
Experiments with Con�gurable

Locks for Multiprocessors

Bodhisattwa Mukherjee �bodhi�cc�gatech�edu�
Karsten Schwan �schwan�cc�gatech�edu�

GIT�CC������

�� January ����

Abstract

Operating system kernels typically o�er a �xed set of mechanisms and primitives� However�

recent research shows that the attainment of high performance for a variety of parallel appli�
cations may require the availability of variants of existing primitives or additional low�level
mechanisms� One approach to solve this problem is to o�er a lightweight� recon�gurable

and extensible operating system kernel� An application may con�gure it to suit its needs�
including the selection of appropriate low�level policies� the construction of new primitives
on top of the existing ones or the extension with additional primitives� In this paper� we

investigate kernel con�gurability and extensibility for a speci�c class of operating system
primitives	 those used for task or thread synchronization� We present an implementation of
multiprocessor locks that can be recon�gured statically and dynamically� In addition� we de�
velop a representation for the lock abstraction and an associated recon�guration mechanism

that may be used for the development of other con�gurable and extensible operating system
abstractions�

College of Computing

Georgia Institute of Technology
Atlanta� Georgia
�

�
����

� Introduction

Past experimentation with parallel machines has demonstrated that the attainment of high perfor�

mance often requires the customization of operating system mechanisms to each class of application

programs� For example� for real�time applications executing on shared memory multiprocessors� the

object�based operating system kernels described in �GS��a� SGB��� must o�er several representations

of objects and object invocations to support the di�erent degrees of coupling� task granularities� and

invocation semantics existing in real�time applications�GS�
�� Such experiences in the real�time domain

are mirrored by work in multiprocessor scheduling�CCLP�
� BLL��� that demonstrates the importance

of using application�dependent information or algorithms while making scheduling decisions� Similarly�

for scienti�c applications executing on distributed memory machines� the support of multiple semantics

of task communication by low�level operating system mechanisms�SB��� or by compiler�generated com�

munication libraries�SBW��� has been shown to enhance application program performance signi�cantly�

Lastly� recent research addressing e�cient memorymodels for shared memory�SJG��� and for distributed

memory�HA��� machines has made clear that the support of multiple semantics of memory consistency

can result in improvements in parallel program e�ciency�

This paper explores how an operating system kernel can support application programs in the assembly

of program�speci�c mechanisms and policies�LCC����� We address the following questions	

� How can an operating system kernel�s abstractions be represented so that they are statically and

dynamically con�gurable�

� What basic mechanisms are required for dynamic kernel con�guration�

� Are the runtime costs incurred by dynamic recon�guration justi�ed by the possible gains of such

recon�guration�

Although it is possible to answer the questions posed above for complex applications and for a variety

of operating system constructs�BS��a� BS��b�� in this paper� we address these questions for a speci�c

concurrency control construct
 the lock construct
 used for the synchronization of multiple processes

in NUMA shared memory parallel application programs� The con�gurable lock construct described in

this paper permits the use of multiple strategies for lock access ranging from �busy waiting� to �blocking��

Tradeo�s in the use of these strategies for NUMA machines are demonstrated with measurements on a
��

node BBN Butter�y GP���� multiprocessor� Some of the experiments described in Section � are similar

to those performed by Anderson�ALL��� for small�scale UMA machines� but our results are di�erent due

to the NUMA characteristics of the BBN Butter�y and of most large�scale parallel machines�IFKR����

Since the experiments in Section � show that di�erent lock con�gurations result in signi�cant per�

formance di�erences� Section
 introduces a dynamically con�gurable �recon�gurable� lock construct�

Section ��� lists some basic measurements demonstrating the performance penalties due to lock recon�g�

urability� The application level performance improvements gained from dynamic lock recon�guration are

presented in Section ��� using a workload generator� Section � compares our work with related research

and �nally� Section � concludes the paper and presents some future directions

�

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

0 50 100 150 200 250 300

E
x
e
c
u
t
i
o
n

T
i
m
e

(
i
n

m
i
c
r
o
s
e
c
.
)

Length of Critical Section (in microsec.)

spin lock
blocking lock

Figure �	 Length of critical section Vs� Application execution time for uniform arrival of lock requests

� Thread Synchronization with Locks on NUMA Machines

Tradeo�s in program performance due to the use of alternative synchronization constructs have been

demonstrated for most parallel architectures� including the experimental C�mmp�WLH��� and Cm��JS���

multiprocessors� interconnection�network�based machines like the Ultracomputer�Sch���� and bus�based

machines like the Sequent Symmetry�ALL���� For example� in C�mmp users preferred to use simple spin

compared to blocking locks o�ered by the Hydra�WLH��� kernel due to the low latencies associated with

spin lock use� More speci�cally� when concerned with maximizing the speedup of parallel applications�

users required a synchronization construct that o�ered low latency of access to critical sections in response

to their availability �regardless of any resulting loads imposed on connections of processors to memory

units�� In contrast� for bus�based UMA machines� Anderson showed that spin locks can put a signi�cant

load on the shared bus� so that e�cient use of the parallel machine requires a back�o� strategy for spin

locks similar to the one used by low�level Ethernet devices�ALL���� Alternatively� when maximizing

processor utilization or when multiple threads exist on each processor� threads accessing critical sections

protected by locks should be blocked to enable the execution of other threads performing useful work�

Similar conclusions were made by Mellor�Crummey and Scott in �MCS��� while deriving e�cient spin�

lock implementations to reduce contention on the shared bus�

The measurements in this section study the tradeo�s regarding the use of spin locks vs� blocking

locks for critical sections of di�erent lengths and accessed with di�erent frequencies� In contrast to

some of the measurements by Anderson on UMA machines �ALL���� we show that NUMA machines

behave predictably when spin locks are used� Arti�cial workloads imposed on the NUMA multiprocessor

demonstrate the following characteristics	

�

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 50 100 150 200 250 300

E
x
e
c
u
t
i
o
n

T
i
m
e

(
i
n

m
i
c
r
o
s
e
c
.
)

Length of Critical Section (in microsec.)

spin lock
blocking lock

Figure �	 Length of critical section Vs� Application execution time for bursty arrival of lock requests

� Assuming a single thread per processor and a constant frequency of access to critical sections� the

execution time of an application program linearly increases with the lengths of critical sections
accessed by program�s threads� This linear increase is due to increases in the average wait times
of threads for critical sections�

� In NUMA machines� spin locks consistently outperform blocking locks when the number of proces�
sors exceeds the number of threads� This is due to the reduced latencies of critical section access
for spin vs� blocking locks�

These results are demonstrated in Figures � and � for both bursty �Figure �� and uniformly distributed

�Figure �� accesses to critical sections� These measurements were made with a workload simulator on

a ����� based
� node BBN butter�y multiprocessor� The simulator binds one or more thread to each

processor which generate locking requests following a user de�ned pattern�

However� when multiple threads on each processor are capable of making progress� the use of blocking

is indicated even for fairly small critical sections� since spinning prevents the progress of other threads

not currently waiting on a critical section� The cross�over point while using blocking vs� spinning for

the arti�cial workloads used in our experimentation corresponds to the additional overheads of blocking

on the BBN Butter�y �Figure
��

The experimental results shown above are not surprising� However� these results do imply that

any locking mechanism o�ered by an operating system kernel should permit the mixed use of spinning�

backo� spinning�ALL���� and blocking as waiting strategies� depending on the expected or experienced

lengths of critical sections protected by such locks� The design of a lock object o�ering such multiple

waiting strategies is presented in the next section�

600

700

800

900

1000

1100

1200

1300

1400

1500

0 50 100 150 200 250 300 350 400

E
x
e
c
u
t
i
o
n

T
i
m
e

(
i
n

m
i
c
r
o
s
e
c
.
)

Length of Critical Section (in microsec.)

spin lock
blocking lock

Figure
	 Length of critical section Vs� Execution time of application having useful threads that are capable
of making progress

� Con�gurable and Recon�gurable Locks

At any speci�c time a lock can be in one of three di�erent states
 locked� unlocked� and idle� A lock is

in the �locked� state when a speci�c thread owns the lock whereas it is in the �unlocked� state when it

is free without any waiting threads� A lock enters the �idle� state when it is free but has one or more

waiting threads� Figure � shows a typical state transition diagram for a multiprocessor lock�

IDLEIDLEIDLE

UNLOCKEDUNLOCKED

LOCKEDLOCKEDLOCKED

Figure �	 State Transition Diagram of a Lock

An idle state inhibits an application�s progress by consuming processor cycles and�or blocking an

application thread� A lock becomes idle when the latency of its lock and�or unlock operations are high�

when it exhibits an expensive �locking cycle��an unlock operation followed by a lock operation�� and�or

when the lock operation interferes with the unlock operation �e�g� a primitive low�level lock is often used

to enforce mutual exclusion of a high�level lock data structure� In such a situation� even an unsuccessful

�

lock operation can stop a thread from executing an unlock operation�� A spin lock supports lock and

unlock operations with minimum latency for locking cycle whereas a blocking lock usually has a higher

locking cycle latency� Hence� a spin lock has the least idle state� However� a spin lock may result

in increased bus and�or memory contention which may degrade the performance of a shared memory

parallel program� The aim of dynamic lock recon�guration is to reduce the idle time of a lock without

signi�cantly increasing bus and�or memory contention resulting in improved application performance�

Such recon�guration is application speci�c and lock recon�guration policy will depend on the application

locking pattern�

��� Recon�gurable Locks � The Model�

Any lock construct has two mechanisms and associated policies determining its behavior	 ��� its schedul�

ing component determines the delay in lock acquisition experienced by the thread� and ��� its wait

component speci�es the manner in which a thread is delayed while attempting to acquire the lock�

Scheduling itself may be divided into three components	 �a� a registration component logging all threads

desiring lock access� �b� an acquisition component determining the waiting mechanism and policy to be

applied to each registered thread �without registration the lock cannot apply di�erent waiting policies

to individual threads�� and �c� a release component that grants new threads access to the lock upon its

release�

Lock con�guration can concern changes in each of the components mentioned above� For example� as

stated earlier� Anderson et al� in �ALL��� explored the performance e�ects of using the alternative delay

mechanisms of spinning vs� backo� spinning� In contrast� researchers in real�time systems have inves�

tigated the costs of priority�based and deadline�based dynamic lock access scheduling�MCS��� Mar���

ZSG��� for multiprocessor systems� The contribution of our work is twofold	

�� describing locks such that their waiting and scheduling behaviors can explicitly changed �statically

and dynamically�� and

�� demonstrating the usefulness of explicit dynamic recon�guration� Speci�cally� although the mech�
anism of explicit recon�guration of locks introduces additional overheads� we show that these
overheads are outweighed by performance gains due to recon�gurability�

Recon�guration concerns the dynamic alteration of components of parallel programs�BS��a�� Such

recon�guration is possible only if the components being changed o�er an immutable interface to the

remainder of the application program� Our research assumes that the object model�Jon��� of software

is used to describe components subject to dynamic change� Speci�cally� an instance of a lock object

is uniquely described by its names and methods� the latter implementing the object�s functionality�

Lock objects are used by invocation of their methods� where both the semantics of invocation and the

representation of objects may be class�speci�c� Namely� each method has some internal implementation

that may range from being passive �i�e�� the method�s code is executed by the invoker�� to active threads

executed on one or multiple processors�GS�
� SGB��� asynchronously to the invoker� Each object also

contains global centrally stored or distributed�SB���� static and dynamic internal state accessible to all

�

methods as well as state local to each method� For example� a passive lock object may be described as

follows	

CLASS passive�lock is

STATE internal state �immutable� IS

queue registration�queue�

thread�id owner�

���

END

STATE con�gurable attributes �mutable� IS

int spin�time�

int delay�time�

int sleep�time�

int timeout�

���

END

OPERATION registration�����

OPERATION acquire�����

OPERATION release�����

OPERATION possess�����

OPERATION con�gure�����

�

�

BEGIN

Initialization ��

END

The object model used above has been shown to be su�cient for representation of a wide variety of

parallel application programs on both shared memory and distributed memory machines�GS�
� Jon���

GS��a�� However� for recon�guration and for attainment of high performance� application programs

must be aware of additional object properties� These properties may be represented as object attributes

that may be speci�ed and changed orthogonally to the object�s class determined by its methods� as shown

by Gheith�GS�
� for multiprocessor real�time applications involving attributes like execution deadlines

on methods or forward recovery designations on object classes� We adopt the attribute�based speci��

cation originated by Gheith� but we investigate a di�erent class of dynamically changeable attributes�

Speci�cally� we are concerned with object attributes that characterize an object�s internal implementa�

tion �e�g�� the use of spinning vs� blocking in the waiting component of a lock object�� and we focus on

making dynamic changes to selected implementation attributes� For example� a lock object belonging

to the above mentioned passive�lock class implements a primitive spin lock when the sleep�time is

zero and the spin�time is in�nite� On the other hand� it implements a pure blocking lock when the

�

Configuration State

Object State

Monitor

Scheduler

Figure �	 Structure of Lock objects

spin�time is zero�

In contrast to Gheith�GS�
� and similar to the restricted de�nition of the object model used by

Bihari for on�line adaptation of real�time programs �BS��a�� we assume that changes in object attributes

may be performed both synchronously or asynchronously with method invocations� This requires the

introduction of two additional time�dependent properties of object attributes	 ��� attribute mutability

and ��� attribute ownership� An attribute is mutable whenever its current value may be changed� For

example� a lock object�s attribute specifying its waiting policy �not its scheduling policy� is permanently

mutable because it may be changed at any time� but its scheduling policy is likely to be immutable

whenever threads are waiting on the lock due to the inordinate potential expenses involved with the

reorganization of internal lock data structures such as thread waiting queues�SRVO���� Since object

mutability is subject to change over time� the implementation of a recon�gurable lock object presented

below possesses an internal policy controlling the object�s recon�guration� This policy makes use of

object state describing its ownership by invokers� Such ownership may be acquired implicitly as part of

the invocation of some object method or explicitly by execution of a �possess� method associated with the

object� For example� ownership of the object attribute spin�time or block�time is acquired implicitly

by a thread when it acquires the lock� Also� an external agent �typically� a thread monitoring the state

of the lock� may request ownership of an attribute to recon�gure the lock to a desired con�guration as

shown by the following code segment�

passive�lock�possess �a�attribute�

passive�lock�configure �a�attribute� new�config�

�

spin�time delay�time sleep�time timeout resulting lock

n � � � pure spin
n n � � spin �backo��
� � n � pure sleep
x x x n conditional sleep�spin
n n n x mixed sleep�spin

Table �	 Lock Parameters �n an arbitrary number� x �do not care��

��� Recon�gurable locks � Implementation�

As stated above� locks may be recon�gured asynchronously by invocation of a recon�guration method

or synchronously in conjunction with lock or unlock requests� For recon�gurable locks� we have chosen

to implement asynchronous lock recon�guration� in order to avoid forcing all threads that use locks to

contain knowledge about lock usage� lock performance� or application program performance� The speci�c

recon�gurable lock presented in this section is implemented such that all lock requests are required to

carry an additional parameter based on which each request is directed to the appropriate methods for

lock waiting and scheduling� We call such additional parameters attributes since they are not required by

the methods implementing the object�s basic functionality� The attribute used by the recon�gurable lock

is the requesting thread�s identi�er ��thread�id��� This identi�er is processed by the lock object�s policy

upon lock invocation as part of the registration phase of lock scheduling� The policy next performs lock

acquisition� which implements a mapping of �thread id� to the appropriate methods for waiting on the

lock� and it also selects the appropriate lock scheduling method for delaying lock access� Both mappings

may be changed by recon�guration operations performed on the lock object described later� As a result�

a recon�gurable lock�s internal representation contains the following additional information �Figure ��	

� object state �e�g�� current lock state� current lock owner� registration information� etc��

� con�guration state �e�g�� timeout and spin�time parameters� list of wait methods� etc��� which is
shown in detail in Table �� This Table lists a few such parameters� the possible values for those
parameters and the resulting locks� These parameters implement a spectrum of locks as shown

in Figure �� Con�guration state not shown in the Table includes architecture�speci�c information
like lock location� object implementation �distributed or centralized objects� etc�

Given the lock implementation outlined above� each lock access request involves the following steps	

Lock� A locking operation consists of the following steps	

�� A requesting thread registers itself with the lock object� At this time� attribute information like

thread�id� priorities� ownership� etc� is processed by the lock�s policy� The overhead of policy
execution depends on the number of attributes processed and the complexity of the processing
being performed �e�g�� a somewhat complex lock scheduling algorithm is described in �ZSG��� for

real�time locks�� The registration overhead in the con�gurable lock implementation is the cost of
one write operation on primary memory�� As shown in Section ���� application performance gain
due to dynamic lock recon�guration easily compensates for such registration costs�

�registration of the thread identity

�

Mixed Pure SpinPure Sleep

spin-time

Figure �	 A Spectrum of Multiprocessor Locks

�� If lock status indicates that the thread must wait for the lock� then the waiting method is de�
termined by the acquisition module of the lock object� Current implementation of con�gurable

lock maps requests to methods for spinning� blocking� backo� spinning� conditional locking� and
advisory locking�

Unlock� An unlock operation consists of the following steps	

�� The last part of the lock objects�s policy is the release module� which selects the next thread that
is granted access to the lock�

�� The release module�s selection �scheduling� policy may consist of a simple access to a thread�id

noting the next thread to be executed �as in hando� scheduling�Bla��a�� or it may execute more
complex scheduling strategies�

The recon�gurable lock object also contains a monitor module which senses or probes user�de�ned

parameters� This module implements a user�controlled lightweight thread monitoring system� The

information gathered from the monitor can be used by the internal recon�guration policy and�or an

external agent �possibly another application thread� to determine the state of the lock which� in turn�

is used to decide on a new lock con�guration� The resident policy which is responsible for the lock

recon�guration is called as the lock adaptation policy� Such adaptation policy depends on the locking

pattern� Implementations of thread monitoring system�GS��� and adaptable locks�MS�
� are described

elsewhere�

� Performance Evaluation

��� Formal Characterization

Let Vi be a state variable with value vi in domain Di �vi � Di�� Let SV be the set of variables that

constitute the state of an object� SV consists of two subsets IV �set of variables in internal state� and

CV �set of variables in con�guration state��

SV IV �CV where�
IV fV�� V�� � � � � Vng and

�

CV fU�� U�� � � � � Ung

The actual values of the variables in CV determine the waiting policy for a lock� Let CV i be an instance

of the sub�state CV of the object� i�e�

CV i fxi j Ui xi � Ui � CV � xi � Dig

Then� the set of waiting policies of a lock object can be represented as

! fCV i j CV i is an instance of CV g

Let " be the set of lock schedulers� As mentioned earlier� a lock scheduler consists of three functions

�registration� acquisition� and release�� Hence� an instance the set " is an ordered triple and can be

expressed as

"i f"Regi � "Acqi � "Reli g

The set C of possible lock con�gurations is	

C " �!

The operations de�ned on lock objects are	

�� # 	 # is a state transition operation and is formally expressed by a variation of axiomatic rules	

SV pre 	 # 	 SV post �t�

Where� SV pre and SV post refer to the object states before and after the operation respectively� #

modi�es only the internal state of an object� therefore� can be more precisely de�ned as	

# 	 IVi � IVj
#l �#u� where

#l is the lock operation and can be expressed as	

#l	 "Reg$ "Acq

#u is the unlock operation and can be expressed as	

#u	 "
Rel

t speci�es the cost of the speci�ed operation and is expressed in terms of number of memory reads

and writes 	

t n�Rn�W � where n� � � � n� � �

�� % 	 % is a recon�guration operation and is formally expressed as	

Cpre 	 % 	 Cpost �t�

Where� Cpre andCpost refer to the object con�gurations before and after a recon�guration operation

respectively� A con�guration Ci is a tuple h"i�!ii where "i � " and !i � !� % refers to the
requested con�guration action and is expressed as	

% 	 h"i�!ii � h"j�!ji

��

As mentioned above� t speci�es the cost of the con�guration operation and is expressed in terms
of number of memory reads and writes�

A simple dynamic alteration of waiting mechanism of a lock needs only one memory read and one
memory write�

hmutex� Xi 	 %spin
mutex 	 hspin�Xi ��R�W�

hspin� Xi 	 %mutex
spin 	 hmutex�Xi ��R�W�

���

However� alteration of scheduler is more expensive� It requires three memory writes for three
submodules� one memory write to set a �ag �to implement the con�guration delay�� and another

memory write to reset the �ag �when all the pre�registered threads are served� the old scheduler is
discarded��

hX� �foi 	 %priority
fifo 	 hX�priorityi ��R�W�

hX� priorityi 	 %handoff
priority 	 hX�hando�i ��R�W�

���

A complex recon�guration of a lock happens by a collection of the above operations� The cost of
such a recon�guration is easily obtained by adding costs of the individual operations�

� I 	 I is an initialization operation and is de�ned as	

I 	 IVi � CVi � "i � IV� �CV� � "� where�

IV�� CV�� and "� are the initial values of IV � CV � and " respectively�

��� Costs of Object Recon�guration

This section describes the basic costs of non�con�gurable lock implementations and compares them

with the costs of the operations provided by the recon�gurable lock object used in our research� The

following measurements are taken on a
��node BBN Butter�y GP���� NUMA multiprocessor using a

multiprocessor version of Cthreads as the basis�Muk��� SFG�����

Table � lists the latencies of the lock operations for di�erent lock implementations available on the

BBN multiprocessor �provided by the hardware� operating system and the Cthreads library�� A �local

lock� refers to a lock which is located in the local physical memory whereas a �remote lock� is located in

a non�local memory module� The atomior� function� which implements a low level atomic or operation

�similar to test�and�set�� is used to implement various locks� The spin�with�backo� lock is a variation

of the backo� spin lock suggested by Anderson et al��ALL���� A thread requesting ownership of such a

lock spins once� and if the lock is busy� waits �back o�s� for an amount of time proportional to the number

of active threads waiting for the processor� As expected� the primitive spin�lock has minimum latency�

whereas the blocking�lock exhibits a maximum� The latency of the con�gurable lock is comparable to

that of a primitive spin lock because a lock operation for con�gurable locks initially spins for the lock

before deciding to block the requesting thread�

The costs of unlock operations for various lock implementations are listed in Table
� The spin locks

implement unlock operations with minimum latency� whereas� the blocking lock� as expected� has the

�provided by the BBN Butter�y multiprocessor hardware

��

Lock type local lock remote lock
�micro seconds� �micro seconds�

atomior�
���

���
spin�lock ����� �����
spin�with�backo� ����� �����
blocking�lock ����� ����

con�gurable lock ����� �����

Table �	 Cost of the Lock operation for di�erent locks

Lock type local lock remote lock
�micro seconds� �micro seconds�

spin�lock ���� ���

spin�with�backo� ���� ����
blocking�lock ���
� �
���
con�gurable lock ����� �����

Table
	 Cost of the Unlock operation for di�erent locks

highest latency� The latency for the con�gurable lock exceeds that of spin locks due to the extra work

required to check for currently blocked threads� As shown by some experiments in the next section� this

extra cost is compensated by the performance gain due to recon�guration�

A thread waits for a busy lock until the current lock owner releases the lock� As mentioned earlier�

the cost of a locking cycle �an unlock followed by a lock operation� on a busy �locked� lock determines

the duration of the �idle state� of the lock� Table � lists the costs of the locking cycle for some static

implementations of locks� A spin�with�backo� lock has an expensive locking cycle due to the �backo��

cost whereas the �blocking� cost adds to the locking cycle of a pure blocking lock� As shown in Table

�� a con�gurable lock has the least expensive locking cycle when con�gured as a spin lock and has the

most expensive locking cycle when con�gured as a blocking lock� The cost of the locking cycle of a

con�gurable lock� con�gured as a combination of spin and block� lies between these extremes�

Dynamic con�guration �also known as recon�guration� occurs at run time� The owner of a lock or

an external agent possessing an attribute of the object may choose to alter its con�guration� Dynamic

con�guration changes pose a few problems which are best stated by the following question	

Lock type local lock remote lock
�micro seconds� �micro seconds�

Spin ����
 �����
Spin�with�backo�
���
�
�����
Blocking�lock ������ ��
���

Table �	 Cost of successive Unlock and Lock operation on an already �locked� lock

��

Con�gured as local lock remote lock
�micro seconds� �micro seconds�

Spin ����� ����
�
Blocking ������ �����

Table �	 Cost of successive Unlock and Lock operation on an already �locked� con�gurable lock

Operation local lock remote lock
�micro seconds� �micro seconds�

possess
����

���
con�gure�waiting policy� ���� �����
con�gure�scheduler� ����� ����

Table �	 Cost of Lock Con�guration Operations

Once the con�guration changes� what happens to the already registered threads� There are two

solutions to this problem� If the waiting policy changes� the �rst solution traverses the registration queue

and alters the waiting policies of all the registered threads� If the scheduling policy changes� it moves

all the registered threads from the old queue to the new one� The second solution does not change the

con�guration of the lock until all the pre�registered threads are served� The �rst solution is not scalable

because the length of the registration queue does not have an upper bound� Hence� our implementation

incorporates the second solution� The con�guration action does not take e�ect immediately� Such a

delay is referred to as a con�guration delay� The e�ect of such delay on recon�guration operations is

part of our future work and is not discussed in this paper

Table � lists the costs of the basic dynamic con�guration operations� As explained earlier� the

�possess� operation is used by an external agent� to acquire exclusive ownership of a lock attribute�

This operation is rarely used since recon�guration� in most cases� is done by the lock owner� The cost of

this operation is comparable to a primitive test�and�set operation� As shown� scheduler recon�guration is

more expensive than waiting policy recon�guration� Simple dynamic con�guration of the waiting policy

requires only one memory read and one memory write whereas� alteration of the scheduler requires three

memory writes for three submodules� one memory write to set a �ag �to implement the con�guration

delay�� and another memory write to reset the �ag �when all the pre�registered threads are served� the

old scheduler is discarded�� However� the con�guration costs listed in Table � do not capture total

con�guration delay�

��� Experiments with a Recon�gurable Object

In this section� we list the results of �ve experiments performed with recon�gurable locks� The previous

section shows that a recon�gurable lock exhibits a higher locking cycle latency compared to primitive

spin locks� The experiments in this section demonstrate that application performance gains due to

�A thread or a process which is not the current owner of the lock

�

dynamic recon�guration outweigh such performance penalties�

The �rst experiment� which compares the performance of three locks obtained by changing the sched�

uler con�guration� demonstrates the use of application speci�c lock schedulers� The second experiment

changes some attributes of recon�gurable locks to e�ect di�erent waiting policies� In this experiment�

we show that the optimal waiting policy for a lock depends on the application�s locking pattern� Since

such patterns are not generally known� lock policies can clearly be improved by dynamic recon�guration�

The third experiment demonstrates the application of a con�gurable lock �called speculative or advisory

lock� for variable length critical sections�

The fourth and the �fth experiments demonstrate the utility of implementation speci�c con�gura�

tions� The fourth experiment compares application performance using centralized spin locks vs� dis�

tributed spin locks whereas the �nal experiment compares application performance using passive and

active locks respectively� All experiments are performed with a workload generator on a
� node BBN

butter�y multiprocessor using a multiprocessor version of Cthreads as the basis�

�	�	
 Scheduler Con�guration

As mentioned earlier� a lock scheduler schedules the incoming requests to a critical section� The �rst

interesting result appearing in this section compares the performance of the following three lock con�

�gurations using a common class of multiprocessor applications� applications structured as client�server

programs� The experiment demonstrates improved application performance when priority or hando�

locks are used in place of FCFS locks�

FCFS and Priority lock� While FCFS lock scheduling is most common in multiprocessor lock imple�

mentations� non�preemptive�priority locks can be used in applications exhibiting speci�c locking patterns

for improved application performance� Use of priority locks has been widely discussed in the real�time

domain�Mar���� Such locks can also be useful in client�server models of computation� Specially� when

a server is �ooded with requests from many clients� the priority of its threads may be raised so that

a server thread can acquire the locks for the critical sections� it shares with the clients �e�g�	 message

bu�ers� faster� thereby resulting in faster service� FCFS locks are fair but priority locks are inherently

unfair

Hando� lock� A hando� lock scheduler takes hints to select the next thread to be assigned to the

critical section� The releasing thread hands o� the critical section directly to the selected thread� Hando�

locks� like priority locks� are useful in a client�server model of computation� A hando� lock does not

guarantee fairness and is typically application speci�c��

In this experiment� one thread �executing on a dedicated processor� is designated to be a server thread

serving many client threads� Communication between server and clients is performed via shared message

bu�ers� A client thread enqueues a request to the server thread and waits for a reply on the shared

�A user must have a clear understanding of the application�s behavior� especially the locking patterns� to use a hando� lock

policy e�ciently

��

FCFS lock Priority lock Hando� lock Performance Gain
�micro seconds� �micro seconds� �micro seconds�

��
�
��� � ��
�
���� �
&
��
�
��� ��������� � ���&

Table �	 Performance of Lock Schedulers

bu�er� Each of the above lock con�gurations are used in the experiment to implement the shared bu�er�

Table � compares the resulting program performance� The priority and the hando� locks perform better

than the FCFS lock because they allow the server to make progress in preference to clients� therefore

serving the clients at a faster rate� The priority lock performs better than the hando� lock in this case

due to the extra overhead required by the latter to accept user hints�

Priority locks can be implemented in more than one way� Two straightforward implementations are

stated below	

�� The �rst implementation implements a priority queue for the waiting threads� The release module
of the lock scheduler always selects the thread with the maximum priority�

�� The second implementation assigns a priority to the lock object which is used as a threshold of
priorities for the requesting threads� Only threads with higher priorities than the threshold are

eligible for the lock� The lock is assigned in an FCFS fashion among all eligible threads�

This experiment uses the second implementation of priority locks� Whenever the server thread is �ooded

with many requests� the lock priority is dynamically altered to temporarily raise the threshold priority

above client priority thereby making clients ineligible for the locks�

This experiment clearly demonstrates the utility of application speci�c lock schedulers� For improved

performance an application requires lock schedulers most appropriate for its requirements �locking pat�

terns exhibited by the threads of the application�� Note that we are not aware of any current lock

implementations �provided by operating system or libraries� which allows users to alter lock schedulers

�as supported by recon�gurable locks� to suit their requirements�

�	�	
 Waiting Policy Con�guration

As explained earlier� the internal state of a lock object contains attributes that decide whether a waiting

thread spins� sleeps or does both� Changing these parameters� statically or dynamically� changes the

waiting policy of a requesting thread� A few sample lock con�gurations obtained by varying the param�

eters of its internal state are spin� blocking� and combined locks� The second experiment compares the

performance of these three con�gurations using a uniform locking pattern�

Spin lock� If the sleep time is zero �or the spin time is in�nite� and the spin time is nonzero� a thread

spins while waiting for the lock�

��

650

700

750

800

850

900

950

1000

1050

1100

1150

50 100 150 200 250

E
x
e
c
u
t
i
o
n

T
i
m
e

(
i
n

m
i
c
r
o
s
e
c
.
)

Length of Critical Section (in microsec.)

lock with no. of spin = 1
lock with no. of spin = 10

spin lock
blocking lock

Figure �	 Length of critical section Vs� Application execution time

Blocking lock� If the spin time is zero and the sleep time is nonzero� a waiting thread directly goes

to sleep until awakened by a thread �possibly a releasing thread� or a timeout signal� The lock scheduler

wakes up a speci�c thread or all the sleeping threads depending on the release policy�

Combined lock� A combined lock results when both spin time and sleep time are set to nonzero� A

thread spins as well as sleeps while waiting� The resulting waiting policy is decided by the actual values

of the parameters� In a typical waiting policy� a thread initially spins for a certain time and if the lock

is still busy� goes to sleep unless awakened by someone� In another waiting policy for combined locks� a

thread spins and sleeps in turn until it acquires the lock�

The second experiment repeats the experiment done in Section � on performance of spin vs� blocking

when multiple threads on each processor are capable of making progress �Figure
� using combined locks

with the latter waiting policy� Figure � shows the results of the experiment� and compares the perfor�

mance of combined locks with spin and blocking locks� Due to the low latency� spin locks outperform

others when the critical section is small� However� for larger critical sections� the �gure shows a distinct

performance advantage in favor of combined locks�

The �gure shows the performance of two combined locks
 one that spins �� times initially before

blocking� another that spins once before blocking� In this experiment the former outperforms the latter

for larger critical sections� However in general� the optimal number of initial spins of combined locks

will depend on various application characteristics such as its locking pattern� length of critical sections

etc� Furthermore� the optimal waiting policy for a lock will be di�erent during di�erent phases of a

computation from which we hypothesize that a waiting policy based on dynamic feedback �reporting

the state of a lock� is essential for better application performance� This topic is addressed in our

��

600

700

800

900

1000

1100

1200

1300

50 100 150 200 250 300 350

E
x
e
c
u
t
i
o
n

T
i
m
e

(
i
n

m
i
c
r
o
s
e
c
.
)

Length of Critical Section (in microsec.)

advisory lock
spin lock

blocking lock

Figure �	 Length of critical section Vs� Application execution time

future research� where we use lock monitor information to identify the current lock state and vary lock

con�gurations� thereby resulting in speculative dynamically recon�gurable locks�

The third experiment studies the performance of another lock con�guration called advisory locks� In

this experiment� we study the e�ect of changing the waiting policy in di�erent phases of a computation �as

suggested by the result of the last experiment�� This experiment demonstrates considerable performance

improvement due to such changes over a non�con�gurable spin or blocking locks�

Advisory�Speculative lock� As the name suggests� the owner of such a lock advises other requesting

threads whether to spin or sleep while waiting by �dynamically� changing the parameters of its internal

state� Advisory locks are a result of direct application of con�gurable locks� In general� the length of

each synchronization lock tenure may vary signi�cantly in di�erent phases of computation� The current

lock owner is the best source of information for the length of lock ownership� Hence� the current owner

of a synchronization lock advises or con�gures the lock for a requesting thread� The owner also may

choose to change the advice at di�erent stages in the critical section� Two such situations are listed

below	

� A critical section may have multiple conditional paths of varying lengths� The owner may change
the lock to be a sleeping lock if it takes a long path inside the critical section or may change the
lock to spin if it takes a short path�

� If a critical section is long� the owner initially sets the lock to be a sleeping lock� When it reaches
the end of the critical section� it changes the lock to spin�

This experiment uses an application performing critical sections of varying lengths� As the length of

the critical sections increases� the owner thread alters the con�guration of the lock� Figure � compares

��

6000

6200

6400

6600

6800

7000

7200

7400

7600

7800

8000

8200

0 50 100 150 200

E
x
e
c
u
t
i
o
n

T
i
m
e

(
i
n

m
i
c
r
o
s
e
c
.
)

Length of Critical Section (in microsec.)

centralized spin locks
distributed spin locks

Figure �	 Length of the critical section Vs� Application time

the performance of such a lock with simple spin and blocking locks� As the �gure shows� advisory locks

outperform ordinary spin or blocking locks for variable length critical sections� Since the remaining

length of a critical section owned by a thread decreases with time� the �gure also suggests that the

advice be changed at regular intervals dynamically by the owner to re�ect the remaining length of the

tenure for improved performance�

�	�	� Implementation Speci�c Con�guration

The implementation of a lock may be altered using architectural hints� The fourth experiment compares

application performance using centralized spin locks vs� distributed spin locks� The results of this

experiment is not too surprising� However� they do support the conclusions made by Anderson et

al��ALL��� that distributed implementation of locks� especially in NUMA machines� often improves

application performance to a certain extent� however small it may be�

Centralized Vs	 Distributed or Semi�consistent locks� A Centralized implementation does not

replicate a lock in di�erent processors� Waiting for centralized locks may require considerable number of

remote memory accesses which are expensive and may cause switch�bus contention� On the other hand� a

distributed implementation of a lock replicates the lock in more than one processors� thereby minimizing

remote memory accesses� The replicas need not be consistent always as long as the implementation

guarantees a fair mutual exclusion�

The result of the experiment performed using three processors is shown in Figure �� Although the

�gure demonstrates a small performance advantage in favor of distributed locks� we hypothesize that

��

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

11000

11500

0 50 100 150 200 250 300

E
x
e
c
u
t
i
o
n

T
i
m
e

(
i
n

m
i
c
r
o
s
e
c
.
)

Length of Critical Section (in microsec.)

passive spin locks
active spin locks

Figure ��	 Length of the critical section Vs� Application time

improvement will be more when the number of processors are large� Similar results have already been

shown by others�ALL���� hence they are not included in this paper�

The �nal experiment compares two alternative lock implementations
 passive and active locks�

Passive Vs	 Active locks� If a lock object has a permanent thread bound to it� we refer to it as an

active lock� The thread is bound to the lock at the lock creation time and it remains bound through out

its lifetime� Figure �� compares the performance of an application using active vs� passive spin locks�

The experiment demonstrates that active locks are little cheaper because it takes the responsibility of

executing the release module from the owner processor� thus providing the releasing processor more time

to execute useful application�speci�c code� However� applications using active locks need more number

of processors to execute�

We have also implemented a few common lock con�gurations to demonstrate the generality of the

structure of recon�gurable lock objects� The remaining portion of this section lists these lock con�gura�

tions obtained using recon�gurable lock objects�

A read�write lock is implemented using a scheduler that allows multiple reader threads inside a critical

section� Such a lock scheduler implements an algorithm similar to a multiprocessor scheduling algorithm

with some constraints� A read�write scheduler can be combined with a priority or a hando� scheduler

to create variants where readers have priority over writers or vice versa�

Recursive locks� are implemented by maintaining the lock�ownership information in the registration

module� An attempt to re�acquire the same lock is easily detected because a lock object knows the

identity of its owner� Recursive locks are more expensive than the normal locks because each requesting

�recursive locks are implemented in MACH �Bla��b	 kernel to eliminate the lock
reentrancy problem�

��

thread performs an extra memory write at registration time�

Simple conditional locks result when the timeout parameter is set accordingly� A thread waiting for

such a lock returns unsuccessfully if it cannot acquire the lock in a speci�ed time�

� Related Research

Some of the notions introduced in PRESTO�BLLW��� BLL���� CHOICES�CJR��� and CHAOS�GS��a�

GS�
� GS��b� SGZ��b� SGZ��a� are somewhat similar to this work� PRESTO supports two kinds of

synchronization primitives	 spinlocks and synchronization objects� A synchronization object is made

of a spinlock �spinlock implements the mutual exclusion�� a queue �threads block in this queue�� and

a few objects required to implement its semantics� Structurally� PRESTO�s synchronization object is

somewhat similar to recon�gurable locks� However� a synchronization object does not support dynamic

attribute recon�guration and object state monitoring� CHOICES is an example of an object based

recon�gurable operating system which can be tailored for a particular hardware con�guration or for a

particular application� The focus of CHOICES is to structure the operating system kernel in an object

oriented way whereas� the focus of our research is to build a con�gurable operating system kernel at the

thread level� Even though we use the object model at the application level� we do not use objects to

build the run�time system� CHAOS� is a family of object�based real�time operating system kernels� The

family is customizable in which existing kernel abstractions and functions can be modi�ed easily� As

opposed to CHAOS objects� a recon�gurable lock contains its own mutable attributes and an internal

con�guration policy to guide any recon�guration operation�

There has been a lot of work on multiprocessor synchronization� In �ALL���� Anderson et al� compare

the performance of a number of software spin�waiting algorithms� They propose a few e�cient spin�

waiting algorithms such as Ethernet style backo� algorithm �introducing delay between successive spins

analogous to Ethernet�s backo� or Aloha�� software queueing of spinning processors etc� We have built

similar backo� spin locks as di�erent con�gurations of the recon�gurable lock� In �MCS���� Mellor�

Crummey et al� propose a new scalable algorithm �a list�based queuing lock� also known as MCS lock�

which generates O��� remote references per lock acquisition� independent of the number of processors

attempting to acquire the lock� We have built a similar lock �distributed lock� as a con�guration

�implementation dependent con�guration� of the recon�gurable lock�

� Conclusion and Future Work

The contribution of our work is twofold	 First� we� propose a structure for lock objects such that their

waiting and scheduling behaviors are easily changed �statically or dynamically�� and then we demonstrate

the usefulness of dynamic recon�guration of such lock objects�

The experiments in Section � imply that an operating system kernel should provide a locking mecha�

�A Concurrent�Hierarchical�AdaptableOperating System supporting atomic� real
time computations�

��

nism that permit the use of di�erent waiting and request handling strategies depending on the expected

or experienced lengths of critical sections� Even though the presented recon�gurable lock model exhibits

some performance penalties compared to primitive locks �as shown in Section ����� the experiments in

Section ��� shows that in most cases� these penalties are outweighed by the performance gain due to

recon�gurability�

In this paper� we show that it is essential to have application speci�c lock schedulers for increased

performance �as priority schedulers and hando� schedulers are used in some classes of applications��

We also show that the dynamic change of waiting policy attributes results in improved application

performance�

Section ��� demonstrates that the optimal waiting policy of a lock is a function of number of spins�

blocks� and�or timeouts� This function depends on various application characteristics such as its locking

pattern� length of its critical sections etc� Our future research focuses in part on �nding the optimal

waiting policy for an application speci�c lock by speculative dynamic recon�guration� Next� we will

extend this idea to build self�adaptable objects� Such an object uses a builtin monitor and an adaptation

algorithm to implement a feedback loop to con�gure its own attributes� We will use the concepts of

recon�guration and adaptation in other operating system components as well to build a lightweight

recon�gurable operating system kernel�

References

�ALL��� Thomas E� Anderson� Edward D� Lazowska� and Henry M� Levy� The performance implica�
tions of thread management alternatives for shared�memory multiprocessors� IEEE Trans�

actions on Computers�
�����	��
�
����� December �����

�Bla��a� D� Black� Scheduling support for concurrency and parallelism in the mach operating systems�
IEEE Computer Magazine� �
���	
�
�
� May �����

�Bla��b� David� L� Black� Scheduling and Resource Management Techniques for Multiprocessors� PhD
thesis� School of Computer Science� Carnegie Mellon University� July ����� Techreport CMU�

CS��������

�BLL��� B� Bershad� E� Lazowska� and H� Levy� Presto	 A system for object�oriented parallel pro�
gramming� Software
 Practice and Experience� �����	��

�
�� August �����

�BLLW��� B� Bershad� E� Lazowska� H� Levy� and D� Wagner� An open environment for building
parallel programming systems� In Symposium on Parallel Programming
 Experience with

Applications	 Languages and Systems� pages �
�� July �����

�BS��a� T� Bihari and K� Schwan� Dynamic adaptation of real�time software� ACM Transactions on

Computer Systems� ����	��

���� May �����

�BS��b� T� Bihari and K� Schwan� Dynamic adaptation of real�time software for reliable performance�
ACM Transactions on Computer Systems� May �����

�CCLP�
� G� Cox� M� Corwin� K� Lai� and F� Pollack� Interprocess communication and processor
dispatching on the intel �
�� ACM Transactions on Computer Systems� ����	��
��� February
���
�

��

�CJR��� R� Campbell� G� Johnston� and V� Russo� Choices �class hierarchical open interface for
custom embedded systems�� Operating Systems Review� ���
�	�
��� July �����

�GS��a� Ahmed Gheith and Karsten Schwan� Chaosart	 A predictable real�time kernel� In Butter�y

Users Group Meeting	 BBN Advanced Computers INc�	 Rochester	 NY� April ����� Talk

abstracts do not appear in proceedings�

�GS��b� Prabha Gopinath and Karsten Schwan� Chaos	 Why one cannot have only an operating
system for real�time applications� SIGOPS Notices� pages ���
���� July �����

�GS��� Weiming Gu and Karsten Schwan� A monitoring and visualization system for parallel and
distributed systems� Technical Report Draft� College of Computing� Georgia Institute of
Technology� �����

�GS�
� Ahmed Gheith and Karsten Schwan� Chaos�arc
 kernel support for multi�weight objects� in�
vocations� and atomicity in real�time applications� ACM Transactions on Computer Systems�

�����	

��� April ���
�

�HA��� Phil W� Hutto and Mustaque Ahamad� Slow memory	 Weakening consistency to enhance
concurrency in distrbuted shared memories� In Proceedings of the International Conference

on Distributed Computing Systems� pages
��

��� �����

�IFKR��� H� Burkhardt III� S� Frank� B� Knobe� and J� Rothnie� Overview of the ksr� computer system�

Technical Report KSR�TR��������� Kendall Square Research� Boston� February �����

�Jon��� A�K� Jones� The object model	 A conceptual tool for structuring software� In Operating

Systems � An Advanced Course� pages �
��� Springer Verlag� New York� Editors R� Bayer�

R�M� Graham and G� Seegmueller� �����

�JS��� Anita K� Jones and Peter Schwarz� Experience using multiprocessor systems	 A status report�
Surveys of the Assoc� Comput� Mach�� �����	���
���� June �����

�LCC���� R� Levin� E� Cohen� W� Corwin� F� Pollack� and W� Wulf� Policy�mechanism separation in
hydra� In Proceedings of the �th Symposium on Operating System Principles	 Austin	 Texas�

Assoc� Comput� Mach�� SigOps� Nov� �����

�Mar��� E� P� Markatos� Multiprocessor synchronization primitives with priorities� In Eighth IEEE

Workshop on Real�Time Operating Systems and Software� pages �
�� May �����

�MCS��� J� Mellor�Crummey and M� Scott� Algorithms for scalable synchronization on shared�memory
multiprocessors� ACM Transactions on Computer Systems� �� �����

�MS�
� Bodhisattwa Mukherjee and Karsten Schwan� Improving performance by use of adaptive ob�
jects	 Experimentation with a con�gurable multiprocessor thread package� Technical Report
GIT�CC��
���� College of Computing� Georgia Institute of Technology� ���
�

�Muk��� Bodhisattwa Mukherjee� A portable and recon�gurable threads package� In Proceedings of

Sun User Group Technical Conference� pages ���
���� June �����

�SB��� Karsten Schwan and Win Bo� Topologies
 distributed objects on multicomputers� ACM

Transactions on Computer Systems� ����	���
���� May �����

�SBW��� J� Saltz� H� Berryman� and J� Wu� Runtime compilation for multiprocessors� Concurrency

Practice and Experience�
���� �����

�Sch��� J�T� Schwarz� Ultracomputers� ACM Transactions on Programming Languages and Systems�

����	���
��
� Oct� �����

��

�SFG���� Karsten Schwan� Harold Forbes� Ahmed Gheith� Bodhisattwa Mukherjee� and Yiannis Samio�
takis� A cthread library for multiprocessors� Technical Report GIT�ICS������� College of

Computing� Georgia Institute of Technology� �����

�SGB��� Karsten Schwan� Prabha Gopinath� and Win Bo� Chaos
 kernel support for objects in the
real�time domain� IEEE Transactions on Computers� C�
����	���
���� July �����

�SGZ��a� K� Schwan� A� Gheith� and H� Zhou� Chaos�arc	 A kernel for predictable programs in dynamic
real�time systems� In Seventh IEEE Workshop on Real�Time Operating Systems and Software	

Univ� of Virginia	 Charlottesville� pages ��
��� May �����

�SGZ��b� Karsten Schwan� Ahmed Gheith� and Hongyi Zhou� From chaos�min to chaos�arc	 A family
of real�time multiprocessor kernels� In Proceedings of the Real�Time Systems Symposium	

Orlando	 Florida� pages ��
��� IEEE� Dec� �����

�SJG��� P� Stenstrom� T� Joe� and A� Gupta� Comparative performance evaluation of cache�coherent

numa and coma architectures� In Proceedings of the ��th Annual International Symposium

on Computer Architecture� pages ��
��� May ����� �����

�SRVO��� Karsten Schwan� Rajiv Ramnath� Sridhar Vasudevan� and Dave Ogle� A language and system

for parallel programming� IEEE Transactions on Software Engineering� �����	���
���� April
�����

�WLH��� William A� Wulf� Roy Levin� and Samuel R� Harbison� Hydra
C�mmp
 An Experimental

Computer System� McGraw�Hill Advanced Computer Science Series� �����

�ZSG��� Hongyi Zhou� Karsten Schwan� and Ahmed Gheith� Dynamic synchronization of real�time

threads for multiprocessor systems� In Proceedings of the �rd Symposium on Experiences with

Distributed and Multiprocessor Systems� March �����

�

