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Abstract

Operating system kernels typically offer a fixed set of mechanisms and primitives. However,
recent research shows that the attainment of high performance for a variety of parallel appli-
cations may require the availability of variants of existing primitives or additional low-level
mechanisms. One approach to solve this problem is to offer a lightweight, reconfigurable
and extensible operating system kernel. An application may configure it to suit its needs,
including the selection of appropriate low-level policies, the construction of new primitives
on top of the existing ones or the extension with additional primitives. In this paper, we
investigate kernel configurability and extensibility for a specific class of operating system
primitives: those used for task or thread synchronization. We present an implementation of
multiprocessor locks that can be reconfigured statically and dynamically. In addition, we de-
velop a representation for the lock abstraction and an associated reconfiguration mechanism
that may be used for the development of other configurable and extensible operating system
abstractions.
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1 Introduction

Past experimentation with parallel machines has demonstrated that the attainment of high perfor-
mance often requires the customization of operating system mechanisms to each class of application
programs. For example, for real-time applications executing on shared memory multiprocessors, the
object-based operating system kernels described in [GS89a, SGB87] must offer several representations
of objects and object invocations to support the different degrees of coupling, task granularities, and
invocation semantics existing in real-time applications[GS93]. Such experiences in the real-time domain
are mirrored by work in multiprocessor scheduling[CCLP83, BLL88] that demonstrates the importance
of using application-dependent information or algorithms while making scheduling decisions. Similarly,
for scientific applications executing on distributed memory machines; the support of multiple semantics
of task communication by low-level operating system mechanisms[SB90] or by compiler-generated com-
munication libraries]SBW91] has been shown to enhance application program performance significantly.
Lastly, recent research addressing efficient memory models for shared memory[SJG92] and for distributed
memory[HA90] machines has made clear that the support of multiple semantics of memory consistency
can result in improvements in parallel program efficiency.

This paper explores how an operating system kernel can support application programs in the assembly

of program-specific mechanisms and policies[LCCt75]. We address the following questions:

e How can an operating system kernel’s abstractions be represented so that they are statically and
dynamically configurable?

e What basic mechanisms are required for dynamic kernel configuration?

e Are the runtime costs incurred by dynamic reconfiguration justified by the possible gains of such
reconfiguration?

Although it is possible to answer the questions posed above for complex applications and for a variety
of operating system constructs[BS91a, BS91b], in this paper, we address these questions for a specific
concurrency control construct — the lock construct — used for the synchronization of multiple processes
in NUMA shared memory parallel application programs. The configurable lock construct described in
this paper permits the use of multiple strategies for lock access ranging from ‘busy waiting’ to ‘blocking’.
Tradeoffs in the use of these strategies for NUMA machines are demonstrated with measurements on a 32-
node BBN Butterfly GP1000 multiprocessor. Some of the experiments described in Section 2 are similar
to those performed by Anderson[ALL89] for small-scale UMA machines, but our results are different due
to the NUMA characteristics of the BBN Butterfly and of most large-scale parallel machines[IFKR92].

Since the experiments in Section 2 show that different lock configurations result in significant per-
formance differences, Section 3 introduces a dynamically configurable (reconfigurable) lock construct.
Section 4.1 lists some basic measurements demonstrating the performance penalties due to lock reconfig-
urability. The application level performance improvements gained from dynamic lock reconfiguration are
presented in Section 4.2 using a workload generator. Section 5 compares our work with related research

and finally, Section 6 concludes the paper and presents some future directions
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Figure 1: Length of critical section Vs. Application execution time for uniform arrival of lock requests

2 Thread Synchronization with Locks on NUMA Machines

Tradeoffs in program performance due to the use of alternative synchronization constructs have been
demonstrated for most parallel architectures, including the experimental C.mmp[WLH81] and Cm*[JS80]
multiprocessors, interconnection-network-based machines like the Ultracomputer[Sch80], and bus-based
machines like the Sequent Symmetry[ALL89]. For example, in C.mmp users preferred to use simple spin
compared to blocking locks offered by the Hydra[WLH81] kernel due to the low latencies associated with
spin lock use. More specifically, when concerned with maximizing the speedup of parallel applications,
users required a synchronization construct that offered low latency of access to critical sections in response
to their availability (regardless of any resulting loads imposed on connections of processors to memory
units). In contrast, for bus-based UMA machines, Anderson showed that spin locks can put a significant
load on the shared bus, so that efficient use of the parallel machine requires a back-off strategy for spin
locks similar to the one used by low-level Ethernet devices[ALL89]. Alternatively, when maximizing
processor utilization or when multiple threads exist on each processor, threads accessing critical sections
protected by locks should be blocked to enable the execution of other threads performing useful work.
Similar conclusions were made by Mellor-Crummey and Scott in [MCS91] while deriving efficient spin-
lock implementations to reduce contention on the shared bus.

The measurements in this section study the tradeoffs regarding the use of spin locks vs. blocking
locks for critical sections of different lengths and accessed with different frequencies. In contrast to
some of the measurements by Anderson on UMA machines [ALL89], we show that NUMA machines
behave predictably when spin locks are used. Artificial workloads imposed on the NUMA multiprocessor

demonstrate the following characteristics:
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Figure 2: Length of critical section Vs. Application execution time for bursty arrival of lock requests

e Assuming a single thread per processor and a constant frequency of access to critical sections, the
execution time of an application program linearly increases with the lengths of critical sections
accessed by program’s threads. This linear increase is due to increases in the average wait times
of threads for critical sections.

e In NUMA machines, spin locks consistently outperform blocking locks when the number of proces-
sors exceeds the number of threads. This is due to the reduced latencies of critical section access
for spin vs. blocking locks.

These results are demonstrated in Figures 1 and 2 for both bursty (Figure 2) and uniformly distributed
(Figure 1) accesses to critical sections. These measurements were made with a workload simulator on
a 68020 based 32 node BBN butterfly multiprocessor. The simulator binds one or more thread to each
processor which generate locking requests following a user defined pattern.

However, when multiple threads on each processor are capable of making progress, the use of blocking
is indicated even for fairly small critical sections, since spinning prevents the progress of other threads
not currently waiting on a critical section. The cross-over point while using blocking vs. spinning for
the artificial workloads used in our experimentation corresponds to the additional overheads of blocking
on the BBN Butterfly (Figure 3).

The experimental results shown above are not surprising. However, these results do imply that
any locking mechanism offered by an operating system kernel should permit the mixed use of spinning,
backoff spinning[ALL89], and blocking as waiting strategies, depending on the expected or experienced
lengths of critical sections protected by such locks. The design of a lock object offering such multiple

waiting strategies is presented in the next section.
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Figure 3: Length of critical section Vs. Execution time of application having useful threads that are capable
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3 Configurable and Reconfigurable Locks

At any specific time a lock can be in one of three different states — locked, unlocked, and idle. A lock is
in the “locked” state when a specific thread owns the lock whereas it is in the “unlocked” state when it
is free without any waiting threads. A lock enters the “idle” state when it is free but has one or more

waiting threads. Figure 4 shows a typical state transition diagram for a multiprocessor lock.

LOCKED LOCKED LOCKED

UNLOCKED UNLOCKED

=|DLE= '<=—IDLE— <~—IDLE—=
Figure 4: State Transition Diagram of a Lock

An idle state inhibits an application’s progress by consuming processor cycles and/or blocking an
application thread. A lock becomes idle when the latency of its lock and/or unlock operations are high,
when it exhibits an expensive “locking cycle” (an unlock operation followed by a lock operation), and/or
when the lock operation interferes with the unlock operation (e.g. a primitive low-level lock is often used

to enforce mutual exclusion of a high-level lock data structure. In such a situation, even an unsuccessful



lock operation can stop a thread from executing an unlock operation). A spin lock supports lock and
unlock operations with minimum latency for locking cycle whereas a blocking lock usually has a higher
locking cycle latency. Hence, a spin lock has the least idle state. However, a spin lock may result
in increased bus and/or memory contention which may degrade the performance of a shared memory
parallel program. The aim of dynamic lock reconfiguration is to reduce the idle time of a lock without
significantly increasing bus and/or memory contention resulting in improved application performance.
Such reconfiguration is application specific and lock reconfiguration policy will depend on the application

locking pattern.

3.1 Reconfigurable Locks — The Model.

Any lock construct has two mechanisms and associated policies determining its behavior: (1) its schedul-
ing component determines the delay in lock acquisition experienced by the thread, and (2) its wait
component specifies the manner in which a thread is delayed while attempting to acquire the lock.
Scheduling itself may be divided into three components: (a) a registration component logging all threads
desiring lock access, (b) an acquisition component determining the waiting mechanism and policy to be
applied to each registered thread (without registration the lock cannot apply different waiting policies
to individual threads), and (c) a release component that grants new threads access to the lock upon its
release.

Lock configuration can concern changes in each of the components mentioned above. For example, as
stated earlier, Anderson et al. in [ALL89] explored the performance effects of using the alternative delay
mechanisms of spinning vs. backoff spinning. In contrast, researchers in real-time systems have inves-
tigated the costs of priority-based and deadline-based dynamic lock access scheduling]MCS91, Mar91,

7ZSG92] for multiprocessor systems. The contribution of our work is twofold:

1. describing locks such that their waiting and scheduling behaviors can explicitly changed (statically
and dynamically), and

2. demonstrating the usefulness of explicit dynamic reconfiguration. Specifically, although the mech-
anism of explicit reconfiguration of locks introduces additional overheads, we show that these
overheads are outweighed by performance gains due to reconfigurability.

Reconfiguration concerns the dynamic alteration of components of parallel programs[BS91a]. Such
reconfiguration 1s possible only if the components being changed offer an immutable interface to the
remainder of the application program. Our research assumes that the object model[Jon79] of software
is used to describe components subject to dynamic change. Specifically, an instance of a lock object
i1s uniquely described by its names and methods, the latter implementing the object’s functionality.
Lock objects are used by invocation of their methods, where both the semantics of invocation and the
representation of objects may be class-specific. Namely, each method has some internal implementation
that may range from being passive (i.e., the method’s code is executed by the invoker), to active threads
executed on one or multiple processors[GS93, SGB87] asynchronously to the invoker. Each object also

contains global centrally stored or distributed[SB90], static and dynamic internal state accessible to all



methods as well as state local to each method. For example, a passive lock object may be described as

follows:

CLASS passive-lock is

STATE internal_state <immutable> IS
queue registration-queue;

thread-id owner;
END

STATE configurable_attributes <mutable> IS
int spin-time;
int delay-time;
int sleep-time;

int timeout;
END

OPERATION registration(..);
OPERATION acquire(..);
OPERATION release(..);
OPERATION possess(..);
OPERATION configure(..);

BEGIN
Initialization ..

END

The object model used above has been shown to be sufficient for representation of a wide variety of
parallel application programs on both shared memory and distributed memory machines[GS93, Jon79,
(GS89a]. However, for reconfiguration and for attainment of high performance, application programs
must be aware of additional object properties. These properties may be represented as object attributes
that may be specified and changed orthogonally to the object’s class determined by i1ts methods, as shown
by Gheith[GS93] for multiprocessor real-time applications involving attributes like execution deadlines
on methods or forward recovery designations on object classes. We adopt the attribute-based specifi-
cation originated by Gheith, but we investigate a different class of dynamically changeable attributes.
Specifically, we are concerned with object attributes that characterize an object’s internal implementa-
tion (e.g., the use of spinning vs. blocking in the waiting component of a lock object), and we focus on
making dynamic changes to selected implementation attributes. For example, a lock object belonging
to the above mentioned passive-lock class implements a primitive spin lock when the sleep-time is

zero and the spin-time is infinite. On the other hand, it implements a pure blocking lock when the
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Figure 5: Structure of Lock objects

spin-time is zero.

In contrast to Gheith[GS93] and similar to the restricted definition of the object model used by
Bihari for on-line adaptation of real-time programs [BS91a], we assume that changes in object attributes
may be performed both synchronously or asynchronously with method invocations. This requires the
introduction of two additional time-dependent properties of object attributes: (1) attribute mutability
and (2) attribute ownership. An attribute is mutable whenever its current value may be changed. For
example, a lock object’s attribute specifying its waiting policy (not its scheduling policy) is permanently
mutable because it may be changed at any time, but its scheduling policy is likely to be immutable
whenever threads are waiting on the lock due to the inordinate potential expenses involved with the
reorganization of internal lock data structures such as thread waiting queues[SRVO88]. Since object
mutability is subject to change over time, the implementation of a reconfigurable lock object presented
below possesses an internal policy controlling the object’s reconfiguration. This policy makes use of
object state describing its ownership by invokers. Such ownership may be acquired implicitly as part of
the invocation of some object method or explicitly by execution of a ‘possess’ method associated with the
object. For example, ownership of the object attribute spin-time or block-time is acquired implicitly
by a thread when it acquires the lock. Also, an external agent (typically, a thread monitoring the state
of the lock) may request ownership of an attribute to reconfigure the lock to a desired configuration as
shown by the following code segment.

passive-lock.possess (a-attribute)
passive-lock.configure (a-attribute, new-config)



|| spin-time  delay-time sleep-time timeout| resulting lock ||

n 0 0 0 pure spin

n n 0 0 spin (backoff)

0 0 n 0 pure sleep

X X X n conditional sleep/spin
n n n X mixed sleep/spin

Table 1: Lock Parameters (n = an arbitrary number, x = “do not care”)

3.2 Reconfigurable locks — Implementation.

As stated above, locks may be reconfigured asynchronously by invocation of a reconfiguration method
or synchronously in conjunction with lock or unlock requests. For reconfigurable locks, we have chosen
to implement asynchronous lock reconfiguration, in order to avoid forcing all threads that use locks to
contain knowledge about lock usage, lock performance, or application program performance. The specific
reconfigurable lock presented in this section is implemented such that all lock requests are required to
carry an additional parameter based on which each request i1s directed to the appropriate methods for
lock waiting and scheduling. We call such additional parameters attributes since they are not required by
the methods implementing the object’s basic functionality. The attribute used by the reconfigurable lock
is the requesting thread’s identifier (‘thread-id’). This identifier is processed by the lock object’s policy
upon lock invocation as part of the registration phase of lock scheduling. The policy next performs lock
acquisition, which implements a mapping of ‘thread id’ to the appropriate methods for waiting on the
lock, and it also selects the appropriate lock scheduling method for delaying lock access. Both mappings
may be changed by reconfiguration operations performed on the lock object described later. As a result,
a reconfigurable lock’s internal representation contains the following additional information (Figure 5):

e object state (e.g., current lock state, current lock owner, registration information, etc.)

e configuration state (e.g., timeout and spin-time parameters, list of wait methods, etc.), which is
shown in detail in Table 1. This Table lists a few such parameters, the possible values for those
parameters and the resulting locks. These parameters implement a spectrum of locks as shown
in Figure 6. Configuration state not shown in the Table includes architecture-specific information
like lock location, object implementation (distributed or centralized objects) ete.

Given the lock implementation outlined above, each lock access request involves the following steps:

Lock: A locking operation consists of the following steps:

1. A requesting thread registers itself with the lock object. At this time, attribute information like
thread-id, priorities, ownership, efc. 1s processed by the lock’s policy. The overhead of policy
execution depends on the number of attributes processed and the complexity of the processing
being performed (e.g., a somewhat complex lock scheduling algorithm is described in [ZSG92] for
real-time locks). The registration overhead in the configurable lock implementation is the cost of
one write operation on primary memory?. As shown in Section 4.2, application performance gain
due to dynamic lock reconfiguration easily compensates for such registration costs.

?registration of the thread identity
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Figure 6: A Spectrum of Multiprocessor Locks

2. If lock status indicates that the thread must wait for the lock, then the waiting method 1s de-
termined by the acquisition module of the lock object. Current implementation of configurable
lock maps requests to methods for spinning, blocking, backoff spinning, conditional locking, and
advisory locking.

Unlock: An unlock operation consists of the following steps:

1. The last part of the lock objects’s policy is the release module, which selects the next thread that
is granted access to the lock.

2. The release module’s selection (scheduling) policy may consist of a simple access to a thread-id
noting the next thread to be executed (as in handoff scheduling[Bla90a]) or it may execute more
complex scheduling strategies.

The reconfigurable lock object also contains a monitor module which senses or probes user-defined
parameters. This module implements a user-controlled lightweight thread monitoring system. The
information gathered from the monitor can be used by the internal reconfiguration policy and/or an
external agent (possibly another application thread) to determine the state of the lock which, in turn,
is used to decide on a new lock configuration. The resident policy which is responsible for the lock
reconfiguration is called as the lock adaptation policy. Such adaptation policy depends on the locking
pattern. Implementations of thread monitoring system[GS92] and adaptable locks[MS93] are described

elsewhere.

4 Performance Evaluation

4.1 Formal Characterization

Let V; be a state variable with value v; in domain D; (v; € D;). Let SV be the set of variables that
constitute the state of an object. SV consists of two subsets IV (set of variables in internal state) and

C'V (set of variables in configuration state).

SV = IV UCV where,
IV ={V;,Vs,...,V,} and



CV ={U,Us,...,U,}
The actual values of the variables in C'V determine the waiting policy for a lock. Let C'V; be an instance
of the sub-state C'V of the object, i.e.

CVi=Aa; |Ui =2; NU; € CV Ny € Dy}

Then, the set of waiting policies of a lock object can be represented as

& ={CV;|CV; is an instance of C'V'}

Let T' be the set of lock schedulers. As mentioned earlier, a lock scheduler consists of three functions
(registration, acquisition, and release). Hence, an instance the set T' is an ordered triple and can be

expressed as

[y = {079, 1/ Ty

The set C' of possible lock configurations is:
C=I'x?®

The operations defined on lock objects are:

1. T : T is a state transition operation and is formally expressed by a variation of axiomatic rules:

SVipre : T2 SV ot [t]‘

Where, SV . and SV ¢ refer to the object states before and after the operation respectively. T
modifies only the internal state of an object, therefore, can be more precisely defined as:

T: 1V, —1V;
T=7;VvT,, where

T; is the lock operation and can be expressed as:
Y. [Res; A
T, is the unlock operation and can be expressed as:

Y, Tkel

t specifies the cost of the specified operation and is expressed in terms of number of memory reads
and writes :

t = nyRnoW, where ny > 0Ang >0

2. ¥ : ¥ s a reconfiguration operation and is formally expressed as:

‘C’pm c W Chosy [t]‘

Where, Cpre and Cps; Tefer to the object configurations before and after a reconfiguration operation
respectively. A configuration C; is a tuple (I';, ®;) where T; € T and ®; € &. U refers to the
requested configuration action and is expressed as:

v <FZ,<I)Z> — <F]',<I>]'>

10



As mentioned above, ¢t specifies the cost of the configuration operation and is expressed in terms
of number of memory reads and writes.

A simple dynamic alteration of waiting mechanism of a lock needs only one memory read and one
memory write.

(mutex, X) : yirin (spin,X) [IR1W]

mutex

(spin, X) : w7uler . (mutex,X) [IR1IW]

spin

However, alteration of scheduler is more expensive. It requires three memory writes for three
submodules, one memory write to set a flag (to implement the configuration delay), and another
memory write to reset the flag (when all the pre-registered threads are served, the old scheduler is

discarded).
(X, fifo) : \I!’}Z;ZMW - (X,priority) [IREW]
(X, priority) : \I!fo)%{yf : (X handoff) [IRAW]

A complex reconfiguration of a lock happens by a collection of the above operations. The cost of
such a reconfiguration is easily obtained by adding costs of the individual operations.

3. I : I is an initialization operation and is defined as:
1: IV, UCV,uUl'y — IVoUCVy UT'y where,
IVy, C'Vp, and Ty are the initial values of IV, C'V, and T respectively.

4.2 Costs of Object Reconfiguration

This section describes the basic costs of non-configurable lock implementations and compares them
with the costs of the operations provided by the reconfigurable lock object used in our research. The
following measurements are taken on a 32-node BBN Butterfly GP1000 NUMA multiprocessor using a
multiprocessor version of Cthreads as the basis[Muk91, SFGT91].

Table 2 lists the latencies of the lock operations for different lock implementations available on the
BBN multiprocessor (provided by the hardware, operating system and the Cthreads library). A “local
lock” refers to a lock which is located in the local physical memory whereas a “remote lock” is located in
a non-local memory module. The atomior! function, which implements a low level atomic or operation
(similar to test-and-set), is used to implement various locks. The spin-with-backoff lock is a variation
of the backoff spin lock suggested by Anderson et al.[ALL89]. A thread requesting ownership of such a
lock spins once, and if the lock is busy, waits (back offs) for an amount of time proportional to the number
of active threads waiting for the processor. As expected, the primitive spin-lock has minimum latency,
whereas the blocking-lock exhibits a maximum. The latency of the configurable lock is comparable to
that of a primitive spin lock because a lock operation for configurable locks initially spins for the lock
before deciding to block the requesting thread.

The costs of unlock operations for various lock implementations are listed in Table 3. The spin locks

implement unlock operations with minimum latency, whereas, the blocking lock, as expected, has the

Iprovided by the BBN Butterfly multiprocessor hardware
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Lock type local lock remote lock

(micro seconds)  (micro seconds)
atomior? 30.73 33.86
spin-lock 40.79 41.10
spin-with-backoff 40.79 41.15
blocking-lock 88.59 91.73
configurable lock 40.79 41.17

Table 2: Cost of the Lock operation for different locks

Lock type local lock remote lock

(micro seconds)  (micro seconds)
spin-lock 4.99 7.23
spin-with-backoff 5.01 7.25
blocking-lock 62.32 73.45
configurable lock 50.07 61.69

Table 3: Cost of the Unlock operation for different locks

highest latency. The latency for the configurable lock exceeds that of spin locks due to the extra work
required to check for currently blocked threads. As shown by some experiments in the next section, this
extra cost is compensated by the performance gain due to reconfiguration.

A thread waits for a busy lock until the current lock owner releases the lock. As mentioned earlier,
the cost of a locking cycle (an unlock followed by a lock operation) on a busy (locked) lock determines
the duration of the “idle state” of the lock. Table 4 lists the costs of the locking cycle for some static
implementations of locks. A spin-with-backoff lock has an expensive locking cycle due to the “backoft”
cost whereas the “blocking” cost adds to the locking cycle of a pure blocking lock. As shown in Table
5, a configurable lock has the least expensive locking cycle when configured as a spin lock and has the
most expensive locking cycle when configured as a blocking lock. The cost of the locking cycle of a
configurable lock, configured as a combination of spin and block, lies between these extremes.

Dynamic configuration (also known as reconfiguration) occurs at run time. The owner of a lock or
an external agent possessing an attribute of the object may choose to alter its configuration. Dynamic

configuration changes pose a few problems which are best stated by the following question:

Lock type local lock remote lock
(micro seconds)  (micro seconds)

Spin 45.13 47.89
Spin-with-backoff 320.36 356.95
Blocking-lock 510.55 563.79

Table 4: Cost of successive Unlock and Lock operation on an already “locked” lock

12




Configured as local lock remote lock
(micro seconds)  (micro seconds)

Spin 90.21 101.38
Blocking 565.16 625.63

Table 5: Cost of successive Unlock and Lock operation on an already “locked” configurable lock

Operation local lock remote lock

(micro seconds)  (micro seconds)
possess 30.75 33.92
configure(waiting policy) 9.87 14.45
configure(scheduler) 12.51 20.83

Table 6: Cost of Lock Configuration Operations

Once the configuration changes, what happens to the already registered threads? There are two
solutions to this problem. If the waiting policy changes; the first solution traverses the registration queue
and alters the waiting policies of all the registered threads. If the scheduling policy changes; it moves
all the registered threads from the old queue to the new one. The second solution does not change the
configuration of the lock until all the pre-registered threads are served. The first solution is not scalable
because the length of the registration queue does not have an upper bound. Hence, our implementation
incorporates the second solution. The configuration action does not take effect immediately. Such a
delay is referred to as a configuration delay. The effect of such delay on reconfiguration operations is
part of our future work and is not discussed in this paper

Table 6 lists the costs of the basic dynamic configuration operations. As explained earlier, the
“possess” operation is used by an external agent' to acquire exclusive ownership of a lock attribute.
This operation is rarely used since reconfiguration, in most cases, 1s done by the lock owner. The cost of
this operation is comparable to a primitive test-and-set operation. As shown, scheduler reconfiguration is
more expensive than waiting policy reconfiguration. Simple dynamic configuration of the waiting policy
requires only one memory read and one memory write whereas, alteration of the scheduler requires three
memory writes for three submodules, one memory write to set a flag (to implement the configuration
delay), and another memory write to reset the flag (when all the pre-registered threads are served, the
old scheduler is discarded). However, the configuration costs listed in Table 6 do not capture total

configuration delay.

4.3 Experiments with a Reconfigurable Object

In this section, we list the results of five experiments performed with reconfigurable locks. The previous
section shows that a reconfigurable lock exhibits a higher locking cycle latency compared to primitive

spin locks. The experiments in this section demonstrate that application performance gains due to

1A thread or a process which is not the current owner of the lock
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dynamic reconfiguration outweigh such performance penalties.

The first experiment, which compares the performance of three locks obtained by changing the sched-
uler configuration, demonstrates the use of application specific lock schedulers. The second experiment
changes some attributes of reconfigurable locks to effect different waiting policies. In this experiment,
we show that the optimal waiting policy for a lock depends on the application’s locking pattern. Since
such patterns are not generally known, lock policies can clearly be improved by dynamic reconfiguration.
The third experiment demonstrates the application of a configurable lock (called speculative or advisory
lock) for variable length critical sections.

The fourth and the fifth experiments demonstrate the utility of implementation specific configura-
tions. The fourth experiment compares application performance using centralized spin locks vs. dis-
tributed spin locks whereas the final experiment compares application performance using passive and
active locks respectively. All experiments are performed with a workload generator on a 32 node BBN

butterfly multiprocessor using a multiprocessor version of Cthreads as the basis.

4.3.1 Scheduler Configuration

As mentioned earlier, a lock scheduler schedules the incoming requests to a critical section. The first
interesting result appearing in this section compares the performance of the following three lock con-
figurations using a common class of multiprocessor applications, applications structured as client-server
programs. The experiment demonstrates improved application performance when priority or handoff

locks are used in place of FCFS locks.

FCFS and Priority lock: While FCFS lock scheduling is most common in multiprocessor lock imple-
mentations, non-preemptive-priority locks can be used in applications exhibiting specific locking patterns
for improved application performance. Use of priority locks has been widely discussed in the real-time
domain[Mar91]. Such locks can also be useful in client-server models of computation. Specially, when
a server 1s flooded with requests from many clients, the priority of its threads may be raised so that
a server thread can acquire the locks for the critical sections, it shares with the clients (e.g., message
buffers) faster, thereby resulting in faster service. FCFS locks are fair but priority locks are inherently

unfair

Handoff lock: A handoff lock scheduler takes hints to select the next thread to be assigned to the
critical section. The releasing thread hands off the critical section directly to the selected thread. Handoff
locks, like priority locks, are useful in a client-server model of computation. A handoff lock does not
guarantee fairness and is typically application specific!.

In this experiment, one thread (executing on a dedicated processor) is designated to be a server thread
serving many client threads. Communication between server and clients is performed via shared message

buffers. A client thread enqueues a request to the server thread and waits for a reply on the shared

1A user must have a clear understanding of the application’s behavior, especially the locking patterns, to use a handoff lock

policy efficiently

14



FCFS lock Priority lock Handoff lock Performance Gain
(micro seconds) | (micro seconds)  (micro seconds)

463937.5 - 403735.69 13%

463937.5 419879.49 - 9.5%

Table 7: Performance of Lock Schedulers

buffer. Each of the above lock configurations are used in the experiment to implement the shared buffer.
Table 7 compares the resulting program performance. The priority and the handoff locks perform better
than the FCFS lock because they allow the server to make progress in preference to clients, therefore
serving the clients at a faster rate. The priority lock performs better than the handoff lock in this case
due to the extra overhead required by the latter to accept user hints.

Priority locks can be implemented in more than one way. Two straightforward implementations are

stated below:

1. The first implementation implements a priority queue for the waiting threads. The release module
of the lock scheduler always selects the thread with the maximum priority.

2. The second implementation assigns a priority to the lock object which is used as a threshold of
priorities for the requesting threads. Only threads with higher priorities than the threshold are
eligible for the lock. The lock is assigned in an FCFS fashion among all eligible threads.

This experiment uses the second implementation of priority locks. Whenever the server thread is flooded
with many requests, the lock priority 1s dynamically altered to temporarily raise the threshold priority
above client priority thereby making clients ineligible for the locks.

This experiment clearly demonstrates the utility of application specific lock schedulers. For improved
performance an application requires lock schedulers most appropriate for its requirements (locking pat-
terns exhibited by the threads of the application). Note that we are not aware of any current lock
implementations (provided by operating system or libraries) which allows users to alter lock schedulers

(as supported by reconfigurable locks) to suit their requirements.

4.3.2 Waiting Policy Configuration

As explained earlier, the internal state of a lock object contains attributes that decide whether a waiting
thread spins, sleeps or does both. Changing these parameters, statically or dynamically, changes the
waiting policy of a requesting thread. A few sample lock configurations obtained by varying the param-
eters of its internal state are spin, blocking, and combined locks. The second experiment compares the

performance of these three configurations using a uniform locking pattern.

Spin lock: If the sleep time is zero (or the spin time is infinite) and the spin time is nonzero, a thread

spins while waiting for the lock.
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Figure 7: Length of critical section Vs. Application execution time

Blocking lock: If the spin time is zero and the sleep time is nonzero, a waiting thread directly goes
to sleep until awakened by a thread (possibly a releasing thread) or a timeout signal. The lock scheduler

wakes up a specific thread or all the sleeping threads depending on the release policy.

Combined lock: A combined lock results when both spin time and sleep time are set to nonzero. A
thread spins as well as sleeps while waiting. The resulting waiting policy 1s decided by the actual values
of the parameters. In a typical waiting policy, a thread initially spins for a certain time and if the lock
1s still busy, goes to sleep unless awakened by someone. In another waiting policy for combined locks, a
thread spins and sleeps in turn until it acquires the lock.

The second experiment repeats the experiment done in Section 2 on performance of spin vs. blocking
when multiple threads on each processor are capable of making progress (Figure 3) using combined locks
with the latter waiting policy. Figure 7 shows the results of the experiment, and compares the perfor-
mance of combined locks with spin and blocking locks. Due to the low latency, spin locks outperform
others when the critical section is small. However, for larger critical sections, the figure shows a distinct
performance advantage in favor of combined locks.

The figure shows the performance of two combined locks — one that spins 10 times initially before
blocking, another that spins once before blocking. In this experiment the former outperforms the latter
for larger critical sections, However in general, the optimal number of initial spins of combined locks
will depend on various application characteristics such as its locking pattern, length of critical sections
etc. Furthermore, the optimal waiting policy for a lock will be different during different phases of a
computation from which we hypothesize that a waiting policy based on dynamic feedback (reporting

the state of a lock) is essential for better application performance. This topic is addressed in our
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future research, where we use lock monitor information to identify the current lock state and vary lock
configurations, thereby resulting in speculative dynamically reconfigurable locks.

The third experiment studies the performance of another lock configuration called advisory locks. In
this experiment, we study the effect of changing the waiting policy in different phases of a computation (as
suggested by the result of the last experiment). This experiment demonstrates considerable performance

improvement due to such changes over a non-configurable spin or blocking locks.

Advisory/Speculative lock: As the name suggests, the owner of such a lock advises other requesting
threads whether to spin or sleep while waiting by (dynamically) changing the parameters of its internal
state. Advisory locks are a result of direct application of configurable locks. In general, the length of
each synchronization lock tenure may vary significantly in different phases of computation. The current
lock owner is the best source of information for the length of lock ownership. Hence, the current owner
of a synchronization lock advises or configures the lock for a requesting thread. The owner also may
choose to change the advice at different stages in the critical section. Two such situations are listed

below:

e A critical section may have multiple conditional paths of varying lengths. The owner may change
the lock to be a sleeping lock if it takes a long path inside the critical section or may change the
lock to spin if it takes a short path.

e If a critical section is long, the owner initially sets the lock to be a sleeping lock. When it reaches
the end of the critical section, 1t changes the lock to spin.

This experiment uses an application performing critical sections of varying lengths. As the length of

the critical sections increases, the owner thread alters the configuration of the lock. Figure 8 compares
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the performance of such a lock with simple spin and blocking locks. As the figure shows, advisory locks
outperform ordinary spin or blocking locks for variable length critical sections. Since the remaining
length of a critical section owned by a thread decreases with time, the figure also suggests that the
advice be changed at regular intervals dynamically by the owner to reflect the remaining length of the

tenure for improved performance.

4.3.3 Implementation Specific Configuration

The implementation of a lock may be altered using architectural hints. The fourth experiment compares
application performance using centralized spin locks vs. distributed spin locks. The results of this
experiment is not too surprising. However, they do support the conclusions made by Anderson et
al [ALL89] that distributed implementation of locks, especially in NUMA machines, often improves

application performance to a certain extent, however small it may be.

Centralized Vs. Distributed or Semi-consistent locks: A Centralized implementation does not
replicate a lock in different processors. Waiting for centralized locks may require considerable number of
remote memory accesses which are expensive and may cause switch/bus contention. On the other hand, a
distributed implementation of a lock replicates the lock in more than one processors, thereby minimizing
remote memory accesses. The replicas need not be consistent always as long as the implementation
guarantees a fair mutual exclusion.

The result of the experiment performed using three processors is shown in Figure 9. Although the

figure demonstrates a small performance advantage in favor of distributed locks, we hypothesize that
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improvement will be more when the number of processors are large. Similar results have already been
shown by others[ALL89], hence they are not included in this paper.

The final experiment compares two alternative lock implementations — passive and active locks.

Passive Vs. Active locks: If a lock object has a permanent thread bound to it, we refer to it as an
active lock. The thread is bound to the lock at the lock creation time and it remains bound through out
its lifetime. Figure 10 compares the performance of an application using active vs. passive spin locks.
The experiment demonstrates that active locks are little cheaper because it takes the responsibility of
executing the release module from the owner processor, thus providing the releasing processor more time
to execute useful application-specific code. However, applications using active locks need more number
of processors to execute.

We have also implemented a few common lock configurations to demonstrate the generality of the
structure of reconfigurable lock objects. The remaining portion of this section lists these lock configura-
tions obtained using reconfigurable lock objects.

A read-writelock is implemented using a scheduler that allows multiple reader threads inside a critical
section. Such a lock scheduler implements an algorithm similar to a multiprocessor scheduling algorithm
with some constraints. A read-write scheduler can be combined with a priority or a handoff scheduler
to create variants where readers have priority over writers or vice versa.

Recursive locks' are implemented by maintaining the lock-ownership information in the registration
module. An attempt to re-acquire the same lock is easily detected because a lock object knows the

identity of its owner. Recursive locks are more expensive than the normal locks because each requesting

Irecursive locks are implemented in MACH [Bla90b] kernel to eliminate the lock-reentrancy problem.
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thread performs an extra memory write at registration time.
Simple conditional locks result when the timeout parameter is set accordingly. A thread waiting for

such a lock returns unsuccessfully if it cannot acquire the lock in a specified time.

5 Related Research

Some of the notions introduced in PRESTO[BLLWS88, BLL88], CHOICES[CJR87] and CHAOS[GS89a,
(GS93, GS89b, SGZI0b, SGZ90a] are somewhat similar to this work. PRESTO supports two kinds of
synchronization primitives: spinlocks and synchronization objects. A synchronization object is made
of a spinlock (spinlock implements the mutual exclusion), a queue (threads block in this queue), and
a few objects required to implement its semantics. Structurally, PRESTO’s synchronization object is
somewhat similar to reconfigurable locks. However, a synchronization object does not support dynamic
attribute reconfiguration and object state monitoring. CHOICES is an example of an object based
reconfigurable operating system which can be tailored for a particular hardware configuration or for a
particular application. The focus of CHOICES is to structure the operating system kernel in an object
oriented way whereas, the focus of our research is to build a configurable operating system kernel at the
thread level. Even though we use the object model at the application level, we do not use objects to
build the run-time system. CHAOS? is a family of object-based real-time operating system kernels. The
family is customizable in which existing kernel abstractions and functions can be modified easily. As
opposed to CHAOS objects, a reconfigurable lock contains its own mutable attributes and an internal
configuration policy to guide any reconfiguration operation.

There has been a lot of work on multiprocessor synchronization. In [ALL89], Anderson et al. compare
the performance of a number of software spin-waiting algorithms. They propose a few efficient spin-
waiting algorithms such as Ethernet style backoff algorithm (introducing delay between successive spins
analogous to Ethernet’s backoff or Aloha), software queueing of spinning processors etc. We have built
similar backoff spin locks as different configurations of the reconfigurable lock. In [MCS91], Mellor-
Crummey et al. propose a new scalable algorithm (a list-based queuing lock, also known as MCS lock)
which generates O(1) remote references per lock acquisition, independent of the number of processors
attempting to acquire the lock. We have built a similar lock (distributed lock) as a configuration

(implementation dependent configuration) of the reconfigurable lock.

6 Conclusion and Future Work

The contribution of our work is twofold: First, we, propose a structure for lock objects such that their
waiting and scheduling behaviors are easily changed (statically or dynamically), and then we demonstrate
the usefulness of dynamic reconfiguration of such lock objects.

The experiments in Section 2 imply that an operating system kernel should provide a locking mecha-

2A Concurrent, Hierarchical, Adaptable Operating System supporting atomic, real-time computations.
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nism that permit the use of different waiting and request handling strategies depending on the expected
or experienced lengths of critical sections. Even though the presented reconfigurable lock model exhibits
some performance penalties compared to primitive locks (as shown in Section 4.1), the experiments in
Section 4.2 shows that in most cases, these penalties are outweighed by the performance gain due to
reconfigurability.

In this paper, we show that it is essential to have application specific lock schedulers for increased
performance (as priority schedulers and handoff schedulers are used in some classes of applications).
We also show that the dynamic change of waiting policy attributes results in improved application
performance.

Section 4.2 demonstrates that the optimal waiting policy of a lock is a function of number of spins,
blocks, and/or timeouts. This function depends on various application characteristics such as its locking
pattern, length of its critical sections etc. Our future research focuses in part on finding the optimal
waiting policy for an application specific lock by speculative dynamic reconfiguration. Next, we will
extend this idea to build self-adaptable objects. Such an object uses a builtin monitor and an adaptation
algorithm to implement a feedback loop to configure its own attributes. We will use the concepts of
reconfiguration and adaptation in other operating system components as well to build a lightweight

reconfigurable operating system kernel.
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