
1

Extensions and Dynamic Linking/Binding

The oldest process on the oldest machine said to 
itself: “ I want to call some new routines, but the 
code wasn’ t even written when I started 
running”

Can it be done? and how? 

Extensions 2CS 2510, cs.pitt.edu

Extensible OSs

� What do we mean by extension?
� Is it something we want?
� Possible “extensions”
� Risks of extension
� Example systems

� Libraries
� Services
� Extensible OSs

� Spring
� Exo-Kernel

Extensions 3CS 2510, cs.pitt.edu

Extensions

� Adding additional abilities – I want more
� Providing asynchronous messages over a synchronous 

message service

� Improving/Replacing existing services – I want 
different/better
� Faster sort/search routines
� Faster device drivers (screen, disk, network etc.)

� What does the OS provider want:
� Allow for extensions, without compromising the operating 

system

Extensions 4CS 2510, cs.pitt.edu

Basic Approaches to Extensions

� Modify the source code
� Easy with open source, not so easy otherwise
� Actually allows modifying the implementation of system 

calls

� For devices, does the OS provider write all drivers?
� Common devices
� New devices?

� The OS must provide a mechanism for writing/installing device 
drivers

� Review I/O introduction material for this

� Libraries
� Static vs. Dynamic linking



2

Extensions 5CS 2510, cs.pitt.edu

When do we extend code?

� Code
� these times are general, not specifically OS code

� Possible Extension times
� Static

� Change the original source code

� Link-time
� Change the modules linked to form an executable image on disk

� Load time
� Change the modules that are used to form an executable image in 

memory

� Dynamic
� Change code while the process using them is actually running

Extensions 6CS 2510, cs.pitt.edu

Architecture and Extension

� Microkernel architecture
� Messages passed between client and server processes
� Easier to support true dynamic extension

� As long as the message passing can support it, then 
changing the currently running server process is 
equivalent to dynamically changing the 
implementation of a system call

� Can we refer to system calls as dynamically linked 
code? What’s the difference (hint: think switch)?

Extensions 7CS 2510, cs.pitt.edu

Language and Extension

� Original Libraries (Multics ’72)
� No loader support, required trap to the kernel

� Libraries
� Language independent
� Binary interface

� Interpreted languages
� Extensions can be applied to the virtual machine or the 

interpreter
� Access to virtual machine = Kernel mode?

Extensions 8CS 2510, cs.pitt.edu

Extension and Security

� Libraries
� Extend user-space code with additional/differen user-

space code
� Only risky if the executable is running with higher 

privileges than the user

� Plug-ins, ActiveX, and Javascript
� Code running in user space provided by a third-party
� Security risk is more than just malicious intent

� Microsoft IE ActiveX control – signed by Microsoft, yet 
vulnerable to “buffer overflow” attack – cannot be remedied if a 
malicious website offers you a vulnerable version (it is authentic 
… just broken) 



3

Extensions 9CS 2510, cs.pitt.edu

Extending the Kernel

� Traditional Micro Kernel
� Extension through replacement of server processes
� Have not eliminated context switch

� You must make context switches very fast and efficient, they 
happen all the time now

� Micro-kernel architectures are easily extended, but 
inefficient if we have to route all dynamic linking 
through the kernel 
� Same problem was seen with the basically monolithic 

Multics system in the theearly 70’s. Dynamic linking 
originally had to pass through the kernel, but was dropped 
because this was considered inefficient.

Extensions 10CS 2510, cs.pitt.edu

Extending the Kernel (cont’d)

� Spring
� Objects accessed without regard to their physical location

� Client-side stubs
� Stubs are compiled seperately and dynamically linked to any code 

that needs to use the objects they access
� Micro-kernel, yet deliberately avoids entering kernel for 

dynamic linking … How?
� Address spaces are objects that can be operated upon to insert 

code, or to map segments so that they are shared
� Actions on object interfaces are performed after being 

authenticated through an authentication agent.
� Implemented within Spring’s version of the standard C library 

“ libc”

� This allows efficient dynamic linking in a micro-
kernel OS … but is it enough extensibility?

Extensions 11CS 2510, cs.pitt.edu

Exo-Kernels and VM Architectures

� VM architecuresattempted to multiplex the 
hardware
� Each virtual machine saw its own hardware, and thought it 

was exclusive.
� Extension similar to Java VM, but not traditionally a goal

� Exo-Kernels
� MIT
� Go beyond the multiplexing of the hardware, but looks at 

the operating system support
� “making the kernel just another application library”
� Arguably much more efficient than a non-extensible OS –

allows for application customization of resource 
management


