Ap-
pendix B). The optimized compilation is performed
off line, prior to execution of the Jalapeño virtual
machine. (Eventually, we hope to be able to com-
bine both modes. An application would run for a
while. The adaptive optimization system would op-
timize the Jvm for that application. Finally, this op-
timized Jvm would get written out as a boot image
specialized for the application.)

The optimizing compiler can also be used as a JIT
compiler compiling all methods the first time they
are executed. When benchmarking the performance
of the optimizing compiler, it is used both as a static
boot-image compiler (for Jvm code in the boot im-

age) and as a JIT compiler (for the benchmark code
and any remaining JVM code).

Current status

The core functionality required to implement all Java
language features is all but complete. Some of the
more esoteric thread function—suspend, resume,

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 ALPERN ET AL. 227

timed wait, etc.—have yet to be implemented. The
load-balancing algorithm is rudimentary. Support for
finalization, weak references, and class verification
is not yet in place. The quick compiler is nearing com-
pletion. The basic framework of the optimizing com-
piler and some of its Level 1 optimizations are now
up and running. More advanced optimizations are
being developed. The on-line measurement and con-
troller subsystems are in the design stage.

Jalapeño’s support for Java library code is limited
by the fact that Jalapeño is written in Java code. Jala-
peño can handle library methods written in Java
code, but native methods must be rewritten. Imple-
menting the Java Native Interface (JNI) will allow
Jalapeño to call native methods written to that in-
terface, but some native methods are not. JNI is an
especially difficult issue to address because it is a C
language interface to a virtual machine that, in the
case of Jalapeño, is not written in C. We do not yet
understand the performance or implementation is-
sues that will arise when we attempt to provide JNI
services in Jalapeño.

The Jalapeño project is in transition. The initial func-
tion is mostly in place. Many of Jalapeño’s mech-
anisms are still rudimentary. It is time to measure
performance, identify bottlenecks, and replace them
with more efficient implementations. Some of the
“low-hanging fruit” has already been picked: uncon-
tended lock acquisitions have been moved in line,
for example. However, the performance measure-
ments of baseline compiled code were so inconclu-
sive that we have been reluctant to trust our mea-
surements until the optimizing compiler was
available.

There are also bugs, of both function and perfor-
mance, to be isolated, identified, and fixed.

In trying to assess the current performance of Jala-
peño, it is useful to make comparisons with the Jvm
in the IBM Developer Kit (DK) for AIX, Java Tech-
nology Edition, Version 1.1.8 that uses the JIT com-
piler developed in IBM Tokyo.31 It should be noted
that while Jalapeño has the luxury of being targeted
to SMP servers, the IBM Jvm must accommodate all
PowerPC computers running AIX. The reader should
also keep in mind that the performance figures
quoted here represent a snapshot in time: both Jala-
peño and the IBM Jvm are constantly being improved.

Performance figures are given for Jalapeño’s base-
line and optimizing compilers. In both cases, the boot
image has been compiled with the optimizing com-
piler, and the indicated compiler is used primarily
for the indicated application (and for any dynam-
ically linked classes of the Jvm). The optimizing com-
piler figures reflect currently implemented Level 1
optimizations. A nongenerational copying memory
manager is used in both cases.

Figure 7 compares the time spent in compilation by
Jalapeño’s baseline and optimizing compilers (writ-
ten in the Java language and optimized by Jalapeño’s
optimizing compiler) and the IBM DK JIT compiler
(implemented in native code). The baseline compiler
is the clear winner, running 30 to 45 times faster than
the JIT compiler. The optimizing compiler is nearly
as fast as the JIT compiler, but not quite.

Figure 8 compares the performance of code pro-
duced by the three compilers to interpreted code by
the IBM DK without a JIT compiler on microbench-
marks from Symantec.32 (The graph has been trun-
cated to facilitate comparison of the performance of
Jalapeño’s optimizing compiler and the IBM DK JIT
compiler.) The baseline compiled code is consistently

ALPERN ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000228

twice as fast as interpreted code. The IBM JIT-compiled
code is much better: between four and 40 times faster
than the interpreted code. Jalapeño’s optimizing
compiler is roughly competitive with the JIT com-
piler.

Figure 9 makes the same comparison on the
SPECjvm98 benchmarks33 run on the medium (10
percent) problem size.34 Again the baseline compiler
is usually about twice as good as the interpreter.
Again the JIT compiler is much better. Again the
optimizing compiler is usually competitive with the
JIT compiler.

Figure 10 shows the performance of the Jalapeño
optimizing compiler running 12 virtual processors
on a 12-way SMP (with 262 MHz PowerPC S7a pro-
cessors running AIX 4.3) using the portable business
object benchmark (pBOB v 2.0a). This benchmark
(see Baylor et al.35 in this issue for details), modeled
after the TPC-C** specification, mimics the business
logic in a transactional workload. Performance im-
proves almost linearly to 10 warehouses, peaks at 13,
and then degrades very slowly. This shows that, on
this benchmark at least, Jalapeño scales very well.

Related work

Implementing a Java virtual machine and its related
subsystems (including the optimizing compiler) in
Java code presents several challenges. Taivalsaari36

also describes a “Java in Java” Jvm implementation
designed to examine the feasibility of a high quality
virtual machine written in Java. One drawback of this
approach is that it runs on another Jvm, which adds
performance overhead because of the two-level in-
terpretation process. The Rivet Jvm37 from MIT
(Massachusetts Institute of Technology) also runs
on top of another Jvm. Our approach avoids the need
for another Jvm by bootstrapping the system (see
Appendix B). The Jvm of IBM’s VisualAge* for Java38

is written in Smalltalk. Other Jvms39–43 are written
in native code.

Perhaps the most exciting conventional Jvm is
HotSpot.40 The object models of HotSpot and Jala-
peño are somewhat similar: objects are referenced
directly (rather than through handles) and objects
have a two-word header. In both models, informa-
tion about the object’s class is available through a
reference in the object header.

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 ALPERN ET AL. 229

HotSpot initially interprets bytecodes, compiling
(and moving in line) frequently called methods. Jala-
peño’s quick compiler will play a role similar to
HotSpot’s interpreter. All else being equal, this
should give a start-up advantage to HotSpot and a
performance advantage to Jalapeño. We do not ex-
pect either advantage to be dramatic, but this remains
to be seen. If unoptimized Jalapeño code performs
better than interpreted HotSpot code, this will al-
low the Jalapeño optimizing compiler to focus more
resources on the code that it optimizes. Implement-
ing Jalapeño in Java code allows the optimizing com-
piler to move in line and optimize frequently called
run-time services that HotSpot accesses through calls
to native methods (heavily optimized C routines).

HotSpot implements Java threads as host operating
system threads. These threads are fully preemptive.
Jalapeño schedules its own quasi-preemptive
threads. We expect that this will allow support for
more threads, lighter-weight synchronization, and
smoother transition from normal operation to gar-
bage collection (especially in the presence of a large
number of threads). HotSpot’s per-thread method

activation stacks conform to host operating system
calling conventions. This should give Jalapeño a mi-
nor space and performance advantage (although
Jalapeño will take a performance hit when it does
call C code).

Both HotSpot and Jalapeño support type-accurate
garbage collection. Jalapeño supports a family of
memory managers. None of Jalapeño’s collectors is
as sophisticated as HotSpot’s, but on an SMP Jala-
peño’s collectors run in parallel using all available
CPUs. HotSpot uses a generational scheme with
“mark-and-compact” for major collections. To min-
imize pause times, HotSpot can use an incremental
“train” collector.44 This collector makes frequent
short collections. Note that this will exacerbate any
transition-to-collection delays.

We do not have information on HotSpot’s locking
mechanisms.

Squeak45 is a Smalltalk virtual machine that is writ-
ten in Smalltalk. It produces a production version
by translating the virtual machine to C for compi-

ALPERN ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000230

lation and linking. The translator is also written in
Smalltalk.

Dynamic compilation (called dynamic translation or
just-in-time compilation) has been a key ingredient
in a number of previous implementations of object-
oriented languages. Deutsch and Schiffman’s high-
performance implementation of Smalltalk-80
dynamically translated Smalltalk bytecodes to native
code;46 their compiler was quite similar to Jalapeño’s
baseline compiler. Implementations of the Self lan-
guage also relied on dynamic compilation to achieve
high performance.47 Self compilers utilized register-
based intermediate representations that are roughly
equivalent to the one used by Jalapeño’s optimizing
compiler. Recently, a number of just-in-time com-
pilers have been developed for the Java language.31,48

Some of these compilers translate bytecodes to a
three-address code, perform simple optimizations
and register allocation, and then generate target ma-
chine code.

DAISY49 is a VLIW (very long instruction word) em-
ulator that performs “on-the-fly” translation of dif-
ferent architecture instruction sets, including Java
bytecodes, to a VLIW architecture. It uses a VLIW tree-
like representation for instruction scheduling and
register allocation.

A number of previous systems have utilized more
specialized forms of dynamic compilation to selec-
tively optimize program hot spots by exploiting “run-
time constants.”50–53 In general, these systems em-
phasize extremely fast dynamic compilation, often
performing extensive off-line precomputations to
avoid constructing any explicit representation of the
program fragment being compiled.

A large collection of work addresses optimizations
specific to object-oriented languages, such as class
analysis, both intraprocedural54 and interproce-
dural,55 class hierarchy analysis and optimiza-
tions,56,57 receiver class prediction,46,58,59 method spe-
cialization,56 and call graph construction.55 Other
optimizations relevant to Java compilation include
bounds check elimination60 and semantic expan-
sion.22

Conclusions

Jalapeño is a virtual machine for Java servers writ-
ten in the Java programming language. Run-time ser-
vices, conventionally supported with native methods,
are implemented primarily in Java code.

Jalapeño’s object layout supports single-instruction
field access, three-instruction access to array ele-
ments, hardware null-pointer checks, and four-in-
struction virtual-method dispatches. Fast access to
static fields and methods through a global JTOC ar-
ray is also achieved.

Jalapeño’s threads are multiplexed by virtual pro-
cessors. Thread switching is quasi-preemptive. Three
different locking mechanisms provide light-weight
synchronization without operating system support.

Jalapeño’s memory management subsystem supports
a family of memory managers, each consisting of a
concurrent object allocator and a parallel, type-ac-
curate, stop-the-world garbage collector. Genera-
tional and nongenerational, copying and noncopy-
ing collectors are supported. Incremental and
concurrent collectors are being investigated.

Jalapeño’s three interoperable compilers provide dif-
ferent levels of dynamic optimization, ensure timely
thread preemption, and produce tables that support
exception handling, location of references in stacks,
and debugging.

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 ALPERN ET AL. 231

Jalapeño’s optimizing compiler produces high-qual-
ity code for methods that have been identified as
frequently executed or computationally intensive.
Methods to be recompiled will be selected dynam-
ically based on run-time profiling.

We have established the feasibility of building a vir-
tual machine for Java servers in the Java language.
We have not yet demonstrated that such a virtual
machine can achieve and sustain world-class perfor-
mance. We are working on it.

Appendix A: MAGIC

To allocate an object, Jalapeño’s memory managers
must access raw memory to obtain a piece of avail-
able space of the required size. They “walk” the
thread stacks to identify object references in the stack
frames. A copying manager accesses object headers
to mark objects during garbage collection and ac-
cesses raw memory to copy an object. Exception han-
dling requires an unstructured transfer of control to
the appropriate catch block (“go to” is forbidden in
the Java language). Static data and methods are ac-
cessed through a dedicated machine register that
cannot itself be accessed from Java instructions. In-
put and output require access to operating system
services unknown to the Java language. Thread
switching depends on receiving periodic interrupts
from the operating system. Jalapeño’s locking mech-
anisms are implemented using PowerPC instructions
that cannot be expressed as Java bytecodes. None
of these operations can be performed without
breaching Java’s programming model.

To implement Jalapeño in Java code, it is necessary
to augment Java’s functionality to include capabil-
ities conventionally required by native methods:

● To invoke operating system services
● To use architecture-specific machine instructions
● To access machine registers and memory
● To coerce object references to raw addresses and

vice versa
● To transfer execution to an arbitrary address

These capabilities must be granted to Jalapeño, but
Jalapeño must prevent them from becoming avail-
able to user applications.

Jalapeño’s compilers enable such transgressions with
the help of a special MAGIC class. The methods of
this class correspond to the extra-Java operations
Jalapeño must be able to perform. The bodies of

these methods are empty. Java’s source compilers
can compile them. However, Jalapeño’s compilers
ignore the resulting bytecodes. Rather, they recog-
nize the name of the MAGIC class and insert the nec-
essary machine code in line. To make sure that user
code does not evade Java’s restrictions, Jalapeño’s
compilers will verify, when they encounter a call to
a MAGIC method, that the method they are compil-
ing is an authorized part of the Jvm.

Code that needs to exploit the MAGIC class must
do so with extreme caution. The rules that are being
circumvented are there for a reason. Certain oper-
ations require great care. Computing with raw ad-
dresses is particularly delicate. The MAGIC method
objectAsAddress transmutes an object reference into
a raw address (an int). This functionality is needed,
for instance, to perform dynamic linking. It is, how-
ever, problematic. Jalapeño’s copying memory man-
agers update object references when they move the
referenced object, but raw addresses are not updated.
Care must be taken to avoid garbage collection when
computing with raw addresses lest a copying collec-
tor invalidate them. This is prevented by calling a
method that disables garbage collection.

A thread that has disabled garbage collection can-
not try to create an object, because the system would
hang if there were insufficient memory. (Note that
other threads are free to request memory. If it is un-
available, these threads are delayed and a collection
will be initiated as soon as garbage collection is re-
enabled.) There are subtle implications of this re-
striction. Classes cannot be loaded, since objects are
created during class loading. This means dynamic
linking must be avoided. Type casts (and stores into
object arrays) cannot be allowed either, since these
might also entail class loading. Similarly, if the thread
were to try to enter a monitor on a shared object
currently owned by a thread waiting for garbage col-
lection, the system would be in deadlock. Thus, a
thread must operate in a tightly restricted subset of
Java capability when computing with raw addresses.

It would also be somewhat problematic for a thread
to yield (explicitly or implicitly) while its garbage col-
lection is disabled. Such a yield might arbitrarily de-
lay needed garbage collection. Implicit thread switch-
ing is postponed (and explicit thread switching
prohibited) while a thread’s garbage collection is dis-
abled.

There are approximately 650 Java classes in the Jala-
peño system, of which approximately 110 access the

ALPERN ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000232

MAGIC class. Of these only 12 classes need to dis-
able garbage collection.

Appendix B: Getting started

A fairly substantial set of services—a class loader,
an object allocator, a compiler—must exist before
a Jvm can load all remaining services required for
normal operation. The initial services for a Jvm writ-
ten in native code, or a Jvm that runs on top of an-
other Jvm, are available from an underlying run-time
routine. Jalapeño is not written in native code and
it has no underlying run-time routines. Therefore,
we assemble the essential core services into an ex-
ecutable boot image prior to running the Jvm. This
boot image is a snapshot of a Jalapeño virtual ma-
chine written into a file. Later, this file is loaded into
memory and executed.

The boot image is created by a Java program called
a boot-image writer. It constructs a mock-up of a run-
ning Jalapeño virtual machine and then packages it
into a boot image. The boot-image writer is an or-
dinary Java program and it can run on any Jvm. The
Jvm that runs the boot-image writer will be called
the source Jvm, and the resulting Jalapeño virtual
machine, the target Jvm.

The boot-image writer resembles a cross compiler
and linker: it compiles bytecodes to machine code
and rewrites machine addresses to bind program
components into a runnable image. However, since
Jalapeño’s compilers, class loaders, and run-time
data structures are all in Java code, unlike most com-
pilers, it must also bind “live” objects into the boot
image.

The boot-image writer instantiates, in the source
Jvm, Java objects that represent the target Jvm. Then
it uses Java’s built-in reflection facility to translate
these mock-up objects from the object model of the
source Jvm to Jalapeño’s object model. This self-ref-
erencing aspect of the boot-image writer makes it
relatively simple—it is really just an object model
translator.

Since Jalapeño is a Java program, each of its com-
ponents is a Java object and the boot-image writer
can construct the mock-up by executing special init
methods in each of Jalapeño’s major subsystems. A
customized class loader makes sure that any classes
needed to execute this code are loaded into the
mock-up as well as into the source Jvm. As a class
is loaded, its methods are compiled (by a Jalapeño

compiler running in the source Jvm) and included
in the mock-up.

This strategy of loading classes into both the source
Jvm and its mock-up of the target Jvm requires a
complete class list to succeed. If, when Jalapeño
starts running, a method of the core run-time envi-
ronment references any class not in the boot image,
an endless recursion results: the run-time environ-
ment needs to load part of itself in order to load part
of itself . . . and so on.

The problem of determining the minimal set of
classes needed in the mock-up to prevent this was
solved using a combination of careful planning and
trial and error. All of Jalapeño’s core classes were
named with a VM_ prefix. These are the classes
needed to provide enough machinery to allow the
virtual machine to perform compilation, memory
management, and dynamic class loading. The spe-
cial prefix is recognized by Jalapeño’s compilers and
used to suppress normal dynamic linking rules: they
never generate dynamic linking code between meth-
ods whose classes have this prefix. The core classes
were also carefully written to avoid unnecessary use
of Java library classes. The fundamental classes—
java.lang.Object, java.lang.Class, java.lang.String, and
a few I/O classes—were unavoidable exceptions. To-
gether, the VM_ classes and fundamental Java classes
formed a starting set of classes that we thought
needed to appear in the boot image.

A small number of additional dependencies (for ex-
ample, Integer, Float, Double, and various array and
exception classes) were then identified by trial and
error. We built a boot image and attempted to ex-
ecute it. If it crashed trying to (recursively) load class
X, then we added X to the list of classes written into
the boot image and repeated the exercise. This pro-
cess converged with a small number of retries and
did not prove to be a maintenance problem once the
implementation of the core VM_ classes stabilized.

When the mock-up is complete, it is transformed into
a boot image. This involves finding all the objects in
the mock-up, converting them to Jalapeño’s object
format, and storing them in a boot-image array. All
components of a running Jalapeño virtual machine
can be reached from a single JTOC array (see section
on static fields and methods). In the mockup, the
JTOC is encoded by three parallel arrays: an array of
ints (for primitive values), an array of Object instances
(for references), and a Boolean array to discrimi-
nate between the two. The structure rooted in the

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 ALPERN ET AL. 233

JTOC array is walked recursively and the values, both
reference and primitive, encountered are translated
into the boot-image array. Since the Type Informa-
tion Block (see section on object headers) for each
loaded class is referenced from the JTOC, all neces-
sary compiled method bodies will be included in the
boot image.

The translation process uses reflection. The boot-
image writer obtains the java.lang.Class object for
each object in the mock-up and iterates over the
fields returned by the getFields method. For each
field, it extracts the field value from the source ob-
ject and extracts the target field offset from Jalape-
ño’s class description for the object. Then, it writes
the value at that offset from the index of the object
in the boot image. When object references are en-
countered, we cannot use any value from the mock-
up. The references in the mock-up are converted to
boot-image addresses using a hash table maintained
as boot-image space is allocated. (An array contain-
ing the addresses of all references in the boot image
can be included in the boot image to support relo-
cation of the image at boot time.)

Overall, the boot-image writer copies Java objects,
field by field, from the mock-up into the boot im-
age, simultaneously translating from the source Jvm’s
to the target Jvm’s object model. Relying on Java’s
reflection capability, we ran into one inconvenience:
Sun’s Java Development Kit, v 1.1.4 did not permit
reflective access to private fields. This is not a prob-
lem in the Java 2 Software Development Kit, which
allows such access. We solved the problem in the ear-
lier version by preprocessing the class files, turning
the private bits off.

In addition to the objects reachable from the JTOC
array, two other objects are needed in the boot im-
age: an initial thread object containing an empty
stack ready to run the first instruction of the boot¼
method when Jalapeño starts up and a “boot record”
to interface the boot image with the boot-image run-
ner (described next). This boot record contains the
start, end, and last-used addresses in the image, four
register values used to start Jalapeño, the address
of the boot¼ method, and the addresses for AIX’s
system calls. When these values are stored in the
boot-image array, it is written to disk.

A short program called a boot-image runner starts
Jalapeño running. It reads the boot image into mem-
ory, sets the four registers to the indicated values,
and branches to the boot¼ method. The boot-im-

age runner is written in C (with a little assembler to
set the registers and perform the final branch), not
Java code, so it does not require a Jvm to run on.

When the boot¼ method starts executing, the vir-
tual machine is in a fragile state: it can run a single
thread of machine instructions, but it has not yet cre-
ated the external operating system resources it needs
to support its own execution. These operating sys-
tem resources cannot be created by the boot-image
writer, because they refer to external state that will
not exist until the boot image is executed. Thus, Jala-
peño must perform additional initialization.

At boot time, the virtual machine initializes hard-
ware-specific addresses (for example, it will eventu-
ally establish a hardware guard page on its own
stack), opens files corresponding to the Java library’s
System.in, System.out, and System.error stream ob-
jects, parses command line arguments, and creates
a System.Properties object corresponding to the cur-
rent execution environment. Then, the multithread-
ing subsystem is initialized by creating operating sys-
tem threads to serve as the virtual processors upon
which Java threads are multiplexed. Finally, timer
interrupts are enabled to support thread preemp-
tion and a Java thread is spawned to run the appli-
cation program specified on the command line.

Jalapeño runs until the last (nondaemon) Java thread
terminates or System.exit¼ is called.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.
or Transaction Processing Performance Council.

Cited references and notes

1. C. May, E. Silha, R. Simpson, and H. Warren, The PowerPC
Architecture, Morgan Kaufmann Publishers, Inc., San Fran-
cisco, CA (1994).

2. IBM AIX Version V4.3 Technical References, SBOF-1878-00,
IBM Corporation (1998).

3. B. Alpern, C. R. Attanasio, J. J. Barton, A. Cocchi, S. F. Hum-
mel, D. Lieber, T. Ngo, M. Mergen, J. C. Shepherd, and S. E.
Smith, “Implementation of Jalapeño in Java,” Proceedings,
ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications, Denver, CO (November 1–5,
1999), pp. 314–324.

4. AIX pthreads conform to the POSIX (Portable Operating
System Interface for UNIXw) standard.

5. In AIX, it is at least theoretically possible for another pro-
cess to cause a shared system library to get loaded into very
high memory. This remote possibility is not a concern in a
research project, but would need to be addressed by a com-
mercial Jvm. It would be sufficient to forbid read and write

ALPERN ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000234

access to the last page of addressable memory. (Accesses to
some of the fields of objects bigger than a page could be
checked explicitly without having a major impact on perfor-
mance.)

6. B. Alpern, M. Charney, J.-D. Choi, A. Cocchi, and D. Lieber,
“Dynamic Linking on a Shared-Memory Microprocessor,”
Proceedings, International Conference on Parallel Architectures
and Compilation Technologies, Newport Beach, CA (Octo-
ber 12–16, 1999), pp. 177–182.

7. D. F. Bacon, R. Konuru, C. Murthy, and M. Serrano, “Thin
Locks: Featherweight Synchronization for Java,” Proceedings,
SIGPLAN ’98 Conference on Programming Language Design
and Implementation, Montreal, Canada (June 17–19, 1998),
pp. 258–268.

8. T. Onodera and K. Kawachiya, “A Study of Locking Objects
with Bimodal Fields,” Proceedings, ACM Conference on Ob-
ject-Oriented Programming, Systems, Languages, and Applica-
tions, Denver, CO (November 1–5, 1999), pp. 223–227.

9. C. A. R. Hoare, “Monitors: An Operating System Structur-
ing Concept,” Communications of the ACM 17, No. 10, 549–
557 (October 1974).

10. R. Jones and R. Lins, Garbage Collection: Algorithms for Au-
tomatic Dynamic Memory Management, John Wiley & Sons,
Inc., New York (1996).

11. All papers in Proceedings, International Symposium on Mem-
ory Management, ACM Special Interest Group on Memory
Management, Vancouver, BC (October 17–19, 1998).

12. G. J. Chaitin, M. Auslander, A. Chandra, J. Cocke, M. Hop-
kins, and P. Markstein, “Register Allocation via Coloring,”
Computer Languages 6, 47–57 (January 1981).

13. D. Ungar and R. B. Smith, “Self: The Power of Simplicity,”
Proceedings, ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, Orlando, FL (Oc-
tober 4–8, 1987), pp. 227–242.

14. C. Chambers, D. Ungar, and E. Lee, “An Efficient Imple-
mentation of Self—A Dynamically-Typed Object-Oriented
Language Based on Prototypes,” Proceedings, OOPSLA ’89
(October 1989), pp. 49–70. Published as ACM SIGPLAN No-
tices 24, No. 10.

15. M. G. Burke, J.-D. Choi, S. Fink, D. Grove, M. Hind,
V. Sarkar, M. J. Serrano, V. C. Sreedhar, H. Srinivasan, and
J. Whaley, “The Jalapeño Dynamic Optimizing Compiler for
Java,” Proceedings, ACM Java Grande Conference, San Fran-
cisco, CA (June 12–14, 1999).

16. J.-D. Choi, D. Grove, M. Hind, and V. Sarkar, “Efficient and
Precise Modeling of Exceptions for the Analysis of Java Pro-
grams,” ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, Toulouse,
France (September 6, 1999), pp. 21–31.

17. C. Chambers, I. Pechtchanski, V. Sarkar, M. J. Serrano, and
H. Srinivasan, “Dependence Analysis for Java,” Proceedings,
12th International Workshop on Languages and Compilers for
Parallel Computing, San Diego, CA (August 4–6, 1999).

18. A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools, Addison-Wesley Publishing Co., Read-
ing, MA (1986).

19. J. Whaley, Dynamic Optimization Through the Use of Auto-
matic Runtime Specialization, M. Eng. thesis, Massachusetts
Institute of Technology, Cambridge, MA (May 1999).

20. T. Lindholm and F. Yellin, The Java Virtual Machine Spec-
ification, Addison-Wesley Publishing Co., Reading, MA
(1996).

21. K. Arnold and J. Gosling, The Java Programming Language,
Addison-Wesley Publishing Co., Reading, MA (1996).

22. P. Wu, S. P. Midkiff, J. E. Moreira, and M. Gupta, “Efficient

Support for Complex Numbers in Java,” Proceedings, ACM
Java Grande Conference, San Francisco, CA (June 12–14,
1999).

23. R. R. Henry, C. W. Fraser, and T. A. Proebsting, “Burg—
Fast Optimal Instruction Selection and Tree Parsing,” Pro-
ceedings, SIGPLAN ’92 Conference on Programming Language
Design and Implementation, San Francisco, CA (June 17–19,
1992).

24. M. A. Ertl, “Optimal Code Selection in DAGs,” Proceedings,
26th Annual ACM SIGACT-SIGPLAN Symposium on the
Principles of Programming Languages, San Antonio, TX (Jan-
uary 20–22, 1999).

25. V. Sarkar, M. J. Serrano, and B. B. Simons, “Retargeting Op-
timized Code by Matching Tree Patterns in Directed Acyclic
Graphs,” patent application (December 1998).

26. M. Poletto and V. Sarkar, “Linear Scan Register Allocation,”
ACM TOPLAS (July 1999).

27. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck, “Efficiently Computing Static Single Assignment
Form and the Control Dependence Graph,” ACM Transac-
tions on Programming Languages and Systems 13, No. 4, 451–
490 (October 1991).

28. K. Knobe and V. Sarkar, “Conditional Constant Propaga-
tion of Scalar and Array References Using Array SSA Form,”
G. Levi, Editor, Lecture Notes in Computer Science, 1503,
Springer-Verlag, New York (1998), pp. 33–56.

29. J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and
S. Midkiff, “Escape Analysis for Java,” Proceedings, ACM Con-
ference on Object-Oriented Programming, Systems, Languages,
and Applications, Denver, CO (November 1–5, 1999), pp.
1–19.

30. F. Tip, C. Laffra, P. F. Sweeney, and D. Streeter, “Practical
Experience with an Application Extractor for Java,” Proceed-
ings, ACM Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, Denver, CO (November
1–5, 1999), pp. 292–305.

31. T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue,
M. Kawahito, K. Ishizaki, H. Komatsu, and T. Nakatani,
“Overview of the IBM Java Just-in-Time Compiler,” IBM Sys-
tems Journal 39 No. 1, 175–193 (2000, this issue).

32. Just-In-Time Compilation (see http://www.symantec.com/
cafe/analysis1.html#jitcomp).

33. The Standard Performance Evaluation Corporation, SPEC-
jvm98 Benchmarks (see http://www.spec.org/osg/jvm98/).

34. Note that these results do not follow the official SPEC re-
porting rules, and therefore should not be treated as official
SPEC results.

35. S. J. Baylor, M. Devarakonda, S. Fink, E. Gluzberg, M. Kalan-
tar, P. Muttineni, E. Barsness, R. Arora, R. Dimpsey, and
S. J. Munroe, “Java Server Benchmarks,” IBM Systems Jour-
nal 39, No. 1, 57–81 (2000, this issue).

36. A. Taivalsaari, “Implementing a Java Virtual Machine in the
Java Programming Language,” Technical Report SMLI TR-
98-64, Sun Microsystems (March 1998).

37. J. Chapin, personal communication regarding the Rivet proj-
ect at MIT. See http://sdg.lcs.mit.edu/rivet.html for further
information.

38. John Duimovich, personal communication.
39. Java Development Kit 1.1 (see http://java.sun.com/marketing/

collateral/jdk_sc.html).
40. The Java Hotspot Performance Engine Architecture (April

1999). White paper available at http://java.sun.com/products/
hotspot/whitepaper.html.

41. See http://www.kaffe.org/.
42. A. Krall and R. Grafl, “CACAO—A 64 bit Java VM Just-

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 ALPERN ET AL. 235

in-Time Compiler,” Concurrency: Practice and Experience 9,
No. 11 (1987).

43. B.-S. Yang, S.-M. Moon, S. Park, J. Lee, S. Lee, J. Park,
Y. C. Chung, S. Kim, K. Ebcioglu, and E. Altman, “LaTTe:
A Java VM Just-In-Time Compiler with Fast and Efficient
Register Allocation,” Proceedings, IEEE International Con-
ference on Parallel Architectures and Compilation Techniques
(PACT’99), Newport Beach, CA (October 12–16, 1999), pp.
128–138.

44. With the train algorithm, all mutators are halted, but gar-
bage collection is done on only part of the heap. Thus the
mutators have only a short “pause time.” In Jalapeño, we re-
duce the pause time by running a parallel collector, using mul-
tiple CPUs.

45. D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay,
“The Story of Squeak, A Practical Smalltalk Written in It-
self,” Proceedings, ACM SIGPLAN Conference on Object-Ori-
ented Programming, Systems, Languages, and Applications, At-
lanta, GA (October 5–9, 1997), pp. 318–326.

46. L. P. Deutsch and A. M. Schiffman, “Efficient Implementa-
tion of the Smalltalk-80 System,” Proceedings, 11th Annual
ACM Symposium on the Principles of Programming Languages,
Salt Lake City, Utah (January 15–18, 1984), pp. 297–302.

47. C. Chambers, The Design and Implementation of the Self Com-
piler, an Optimizing Compiler for Object-Oriented Programming
Languages, Ph.D. thesis, Stanford University (March 1992).
Published as technical report STAN-CS-92-1420.

48. A.-R. Ald-Tabatabai, M. Cierniak, G.-Y. Lueh, V. M. Parikh,
and J. M. Stichnoth, “Fast, Effective Code Generation in a
Just-in-Time Java Compiler,” Proceedings, SIGPLAN ’98 Con-
ference on Programming Language Design and Implementa-
tion, Montreal, Canada (June 17–19, 1998).

49. K. Ebcioglu and E. Altman, “DAISY: Dynamic Compilation
for 100% Architectural Compatibility,” IBM Technical Re-
port RC 20538 (1996).

50. C. Consel and F. Noël, “A General Approach for Run-Time
Specialization and Its Application to C,” Proceedings, 23rd
Annual ACM SIGACT-SIGPLAN Symposium on the Princi-
ples of Programming Languages, St. Petersburg Beach, FL
(January 21–24, 1996), pp. 145–156.

51. J. Auslander, M. Philipose, C. Chambers, S. J. Eggers, and
B. N. Bershad, “Fast, Effective Dynamic Compilation,” Pro-
ceedings, SIGPLAN ’96 Conference on Programming Language
Design and Implementation, Philadelphia, PA (May 21–24,
1996), pp. 149–159.

52. M. Poletto, D. R. Engler, and M. Frans Kaashoek, “tcc: A
System for Fast, Flexible, and High-Level Dynamic Code
Generation,” Proceedings, SIGPLAN ’97 Conference on Pro-
gramming Language Design and Implementation, Las Vegas,
NE (June 16–18, 1997), pp. 109–121.

53. B. Grant, M. Mock, M. Philipose, C. Chambers, and S. J. Egg-
ers, “DyC: An Expressive Annotation-Directed Dynamic
Compiler for C,” Theoretical Computer Science, to appear.

54. C. Chambers and D. Ungar, “Iterative Type Analysis and Ex-
tended Message Splitting: Optimizing Dynamically-Typed
Object-Oriented Programs,” Proceedings, SIGPLAN ’90 Con-
ference on Programming Language Design and Implementa-
tion, White Plains, NY (June 20–22, 1990), pp. 150–164.

55. D. Grove, G. DeFouw, J. Dean, and C. Chambers, “Call
Graph Construction in Object-Oriented Languages,” Proceed-
ings, ACM Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, Atlanta, GA (October 5–9,
1997), pp. 108–124.

56. F. Tip and P. F. Sweeney, “Class Hierarchy Specialization,”
Proceedings, ACM Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications, Atlanta, GA (Oc-
tober 5–9, 1997), pp. 271–285.

57. P. F. Sweeney and F. Tip, “A Study of Dead Data Members
in C11 Applications,” Proceedings, SIGPLAN ’98 Confer-
ence on Programming Language Design and Implementation,
Montreal, Canada (June 17–19, 1998), pp. 324–332.

58. C. Chambers, J. Dean, and D. Grove, Whole-Program Op-
timization of Object-Oriented Languages, Technical Report
UW-CSE-96-06-02, University of Washington, Department
of Computer Science and Engineering (June 1996).

59. U. Hölzle and D. Ungar, “Optimizing Dynamically Dis-
patched Calls with Run-Time Type Feedback,” Proceedings,
SIGPLAN ’94 Conference on Programming Language Design
and Implementation, Orlando, FL (June 20–24, 1994), pp.
326–336.

60. S. P. Midkiff, J. E. Moreira, and M. Snir, “Optimizing Array
Reference Checking in Java Programs,” IBM Systems Jour-
nal 37, No. 3, 409–453 (1998).

Accepted for publication October 5, 1999.

Bowen Alpern IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 218, Yorktown Heights, New York 10598
(electronic mail: alpern@watson.ibm.com). Dr. Alpern joined the
IBM research staff after receiving a Ph.D. degree from Cornell
University in 1986. His research interests include virtual machine
implementation, Java technology, concurrent and parallel pro-
gramming, synchronization mechanisms, and the parallel mem-
ory hierarchy (PMH) model of computation.

C. R. Attanasio IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 218, Yorktown Heights, New York 10598
(electronic mail: dick@watson.ibm.com). Mr. Attanasio joined
IBM in 1965 as a systems programmer and has been involved in
various systems programming and analysis activities ever since,
including security evaluation of VM/370, AIX-based networking
enhancements, and a bytecode verifier for Java. As part of the
Jalapeño project he has implemented the noncopying nongenera-
tional and generational storage allocators and garbage collectors.

John J. Barton Hewlett-Packard Laboratories, 1501 Page Mill
Road, Palo Alto, California 94304-1126 (electronic mail:
John_Barton@hpl.hp.com). Dr. Barton wrote the Jalapeño boot
image writer and managed the Java Technology group during the
initial stages of the Jalapeño project. He also worked on the re-
search project that led to IBM’s VisualAge C11 v 4.0 product.
He has a Ph.D. degree in chemistry from the University of Cal-
ifornia at Berkeley and a master’s degree in applied physics from
the California Institute of Technology. Dr. Barton now works for
Hewlett-Packard Laboratories.

Michael G. Burke IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 704, Yorktown Heights, New York 10598
(electronic mail: mgburke@us.ibm.com). Dr. Burke is currently a
research staff member and manager of the Object-Oriented Op-
timization group at the IBM Thomas J. Watson Research Cen-
ter. He received a B.A. degree in philosophy from Yale Univer-
sity in 1973. His studies at the Courant Institute of New York
University resulted in an M.S. degree in 1979 and a Ph.D. degree
in 1983 in computer science. His current research interests in-
clude compiler optimization, program analysis, compiling object-
oriented languages, and e-business language and performance
technology.

ALPERN ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000236

Perry Cheng Computer Science Department, Carnegie Mellon Uni-
versity, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (elec-
tronic mail: pscheng@cs.cmu.edu). Mr. Cheng received his B.S.
degree (1994) in mathematics and computer science from Rice
University and his M.S. degree (1997) in computer science from
Carnegie Mellon University. He is currently working on his doc-
toral thesis, “Scalable Garbage Collection for Shared-Memory
Multiprocessors,” at Carnegie Mellon University.

Jong-Deok Choi IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 704, Yorktown Heights, New York 10598
(electronic mail: jdchoi@us.ibm.com). Dr. Choi received the B.S.
degree in electronic engineering from Seoul National University
(SNU), Seoul, Korea, in 1979; the M.S. degree in electrical en-
gineering from Korea Advanced Institute of Science and Tech-
nology (KAIST) in 1981; and the M.S. and Ph.D. degrees, both
in computer science, from the University of Wisconsin, Madison,
in 1985 and 1989, respectively. Since September 1989, he has been
at the IBM Thomas J. Watson Research Center as a research
staff member. His research interests include optimizing compil-
ers, programming environments for parallel and distributed sys-
tems, and parallel program debugging.

Anthony Cocchi IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 218, Yorktown Heights, New York 10598
(electronic mail: tony@watson.ibm.com). Mr. Cocchi is a senior
software engineer at the Thomas J. Watson Research Center. He
received B.S. and M.S. degrees in electrical engineering from Pratt
Institute, Brooklyn, New York, and an M.S. degree from New
York Polytechnic University. On the Jalapeño project, he has
worked on the run-time and garbage collection components and
on system performance.

Stephen J. Fink IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 704, Yorktown Heights, New York 10598
(electronic mail: sjfink@us.ibm.com). Dr. Fink is a research staff
member at the Thomas J. Watson Research Center. He received
the B.S. degree from Duke University, Durham, North Carolina,
in 1992, and the M.S. and Ph.D. degrees from the University of
California, San Diego, in 1994 and 1998, respectively. His research
interests include dynamic compilation, run-time systems, object-
oriented programming, and parallel scientific computation.

David Grove IBM Research Division, Thomas J. Watson Research
Center, Box 704, Yorktown Heights, New York 10598 (electronic
mail: groved@us.ibm.com). Dr. Grove is a research staff member
at the IBM Thomas J. Watson Research Center. He received the
Ph.D. degree from the University of Washington, Seattle in 1998,
where he worked on the Cecil/Vortex research project under Pro-
fessor Craig Chambers. His primary research interests are in the
design, analysis, and optimization of object-oriented program-
ming languages.

Michael Hind IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 704, Yorktown Heights, New York 10598 (elec-
tronic mail: hindm@us.ibm.com). Dr. Hind is a research staff mem-
ber at the Thomas J. Watson Research Center. He received his
Ph.D. degree from New York University in 1991. He is currently
working on the Jalapeño Jvm as a member of the Dynamic Op-
timization group. His research interests include program anal-
ysis, adaptive compilation, and programming languages.

Susan Flynn-Hummel IBM Research Division, Thomas J. Watson
Research Center, Box 218, Yorktown Heights, New York 10598 (elec-
tronic mail: hummel@watson.ibm.com). Dr. Flynn-Hummel is a
research staff member at the IBM Thomas J. Watson Research
Center. She received her B.A. degree in mathematics from McGill
University in 1980, and her Ph.D. degree in computer science from
New York University in 1989. Her research interests include par-
allel computing and computer visualization.

Derek Lieber IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598 (elec-
tronic mail: derek@watson.ibm.com). Mr. Lieber is a senior soft-
ware engineer at the Thomas J. Watson Research Center. His
interests include interactive graphical debuggers, Java virtual ma-
chine architectures, and operating systems.

Vassily Litvinov University of Washington, Computer Science and
Engineering, Box 352350, Seattle, Washington 98195 (electronic
mail: vass@cs.washington.edu). Mr. Litvinov is a graduate student
in computer science at the University of Washington. He works
on a flexible type system for an advanced object-oriented pro-
gramming language, pursuing his passion for tools that reduce
the cost of software development. In the “real world” he has en-
joyed two summer internships working on optimizing JIT com-
pilers for the Java language. Mr. Litvinov holds an undergrad-
uate degree with distinction from Moscow Institute of Physics
and Technology, Russia.

Mark F. Mergen IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 218, Yorktown Heights, New York 10598
(electronic mail: mergen@us.ibm.com). Dr. Mergen manages the
Jalapeño virtual machine, garbage collection, and nonoptimiz-
ing compilers group and is responsible for code generation in the
quick compiler. He previously managed research work that led
to the High-Performance Compiler for Java (HPCJ) product. He
is also interested in software simplification and operating systems,
and has previously worked on 64-bit AIX, PowerPC virtual mem-
ory architecture, and paging systems. He has a B.S. degree (in
mathematics) and an M.D. degree, both from the University of
Wisconsin at Madison.

Ton Ngo IBM Research Division, Thomas J. Watson Research Cen-
ter, P.O. Box 218, Yorktown Heights, New York 10598 (electronic
mail: ton@us.ibm.com). Dr. Ngo received his Ph.D. degree (1997)
and M.S. degree (1992) in computer science from the University
of Washington, his M.S. degree (1986) in electrical engineering
from the Florida Institute of Technology, and his B.S. degree
(1982) in electrical engineering from the Georgia Institute of
Technology. He joined the IBM System Products Division in 1982,
then joined the IBM Research Division in 1987. His past research
included parallel systems and parallel languages. Currently, he
develops the dynamic debugger and other run-time subsystems
for the Jalapeño project.

James R. Russell IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 704, Yorktown Heights, New York 10598
(electronic mail: jrr@us.ibm.com). Dr. Russell is a research staff
member at the Thomas J. Watson Research Center, and is de-
partment group manager of the Software Technology department
there. His research over the past several years has progressed over
distributed systems, tools for developing distributed applications,
Web application servers, and applications of Java technology. He
holds a Ph.D. degree in computer science from Cornell Univer-
sity, Ithaca, New York.

IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000 ALPERN ET AL. 237

Vivek Sarkar IBM Research Division, Thomas J. Watson Research
Center, Box 704, Yorktown Heights, New York 10598 (electronic
mail: vsarkar@us.ibm.com). Dr. Sarkar is a research staff mem-
ber and manager of the Dynamic Compilation group at the IBM
Thomas J. Watson Research Center. He joined IBM in 1987, af-
ter obtaining a Ph.D. degree from Stanford University. His pre-
vious work at IBM includes being a member of the PTRAN
research project, and leading a product development project for
including high-order transformations in the XL FORTRAN com-
pilers. He has been a member of the IBM Academy of Technol-
ogy since 1995.

Mauricio J. Serrano IBM Research Division, Thomas J. Watson
Research Center, Box 704, Yorktown Heights, New York 10598 (elec-
tronic mail: mserrano@us.ibm.com). Dr. Serrano received his
Ph.D. degree in computer engineering from the University of Cal-
ifornia, Santa Barbara, in 1994. He is currently visiting the Tho-
mas J. Watson Research Center for the Jalapeño project. His cur-
rent interests are in object-oriented optimizations and trade-offs
between dynamic and static compilation.

Janice C. Shepherd IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York 10598
(electronic mail: janshep@us.ibm.com). Ms. Shepherd is a senior
software engineer at the Thomas J. Watson Research Center. She
is on a one-year assignment at the IBM Tokyo Research Lab-
oratory. She received her B.S. degree from Queens University in
1980 and her master’s degree from the University of Toronto in
1983. Ms. Shepherd also represents IBM on the European Com-
puter Manufacturers Association (ECMA) TC41 Java standards
committee.

Stephen E. Smith IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 218, Yorktown Heights, New York 10598
(electronic mail: steve@watson.ibm.com). Dr. Smith is a research
staff member at the Thomas J. Watson Research Center. He re-
ceived his Ph.D. degree from Northwestern University, Evanston,
Illinois, in 1970. Since joining IBM he has worked on a number
of different projects, primarily in the areas of operating systems
and databases. He is currently with the Jalapeño project, work-
ing in the areas of storage allocation and garbage collection.

V. C. Sreedhar IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 704, Yorktown Heights, New York 10598
(electronic mail: vugranam@us.ibm.com). Dr. Sreedhar received
his Ph.D. degree from McGill University in 1995. He worked for
the Hewlett-Packard Company for three years before joining IBM.
His research focus is in the areas of programming languages and
systems.

Harini Srinivasan IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 704, Yorktown Heights, New York 10598
(electronic mail: harini@us.ibm.com). Dr. Srinivasan received her
Ph.D. degree from the University of Colorado at Boulder. Her
interests include program analysis and program understanding
tools for explicitly parallel and concurrent object-oriented pro-
grams. She is currently a research staff member in the Jalapeño
optimizing compiler group.

John Whaley IBM Tokyo Research Laboratory, IBM Japan, Ltd.,
1623-14 Shimotsuruma, Yamato-shi, Kanagawa-ken 242-8502 Ja-
pan (electronic mail: jwhaley@alum.mit.edu). Mr. Whaley is cur-
rently a research intern at the IBM Tokyo Research Laboratory

in Yamato, Japan, working in the Network Computing Platform
group on their Java JIT compiler. From January through August,
1998, he worked on the Jalapeño virtual machine, primarily on
the optimizing compiler. He has a B.S. degree in computer sci-
ence and an M.Eng. degree in electrical engineering and com-
puter science, both from the Massachusetts Institute of Technol-
ogy. His research interests include program analysis, dynamic
compilation, and virtual machines.

Reprint Order No. G321-5724.

ALPERN ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 1, 2000238

