Extensions and Dynamic Linking/Binding

™

Extensible OSs

What do we mean by extension?
Isit something we want?
Possible “ extensions’

system

€S2510, s pittedu

a

Extensions 3

™ = Risks of extension
The oldest process on the oldest machine said to = Example systems
itself: “1 want to call some new routines, but the Libraries
code wasn't even written when | started Services
runni ng" Extensible OSs
= Spring
) = Exo-Kernel
Can it be done? and how?
€S 2510, cs.pittedu Extensions 2
"l Extensions "W Basic Approaches to Extensions
I I
= Adding additional abilities— | want more = Modify the source code
Providing asynchronous messages over a synchronous Easy with open source, not so easy otherwise
message service Actually allows modifying the implementation of system
= Improving/Replacing existing services— | want calls
different/better = For devices, does the OS provider write all drivers?
Faster sort/search routines Common devices
Faster device drivers (screen, disk, network etc.) New devices?
= The OS must provide a mechanism for writing/installing device
drivers
= What doesthe OS provider want: = Review 1/0 introduction material for this
Allow for extensions, without compromising the operating = Libraries

Static vs. Dynamic linking

€52510, s pittedu Extensions 4

"3 When do we extend code? "8 Architecture and Extension
I I
= Code = Microkerne architecture
these times are general, not specifically OS code Messages passed between client and server processes
= Possible Extension times Easier to support true dynamic extension
Static
= Changethe original source code = Aslong as the message passing can support it, then
'-'”g]“ me e modes lnked fo e s changing the currently running server processis
L] ange the modules linl to form an executable image on di - - -
. equivalent to dynamically changing the
Load time . .
= Change the modules that are used to form an executable image in Impl ementation of a WStem call
memory
Dyr(‘:ir::;e code while the process using them is actually running = Canwereferto system calsas dynanica”y linked
' code? What' s the difference wm mmswin?
™| Language and Extension M| Extension and Security
I I
= Origind Libraries (Multics’ 72) = Libraries
No loader support, required trap to the kernel Extend user-space code with additional/differen user-
space code

s Libraries
Language independent
Binary interface

= Interpreted languages
Extensions can be applied to the virtual machine or the
interpreter
Access to virtual machine = Kernel mode?

€S2510, s pittedu Extensions 7

Only risky if the executable is running with higher
privileges than the user
= Plug-ins, ActiveX, and Javascript
Code running in user space provided by athird-party
Security risk is more than just malicious intent
= Microsoft |IE ActiveX control — signed by Microsoft, yet
vulnerable to “buffer overflow” attack — cannot be remedied if a

malicious website offers you a vulnerable version (it is authentic
... just broken)

€52510, s pittedu Extensions 8

a

™

Extending the Kernel

= Traditional Micro Kernel
Extension through replacement of server processes

Have not eliminated context switch
= You must make context switches very fast and efficient, they
happen al the time now

= Micro-kernd architectures are easily extended, but
inefficient if we haveto route all dynamic linking
through the kerndl
Same problem was seen with the basically monolithic
Multics system in the the early 70’'s. Dynamic linking
originally had to pass through the kernel, but was dropped
because this was considered inefficient.

™~

Exo-Kernels and VM Architectures

= VM architecures attempted to multiplex the
hardware
Each virtual machine saw its own hardware, and thought it
was exclusive,
Extension similar to Java VM, but not traditionally a goal
= Exo-Kernds
MIT
Go beyond the multiplexing of the hardware, but looks at
the operating system support
“making the kernel just another application library”
Arguably much more efficient than a non-extensible OS—
allows for application customization of resource
management

Extending the Kernel (cont'd)

= Spring
Objects accessed without regard to their physical location
= Client-side stubs
= Stubs are compiled seperately and dynamically linked to any code
that needs to use the objects they access
Micro-kernel, yet deliberately avoids entering kernel for
dynamic linking ... How?
= Address spaces are objects that can be operated upon to insert
code, or to map segments so that they are shared
= Actions on object interfaces are performed after being
authenticated through an authentication agent.
= Implemented within Spring’s version of the standard C library
“libc”
= Thisalowsefficient dynamic linking in amicro-
kernel OS ... but isit enough extensibility?

