12

Unified APl Governance in the New API Economy

by Chandra Krintz and Rich Wolski

MANAGING DIGITAL ASSETS

Digital assets are becoming the value-carrying
resources that underlie much of today’s economic
activity. Increasingly, businesses depend on the ability
to produce, manage, trade, and, perhaps most problem-
atically, destroy digital artifacts (software and data)

as key components of commercial functionality and
profitability. Because these assets exist entirely within
computer systems that are interconnected via networks,
new techniques for managing them, such as Hadoop,
cloud computing,' DevOps, and NoSQL, continue to
proliferate. At the same time, previously successful
software and IT approaches (e.g., service-oriented
architecture, Web services, and machine virtualization)
are enjoying a renaissance of utility.

Providing software and data as a service — that is,
enabling immediate, authenticated, and scalable net-
worked access to digital assets — is critical to the suc-
cess of any commercial enterprise that possesses them.
To facilitate this access, asset owners export assets via
an API that both defines and controls what operations
can be performed on each asset, by whom, and under
what conditions.

APIs also decouple the implementation of this access
functionality from the technologies that are used to
manage and store the assets. That is to say, while the
assets may remain the same, the technologies used to
serve and implement them can change, particularly as
technological advances reduce implementation costs.
APIs must preserve user access to the assets when this
occurs. Thus, the lifecycle of the API follows the lifecycle
of its assets and not the lifecycle of the surrounding tech-
nologies, which typically change at a more rapid pace.

Finally, APIs in the modern digital economy must
provide standardized network-facing access so that

the widest possible variety of applications and devices
can access their digital assets. They must also support
availability guarantees and fault management strategies
associated with the assets and the implementing tech-
nologies. It is the combination of standardized, con-
tinuously available, networked access that enables a
digitally based business to scale.

CUTTER IT JOURNAL September 2013

Thus, APIs provide three functions that are critical for
the management of digital assets and artifacts. Namely,
they:

1. Implement control over the assets, both in terms of
operations and access control

2. Protect the asset lifecycle from technological changes
driven by economics

3. Enable scale through standardized, networked
connectivity and fault management

Because of these functions, the implementation and
management of APIs can be more important than either
the digital assets or the technologies that underlie them.
For example, consider a company that specializes in
website analytics. A change from a NoSQL database to
an object store as the implementing technology should
be possible without disrupting the business. Thus, the
API for the analytics must remain stable while the tech-
nologies change. Similarly, the analytics data itself may
be changing from day to day. The API for accessing

the current data must remain constant, stable, and
functional, though, or business will be interrupted.

Despite the primacy of APIs in the new digital economy,
however, little technology has yet been developed to
implement API governance — combined policy, imple-
mentation, and deployment control — in a commercial
context. Good technologies exist for managing digital
assets and for developing both hardware and software
necessary to implement digital assets (including the
necessary APIs). A few technologies™® are emerging for
packaging and cataloging APIs. Yet technologies for
providing stewardship of APIs through all phases of
governance are rare.

INTRODUCING APPSCALE

In this article, we describe a strategy for implementing
API governance using AppScale, a distributed software
platform for managing, unifying, delivering, and com-
posing APIs in a commercial setting. AppScale imple-
ments a set of core services that are specifically designed
to implement high-level APIs in a consistent, unified

©2013 Cutter Information LLC



way. Using such a platform to implement APIs for
commercial digital assets offers several advantages
with respect to API governance. In addition to the
typical APl management features (cataloging, search,
deployment support, etc.), AppScale focuses on the
following capabilities:

= Change control. When API changes are necessary,
AppScale restricts how they are implemented so as
to control the impact of change on API consumers.
If changes need to be rolled back, AppScale returns
to previous functionality consistently and completely.
It enables this via API usage tracking, versioning, and
compatibility checking and enforcement.

= Consistent policy implementation. Policies governing
the use of digital assets and/or their APIs are imple-
mented consistently across the platform regardless of
the constituent technologies that are used to imple-
ment the assets themselves. Administrators specify
asset properties via a single portal for access control,
service levels, lifecycle, backup, and failover, which
the platform applies consistently across all assets.

= Implementation portability. API implementation is
decoupled from the implementation of the digital
assets. As technologies evolve or, more problemati-
cally, devolve when they sunset, AppScale maintains
APl integrity by providing an intermediate abstrac-
tion layer that allows the implementations to change
without impacting API consumers.

= Monitoring and auditing. As a platform, AppScale
provides a unified fabric for monitoring and auditing
APT activity. By doing so, AppScale allows enter-
prises to gather and analyze data in the same way
from digital assets that use different implementation
strategies and technologies.

AppScale provides these capabilities as part of a freely
available and extensible distributed open source plat-
form. As such, AppScale can be used by enterprises for
API governance and application deployment without
vendor lock-in. We next describe API governance in
greater detail and discuss how the AppScale design
facilitates such use.

UNIFYING APl GOVERNANCE

Increasingly, enterprise applications are taking the form
of network-accessible services that export well-defined
and access-controlled interfaces. As a result, the devel-
opment process includes:

Get The Cutter Edge free: www.cutter.com

= API development — the process of designing and
coding the software components responsible for
implementing the interface

= Service development — the process of implementing
the application logic

= Deployment configuration — the process (often
coded as scripts) of coordinating the initiation of all
application components when the application is run

Thus the term “application” in this context refers to
three separate but interrelated sets of programs that
implement the API, service, and deployment.

This decomposition allows the service implementation
and deployment components to change while the API
remains the same. In this way, application users maintain
consistent, unchanging access to digital assets while the
service implementations and underlying infrastructure
evolve in response to advances in technology.

As a result of this modularity, the lifecycle for APIs is
significantly longer than that of service or deployment
implementations. Moreover, from a user perspective,
APIs implement policy. Access controls, SLA specifi-
cation and/or negotiation, fault and error response,
and so forth are all presented to users through APIs.
Changes to these policies are usually global and long-
lived, making their correct implementation critical to
the scalable usage of digital assets.

For these reasons, in addition to standard management
functions such as installation support, software patch-
ing and upgrade, and software dependency resolution,
APIs require the implementation of governance — the
policies and auditing functions necessary to protect

the integrity of the APIs in a unified way. A unified
approach to API governance is key to managing appli-
cations at scale since the applications and the digital
assets they manage are likely to be developed by differ-
ent entities in a large organization. Indeed, DevOps (an
organizational approach that combines development
and IT operations) is designed specifically to promote
scalable and Agile application development by inde-
pendent suborganizations. Without unified API gover-
nance, however, the scale that this new methodology
engenders can lead to a proliferation of incompatible
interfaces and wasted or duplicated development effort.

Using a Platform to Ensure Consistency

To ensure consistent control over the APIs in an enter-
prise, our approach is to build the necessary control
functionality into a complete platform that spans all

Vol. 26, No. 9 CUTTER IT JOURNAL

13



14

resources and assets. The platform is unique in that it is
designed end-to-end so that it monitors, manages, and
protects all APIs under its purview in the same way,
regardless of the infrastructure or digital assets
involved.

Using such a platform, enterprise management is
assured that policies governing APIs are implemented
globally in a consistent way. This consistency of gover-
nance permits independent application development
and operation by preventing the possibility that APIs
will become suddenly incompatible due to changes or
innovation.

To allow the technologies that implement the
APIs to change as business or engineering
needs warrant, AppScale plugs in multiple
competitive alternatives for each service so
that enterprises can compare/contrast them
and choose the technologies that the local IT
organization wishes to exploit.

A PLATFORM FOR UNIFIED GOVERNANCE, DEPLOYMENT,
AND MANAGEMENT OF APIs

The AppScale platform* is a freely available, open
source runtime system for Web, cloud, and mobile
applications and the services they use for their imple-
mentation. AppScale implements a set of core functions
that enable consistent management of the APIs that
export access to these services, across the applications
and digital assets it hosts. These functions include
support for:

= Plug-in integration — a set of abstractions interposed
between APIs and platform service implementations
that facilitate independent and isolated service
management

= Configuration — a service that all applications use
to specify and access their respective configuration
information in a consistent way

= Deployment — a service that invokes and decom-
missions APIs and service implementations under
administrator control

= FElasticity and autoscaling — automatic resource
allocation and application scaling according to an
external policy, observed runtime load characteristics,
and service failures

CUTTER IT JOURNAL September 2013

= Auditing and monitoring — consistent provenance
for the APIs, service implementations, and digital
assets managed by the platform

The AppScale platform combines these functions
within a distributed system that is packaged as a
virtual machine (VM) image. Platform administrators
deploy AppScale via a toolset that constructs the plat-
form as a collection of VM instances over any cluster
system that supports virtualization, including public
and private cloud infrastructures as well as on-premises
and managed data centers. The combination of unified
automated services for managing APIs separately

from service implementations, the scale realized by
AppScale’s distributed architecture, and its portability
across scalable data center technologies make it an ideal
engine for implementing API governance.

Example: APl Governance and Google App Engine

To illustrate how AppScale implements governance, we
now describe its support for Google App Engine (GAE).
In particular, AppScale exports (mirrors) the publically
available APIs of GAE so that developers can deploy
any GAE application either on the GAE platform

over Google’s resources or on the AppScale platform
on-premises, without modifying their applications.

To enable this, AppScale leverages plug-in integration
to link each API to an open source implementation of
each service. Between each API-service pair, AppScale
implements a software abstraction that maps API calls
to the interface of the service implementation.

To allow the technologies that implement the APIs

to change as business or engineering needs warrant,
AppScale plugs in multiple competitive alternatives for
each service so that enterprises can compare/contrast
them and choose the technologies that the local IT
organization wishes to exploit, without impacting the
digital assets they deliver. If, for example, an enterprise
DevOps team uses the Apache Cassandra NoSQL data
store, AppScale implements the GAE abstractions using
Cassandra as a back end and the GAE API code as a
front end. With AppScale, the applications no longer
dictate the underlying technologies that must be used,
allowing the IT organization to govern its infrastructure
without concern for application modification. Further,
if the team decides to adopt a different storage infra-
structure, AppScale simply plugs in the new technology
without changing the APIs the applications use to
access it.

Because the API code and back-end software tech-
nologies are integrated by the distributed AppScale

©2013 Cutter Information LLC



platform, they can be instrumented and monitored in a
uniform way. If one or more of the software modules
is/are modified, AppScale can track and report on
these modifications. AppScale also supports automatic
deployment of these technologies so that new code is
introduced in a controlled manner and can be rolled
out or rolled back in a way that is both auditable and
scalable.

Since AppScale itself is portable to a variety of public
cloud and on-premises software environments, it is
possible to run AppScale in Google Compute Engine
(GCE), Amazon’s AWS, and Eucalyptus.” GAE applica-
tions then migrate between GAE, AppScale over GCE,
AppScale over AWS, and AppScale on-premises over
Eucalyptus. This deployment portability using a single,
consistent platform allows IT to develop a wide variety
of disaster recovery and cost management policies
without the need to modify the applications.

Finally, APIs do need to change from time to time.
However, it is often necessary to support applications
that use the “old” API as a legacy. Because AppScale
runs under the control of IT or DevOps, it will run
whatever version of the API the local organization
requires. Thus the organization controls the lifecycle of
the APIs it uses through its business logic and not the
lifecycle determined by a third-party service provider.

USE CASES

We next describe two common use cases that examine
key aspects of platform-based API governance using
AppScale: uniform policy implementation and imple-
mentation portability. Both cases rely heavily upon
monitoring and decoupling of digital asset access via
APIs from the software technologies that facilitate their
delivery.

= Uniform policy implementation. Platform adminis-
trators can use AppScale to specify a set of policies
to enforce across assets. Our most common use case
employs this feature to provide uniform backup of
data assets and automatic failover for the services
that implement them. Administrators can specify a
range of properties for data assets, including how
many redundant copies to store, where to store them
(locally, remotely, in any number of different public
or private cloud systems, etc.), and the type of consis-
tency that should be employed across copies. For exe-
cuting services, administrators identify those that are
fault tolerant and specify properties such as failover
target(s) (i.e., what alternative implementations to use
when a failure occurs).

Get The Cutter Edge free: www.cutter.com

= Implementation portability. AppScale can be used
to enable businesses to avoid lock-in — the overhead
associated with rewriting software in order to use
alternatives to constituent software components. The
implementation portability of the AppScale platform
precludes lock-in in two ways. First, since the plat-
form executes on a wide variety of deployment tar-
gets (public, private, and managed clouds, clusters,
and data centers), AppScale brings cross-cloud porta-
bility to applications and services that execute over it.
Second, because AppScale decouples APIs and assets
from the technology that facilitates their export,
administrators can easily employ different alterna-
tives — without changing the API, the application
code that uses the API, or the underlying digital
assets — by selecting between them during platform
deployment.

AppScale significantly simplifies API governance for
these two use cases by managing the complex distrib-
uted technologies that underlie important enterprise
digital asset functions and features (fault tolerance and
disaster recovery) and by allowing implementation
technologies to change without impacting asset access
(precluding lock-in).*® Moreover, AppScale provides
users with a uniform way of specifying, monitoring,
and customizing this functionality across assets so that
developers can focus on innovation and digitally based
businesses can scale their digital asset offerings.

CONCLUSION

APIs have emerged as a key component of the modern
digital economy. The reason for this is that they provide
access to software and data in a standardized way that

is easily consumed by humans and software over a net-
work. The aspects of APIs that are critical for their suc-
cessful use by enterprises include standardized access
control, protection of asset lifecycles against technological
changes in their implementation ecosystem, and uniform
operations and management for platform-wide features
such as elasticity, availability, and fault tolerance.

Advanced cloud platforms can facilitate API gover-
nance by decoupling digital assets and their APIs from
the technologies used to deliver them. The abstraction
layer that enables this decoupling allows the creation of
software systems that implement a set of core services
that can be reused across a wide range of digital assets.
AppScale is one such distributed software platform for
managing, unifying, delivering, and composing APIs
in a commercial setting. Additional information on the
open source AppScale cloud platform can be found at
www.appscale.com.

Vol. 26, No. 9 CUTTER IT JOURNAL

15



16

ENDNOTES

!Armbrust, Michael, Armando Fox, Rean Griffith, Anthony
Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David
Patterson, Ariel Rabkin, Ian Stoica, and Matei Zaharia. “A
View of Cloud Computing.” Communications of the ACM,
Vol. 53, No. 4, April 2010.

2Layer?7 Technologies (www.layer7tech.com).
*Mashery (www.mashery.com).

*Krintz, Chandra. “The AppScale Cloud Platform: Enabling
Portable, Scalable Web Application Deployment.” Internet
Computing, Vol. 17, No. 2, March-April 2013.

*Nurmi, Daniel, Rich Wolski, Chris Grzegorczyk, Graziano
Obertelli, Sunil Soman, Lamia Youseff, and Dmitrii
Zagorodnov. “The Eucalyptus Open-Source Cloud-Computing
System.” Paper presented to the International Symposium on
Cluster Computing and the Grid (CCGRID ’09), Shanghai,

China, May 2009.

®Chris Bunch, Vaibhav Arora, Navraj Chohan, Chandra

Krintz, Shashank Hedge, and Ankit Srivastava. “A Pluggable
Autoscaling Service for Open Cloud PAAS Systems.” Paper
presented to the IEEE Fifth International Conference on Utility and
Cloud Computing, Chicago, Illinois, USA, November 2012.

’Chohan, Navraj, Anand Gupta, Chris Bunch, Kowshik
Prakasam, and Chandra Krintz. “Hybrid Cloud Support for
Large Scale Analytics and Web Processing.” Paper presented
to the 3rd USENIX Conference on Web Application Development
(WebApps 12), Boston, Massachusetts, USA, June 2012.

CUTTER IT JOURNAL September 2013

%Chohan, Navraj, Anand Gupta, Chris Bunch, Sujay Sundaram,
and Chandra Krintz. “North by Northwest: Infrastructure
Agnostic and Datastore Agnostic Live Migration of Private
Cloud Platforms.” Paper presented to the 4th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud '12).
Boston, Massachusetts, USA, June 2012.

Chandra Krintz is a Professor of Computer Science at the University
of California, Santa Barbara (UCSB) and cofounder of AppScale
Systems, Inc. She joined the UCSB faculty in 2001 after receiving
her MS and PhD degrees in computer science from the University
of California, San Diego (UCSD). Dr. Krintz has mentored over

60 undergraduate and graduate students, has published numerous
research articles, participates in efforts to broaden participation in
computing, and is the progenitor of the AppScale project. She can be
reached at ckrintz@appscale.com.

Rich Wolski is a Professor of Computer Science at UCSB and
cofounder of Eucalyptus Systems, Inc. Having received his MS

and PhD degrees from the University of California at Davis (while
a research scientist at Lawrence Livermore National Laboratory),

he has also held positions at UCSD, the University of Tennessee, the
San Diego Supercomputer Center, and Lawrence Berkeley National
Laboratory. Dr. Wolski has led several national-scale research efforts
in the area of distributed systems and is the progenitor of the
Eucalyptus open source cloud project. He can be reached at
rich@cs.ucsb.edu.

©2013 Cutter Information LLC



